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Definition 1. Take a gain graph Φ = (Γ, ϕ), where ϕ takes values in
K×, the multiplicative group of the field K. The hyperplane arrange-
ment associated to the graph, A[Φ], is in Kn, where n = number of
vertices in the graph. It is A[Φ] = {h(e) : e ∈ E}, where

h(eij) : xj = xiϕ(eij) if eij is the edge from vi to vj,

h(ei) : xi = 0 if ei is a half edge with vertex vi,

h(e) : 0 = 0 if e is a loose edge.

For any edge set S, we define h(S) := {h(e) : e ∈ S}. Thus,⋂
h(S) :=

⋂
e∈S h(e).

Let’s consider the gain of a circle. We defined the gain of a walk
W = e01e12 · · · e(l−1)l as

ϕ(W ) := ϕ(e01)ϕ(e12) · · ·ϕ(e(l−1)l).

In a circle C, we choose one of the vertices as v0 and start labeling all
its vertices in one direction as v0, v1, . . . , vl = v0. This defines the gain
of C. The hyperplanes associated to the edges on the circle are:

h(e01) : x1 = x0ϕ(e01),

h(e12) : x2 = x1ϕ(e12),

. . .

h(e(l−1)0) : x0 = xl−1ϕ(e(l−1)0).

(For technical reasons we admit the whole space Kn as the “degenerate
hyperplane”.) The sequence of equations implies x0 = x0ϕ(C).

Case 1. C is balanced, i.e., ϕ(C) = 1. If a point

x = (x0, x1, . . . , xn) ∈
⋂

h(C \ {el−1,l}),

then xl−1 = ϕ(e01)ϕ(e12) · · ·ϕ(e(l−2)(l−1))x0, so x0 = ϕ(e(l−1)l)xl−1, so

x ∈ h(e(l−1)l). Therefore,
⋂l−1

i=1 h(ei−1,i) ⊆ h(el−1,l), so h(C) is depen-
dent.

Case 2. If C is unbalanced, then x0 = x0ϕ(C) where ϕ(C) 6= 1, so
x0 = 0. It follows that x1 = 0, x2 = 0, . . . , so⋂

h(C) = {x ∈ Kn | xi = 0 ∀ vi ∈ V (C)}.

Between Cases 1 and 2 we have proved
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Lemma 2 (Dependence of a Circle). If C is a balanced circle, then
h(C) is a dependent set of hyperplanes, but h(C\{e}) is an independent
set for every edge e ∈ C.

If C is an unbalanced circle, then h(C) is an independent set of
hyperplanes.

Now we turn our attention to forests.

Lemma 3. Let F be a forest in Φ. Then h(F ) is an independent set
of hyperplanes.

Proof. Here we think of a forest as an edge set.
Case 1. If there is only one edge in the forest, then it forms an

independent singleton because its hyperplane is independent.
Case 2. Suppose all forests with a number of edges ≤ k have in-

dependent image under h. Let F be a forest that consists of k + 1
edges.

Take a pendant edge ekl, so there is no other edge than ekl in the
forest incident to vl. Therefore the only defining equation of edges in
the forest that involves xl is xl = xkϕ(ekl). Let F ′ = F \ {ekl}. Denote
the defining vector of h(e) by ue. By the preceding discussion,

uekl /∈ span{ue | e ∈ F ′},
so

rk span{ue | e ∈ F ′} < rk span{ue | e ∈ F}.
By assumption, h(F ′) is independent, so rk span{ue | e ∈ F ′} = #F ′.
Hence

rk span{ue | e ∈ E(F )} ≥ #F = #F ′ + 1.

Thus, h(F ) is independent. �

Next, we need a little matroid theory.

Definition 4. The direct sum of two matroids, M1⊕M2, is defined by

E(M1 ⊕M2) = E(M1) t E(M2),

rkM1⊕M2(X) = rkM1(X ∩ E(M1)) + rkM2(X ∩ E(M2)).

Let’s look at independence. Recalling that rk(X) ≤ #X, we cna see
that

rkM1(X ∩ E(M1)) + rkM2(X ∩ E(M2)) = #X

if and only if

rkM1(X ∩ E(M1)) = #[X ∩ E(M1)],

and also
rkM1(X ∩ E(M1)) = #[X ∩ E(M1)].
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That is, X is independent in M1 ⊕M2 if and only if its M1 part and
its M2 part are independent in their respective matroids. This is a
characteristic of the direct sum; if it is true for every X, then we have
the direct sum of M1 and M2.

Consider how this applies to a hyperplane arrangement.

Lemma 5. Let B,C be arrangements in Kn, such that the coordinates
of the hyperplanes in B are all different from those of the hyperplanes
in C. Then M(B ∪ C) = M(B)⊕M(C).

Proof. Since the coordinates of hyperplanes in B are different from
those in C, B ∪ C = B t C.

Let X be an independent set in the matroid M(B∪C). There are no
linear relations between defining vectors in the set B and those in the
set C. Thus, if X∩B is independent in M(B) and X∩C is independent
in M(C), then X is independent in M(B)⊕M(C), and conversely. Thus,
M(B ∪ C) = M(B)⊕M(C). �

Lemma 6. Suppose D ⊆ E(Φ) is such that each component of D is
a tree or contains only one circle, which is unbalanced, or a half edge.
Then h(D) is independent in M(A[Φ]).

Proof. let K be a component that contains one unbalanced circle C.
Then by Lemma 2,

⋂
e∈E(C) h(e) = {x : xi = 0 ∀ vi ∈ V (C)}. Since K

is connected, each vertex vj ∈ V (K) is linked to C by a path, say P
from vi ∈ V (C) to vj. So if x ∈

⋂
h(E(K)), then xj = xiϕ(P ) = 0.

Therefore, xj = 0 for every vj ∈ V (K). On the other hand, if xj = 0
for all vj ∈ V (K), then certainly xi ∈

⋂
h(E(K)). This shows that⋂

h(E(K)) = {x : xj = 0 ∀ vj ∈ V (K)}, which is of codimension
#V (K), which = #E(K), so E(K) is independent.

Let K be a component with a half edge attached to a vertex vi, so
xi = 0. Since K is connected, by similar reasoning we conclude that
E(K) is independent.

By Lemma 3, if K is a tree, then h(E(K)) is independent.
As we saw in Lemma 5, this implies that h(D) is independent. �

Lemma 6 begins to tell us how to define independent sets in the frame
matroid of a K×-gain graph. In particular, if an edge set contains a
balanced circle, then it is dependent.


