
Modular Coloring for the Catalan Arrangement

Lecture 13
Notetaker: Nicholas Lacasse

Review. We consider affine hyperplane arrangements in An(R), in
particular those that arise from an integral gain graph, that is, Φ with
the additive gain group Z+. An edge e = vivj with gain g in Φ gives
the hyperplane xj − xi = g. (Note that this makes the [arbitrary]
orientation of the edge significant. If the edge were oriented in the
opposite direction with gain g, it would give the hyperplane xi−xj = g.)
The hyperplane arrangement determined by Φ is written A [Φ].

The Catalan arrangement Cn is {xj − xi = 0, 1,−1 for i < j} in
An(R) where An denotes n dimensional affine space. The gain graph

corresponding to the Catalan arrangement is {0,±1} ~Kn, that is, Kn

with three edges, bearing gains 0, 1, and −1, between each pair of
vertices. We call it the Catalan gain graph. (Here ~Kn denotes Kn

with vertex set {v1, v2, . . . , vn} and all edges oriented upward for the
assignment of gains. The same convention can be applied to any graph.)
To show why this notation is useful, I mention the Shi arrangement,
Sn := A [{0, 1} ~Kn], whose hyperplanes are xj − xi = 0, 1 for i < j.

Our goal is to compute the characteristic polynomial of the Catalan
and related arrangements. We achieve this by using three previous
theorems. The first two theorems are:

Theorem 1 (Theorem ??).

pA [Φ](λ) = χb
Φ(λ) :=

∑
S⊆E: S balanced

(−1)#Sλb(S).

Theorem 2 (Theorem ?? with k = 1). If G is a finite group, then
χb

Φ(#G) is the number of proper G-colorations of Φ.

A proper G-coloration of Φ is a mapping γ : V (Φ) → G such that,
for each edge e = vivj, say with gain g, then γ(vj) 6= γ(vi)g.

These results let us use coloring methods to determine the character-
istic polynomial of an arrangement. However, if our group is, like Z+,
infinite, then so is the number of proper colorations. That creates an
obvious difficulty. Fortunately, we have a third theorem to deal with
the difficulty. Let B(Φ) denote the set of balanced circles of Φ.

Theorem 3 (Definition ??). Suppose the underlying graphs of Φ and
Φ′ are the same and moreover B(Φ) = B(Φ′). Then χb

Φ(λ) = χb
Φ′(λ).

So if we can change the gains on the Catalan gain graph so they are
in a finite group, without changing the list of balanced circles, then we
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may get a meaningful count of proper colorations. This can be done.
The idea is to take the integral gains modulo m for m > n, changing
the gain group from Z+ to Z+

m. This will not destroy balance of any
circle because if a circle has gain 0 in Z, it has gain 0 modulo m. It will
not create new balanced circles because, since the largest magnitude of
a gain is 1, no circle has gain larger than n. We formulate this method
as a lemma.

Lemma 4. Suppose Φ is an integral gain graph and m ∈ Z>0 is not
the gain of any circle in Φ. Let Φ/m be the same gain graph with gains
interpreted modulo m, so the gain group is Zm. Then χb

Φ(λ) = χb
Φ/m(λ)

and χΦ(λ) = χΦ/m(λ).

Catalan calculations. We are now tasked with counting the number
of proper Z+

m-colorations of {0,±1}Kn. This means we need to count
functions γ : V = {v1, . . . , vn} → Z+

m such that γ(vj) − γ(vi) 6= 0,±1
for all i 6= j. We encourage the reader to “close the book” and attempt
to work out a solution before continuing.

Here is our class’s solution to the coloring problem. We view the
vertices vi as objects that we will be placing into bins. The bins are
labeled with integers from 0 to m− 1. No two vertices may be placed
in the same bin, so there will be m − n empty bins. Let us label the
empty bins with the integers from 0 to m − n − 1. Now fix vertex v1

in the space to the left of bin 0 and we place the remaining vertices in
the spaces between empty bins, at most one to each space. There are
m−n−1 such spaces and we choose n−1 of them for vertices, in

(
m−n
n−1

)
possible ways. Those vertices may be permuted in any order, giving us
a factor of (n− 1)!. Now we have a sequence of length m that consists
of n vertices and m− n empty bins, with v1 in position 0. Assign each
vertex the number that is its position in this sequence; thus each vi gets
a label in Zm. To allow for the m ways v1 could be labelled, we can shift
the whole pattern cyclically by any amount from 0 to m−1. This gives
a total number of labellings equal to m

(
m−n−1
n−1

)
(n− 1)!. Each labelling

is a proper Z+
m-coloration of {0,±1}Kn/m and we obtain every such

proper coloration.
Let Cn denote the n-th Catalan number: Cn = 1

n+1

(
2n
n

)
.

Theorem 5. For the Catalan arrangement Cn:
(1) pCn(λ) = λ(λ− n− 1)n−1.
(2) Cn has n!Cn regions.

Proof. By Theorem 2 we have found the balanced chromatic polynomial
of {0,±1}Kn/m. The first conclusion follows by Theorems 3 and 1.
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The second part follows, according to Theorem ??, by calculating
(−1)npCn(−1). �

Related to Catalan. Here is a closely related arrangement, with a
nice exercise.

Example 6. The hollow Catalan arrangement is C o
n = A [{±1}Kn].

That is, it is the Catalan arrangement without the graphic hyperplanes
xi = xj.

Calculate the characteristic polynomial pC o
n
(λ) and the number of

regions of C o
n .

And here is another related arrangement with (naturally) another
exercise.

Example 7. The extended Catalan arrangement for a positive integer
k is

Cn,k = A [{0,±1,±2, . . . ,±k}Kn].

There is also the hollow extended Catalan arrangement, C ◦n,k, whose
definition is obvious.

Calculate the characteristic polynomial pCn,k
(λ) and the number of

regions of Cn,k.
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