Gain Graphs and Hyperplane Arrangements Lecture 18: 14 February 2020 Notetaker: Nicholas Lacasse

Proof of Proposition ??. Let $L = \{l_1, \ldots, l_t\} \subset \mathbb{R}^+_{>0}$ where $\mathbb{R}^+_{>0}$ denotes the additive semigroup of positive real numbers. We will consider $\pm LK_n$, the gain graph with gain group \mathbb{R}^+ , and the affinographic arrangement $\mathscr{A}[\pm LK_n]$. The objective is to find a set of integral gains $L' = \{l'_1, \ldots, l'_t\} \subset \mathbb{Z}^+_{>0}$ such that $\langle L'K_n \rangle = \langle LK_n \rangle$. To guarantee we obtain the same balanced chromatic polynomial, we must keep the same set of balanced circles. How do we achieve this? Consider a circle C as in the figure below, where $\varphi(e_i) = \text{some } \pm l_{i_i}$.

Here $\varphi(C) = \epsilon_1 l_{i_1} + \epsilon_2 l_{i_2} \cdots + \epsilon_k l_{i_k}$ where $\epsilon_j \in \{-1, 1\}$ and depends on $\varphi(e_j)$. If C is balanced, then $\varphi(C) = 0$ and if C is not balanced, then $\varphi(C) \neq 0$. We need to choose L' so that this is preserves balance, i.e., $\varphi'(C) = 0$ if and only if $\varphi(C) = 0$. So we will have an equation or inequation of the form

$$\epsilon_1 l_{i_1} + \epsilon_2 l_{i_2} + \dots + \epsilon_k l_{i_k} \begin{cases} = 0, \\ \neq 0. \end{cases}$$

That is almost enough to get the set L, We need t distinct values. There is one simplification: since we use gains $\pm l_i$, it does not matter whether l_i is positive or negative; but it must not be 0. Thus, we also need to state that $l_i \neq 0$ and $l_i \neq \pm l_j$ for $i \neq j$.

Now we replace the specific values l_i with variables x_i to obtain an equation $\epsilon_1 x_1 + \epsilon_2 x_2 + \cdots + \epsilon_k l_{i_k} = 0$ or an inequation $\epsilon_1 x_1 + \epsilon_2 x_2 + \cdots + \epsilon_k l_{i_k} \neq 0$. There are t variables, x_1, \ldots, x_t . We have one equation per balanced circle, one inequation per unblaanced circle, and t^2 inequations $x_i \neq 0, x_i \neq x_j$, and $x_i \neq -x_j$ for $i \neq j$. This gives us a system of equalities and inequalities. We look for an integer solution using linear algebra. That solution is guaranteed by Theorem 1. \Box

Theorem 1 (Integralization). Given $\alpha_1, \ldots, \alpha_p, \beta_1, \ldots, \beta_q \in \mathbb{Q}^t$, the requirements that all $\alpha_i \cdot x = 0$ and all $\beta_j \cdot x \neq 0$, and the existence of a real solution $y \in \mathbb{R}^t$, then there exists a rational solution in \mathbb{Q}^t .

After obtaining a rational solution, since t is finite, we can scale by an appropriate integer to obtain an integral solution.

Proof. Let the matrix A have rows a_i^{\perp} . Consider the equation $AX = 0 \in \mathbb{R}^p$. Any dot product $\alpha \cdot x = 0$ is forced if and only if $\alpha \in \operatorname{Row}(A)$. Therefore, none of the β_j 's are in $\operatorname{Row}(A)$. The solution space of Ax = 0 is $\operatorname{Nul}(A)$, which can be given in terms of parameters, say $x_1, \ldots, x_r, r \leq n$. A is a $p \times t$ matrix. So we can put A into RREF $[I_k|A']$ and the condition becomes $[I_k|A']\begin{pmatrix} \hat{x}\\ \bar{x} \end{pmatrix} = 0$ where $\hat{x} = (x_1, \ldots, x_k)$ and $\bar{x} = (x_{k+1}, \ldots, x_r)$. So $I\hat{x} + A'\bar{x} = 0$ and $\hat{x} = -A'\bar{x}$. Let B = -A'. Then

$$\operatorname{Nul}(A) = \left\{ \begin{pmatrix} I \\ B \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_r \end{pmatrix} : \begin{pmatrix} x_1 \\ \vdots \\ x_r \end{pmatrix} \in \mathbb{R}^r \right\} \subseteq \mathbb{R}^t.$$

So our solution is $\left\{ \begin{pmatrix} \bar{x} \\ B\bar{x} \end{pmatrix} : \bar{x} \in \mathbb{R}^t \right\}$. Because A was a rational matrix and B was obtained from A by row operations, B is also a rational matrix. Therefore $\bar{x} \in \mathbb{Q}^r$ implies $x \in \mathbb{Q}^t$. Therefore we have found a rational solution. We can choose \bar{x} arbitrarily near \bar{y} so that x is arbitrarily near y. This means each $\beta_j \cdot x$ is changed too little to become 0, therefore we preserve all $\beta_j \cdot x \neq 0$. \Box

Now we know that we can replace real gains by rational gains and therefore by integral gains. This raises a natural question: How much (or little) do we need to perturb the real gains to obtain the rational gains? In particular, what is the smallest integer d > 0 such that perturbing y by < 1/d gives a rational solution? Put differently, what is the smallest D such that rounding Dy to the nearest integer vector gives a solution? More simply, we might try multiplying the real gains by 10^m (for some positive integer m) and then rounding to the nearest integer. But what m is sufficiently large?

Virtually the same proof as that of Proposition ?? works for any additive real gain graph. Thus:

Theorem 2 (Gain Graph Integralization). Let Φ be any \mathbb{R}^+ -gain graph. Then there exists a \mathbb{Z}^+ -gain graph Φ' with the same biased graph and therefore the same chromatic polynomials.

We can infer even more extensive conclusions from Theorem 2. Every complex additive gain graph Φ can be replaced by a gain graph Φ' whose gains are Gaussian integers. Indeed, gains in any real vector space \mathbb{R}^d can be replaced by vectors in \mathbb{Z}^d . The gains could even be polynomials over \mathbb{R} or \mathbb{C} .

Notice that $\pm LK_n$ is similar to a hollow extended Catalan arrangement, which by definition is $\mathscr{A}[\pm[1,t]_{\mathbb{Z}}K_n]$ where $\pm[1,t]_{\mathbb{Z}}$ is the interval of integers from 1 to t. I will develop this thought in the final lecture.