
Lecture 17: More Exponential Sequences; More Gain Expansions

5 February 2020
Notetaker: Mike Gottstein

Let’s explore Stanley’s Theorem 5.17.

Theorem 1 (Stanley, Theorem 5.17). Let (A1,A2, . . .) be an ESA. Then∑
n≥0

χAn(t)
xn

n!
=

(∑
n≥0

(−1)nr(An)
xn

n!

)−t
,

where r(An) is the number of regions of An.

Example 2 (Catalan as exponential sequence). We begin with the Catalan arrangement
Cn = A [{0,±1}Kn] and what we can do for it with Theorem 1. The Catalan generating
function has the following well known formula (e.g., see Wikipedia!):

(1) C(x) :=
∑
n≥0

Cnx
n =

1−
√

1− 4x

2x
=

2

1 +
√

1 + 4x
.

Using gain graphs we formulated the following balanced chromatic polynomial for the
affinographic arrangement A [{±1, 0}Kn], which is the Catalan arrangement Cn. χb{±1,0}Kn

(λ)

which we have shown is equal to the characteristic polynomial pCn(λ). The Catalan sequence
(C1,C2, . . .) is an ESA, so by Theorem 1, r(Cn) = n!Cn, and Equation (1),∑

n≥0

pCn(t)
xn

n!
=

(∑
n≥0

(−1)nn!Cn
xn

n!

)−t
=

(∑
n≥0

Cn(−x)n
)−t

=

(
1−
√

1 + 4x

2x

)−t
=

(
1 +
√

1− 4x

2

)t
.

Substituting t = +1, the left-hand side is
∑

n≥0(−1)nb(Cn)x
n

n!
, where b(Cn) is the number

of bounded regions of Cn, so ∑
n≥0

b(Cn)
(−x)n

n!
=

1 +
√

1− 4x

2
.

Example 3 (The complete graph as exponential sequence). Let’s see Theorem 1 at work in
an obvious case. Consider the complete graph arrangements A [Kn], where pn(t) = (t)n and
rn = n!. In Theorem 1 the left side is

∑
n≥0
(
t
n

)
xn = (1 + x)t by the binomial series, while

the right hand side is
(∑

n≥0 n! (−x)
n

n!

)−t
, which equals ( 1

1+x
)−t = (1 + x)t by the geometric

series. So the theorem holds here, unsurprisingly.

Example 4 (Shi as exponential sequence). Now a not-so-obvious case, the Shi arrangements
Sn. Here pn(t) = t(t− n)n−1 and rn = (n+ 1)n−1, so by Theorem 1,∑

n≥0

t(t− n)n−1
xn

n!
=

(∑
n≥0

(n+ 1)n−1
−xn

n!

)−t
,

which is (to put it mildly) a less trivial identity to check.
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Arrangements connected to interval orders. An interval order is a partially ordered
set that can be represented by intervals Ii = [ai, bi] for i = 1, 2, . . . , n in the real line, with
Ii < Ij ⇐⇒ bi < aj. See Stanley, Section 5.5, for more about interval orders. Here my
interest is in the arrangements he finds in connection with interval orders of a certain kind.
The arrangements are those of the following kind.

Take a finite subset L = {l1, l2, . . . , ln} ⊂ R>0 and set η = (l1, . . . , ln). Let Pη denote the
set of all interval orders P on [n] such that there exist intervals I1, . . . , In corresponding to
P ( with Ii corresponding to i ∈ P ) such that l (Ii) = li. In other words, i < j if and only if
Ii lies entirely to the left of Ij. We now come to the connection with arrangements. Given
η = (l1, . . . , ln) as above, define the arrangement Jη in Rn by letting its hyperplanes be given
by xj − xi = li, i 6= j. This is the affinographic arrangement A [±LKn].

Holding L fixed, these form an exponential sequence of affinographic arrangements. We
would have trouble applying Theorem ?? because we have no way to compute the charac-
teristic polynomial (that is, the balanced chromatic polynomial χb±LKn

(λ)) or the number of
regions. More on this later.

The gain graph ±LKn is a kind of gain expansion of Kn, similar to group expansions
(Theorem ??) but not so regular since we expand by a small subset of the gain group R+.
We have no general formula for χb±LKn

(λ). However, if we can convert the gains li to integers,
we would have gain group Z+ and we could apply modular coloring. But is that possible?

Proposition 5 (Integralization). Suppose L = {l1, l2, . . . , ln} ⊂ R>0. Then there exists
L′ = {l1, l2, . . . , ln} ⊂ Z>0 such that 〈±LKn〉 and 〈±L′Kn〉 have the same biased graph,
hence the same balanced chromatic polynomial.
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