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We consider a remarkable property of certain sequences of arrangements of increasing
dimensionality and its interpretation in terms of gain graphs. We start by copying Stanley:

Definition 1 (Stanley’s definition). Let F be a field. A sequence (An | n ≥ 1) of hyperplane
arrangements is an exponential sequence of arrangements if it satisfies:

(S1) each An is an affine hyperplane arrangement in An(F);
(S2) each An is affinographic (i.e., each hyperplane is an affine translate of a graphic hyper-

plane); and
(S3) for each n and B ⊆ [n], the hyperplanes with coordinates in B yield an arrangement

An:B such that L (An:B) ∼= L (A|B|).

I want to impose a stronger axiom than (S3). (A1, A2) are the same but (A3) is more
restrictive.

Definition 2 (Our definition). A sequence (An | n ≥ 1) of hyperplane arrangements is an
exponential sequence of arrangements if it satisfies:

(A1) each An is an affinographic hyperplane arrangement A [Φn] in An(F);
(A2) each Φn is an F+-gain graph of order n with V (Φn) = {vi | i ∈ [n]}; and
(A3) for each n and B ⊆ [n], the induced subgraph Φn:B ∼= Φ|B| (which implies (3)).

Viewing this in terms of F+-gain graphs leads to a simple generalization.

Definition 3. Let G be a group. A sequence (Φn | n ≥ 1) of gain graphs is an exponential
sequence of gain graphs if it satisfies:

(G1) each Φn is a finite G-gain graph of order n with V (Φn) = {vi | i ∈ [n]}; and
(G2) for each n and B ⊆ V (Φn)], the induced subgraph Φn:B ∼= Φ|B|.

Let’s examine (A3) (equivalantly, (G2)) carefully. For |B| = 1, it says nothing. For

|B| = 2, by definition Φ2 = L ~K2 for some finite L ⊆ F. Hence for all vi, vj ∈ V (Φn),

Φn:{vi, vj} ∼= L ~K2, and this isomorphism is natural in the sense that it preserves structure
(not necessarily in the sense of category theory). Recall that an isomorphism of gain graphs
α : Φ→ Φ′ is an isomorphism ‖Φ‖ → ‖Φ′‖ of underlying graphs such that ϕ(e) = ϕ(eα) for
every edge e.

Now consider |B| = 3. The gain graph Φ3 must be one of the following (up to permuting
vertices), with the arrows showing the sense in which to read the gains in L:

1

2

3

L L

L

transitive

1

2

3

L L

L

cyclic
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If L is sign-symmetric, i.e., L = −L, there is no difference between these two possibilities.
Otherwise, there is, for n ≥ 3: every edge vivj of Kn has a preferred orientation (the one
in which the gain set is L, not −L) and every induced subgraph of order 3 of every Φn for
n > 3 is of the same kind: all are transitive, or all cyclic. But if all are cyclic, we have a
failure at Φ4. Suppose the outer triangle 123 in Φ4 is cyclic, as in the following picture:

1

2

3

4

To make 4124 cyclic, edge 14 must be oriented 1 → 4, but to make 4143 cyclic, edge 14
must be oriented 4→ 1. Hence, Φ4 cannot be oriented cyclically. The conclusion is:

Proposition 4. An exponential sequence of gain graphs satisfies Φn
∼= L ~Kn for some finite

subset L ⊆ G.
An exponential sequence of arrangements (per Definition 2) satisfies An

∼= A [L ~Kn] for
some finite subset L ⊆ F+.

Proof. Suppose L is not sign-symmetric (otherwise, this is clear). We show that V (Kn) =
{vi | i ∈ [n]} can be totally ordered so as to prove the theorem. Define vi < vj when the
function vi 7→ v1, vj 7→ v2 is an isomorphism Φn:{vi, vj} ∼= Φ2. This is a strict total order:

(1) (Irreflexivity) There is no bijection {vi} → {v1, v2}.
(2) (Anti-symmetry) Since −L 6= L, it can’t be the case that both bijections {vi, vj} →
{v1, v2} induce gain-graph isomorphisms; one must give reversed direction of gains.

(3) (Totality) If vi 6< vj, then the opposite function, vi 7→ v2 and vj 7→ v1, must be an
isomorphism.

(4) (Transitivity) From the analysis of Φ4 we know that vi < vj < vk < vi is impossible,
so by totality, vi < vj < vk implies vk < vi.

We have proved that Φn
∼= L ~Kn by a permutation of the vertex set, namely, the permutation

that carries the ordering vi1 < vi2 < · · · < vin of V ( ~Kn) to the natural ordering v1 < v2 <
· · · < vn. �

Example 5 (A counterexample). To see that (A3) truly gives a different definition from
(S3), consider the following example. Let A be an infinite group with an element g of infinite

order. Define Φn := g ~Kn for n ≤ 100 and Φn := (2g) ~Kn for n > 100. Then the biased graphs
satisfy 〈Φn〉 = (Kn, ∅) for all n, hence Latb(Φn:B) ∼= Latb(Φ|B| for every B ⊆ V (Φn), whence
L (An:B) ∼= L (A|B| for every B; yet Φn:{vi, vj} 6= Φ2 for n > 100.

Exercise 6. Prove the statement about the biased graph.

The difference between (S3) and (A3) should not bother us. I expect that in every case
of interest, it is the underlying gain graphs that are isomorphic.

Now we have the surprising main theorem. To simplify the notation I will write pn(t) for
pAn(t) and so forth.
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Theorem 7 (Stanley, Theorem 5.17). If pn(t) := pAn(t), then

∞∑
n=0

pn(t)
xn

n!
=
( ∞∑
n=0

pn(−1)
xn

n!

)−t
.

The expression
∑∞

n=0 pn(t)x
n

n!
is the exponential generating function for the sequence pn(t).

Stanley writes (−1)nrn instead of pn(−1) because rn := r(An) is the number of regions of
the arrangement, obviously a number of particular interest. I will adopt that notation in
examples in the next lecture. But for now, I wish to rewrite his proof in terms of gain graphs.
Thus, I assume we have an exponential sequence of gain graphs Φn with balanced chromatic
polynomials χbn(t) := χbΦn

(t). We assume that p0(t) = χb0(t) = 1.

Proof. The theorem can be rewritten as

(1) LHS =
∑
n≥0

χbn(t)
xn

n!
=
(∑
n≥0

χbn(−1)
xn

n!

)−t
= RHS.

Our proof takes advantage of the classic exponential formula:∑
n≥0

xn

n!

∑
order-n objectsO

f(O) = exp
(∑
n≥1

xn

n!

∑
order-n connected objectsO

f(O)
)
,

provided that f is a function such that f(O) = the product of f(O′) over all connected
components O′ of O. For example, the left side may count the number of n-vertex forests
while the right side exponent counts the number of n-vertex trees; the left side may count
the number of 2-regular graphs of order n and the right side would count the number of
n-vertex circles. (For counting, f(O) = 1.) In our case, we are interested in the balanced

closed sets in L ~Kn on the left and the connected balanced closed sets in L ~Kn on the right,
and instead of counting we are using the balanced chromatic polynomial. Did I mention that

χΦ1∪Φ2(λ) = χΦ1(λ)χΦ2(λ) and χbΦ1∪Φ2
(λ) = χbΦ1

(λ)χbΦ2
(λ)?

These formulas follow easily from the definitions and the facts that the size and number of
balanced components of an edge set of the disjoint union are additive:

|S| = |S ∩ E1|+ |S ∩ E2| and b(S) = b(S ∩ E1) + b(S ∩ E2).

We know that in (1),

LHS =
∑
n≥0

∑
S∈Latb Φn

µ(∅, S)tn−rk(S)x
n

n!
=
∑
n≥0

∑
S∈Latb Φn

µ(∅, S)tb(S)x
n

n!
.

Let S have the balanced components S1, . . . , Sk. They yield a partition π(S) of Vn := V (Φn)

into the subsets V (S1), . . . , V (Sn). Then µ(∅, S) =
∏k

i=1 µ(∅, Si) because the interval from

∅ to S is a product: [∅, S] ∼=
∏k

i=1[∅, Si] (Exercise!). We can rewrite the Möbius product in

terms of π(S): µ(∅, S)tb(S) = µ(∅, S)tk =
∏k

i=1 µ(∅, Si)t. Since Si = S:V (Si) and π(S) =
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{V (S1), . . . , V (Sk)},∑
S∈Latb Φn

µ(∅, S)tb(S) =
∑

S∈Latb Φn

k∏
i=1

µ(∅, Si)t =
∑
S

∏
B∈π(S)

µ(∅, S:B)t

=
∑
π∈Πn

∏
B∈π

( ∑
S:π(S)=π

µ(∅, S:B)t
)

=
∑
π

∏
B∈π

χ̃|B|(t),

where we define the convenient notation

χ̃n(t) :=
∑

S∈Latb Φn:π(S)={[n]}

µ(∅, S)tb(S) =
∑

S∈Latb Φn:π(S)={[n]}

µ(∅, S)t

because b(S) = 1 if π(S) = {[n]}.
Now we rewrite the left side in (1) using magic:

LHS =
∑
n≥0

χbn(t)
xn

n!
=
∑
n≥0

∑
π

∏
B∈π

χ̃|B|(t)t
b(S)x

n

n!
= exp

(∑
n≥1

χ̃n(t)
xn

n!

)
= exp

(
t
∑
n≥1

∑
S∈Latb Φn:π(S)={[n]}

µ(∅, S)
xn

n!

)
=
[

exp
(∑
n≥1

∑
S∈Latb Φn:π(S)={[n]}

µ(∅, S)
xn

n!

)]t
.

We substitute t = −1 to get another formula:∑
n≥0

χbn(−1)
xn

n!
= exp

(∑
n≥1

χ̃n(−1)
xn

n!

)
=
[

exp
(∑
n≥1

∑
S∈Latb Φn:π(S)={[n]}

µ(∅, S)
xn

n!

)]−1

.

Compare the last expressions of these two formulas: They are the same except for the
exponent. Therefore, (∑

n≥0

χbn(−1)
xn

n!

)−t
= LHS,

which proves (1) and the theorem. �

The proof never uses arrangements; it is valid for any exponential sequence of gain graphs.
That is, we have a generalization independent of fields.

Theorem 8. If (Φn | n ≥ 0) is an exponential sequence of gain graphs, then
∞∑
n=0

χbn(t)
xn

n!
=
( ∞∑
n=0

χbn(−1)
xn

n!

)−t
.

(Stanley’s Exercise 5.10 is a much more interesting and less expected generalization.)

Example 9. Suppose G is a finite group and Φn = GKn. Then Theorem 8 applies. In this
case we know the balanced chromatic polynomial: it is |G|n(t/|G|)n and the evaluation at
−1 is (|G| − n+ 1)(|G| − 2n+ 1) · · · (1).
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