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Proof of Proposition ??. Let L = {ly,...,l;} C RZ, where RY, denotes the
additive semigroup of positive real numbers. We will consider +LK,,, the gain
graph with gain group R*, and the affinographic arrangement o7 [+LK,].
The objective is to find a set of integral gains L' = {l1,...,l;} C Z%, such
that (L'K,) = (LK,). To guarantee we obtain the same balanced chromatic
polynomial, we must keep the same set of balanced circles. How do we achieve
this? Consider a circle C' as in the figure below, where ¢(e;) = some £i;; .
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Here o(C) = €1l;, + €24, - - - + €xl;, where ¢; € {—1,1} and depends on ¢(e;).
If C is balanced, then ¢(C) = 0 and if C' is not balanced, then ¢(C) # 0.
We need to choose L' so that this is preserves balance, i.e., ¢'(C') = 0 if and
only if ¢(C') = 0. So we will have an equation or inequation of the form

€1li, +ealiy + -+ €l;, {_ 8’

That is almost enough to get the set L, We need ¢ distinct values. There is
one simplification: since we use gains +I[;, it does not matter whether [; is
positive or negative; but it must not be 0. Thus, we also need to state that
li # 0 and [; # £l; for 7 # j.

Now we replace the specific values [; with variables x; to obtain an equa-
tion €121 + €222+ - - +€xl;, = 0 or an inequation ;21 +exxo + - - - +€l;, # 0.
There are t variables, x1,...,z;. We have one equation per balanced circle,
one inequation per unblaanced circle, and t? inequations x; # 0, x; # x;, and

x; # —x; for i # 7.



This gives us a system of equalities and inequalities. We look for an
integer solution using linear algebra. That solution is guaranteed by Theorem
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Theorem 1 (Integralization). Given ay,...,ap, 01, .., 5, € QF, the require-
ments that all ;- = 0 and all Bj-x # 0, and the existence of a real solution
y € RY, then there exists a rational solution in Q.

After obtaining a rational solution, since t is finite, we can scale by an
appropriate integer to obtain an integral solution.

Proof. Let the matrix A have rows a;-. Consider the equation AX = 0 € R?.
Any dot product a -z = 0 is forced if and only if @ € Row(A). Therefore,
none of the f;’s are in Row(A). The solution space of Az = 0 is Nul(A4),
which can be given in terms of parameters, say zq,...,2x,, r < n. A is
a p X t matrix. So we can put A into RREF [Ik]A’] and the condition
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becomes [Ik|A’] i) = 0 where & = (z1,...,2) and T = (T41,...,Tr). SO
It +AZ=0and 2 =—A'Z. Let B=—A’". Then
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So our solution is {( B‘Z) : T € R'}. Because A was a rational matrix and B

was obtained from A by row operations, B is also a rational matrix. Therefore
7 € Q" implies x € Q'. Therefore we have found a rational solution. We can
choose 7 arbitrarily near y so that z is arbitrarily near y. This means each
B;-x is changed too little to become 0, therefore we preserve all §;-z # 0. [

Now we know that we can replace real gains by rational gains and there-
fore by integral gains. This raises a natural question: How much (or little) do
we need to perturb the real gains to obtain the rational gains? In particular,
what is the smallest integer d > 0 such that perturbing y by < 1/d gives a
rational solution? Put differently, what is the smallest D such that rounding
Dy to the nearest integer vector gives a solution? More simply, we might
try multiplying the real gains by 10™ (for some positive integer m) and then
rounding to the nearest integer. But what m is sufficiently large?

Virtually the same proof as that of Proposition 7?7 works for any additive
real gain graph. Thus:



Theorem 2 (Gain Graph Integralization). Let ® be any R*-gain graph.
Then there exists a Z" -gain graph ®" with the same biased graph and therefore
the same chromatic polynomials.

We can infer even more extensive conclusions from Theorem Every
complex additive gain graph ® can be replaced by a gain graph ®" whose
gains are Gaussian integers. Indeed, gains in any real vector space R? can be
replaced by vectors in Z?. The gains could even be polynomials over R or C.

Notice that £ LK, is similar to a hollow extended Catalan arrangement,
which by definition is .o/ [£[1, ]z K] where £[1, ] is the interval of integers
from 1 to ¢. I will develop this thought in the final lecture.



