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Gain Graphs and Hyperplane Arrangements
Lecture 18:

14 February 2020
Notetaker: Nicholas Lacasse

Proof of Proposition ??. Let L = {l1, . . . , lt} ⊂ R+
>0 where R+

>0 denotes the
additive semigroup of positive real numbers. We will consider±LKn, the gain
graph with gain group R+, and the affinographic arrangement A [±LKn].
The objective is to find a set of integral gains L′ = {l′1, . . . , l′t} ⊂ Z+

>0 such
that 〈L′Kn〉 = 〈LKn〉. To guarantee we obtain the same balanced chromatic
polynomial, we must keep the same set of balanced circles. How do we achieve
this? Consider a circle C as in the figure below, where ϕ(ej) = some ±lij .
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Here ϕ(C) = ε1li1 + ε2li2 · · ·+ εklik where εj ∈ {−1, 1} and depends on ϕ(ej).
If C is balanced, then ϕ(C) = 0 and if C is not balanced, then ϕ(C) 6= 0.
We need to choose L′ so that this is preserves balance, i.e., ϕ′(C) = 0 if and
only if ϕ(C) = 0. So we will have an equation or inequation of the form

ε1li1 + ε2li2 + · · ·+ εklik

{
= 0,

6= 0.

That is almost enough to get the set L, We need t distinct values. There is
one simplification: since we use gains ±li, it does not matter whether li is
positive or negative; but it must not be 0. Thus, we also need to state that
li 6= 0 and li 6= ±lj for i 6= j.

Now we replace the specific values li with variables xi to obtain an equa-
tion ε1x1 + ε2x2 + · · ·+ εklik = 0 or an inequation ε1x1 + ε2x2 + · · ·+ εklik 6= 0.
There are t variables, x1, . . . , xt. We have one equation per balanced circle,
one inequation per unblaanced circle, and t2 inequations xi 6= 0, xi 6= xj, and
xi 6= −xj for i 6= j.
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This gives us a system of equalities and inequalities. We look for an
integer solution using linear algebra. That solution is guaranteed by Theorem
1.

Theorem 1 (Integralization). Given α1, . . . , αp, β1, . . . , βq ∈ Qt, the require-
ments that all αi ·x = 0 and all βj ·x 6= 0, and the existence of a real solution
y ∈ Rt, then there exists a rational solution in Qt.

After obtaining a rational solution, since t is finite, we can scale by an
appropriate integer to obtain an integral solution.

Proof. Let the matrix A have rows a⊥i . Consider the equation AX = 0 ∈ Rp.
Any dot product α · x = 0 is forced if and only if α ∈ Row(A). Therefore,
none of the βj’s are in Row(A). The solution space of Ax = 0 is Nul(A),
which can be given in terms of parameters, say x1, . . . , xr, r ≤ n. A is
a p × t matrix. So we can put A into RREF

[
Ik|A′] and the condition

becomes
[
Ik|A′](x̂

x̄

)
= 0 where x̂ = (x1, . . . , xk) and x̄ = (xk+1, . . . , xr). So

Ix̂+ A′x̄ = 0 and x̂ = −A′x̄. Let B = −A′. Then

Nul(A) =
{( I

B

)x1...
xr

 :

x1...
xr

 ∈ Rr
}
⊆ Rt.

So our solution is {
(
x̄
Bx̄

)
: x̄ ∈ Rt}. Because A was a rational matrix and B

was obtained from A by row operations, B is also a rational matrix. Therefore
x̄ ∈ Qr implies x ∈ Qt. Therefore we have found a rational solution. We can
choose x̄ arbitrarily near ȳ so that x is arbitrarily near y. This means each
βj ·x is changed too little to become 0, therefore we preserve all βj ·x 6= 0.

Now we know that we can replace real gains by rational gains and there-
fore by integral gains. This raises a natural question: How much (or little) do
we need to perturb the real gains to obtain the rational gains? In particular,
what is the smallest integer d > 0 such that perturbing y by < 1/d gives a
rational solution? Put differently, what is the smallest D such that rounding
Dy to the nearest integer vector gives a solution? More simply, we might
try multiplying the real gains by 10m (for some positive integer m) and then
rounding to the nearest integer. But what m is sufficiently large?

Virtually the same proof as that of Proposition ?? works for any additive
real gain graph. Thus:
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Theorem 2 (Gain Graph Integralization). Let Φ be any R+-gain graph.
Then there exists a Z+-gain graph Φ′ with the same biased graph and therefore
the same chromatic polynomials.

We can infer even more extensive conclusions from Theorem 2. Every
complex additive gain graph Φ can be replaced by a gain graph Φ′ whose
gains are Gaussian integers. Indeed, gains in any real vector space Rd can be
replaced by vectors in Zd. The gains could even be polynomials over R or C.

Notice that ±LKn is similar to a hollow extended Catalan arrangement,
which by definition is A [±[1, t]ZKn] where ±[1, t]Z is the interval of integers
from 1 to t. I will develop this thought in the final lecture.


