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Characteristic polynomial. Let’s begin with that one of the main theorems about affino-
graphic arrangements—which (at last) gives a solid justificiation for the balanced chromatic
polynomial.

Theorem 1. For a field K, a group G ≤ K+, and a G-gain graph Φ, the characteristic
polynomial of the affinographic arrangement of Φ is pA [Φ](λ) = χb

Φ(λ).

Proof. For simplicity we write A := A [Φ]. Recall that for a balanced subset S ⊆ E := E(G)
and for S the corresponding set of hyperplanes in A ,

dim
⋂

S = n− rk
⋂

S = n− rk(S) = b(S) = c(S).

Then from the polynomial definitions and the balance property in Theorem ??,

pA (λ) =
∑

S⊆A :
⋂

S 6=∅

(−1)|S |λdim(
⋂

S ) =
∑

S⊆E:S balanced

(−1)|S|λb(S) = χb
Φ(λ). �

The lift matroid. Now we put the projectivization of an affine arrangement to serious use.
We will examine the projectivization of A [Φ], written A [Φ]P or AP[Φ], and infer from it a
new matroid of a gain graph.

Recall from Stanley’s lectures that for an affine hyperplane (or subspace) h in An(K), hP
is its extension into the projective space Pn(K). For an affine hyperplane arrangment A in
An(K), AP := {hP | h ∈ A } ∪ {h∞}, a hyperplane arrangement in Pn(K).

Note that h∞, the ideal hyperplane, is isomorphic to Pn−1(K). The arrangement induced
in h∞ by AP is A h∞

P := {hP ∩ h∞ | h ∈ A }; its matroid is denoted, as usual, by M (A h∞
P ).

It follows that M (A h∞
P ) ∼= M (AP)/h∞, the contraction matroid, by the natural correspon-

dence hP 7→ hP ∩ h∞. Recall also that hP ∩ h∞ = h′P ∩ h∞ if and only if h and h′ are
parallel.

We are going to give an intrinsic characterization of the matroid L0(Φ) implied by the
projectivization AP[Φ]. The first step is to state that characterization; then we prove it is
naturally isomorphic to M (AP[Φ]).

Let E0 := E ∪ {e0}, where e0 is a new object that is not in either E or V . We extend the
notion of balance to E0: we call S ⊂ E0 balanced if S ⊆ E and S is balanced as a subset of
E; any other subset of E0 is unbalanced.

Theorem 2. For any gain graph Φ, there is a matroid L0(Φ) with ground set E0 defined by
any of the following five equivalent axioms. This definition also applies to any biased graph
Ω.

I. A set S ⊆ E0 is a circuit of L0 if and only if it is of one of the following types:
i. a balanced circle,

ii. a contrabalanced tight handcuff (or tight bracelet),

iii. a contrabalanced loose bracelet,

iv. a contrabalanced theta graph;
1



v. C ∪ {e0} for an unbalanced circle C.
II. A set S ⊆ E0 is an independent set of L0 if and only if it is of one of the following

types:
i. a forest,

ii. an unbalanced unicyclic graph,
iii. F ∪ {e0} for any forest F .

III. The rank function of L0 is

rkL(S) =

{
n− c(S), if S is balanced,

n− c(S) + 1, otherwise.

IV. The lattice of flats is Lat L0(Φ) = Latb(Φ) ∪ Lat0(Γ), where Γ = ‖Φ‖, the underlying
graph of Φ, and L0(Γ) := {A ∪ {e0}|A ∈ Lat(Γ)}.

V. The closure of S ⊆ E0 is

cl(S) =


bcl(S), if S is balanced,

closΓ(S) ∪ {e0}, if S ⊆ E is unbalanced,

closΓ(S \ {e0}) ∪ {e0}, if e0 ∈ S.

Not a Proof. Sadly, we will not prove this theorem; the proof is too long. We will, however,
prove in Theorem 4 that L0 is the right matroid for AP[Φ], which incidentally proves it is a
matroid when Φ has gain group K+. �

Definition 3 (Lift matroid). The extended lift matroid of Φ is the matroid L0(Φ) defined
in Theorem 2. The lift matroid L(Φ) is the restriction of L0(Φ) to the ground set E.

Now, define aP to be the projective extension to E0 of the function a : E → A [Φ] defined
in Lecture 11. This function satisfies

aP(e) =

{
hP, when h = a(e) for some e ∈ E,
h∞, when e = e0.

That is, aP(e) = a(e)P for an edge e of Φ.

Theorem 4. The mapping aP is an isomorphism L0(Φ)→M (AP[Φ]).

We give two proofs that share steps but rely on different characterizations of the matroids.

First Proof. For simpler notation we write A for A [Φ], L0 = L0(Φ), and F = F(Φ) (the
frame matroid). We show M (AP) ∼=aP L0(Φ) by showing the ranks in the two matroids are
the same. Let S ⊆ E0 be balanced; then

rkM

⋂
aP(S) = codim

⋂
aP(S) = codim

⋂
a(S) = rk

⋂
a(S)

= rkF(Φ) S = n− b(S) = n− c(S) = rkL(S),

where the second equality follows from
⋂
a(S) 6= ∅ and the fourth from the second part of

Theorem ??.
Suppose S is unbalanced, but e0 /∈ S. The graphic hyperplane h(eij) : xi = xj in An(K) has

projective extension hP(eij) in Pn(K) that satisfies {xj = xi}P∩h∞ = {xj = xi+c}P∩h∞ for
all c ∈ K because the hyperplanes are parallel. Hence, aP(e)∩h∞ = hP(e)∩h∞ for any edge
e ∈ E. This, in particular, implies that A h∞

P = H [Γ]h∞
P . Because H [Γ] is homogeneous,
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Pn(K)

h∞ ∼= Pn−1

0

An(K) as Kn

∩h∞

Figure 1. The mapping ∩h∞ inverts to give a unique vector subspace of Kn.

the mapping H [Γ]
∩h∞−−→ HP[Γ]h∞ is a rank-preserving bijection. That bijection implies a

matroid isomorphism M (H [Γ])h∞
P
∼= M (H [Γ]) (see Figure 1).

Now consider S = T ∪ {e0} for some T ⊆ E. Then
⋂
aP(S) ⊆ aP(e0) = h∞, so⋂

aP(S) =
⋂
e∈T

(
aP(e) ∩ h∞

)
=
⋂
e∈T

(
hP(e) ∩ h∞

)
= h∞ ∩

⋂
e∈T

hP(eij).

Thus the rank of
⋂
aP(S) is

rk
⋂

aP(S) = codim
⋂

aP(S) = codim
⋂

hP(S)︸ ︷︷ ︸
n−c(T )

+ 1︸︷︷︸
h∞

. �

Second Proof. Again we write A for A [Φ]. This proof depends on showing that the closed
sets of L0(Φ) are the right ones for M (AP). For balanced closed sets, this is Theorem ??.

For unbalanced ones, since they all contain e0, which corresponds to h∞, they must cor-
respond to ideal flats of M (AP); in other words, subspaces in L (A h∞

P ). Such a flat is the
intersection with h∞ of a set of hyperplanes hP for h ∈ S where S is some subset of A . The
affine hyperplane h has equation xj − xi = c for a constant c, but its ideal part, hP ∩ h∞, is
independent of c; so we may replace A [Φ] by the arrangement H [Γ] of graphic hyperplanes
h(e) : xj = xi that are parallel to the hyperplanes a(e) of A . Since H [Γ] is homogeneous,
the flats s ∈ L (HP[Γ]) are determined by their ideal parts s∞ := sP ∩ h∞. Therefore,
L (A h∞

P ) ∼= L (HP[Γ]h∞) ∼= L (H [Γ]) ∼= Lat Γ ∼= Lat0 Γ with the third isomorphism given
by aP. That proves the ideal flats of AP correspond to the unbalanced flats of L0(Φ) via aP.
That completes the proof. �

Popular Affinographics. Several affinographic arrangements that have received a lot of
attention in recent years are the real affine arrangements of certain integral gain graphs—
where the gain group is the additive group of integers, Z+, regarded as a subgroup of R+. I
will describe some of them. In each example I state the gain graph Φ; the arrangement is
A [Φ].

These graphs are a kind of partial group expansion: expansions of a base graph ∆ by
subsets of the gain group. To state the gains we assume a special orientation of the base
graph: the vertex set is V = {v1, . . . , vn} and edges are oriented upwards, i.e., from vi to vj
where i < j; we denote this oriented graph by ~∆. (Actually, we always use ~Kn.) Then, for

instance, the notation {1, 2,−3}~∆ means that each edge e is replaced by three edges with
gains 1, 2, and −3 in the upward direction; equivalently, the gains are −1, −2, +3 in the
downward direction.
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Example 5. The Catalan arrangement is associated with the gain graph {0,±1} ~Kn. The
picture of an expanded edge eij (with i < j) is

vi vj

1

0

-1

This arrangement gets its name from the curious fact that the number of regions is a Catalan
number.

A variation is the hollow Catalan arrangement, with gain graph {±1} ~Kn. The picture is
the same except that the edge with gain 0 is missing.

A more elaborate variant is the extended Catalan arrangement, whose gain graph is Φ =
{0,±1, . . . ,±l} ~Kn. It has a hollow version as well, without the 0-edges.

Example 6. The Shi arrangment has the gain graph {0,+1} ~Kn. A picture is

vi vj

1

0

The absence of sign symmetry in the gains (i.e., the fact that there is a +1 edge eij but no
−1 edge eij) makes it more difficult to compute the Shi characteristic polynomial than the
Catalan arrangement’s.

Example 7. The Linial arrangement1 accompanies {+1} ~Kn.

The Shi and Linial arrangements also have extended variants, though their definitions are
not obvious.

We wish to compute the characteristic polynomial pA (λ) of each arrangement in our list,
but there is a difficulty: we cannot count proper colorations in an infinite group like Z+.
The solution is to compute χb

Φ(λ) using colors in Z+
m, which is the additive group of integers

modulo m, using the next proposition. For a Z+-gain graph Φ, define Φ/m to have the
same underlying graph and gains modulo m; that is, ϕΦ/m(e) := ϕΦ(e) mod m. These are
modular gains.

Proposition 8. For a Z+-gain graph Φ, χb
Φ(λ) = χb

Φ/m(λ) if, and only if, m does not divide
the gain of any unbalanced circle in Φ.

Proof. Let 〈Φ〉 be the biased graph of Φ. Then χb
Φ(λ) = χb

〈Φ〉(λ) and χb
Φ/m(λ) = χb

〈Φ/m〉(λ)

by the definition of χb. Also, 〈Φ〉 = 〈Φ/m〉 if and only if m is not a divisor of the gain of
any unbalanced circle, as then unbalanced circles are unchanged by passing from Φ to Φ/m.
This implies sufficiency.

For necessity, consider the class S of unbalanced edge sets that become balanced modulo
m. Then

(1) χb
Φ/m(λ)− χb

Φ(λ) =
∑
S∈S

(−1)|S|[λbΦ/m(S) − λbΦ(S)] =
∑
S∈S

(−1)|S|λbΦ(S)[λbΦ/m(S)−bΦ(S) − 1]

1Named for Nathan Linial.
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Let b0 := min{b(S) : S ∈ S } and S0 := {S ∈ S : b(S) = b0}. Then the term of degree
b0 in Equation (1) has coefficient −|S0|; that is, the coefficient of λb0 is reduced by |S0| in
passing from Φ to Φ/m. This proves that equality fails if any circle becomes balanced upon
going to modular gains. �

The modular strategy for computing the balanced chromatic polynomial is to find infinitely
many “good” values m, not dividing any circle gain, at which to calculate χb

Φ(m) by group
coloring using the finite cyclic group Z+

m. We obtain χb
Φ/m(m) by counting proper Z+

m-

colorations, and when m is a good modulus this number equals χb
Φ(m). Doing this for n

good moduli m determines the balanced chromatic polynomial, as we know the degree (n)
and the leading coefficient (1). (In practice the same counting procedure succeeds for all
m > maxC∈C (Φ) ϕ(C) so there is no advantage to restricting to only n moduli.)
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