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For the gain-graphic arrangements we encountered previously, the gain group was mul-
tiplicative: G ≤ K× and the hyperplanes were homogeneous, i.e., subspaces of the vector
space Kn. Now we switch to an additive group, G ≤ K+ to examine a new kind of gain-
graphic arrangement, which I call “affinographic” because its hyperplanes are affine translates
of graphic hyperplanes. This gives an affine—usually inhomogeneous—arrangement in the
affine space An(K). For this type of arrangement we do not use half edges or loose edges.

Definition 1. A hyperplane of the form xj = xi + c is called affinographic. An affinographic
hyperplane arrangement is an arrangement whose hyperplanes are affinographic.

Definition 2. Given a gain graph Φ with gain group G ≤ K+, without half or loose edges,
the corresponding affinographic hyperplane arrangement is

A [Φ] = {a(e) : e ∈ E},
where a is a function that gives a hyperplane

a(eij) : xj − xi = ϕ(eij),

or equivalently xj = xi + ϕ(eij), for each edge of Φ.

Recall from Lecture 7 (Definition ??) that Latb Φ = {A ∈ Lat Φ : A is balanced}.

Theorem 3. Let S ⊆ E. Then
⋂

a(S) 6= ∅ if and only if S is balanced.
The function a gives a semilattice isomorphism Latb Φ ∼= L (A [Φ]).

Proof. We start the proof with three useful lemmas.

Lemma 4. If C is an unbalanced circle, then
⋂
a(C) = ∅.

Proof. Let C = v0e01v1e12v2 . . . el−1,lvl, where v0 = vl. Then x ∈
⋂
a(C) ⇐⇒ x satisfies all

the equations

(1)

x1 = x0 + ϕ(e01),

x2 = x1 + ϕ(e12),

. . .

xl = xl−1 + ϕ(el−1l),

hence

xl =x0 + ϕ(e01) + ϕ(e12) + · · ·+ ϕ(el−1,l) = x0 + ϕ(C).

But xl := x0, so this is impossible if ϕ(C) 6= 0, i.e., when C is unbalanced. Thus
⋂
a(C) =

∅. �

Lemma 5. If S ⊆ E and F ⊆ S is a maximal forest in S, then
⋂
a(S) =

⋂
a(F ).

Proof. For a balanced circle, the equation xl = xl−1 + ϕ(el−1,l) is implied by the others in
Equation (1). Indeed, from the first l − 1 of those equations we infer that xl−1 = x0 +
ϕ(e01e12....el−2,l−1) = x0 + ϕ(C) − ϕ(el−1,l). Since C is balanced and since xl = x0, this
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quantity = x0 +0−ϕ(el−1,l) = xl−ϕ(el−1,l). Thus, xl−1 = xl−ϕ(el−1,l), which is the desired
equation.

This implies that if x ∈
⋂

a(C\el−1,l), then x ∈ a(el−1.l). That is,
⋂
a(C\el−1,l) ⊆ a(el−1,l).

Now, for edge sets F and S as in the hypothesis, for each e ∈ S \ F there is a circle
C ⊆ F ∪ {e} that contains e. By the preceding calculation, a(e) ⊇

⋂
a(C \ e) ⊇

⋂
a(F ).

It follows that
⋂

e∈S\F a(e) ⊇
⋂

a(F ). So,
⋂
a(S) ⊇

⋂
a(F ). As the reverse inclusion is

obvious, we have equality. �

Lemma 6. For a forest F ⊆ E,
⋂

a(F ) is an affine flat whose codimension is #F .

Proof. We induct on the number of edges in F .
If there are no edges then the codimension is obviously 0.
A forest with at least one edge has a vertex of degree 1, say vk with edge emk. The

hyperplane a(emk) is given by the equation xk = xm + ϕ(emk), and no other hyperplane in
a(F ) has xk in its equation. Consequently, xk is unrestricted for x ∈

⋂
a(F \ emk), from

which we conclude that
a(emk) 6⊇

⋂
a(F \ emk)

and in
⋂

a(F ) we are imposing only the new restriction xk = xm + ϕ(emk), from which it
follows that

a(emk) ∩
⋂

a(F \ emk) 6= ∅.

Since a(emk)∩
⋂

a(F \ emk) 6= ∅, the modular law of dimension in An(K) applies; therefore
codim

⋂
a(F ) = codim

⋂
a(F \ emk) + 1, so by induction we have the result. �

Now we prove the theorem.
Case 1: S is unbalanced. Then S ⊇ C, an unbalanced circle, and

⋂
a(S) ⊆

⋂
a(C) = ∅

by Lemma 4.
Case 2: S is balanced. Let F be a maximal forest in S. Then

⋂
a(S) =

⋂
a(F ) by Lemma

5, which is not empty by Lemma 6. And codim
⋂
a(S) = codim

⋂
a(F ) = #F by Lemma 6.

By elementary graph theory #F = n − c(F ), which = n − c(S) since F is maximal in
S. Therefore rk

⋂
a(S), in L (A [Φ]), is equal to n− c(S) = rkΦ(S) (in the frame matroid).

Since the ranks match, the closure deduced from A [Φ] for balanced edge sets is the same
as that in F(Φ) for balanced edge sets. This implies that the closed sets in F(Φ) that are
balanced are in one-to-one correspondence (via the mapping a) with the flats of A [Φ]. �
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