Gain Graphs and Hyperplane Arrangements Lecture 19: Notetaker: Shuchen Mu

In [?, Section 5.5] Stanley introduces "generic" exponential sequences $\mathscr{A}[\pm LK_n], n \geq 0$, where $L = \{l_1, \ldots, l_t\} \subset \mathbb{R}^+_{>0}$. He gives two proposed definitions of genericity.

(S1) $\mathcal{L}(\mathscr{A}[\pm LK_n])$ [that is, Latb $(\pm LK_n)$] is as big as possible.

(S2) The l_i 's are linearly independent over \mathbb{Q} .

Does (S1) means $\pm LK_n$ has the fewest possible balanced circles? That suggests another definition based on thinking about gain graphs:

(T1) L is generic if, for all $n, \mathscr{B}(\pm LK_n)$ is as small as possible. Restated,

$$\mathscr{B}(\pm LK_n) = \bigcup_i \mathscr{B}(\pm l_i K_n),$$

since we necessarily have the balanced circles of $\pm K_n$.

(T1) is slightly different from (S2), since we only ask that no circle with different l_i 's in it can give gain 0 for any n, which is implied by rational independence of the l_i . However, it is easy to prove that because we have an exponential sequence they are equivalent.

Proposition 1. (T1) \iff (S2).

Proof. Exercise.

Now we examine the concept of a "bigger" semilattice or lattice of a biased graph.

Proposal 2. Given a graph Γ and two linear classes of circles, $\mathscr{B}_1 \subset \mathscr{B}_2$, then Latb (Γ, \mathscr{B}_1) is bigger than Latb (Γ, \mathscr{B}_2) .

"Bigger" is intentionally not defined, but it should mean something like existence of an order-preserving, or order- and rank-preserving, injective function $\text{Latb}(\Gamma, \mathscr{B}_2) \to \text{Latb}(\Gamma, \mathscr{B}_1)$ that is not surjective. Or, it may mean the existence of an order-preserving surjective function $\text{Latb}(\Gamma, \mathscr{B}_1) \to \text{Latb}(\Gamma, \mathscr{B}_2)$ that is not injective. The latter definition gives a proof of Proposal 2.

Problem 3. Decide whether both definitions of "bigger" are equivalent.

We get a better understanding of "bigger" from the following property of the balanced-flat semilattice. **Theorem 4.** Given a graph Γ without loops and two linear classes of circles, $\mathscr{B}_1 \subset \mathscr{B}_2$, then there is an order-preserving surjective mapping $\text{Latb}(\Gamma, \mathscr{B}_1) \to \text{Latb}(\Gamma, \mathscr{B}_2)$ that is not injective.

Proof. Write $\Omega_1 = (\Gamma, \mathscr{B}_1)$ and $\Omega_2 = (\Gamma, \mathscr{B}_2)$. A mapping β : Lat $(\Omega_1) \rightarrow$ Lat (Ω_2) is defined by $\beta(S) = \operatorname{clos}_2(S)$, where clos_1 is the closure in Ω_1 . (Notice that we define β on all edge sets.) We have to prove that β is order-preserving and surjective. It is obvious that it maps Lat $\Omega_1 \rightarrow$ Lat Ω_2 . It maps balanced flats to balanced flats because, by the hypothesis, a balanced set of Ω_1 is also balanced in Ω_2 .

Thus, the closure of S in both biases is its balance-closure, defined by

$$bcl_1(S) = S \cup \{e \notin S : \exists C \in \mathscr{B}_1, \ C \cup e \in \mathscr{B}_1\} \\ \subseteq S \cup \{e \notin S : \exists C \in \mathscr{B}_2, \ C \cup e \in \mathscr{B}_1\} = bcl_2(S).$$

It follows that $clos_2(S) \supseteq clos_1(S)$ for any balanced edge set.

Clearly, β preserves set containment, that is, lattice order. We must prove β is surjective. For $A \in \text{Latb} \Omega_2$, choose an Ω_2 -basis B of A. It is balanced and independent in Ω_2 , hence it is a forest, so it is balanced in Ω_1 . Thus, $\beta(B) = \text{clos}_1(B)$ is balanced. Now,

$$B \subseteq \operatorname{clos}_1(B) \subseteq \operatorname{clos}_2(B) = A$$

 \mathbf{SO}

$$A = \operatorname{clos}_2(B) \subseteq \operatorname{clos}_2(\operatorname{clos}_1(B) \subseteq \operatorname{clos}_2(A) = A.$$

Therefore, $\beta(\operatorname{clos}_1(B)) = A$. This proves β is surjective from $\operatorname{Latb} \Omega_1$ to $\operatorname{Latb} \Omega_2$.

To prove β : Latb $\Omega_1 \to \text{Latb} \Omega_2$ is not injective, choose a circle $C \in \mathscr{B}_2 \setminus \mathscr{B}_1$. For $e \in C$, $e \notin \text{clos}_1(C \setminus e)$ but $e \in \text{clos}_2(C \setminus e)$ so $\text{clos}_2(C \setminus e) = \text{clos}_2(C)$. The same applies to another edge $f \in C$, which exists because there are no loops (one-edge circles). Now, $\text{clos}_1(C \setminus e)$ and $\text{clos}_1(C \setminus f)$ are two balanced flats in Ω_1 with the same image, $\text{clos}_2(C)$, under β .

I believe the mapping β is not always surjective from Lat Ω_1 to Lat Ω_2 , but I leave that as an exercise.

Corollary 5. (S1) \iff (T1).

Proof. Apply Theorem 4, since $\mathscr{L}(\mathscr{A}[\pm LK_n]) \cong \text{Latb}(\pm LK_n)$. \Box

In other words, we have proved that Stanley's two definitions are equivalent. (I am ignoring the possibility that order-preserving injections give a different notion of bigness from surjections; cf. Problem 3.)

 $\mathbf{2}$

Problem 6. Does there necessarily exist an order-preserving surjection $Lat(\Gamma, \mathscr{B}_1) \to Lat(\Gamma, \mathscr{B}_2)$?

Biased union. It is time to introduce a new way of combining biased graphs. The *biased union* of $\Omega_1 = (\Gamma_1, \mathcal{B}_1)$ and $\Omega_2 = (\Gamma_2, \mathcal{B}_2)$, whose edge sets are disjoint, is

$$\Omega_1 \sqcup \Omega_2 = (\Gamma_1 \cup \Gamma_2, \mathscr{B}_1 \cup \mathscr{B}_2).$$

Theorem 7. The biased union is a biased graph.

Proof. Exercise.

The n^{th} gain graph of our exponential sequence, $\pm LK_n$, contains $\pm l_iK_n$ for each *i* (which is isomorphic to the hollow Catalan gain graph). Definition (T1) states that *L* is generic if $\pm LK_n$ is the biased union

$$\langle \pm LK_n \rangle = \bigsqcup_{i=1}^t \langle \pm l_i K_n \rangle.$$

Now, here is the crucial question and the purpose of introducing the biased union. Let $\Gamma = \Gamma_1 \cup \Gamma_2$ and $\Omega = \Omega_1 \sqcup \Omega_2$.

Problem 8. Can we express $\chi_{\Omega}^{b}(\lambda)$ in terms of $\chi_{\Omega_{1}}^{b}(\lambda)$ and $\chi_{\Omega_{2}}^{b}(\lambda)$ and possibly other information that we already know from Ω_{1} and Ω_{2} ?

Can we similarly infer Latb Ω ?

Recall the formulas:

$$\chi^{b}(\lambda) = \sum_{\substack{S \subseteq E \\ \text{balanced}}} (-1)^{|S|} \lambda^{c(S)} = \sum_{A \in \text{Latb}\,\Omega} \mu(\emptyset, A) \lambda^{c(A)}.$$

I would like to somehow use these formulas to extrapolate χ_{Ω}^{b} from the sets that are balanced and closed in the two Ω_{i} . For instance, (assuming no loops or balanced digons) common closed sets are \emptyset and $\{e\}$ for every edge of the union. But then it gets complicated. For instance, every forest of the union Γ is balanced, even if it combines edges of both Ω_{i} , but not necessarily closed. Consider a subset $S \subseteq E(\Gamma)$: it is balanced and closed if and only if every block is balanced and closed. Suppose, then, that S a block: it is balanced and closed if and only if it is a closed, balanced, inseparable subset in Ω_{1} or Ω_{2} . So, a balanced flat of Ω is assembled from inseparable balanced flats of the Ω_{i} . Does that give us enough insight to compute the balanced chromatic polynomial of Ω , or even the semilattice of balanced flats?

In the special case of an exponential sequence $\langle \pm LK_n \rangle$ for generic L, perhaps some version of the exponential formula might be able to give a solution. That is the motivation for this discussion.

Here is a thought about generalization. It is surely too hard to solve in general, as even the special case of biased union is unclear.

Problem 9. Suppose we define

$$\Omega_1 \cup \Omega_2 = (V_1 \cup V_2, E_1 \cup E_2, \mathscr{B})$$

where \mathscr{B} is the smallest linear class such that $\mathscr{B} \supseteq \mathscr{B}_1 \cup \mathscr{B}_2$. What is \mathscr{B} ? What are the properties? Can we describe $\operatorname{Lat} \Omega_1 \cup \Omega_2$ or $\operatorname{Latb} \Omega_1 \cup \Omega_2$ in terms of Ω_1 and Ω_2 ?

The principal question here is whether \mathscr{B} has an explicit description. Only then can any more be thought about.