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In this lecture, we use the results we have developed to explore var-
ious examples.

Definition 1. Let G be a group and Γ a simple graph. Then GΓ =
(V (Γ),G × E(Γ)) with ϕ(g, eij) = g is a gain graph called a group
expansion of Γ, specifically the G-expansion.

The full G-expansion GΓ• is GΓ with a half edge added at every
vertex.

See Figure 1 for the G-expansion of a link e.

Theorem 2. Let G be a finite group of order m and Γ a simple graph
on n vertices. Then

χbGΓ(λ) = mnχΓ

( λ
m

)
and

χGΓ•(λ) = mnχΓ

(λ− 1

m

)
.

Figure 1. On the left is the edge e in Γ. On the right is
the set of edges which places e in GΓ, one edge for each
element of G.
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Proof. For the first part of the theorem, we start with a 0-free k-
coloration γ of GΓ. This coloration is proper when, for all f ∈ G,
γ(vj) 6= γ(vi)ϕ(f, eij). Suppose γ(vj) = (h, b) and γ(vi) = (g, a). Then

γ(vi)ϕ(f, eij) = (g, a)ḟ = (gf, a). So the propriety condition on γ is
that (h, b) 6= (gf, a) for all f ∈ G. This can only be satisfied if a 6= b.
We can therefore express the 0-free proper k-coloration γ : V → G×E
as γ = (γG, γE) where γE is a proper k-coloration of Γ and γG : V → G
is arbitrary. The number of proper k-colorations ΓE is χΓ(k), so the
number of 0-free proper k-colorations of GΓ is mnχΓ(k). Since λ = mk,
we deduce that χbGΓ(λ) = mnχΓ(λ/m). This proves the first part of the
theorem.

For the second part we put in the half edges to make the graph full.
Then the color 0 is excluded, so χGΓ•(λ) = χbGΓ(λ−1). But λ = km+1.
So k = λ−1

m
, giving the result. �

Example 3. Consider GK•
n. Since χKn(k) = (k)n = k(k − 1) · · · (k −

[n− 1]), we get the chromatic polynomial formula

χGK•
n
(λ) = mn

(λ− 1

m

)
n

= mn
(λ− 1

m

)(λ− 1

m
− 1
)
· · ·
(λ− 1

m
− [n− 1]

)
= (λ− 1)(λ− 1−m)(λ− 1− 2m) · · · (λ− 1− [n− 1]m).

Example 4. Now suppose G ≤ K×—as, for example, the finite cyclic
group of order m is the group of m-th roots of unity in C, or the cyclic
group of order q − 1 is the multiplicative group of the finite field Fq.
Then

H [GK•
n] = {hi : xi = 0} ∪ {hgij : xj = xig | g ∈ G}.

By Theorem ??, the characteristic polynomial of the arrangement is
the chromatic polynomial of GK•

n, so

pH [GK•
n](λ) = (λ− 1)(λ− 1−m)(λ− 1− 2m) · · · (λ− 1− [n− 1]m).

From this we get a formula for the number of regions of the arrange-
ment:

(−1)npH [GK•
n](−1) = (−1)nmn(

−1− 1m)n
=

(−1)nmn(
−2

m
)n

= (2)(2 +m) . . . (2 + [n− 1]m).

Example 5. Let’s apply the preceding examples to the smallest non-
trivial group: G = {±1}. Then we are considering the signed graph
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±K•
n (short for {±1}K•

n). We infer that

pH [±K•
n](λ) = 2n

(λ− 1

2

)
n

and the number of regions is

(−1)npH [±K•
n](−1) = (−1)n2n

(−2

2

)
n

= 2nn!.

This has been long known to Lie theorists (who call regions “cham-
bers”), but we have used a different and more general method to get
this number.

The connection with Lie theory is historically important, as it was
the impetus (stimulated by two questions from Richard Stanley) for the
entire theory of gain-graphic matroids and hyperplane arrangements.
A root system is a finite set of vectors in Rn that have certain nice
integrality properties that I will not state here; they are stated in most
books on Lie theory. The indecomposable root systems have been
classified; they come in four infinite families, one for each dimension,
called the classical root systems, and a small number of exceptional
root systems. Our interest is in the classical root systems.

Example 6. Let’s take our gain group to be {±1} ≤ R× and let’s
express the standard basis of Rn as b1, . . . , bn. We associate vectors
to the edges of our graph and we associate those vectors to their dual
hyperplanes, i.e., the hyperplanes for which they are defining vectors.
For an edge eij we write e+

ij if it is positive and e−ij if it is negative. For

a half edge we write ei (as it has no sign). We associate e+
ij to a vector

±(bj − bi), e
−
ij to a vector ±(bj + bi), and ei to a vector ±bi. These

vectors and their negatives constitute the root system Bn. The vectors
±(bj − bi) determine the hyperplane xi = xj, the vectors ±(bj + bi)
determine the hyperplane xi = −xj, and the vectors ±bi determine the
hyperplane xi = 0. These hyperplanes form the root system hyperplane
arrangement Bn. If we replace the half edges ei by negative loops e−ii ,
we get vectors ±2bi; this results in the root system Cn with hyperplane
arrangement Cn = Bn. If we take only the positive edges, we get the
root system called An−1 (because it is not full-dimensional in Rn) and
its hyperplane arrangement An−1. If we take only positive and negative
links (i.e., no half edges or loops) we get the root system Dn and the
arrangement Dn. These correspond to the four infinite families of root
systems.

The root system arrangements are signed-graphic. We list them
with their graphs and the number of regions, r, computed from the
chromatic polynomials. The circle in ±K◦

n means we add a negative
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loop instead of a half edge to every vertex (which makes a difference
in computing vertex degrees—which we don’t do in these notes).

An−1 = H [Kn] : r = (−1)nχKn(−1) = (−1)n(−1)n = n!,

Bn = H [±K•
n],Cn = H [±K◦

n] : r = (−1)nχ±K•
n
(−1) = 2nn!,

Dn = H [±Kn] : r = (−1)nχ±Kn(−1) = 2n−1n!.

The last of these needs proof! The tool is the next theorem, which
although simple is very convenient for computing chromatic polynomi-
als.

Theorem 7 (Balanced Expansion). Let Φ be a gain graph without loose
edges. Then

χΦ(λ) =
∑
W⊆V
W stable

χbΦ:WC (λ− 1).

Proof. We leave this as an exercise for the reader. �

With Theorem 7 we can observe that

χ±Kn(λ) =
∑

W⊆V : W stable

χb±Kn:W c(λ− 1).

But W ⊆ V (±Kn) is stable only when (and when) W = ∅ or |W | = 1,
since the gain graph is compete and there are no half-edges or loops.
So

χ±Kn(λ) =
∑
W⊆V

W stable

χb±Kn:WC (λ− 1)

= χb±Kn
(λ− 1) + nχb±Kn

(λ− 1)

= 2nχKn(λ− 1) + n2n−1χKn−1(λ− 1)

= (λ− 1)(λ− 3) . . . (λ− 2n+ 1) + n(λ− 1)(λ− 3) . . . (λ− 2n+ 3)

= (λ− 1)(λ− 3) . . . (λ− 2n+ 3) · (λ+ 1− n).

Thus,

(−1)nχ±Kn(−1) = (2)(4) . . . (2(n− 1))(n) = 2n−1n!.

That gives the chromatic polynomial and the region count we wanted.

Example 8. By a similar computation (Exercise!), for any group G of
finite order m,

χGKn(λ) = mn−1
(λ− 1

m

)
n−1

[λ− (m− 1)(n− 1)].


