Gain Graphs and Hyperplane Arrangements

LECTURE 16: EXPONENTIAL SEQUENCES

Feb. 3, 2020

Notetaker: Andrew Lamoureux

We consider a remarkable property of certain sequences of arrangements of increasing dimensionality and its interpretation in terms of gain graphs. We start by copying Stanley:

Definition 1 (Stanley's definition). Let **F** be a field. A sequence $(\mathscr{A}_n \mid n \ge 1)$ of hyperplane arrangements is an *exponential sequence of arrangements* if it satisfies:

- (S1) each \mathscr{A}_n is an affine hyperplane arrangement in $\mathbb{A}^n(\mathbf{F})$;
- (S2) each \mathscr{A}_n is affinographic (i.e., each hyperplane is an affine translate of a graphic hyperplane); and
- (S3) for each n and $B \subseteq [n]$, the hyperplanes with coordinates in B yield an arrangement $\mathscr{A}_n: B$ such that $\mathscr{L}(\mathscr{A}_n: B) \cong \mathscr{L}(\mathscr{A}_{|B|}).$

I want to impose a stronger axiom than (S3). (A1, A2) are the same but (A3) is more restrictive.

Definition 2 (Our definition). A sequence $(\mathscr{A}_n \mid n \ge 1)$ of hyperplane arrangements is an *exponential sequence of arrangements* if it satisfies:

- (A1) each \mathscr{A}_n is an affinographic hyperplane arrangement $\mathscr{A}[\Phi_n]$ in $\mathbb{A}^n(\mathbf{F})$;
- (A2) each Φ_n is an \mathbf{F}^+ -gain graph of order n with $V(\Phi_n) = \{v_i \mid i \in [n]\};$ and
- (A3) for each n and $B \subseteq [n]$, the induced subgraph $\Phi_n: B \cong \Phi_{|B|}$ (which implies (3)).

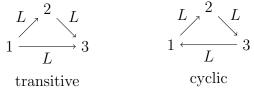
Viewing this in terms of \mathbf{F}^+ -gain graphs leads to a simple generalization.

Definition 3. Let \mathfrak{G} be a group. A sequence $(\Phi_n \mid n \ge 1)$ of gain graphs is an *exponential* sequence of gain graphs if it satisfies:

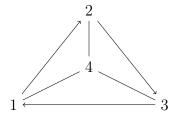
- (G1) each Φ_n is a finite \mathfrak{G} -gain graph of order n with $V(\Phi_n) = \{v_i \mid i \in [n]\}$; and
- (G2) for each n and $B \subseteq V(\Phi_n)$, the induced subgraph $\Phi_n: B \cong \Phi_{|B|}$.

Let's examine (A3) (equivalantly, (G2)) carefully. For |B| = 1, it says nothing. For |B| = 2, by definition $\Phi_2 = L\vec{K}_2$ for some finite $L \subseteq \mathbf{F}$. Hence for all $v_i, v_j \in V(\Phi_n)$, $\Phi_n: \{v_i, v_j\} \cong L\vec{K}_2$, and this isomorphism is natural in the sense that it preserves structure (not necessarily in the sense of category theory). Recall that an isomorphism of gain graphs $\alpha : \Phi \to \Phi'$ is an isomorphism $||\Phi|| \to ||\Phi'||$ of underlying graphs such that $\varphi(e) = \varphi(e^{\alpha})$ for every edge e.

Now consider |B| = 3. The gain graph Φ_3 must be one of the following (up to permuting vertices), with the arrows showing the sense in which to read the gains in L:



If L is sign-symmetric, i.e., L = -L, there is no difference between these two possibilities. Otherwise, there is, for $n \ge 3$: every edge $v_i v_j$ of K_n has a preferred orientation (the one in which the gain set is L, not -L) and every induced subgraph of order 3 of every Φ_n for n > 3 is of the same kind: all are transitive, or all cyclic. But if all are cyclic, we have a failure at Φ_4 . Suppose the outer triangle 123 in Φ_4 is cyclic, as in the following picture:



To make $\triangle 124$ cyclic, edge 14 must be oriented $1 \rightarrow 4$, but to make $\triangle 143$ cyclic, edge 14 must be oriented $4 \rightarrow 1$. Hence, Φ_4 cannot be oriented cyclically. The conclusion is:

Proposition 4. An exponential sequence of gain graphs satisfies $\Phi_n \cong L\vec{K}_n$ for some finite subset $L \subseteq \mathfrak{G}$.

An exponential sequence of arrangements (per Definition 2) satisfies $\mathscr{A}_n \cong \mathscr{A}[L\vec{K}_n]$ for some finite subset $L \subseteq \mathbf{F}^+$.

Proof. Suppose L is not sign-symmetric (otherwise, this is clear). We show that $V(K_n) = \{v_i \mid i \in [n]\}$ can be totally ordered so as to prove the theorem. Define $v_i < v_j$ when the function $v_i \mapsto v_1, v_j \mapsto v_2$ is an isomorphism $\Phi_n: \{v_i, v_j\} \cong \Phi_2$. This is a strict total order:

- (1) (Irreflexivity) There is no bijection $\{v_i\} \to \{v_1, v_2\}$.
- (2) (Anti-symmetry) Since $-L \neq L$, it can't be the case that both bijections $\{v_i, v_j\} \rightarrow \{v_1, v_2\}$ induce gain-graph isomorphisms; one must give reversed direction of gains.
- (3) (Totality) If $v_i \not< v_j$, then the opposite function, $v_i \mapsto v_2$ and $v_j \mapsto v_1$, must be an isomorphism.
- (4) (Transitivity) From the analysis of Φ_4 we know that $v_i < v_j < v_k < v_i$ is impossible, so by totality, $v_i < v_j < v_k$ implies $v_k < v_i$.

We have proved that $\Phi_n \cong L\vec{K}_n$ by a permutation of the vertex set, namely, the permutation that carries the ordering $v_{i_1} < v_{i_2} < \cdots < v_{i_n}$ of $V(\vec{K}_n)$ to the natural ordering $v_1 < v_2 < \cdots < v_n$.

Example 5 (A counterexample). To see that (A3) truly gives a different definition from (S3), consider the following example. Let \mathfrak{A} be an infinite group with an element g of infinite order. Define $\Phi_n := g\vec{K}_n$ for $n \leq 100$ and $\Phi_n := (2g)\vec{K}_n$ for n > 100. Then the biased graphs satisfy $\langle \Phi_n \rangle = (K_n, \emptyset)$ for all n, hence Latb $(\Phi_n:B) \cong \text{Latb}(\Phi_{|B|}$ for every $B \subseteq V(\Phi_n)$, whence $\mathscr{L}(\mathscr{A}_n:B) \cong \mathscr{L}(\mathscr{A}_{|B|})$ for every B; yet $\Phi_n: \{v_i, v_j\} \neq \Phi_2$ for n > 100.

Exercise 6. Prove the statement about the biased graph.

The difference between (S3) and (A3) should not bother us. I expect that in every case of interest, it is the underlying gain graphs that are isomorphic.

Now we have the surprising main theorem. To simplify the notation I will write $p_n(t)$ for $p_{\mathscr{A}_n}(t)$ and so forth.

Theorem 7 (Stanley, Theorem 5.17). If $p_n(t) := p_{\mathscr{A}_n}(t)$, then

$$\sum_{n=0}^{\infty} p_n(t) \frac{x^n}{n!} = \left(\sum_{n=0}^{\infty} p_n(-1) \frac{x^n}{n!}\right)^{-t}.$$

The expression $\sum_{n=0}^{\infty} p_n(t) \frac{x^n}{n!}$ is the exponential generating function for the sequence $p_n(t)$. Stanley writes $(-1)^n r_n$ instead of $p_n(-1)$ because $r_n := r(\mathscr{A}_n)$ is the number of regions of the arrangement, obviously a number of particular interest. I will adopt that notation in examples in the next lecture. But for now, I wish to rewrite his proof in terms of gain graphs. Thus, I assume we have an exponential sequence of gain graphs Φ_n with balanced chromatic polynomials $\chi_n^b(t) := \chi_{\Phi_n}^b(t)$. We assume that $p_0(t) = \chi_0^b(t) = 1$.

Proof. The theorem can be rewritten as

(1) LHS =
$$\sum_{n \ge 0} \chi_n^b(t) \frac{x^n}{n!} = \left(\sum_{n \ge 0} \chi_n^b(-1) \frac{x^n}{n!}\right)^{-t} = \text{RHS}$$

Our proof takes advantage of the classic *exponential formula*:

$$\sum_{n \ge 0} \frac{x^n}{n!} \sum_{\text{order-}n \text{ objects}O} f(O) = \exp\Big(\sum_{n \ge 1} \frac{x^n}{n!} \sum_{\text{order-}n \text{ connected objects}O} f(O)\Big),$$

provided that f is a function such that f(O) = the product of f(O') over all connected components O' of O. For example, the left side may count the number of *n*-vertex forests while the right side exponent counts the number of *n*-vertex trees; the left side may count the number of 2-regular graphs of order n and the right side would count the number of *n*-vertex circles. (For counting, f(O) = 1.) In our case, we are interested in the balanced closed sets in $L\vec{K}_n$ on the left and the connected balanced closed sets in $L\vec{K}_n$ on the right, and instead of counting we are using the balanced chromatic polynomial. Did I mention that

$$\chi_{\Phi_1\cup\Phi_2}(\lambda) = \chi_{\Phi_1}(\lambda)\chi_{\Phi_2}(\lambda) \text{ and } \chi^b_{\Phi_1\cup\Phi_2}(\lambda) = \chi^b_{\Phi_1}(\lambda)\chi^b_{\Phi_2}(\lambda)?$$

These formulas follow easily from the definitions and the facts that the size and number of balanced components of an edge set of the disjoint union are additive:

$$|S| = |S \cap E_1| + |S \cap E_2|$$
 and $b(S) = b(S \cap E_1) + b(S \cap E_2)$.

We know that in (1),

$$LHS = \sum_{n \ge 0} \sum_{S \in Lat^b \Phi_n} \mu(\emptyset, S) t^{n-rk(S)} \frac{x^n}{n!} = \sum_{n \ge 0} \sum_{S \in Lat^b \Phi_n} \mu(\emptyset, S) t^{b(S)} \frac{x^n}{n!}.$$

Let S have the balanced components S_1, \ldots, S_k . They yield a partition $\pi(S)$ of $V_n := V(\Phi_n)$ into the subsets $V(S_1), \ldots, V(S_n)$. Then $\mu(\emptyset, S) = \prod_{i=1}^k \mu(\emptyset, S_i)$ because the interval from \emptyset to S is a product: $[\emptyset, S] \cong \prod_{i=1}^k [\emptyset, S_i]$ (Exercise!). We can rewrite the Möbius product in terms of $\pi(S)$: $\mu(\emptyset, S)t^{b(S)} = \mu(\emptyset, S)t^k = \prod_{i=1}^k \mu(\emptyset, S_i)t$. Since $S_i = S:V(S_i)$ and $\pi(S) = \frac{1}{3}$

$$\{V(S_1), \dots, V(S_k)\},$$

$$\sum_{S \in \operatorname{Lat}^b \Phi_n} \mu(\emptyset, S) t^{b(S)} = \sum_{S \in \operatorname{Lat}^b \Phi_n} \prod_{i=1}^k \mu(\emptyset, S_i) t = \sum_S \prod_{B \in \pi(S)} \mu(\emptyset, S:B) t$$

$$= \sum_{\pi \in \Pi_n} \prod_{B \in \pi} \left(\sum_{S: \pi(S) = \pi} \mu(\emptyset, S:B) t \right) = \sum_{\pi} \prod_{B \in \pi} \tilde{\chi}_{|B|}(t),$$

where we define the convenient notation

$$\tilde{\chi}_n(t) := \sum_{S \in \operatorname{Lat}^b \Phi_n: \, \pi(S) = \{[n]\}} \mu(\emptyset, S) t^{b(S)} = \sum_{S \in \operatorname{Lat}^b \Phi_n: \, \pi(S) = \{[n]\}} \mu(\emptyset, S) t$$

because b(S) = 1 if $\pi(S) = \{[n]\}.$

Now we rewrite the left side in (1) using magic:

$$LHS = \sum_{n \ge 0} \chi_n^b(t) \frac{x^n}{n!} = \sum_{n \ge 0} \sum_{\pi} \prod_{B \in \pi} \tilde{\chi}_{|B|}(t) t^{b(S)} \frac{x^n}{n!} = \exp\left(\sum_{n \ge 1} \tilde{\chi}_n(t) \frac{x^n}{n!}\right)$$
$$= \exp\left(t \sum_{n \ge 1} \sum_{S \in \text{Lat}^b \Phi_n: \pi(S) = \{[n]\}} \mu(\emptyset, S) \frac{x^n}{n!}\right)$$
$$= \left[\exp\left(\sum_{n \ge 1} \sum_{S \in \text{Lat}^b \Phi_n: \pi(S) = \{[n]\}} \mu(\emptyset, S) \frac{x^n}{n!}\right)\right]^t.$$

We substitute t = -1 to get another formula:

$$\sum_{n\geq 0} \chi_n^b(-1) \frac{x^n}{n!} = \exp\left(\sum_{n\geq 1} \tilde{\chi}_n(-1) \frac{x^n}{n!}\right) = \left[\exp\left(\sum_{n\geq 1} \sum_{S\in \operatorname{Lat}^b \Phi_n: \pi(S) = \{[n]\}} \mu(\emptyset, S) \frac{x^n}{n!}\right)\right]^{-1}.$$

Compare the last expressions of these two formulas: They are the same except for the exponent. Therefore,

$$\left(\sum_{n\geq 0}\chi_n^b(-1)\frac{x^n}{n!}\right)^{-t} = \text{LHS},$$

which proves (1) and the theorem.

The proof never uses arrangements; it is valid for any exponential sequence of gain graphs. That is, we have a generalization independent of fields.

Theorem 8. If $(\Phi_n \mid n \ge 0)$ is an exponential sequence of gain graphs, then

$$\sum_{n=0}^{\infty} \chi_n^b(t) \frac{x^n}{n!} = \left(\sum_{n=0}^{\infty} \chi_n^b(-1) \frac{x^n}{n!}\right)^{-t}$$

(Stanley's Exercise 5.10 is a much more interesting and less expected generalization.)

Example 9. Suppose \mathfrak{G} is a finite group and $\Phi_n = \mathfrak{G}K_n$. Then Theorem 8 applies. In this case we know the balanced chromatic polynomial: it is $|\mathfrak{G}|^n (t/|\mathfrak{G}|)_n$ and the evaluation at -1 is $(|\mathfrak{G}| - n + 1)(|\mathfrak{G}| - 2n + 1) \cdots (1)$.