LECTURE 17: MORE EXPONENTIAL SEQUENCES; MORE GAIN EXPANSIONS
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Let’s explore Stanley’s Theorem 5.17.
Theorem 1 (Stanley, Theorem 5.17). Let (<, o, ...) be an ESA. Then
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where (<) is the number of regions of <.
Example 2 (Catalan as exponential sequence). We begin with the Catalan arrangement
¢, = [{0,£1}K,] and what we can do for it with Theorem 1. The Catalan generating
function has the following well known formula (e.g., see Wikipedial):
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Using gain graphs we formulated the following balanced chromatic polynomial for the
affinographic arrangement «7[{£1, 0} K|, which is the Catalan arrangement %,,. X? 1.0V K (A)

which we have shown is equal to the characteristic polynomial pg, (\). The Catalan sequence
(¢1,%6,,...) is an ESA, so by Theorem 1, 7(%,,) = n!C,,, and Equation (1),
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Substituting ¢ = +1, the left-hand side is Y, .(—1)"b(¢,)%;, where b(%,) is the number
of bounded regions of %, so -
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Example 3 (The complete graph as exponential sequence). Let’s see Theorem 1 at work in
an obvious case. Consider the complete graph arrangements o7 [K,], where p,(t) = (t),, and
7, = nl. In Theorem 1 the left side is }_ -, ({)z" = (1 + z)" by the binomial series, while

the right hand side is (ano n!(_ﬁ)n)ft, which equals (H%)_t = (1 + )" by the geometric

series. So the theorem holds here, unsurprisingly.

Example 4 (Shi as exponential sequence). Now a not-so-obvious case, the Shi arrangements
. Here p,(t) = t(t —n)"! and r, = (n + 1)""', so by Theorem 1,

>t = (Z(n + 1! _f!nyt,

n>0 n>0

which is (to put it mildly) a less trivial identity to check.
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Arrangements connected to interval orders. An interval order is a partially ordered
set that can be represented by intervals I; = [a;, b;] for i = 1,2,...,n in the real line, with
I; < I; <= b; <aj. See Stanley, Section 5.5, for more about interval orders. Here my
interest is in the arrangements he finds in connection with interval orders of a certain kind.
The arrangements are those of the following kind.

Take a finite subset L = {l1,l5,...,l,} C Ry and set n = (I1,...,1,). Let P, denote the
set of all interval orders P on [n| such that there exist intervals Iy,. .., I, corresponding to
P ( with I; corresponding to i € P) such that [ (I;) = [;. In other words, i < j if and only if
I; lies entirely to the left of I;. We now come to the connection with arrangements. Given
n=(li,...,l,) as above, define the arrangement 7, in R" by letting its hyperplanes be given
by x; —x; =;, i # j. This is the affinographic arrangement . [+LK,,).

Holding L fixed, these form an exponential sequence of affinographic arrangements. We
would have trouble applying Theorem ?? because we have no way to compute the charac-
teristic polynomial (that is, the balanced chromatic polynomial x4, . (X)) or the number of
regions. More on this later.

The gain graph £LK,, is a kind of gain expansion of K,, similar to group expansions
(Theorem ?7?) but not so regular since we expand by a small subset of the gain group R*.
We have no general formula for x% ; , ()). However, if we can convert the gains /; to integers,
we would have gain group Z and we could apply modular coloring. But is that possible?

Proposition 5 (Integralization). Suppose L = {l1,la,...,l,} C Rsg. Then there exists
L' = {ly,ly,....l,} C Zso such that (+LK,) and (£L'K,) have the same biased graph,
hence the same balanced chromatic polynomial.



