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Example: The hollow Catalan arrangement. The hollow Catalan arrangement is
A [{±1}Kn], with gain group Z+. We calculate the characteristic polynomial by count-
ing the number of proper colorations of the hollow Catalan gain graph {±1}Kn modulo m,
i.e., proper group colorings of the gain graph in the group Z+

m. We have to choose m care-
fully: no circle can have gain that is a multiple of m. That preserves the balanced chromatic
polynomial, by Theorem ??. Since n is the largest possible gain of a circle in {±1}Kn, the
obvious thing to do is to choose m > n.

The calculation is similar to that for the Catalan gain graph, but we have to allow for the
fact that vertices may have the same color. Thus, we consider a partition of V into k parts,
of which there are S(n, k) (the Stirling number of the second kind). The partition consists
of the sets of vertices having the same color; each part has one color, and every part has a
different color from every other. The number of ways to color the k parts is the same as for
the Catalan gain graph {0,±1}Kk with k vertices, as in Lecture 13; it is m(m− k − 1)k−1.
We have to multiply this by S(n, k) for the number of k-partitions of V and sum over all
possible numbers of parts. We get this:

Proposition 1. For the hollow Catalan arrangement C ◦n with n ≥ 1:
(1) The characteristic polynomial is

pCn(λ) = λ
n∑
k=1

S(n, k)(λ− k − 1)k−1.

(2) The number of regions is

n∑
k=1

S(n, k)(2k)k−1 =
n∑
k=1

S(n, k)k!Ck.

(3) The number of bounded regions is

n∑
k=1

S(n, k)(2k − 2)k−1 =
n∑
k=1

S(n, k)k!C2k−2.

The “finite field” method. The foundation of the finite field method is a theorem of
Crapo and Rota. Let’s consider an arrangement A in An(Fq).

Theorem 2 (Critical Theorem). The number of points of An(Fq) not in
⋃

A is pA (q).

Proof. For x ∈ L (A ), define f(x) := #x = qdim(x) and g(x) := #(x \
⋃
y>x y). Then f(x) =∑

y≥x g(y), so by Möbius inversion g(x) =
∑

y≥x f(y)µ(x, y). This equals
∑

y≥x q
dim(y)µ(x, y).

Setting x = 0̂, we have
∑

x∈L (A ) q
dim(y)µ(0̂, y) = pA (q). �

Now suppose we have an integral arrangement A in An(R), What is its characteristic
polynomial?
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Let Ap = A mod p for a prime p, so Ap is an arrangement in An(Fp). If L (Ap) ∼= L (A ),
then pAp(λ) = pA (λ). Now take a prime power, q = pe; we can think of Ap as generating
an arrangement Aq (with the same defining equations) in An(Fq) and we are assured that
L (Ap) ∼= L (Aq). There are infinitely many q’s for each p, so we could try to calculate
#(An(Fpe) \

⋃
Ape) for all e ≥ 1, therefore getting a formula for pA (λ). (Tip: This is not

what people do. But they could.)
The crucial requirement is that L (Ap) ∼= L (A ). So, when is it true? Let’s be more

precise about the arrangement. Say A = {hαi,ci : i = 1, . . . , l}, with l hyperplanes of the
form hα,c = {x ∈ An(R) : α · x = c}.

Since dependence of the hyperplanes corresponds to dependence of the defining equa-
tions, look at the matrix U =

(
α1 α2 . . . αl

)
∈ Mn×l(Z) and the 1 × l matrix c =(

c1 c2 . . . cl
)
. All the hyperplane equations are represented by the matrix equation

UTx = cT . The solution set of this system of equations is
⋂

A . Now projectivize to

AP and let U ′ :=

(
U
c

)
. For any subarrangement S ⊆ AP, the rank is equal to the largest

order of a nonsingular square submatrix of U ′S , where the subscript means only taking the
columns corresponding to hyperplanes in S . If every such submatrix remains nonsingular
modulo p, then every subset of columns in U ′ has the same rank in U ′S , and that implies
L (Ap) ∼= L (A ). A sufficient condition for preserving nonsingularity is that p does not
divide the determinant of any nonsingular square submatrix of U ′. It follows that almost all
primes, and all sufficiently large primes, give the desired lattice isomorphism. That proves:

Theorem 3 (Finite Field Method). Given an integral arrangement A in An(R), for every
sufficiently large prime p the modular arrangement Ap has the same characteristic polynomial
as does A .

Thus, the Critical Theorem enables us to obtain pA (λ) by computing the number of points
of An(Fp) \

⋃
Ap for all large primes p. This is how the finite field method works. Note that

we do not need finite fields, only prime fields. In other words, we may work modulo prime
numbers. In fact (but this is not part of the finite field method), we could work modulo any
positive integer m that is relatively prime to all the nonzero subdeterminants of U ′ (no one
does this).

0.1. Affinographic arrangements. For affinographic arrangements, where every equation
has the form xj − xi = c, the finite-field method is simpler because the matrix U , the top
part of U ′, is totally unimodular (every subdeterminant is 0 or ±1) so all primes are good
as far as concerns determinants in U . The other subdeterminants of U ′ are those that use
c. The only nonzero ones we need to worry about are those associated with a circle C. The
circle has l vertices and edges. The l× l submatrix UC of U corresponding to those vertices
and edges has determinant 0, so it is not of concern, but what is of concern is the l × l
submatrix of U ′ obtained by substituting for one row (any one row) of UC the row cC of c.
Call this matrix U ′C ; then detU ′C = ±ϕ(C). Therefore, in the finite field method we can use
any prime that does not divide the gain of an unbalanced circle.

Exercise 4. Prove the preceding paragraph. In particular, prove the determinant formula.

This works. But it is simpler to use modular coloring. For one thing, we need not be
restricted to primes. For a second, we know exactly which moduli are valid: every positive
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integer m that is not a divisor of any nonzero circle gain. Modular coloring does not appear
to count points an affine space, unlike the critical Theorem, but in fact it is not so different.
Suppose we have an integral gain graph Φ and consider a coloration γ : V → Zm. We can
view γ as the vector (γ(v1), . . . , γ(vn)) in ZVm = Znm. The rule for γ to be a proper coloration
is that it avoids all the hyperplanes of Am[Φ]. In other words, the difference is not that great.
However, it is not that little, since the Critical Theorem is false in Znm if m is composite. It
is only the special form of affinographic hyperplanes that lets us use vectors (which we call
colorations) in Znm to get the characteristic polynomial.

Example: The Shi arrangement. This is the arrangement Sn = A [{0, 1} ~Kn] associated

with the Shi gain graph, {0, 1} ~Kn. The computation via modular coloring is simple. The
0-edges ensure that no two vertices have the same color, so as with the Catalan arrangement
we can put the n vertices into spaces between m−n markers to make a sequence of m places
labelled by the colors 0, 1, . . . ,m − 1 ∈ Zm. The rule for the Shi arrangement is that two
vertices may have adjacent colors but if they do, say γ(vi) = γ(vj) ± 1 where i < j, then
γ(vj) 6= γ(vi) + 1 due to the 1-edges. That means that if we have a (cyclically) consecutive
sequence of colors applied to a bunch of vertices, those vertices must be in decreasing order
by subscript. And that means that the order of vertices in a bunch that have consecutive
colors is determined. So, all we need to do is place v1 in the last place of our sequence
(position m − 1) and distribute the other n − 1 vertices into the m − n spaces arbitrarily
(there are (m− n)n−1 ways to do that. Then we rotate the sequence so v1 is in any position
(m ways). That gives each proper Zm coloration exactly once, so we have the characteristic
polynomial.

Proposition 5. For the Shi arrangement Sn with n ≥ 1 :
(1) The characteristic polynomial is

pSn(λ) = λ(λ− n)n−1.

(2) The number of regions is
(n+ 1)n−1.

(3) The number of bounded regions is

(n− 1)n−1.

The number of regions equals the number of labelled trees of order n + 1; this suggests
finding an explicit bijection, which has been done (cf. Stanley).
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