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In the last lecture, we analyzed the matroid M (A [Φ]) in terms of
the independent sets of Φ. Theorem 1 showed that the independent
sets are contrabalanced pseudoforests.

Definition 1. Let F(Φ) be this matroid on a K×-gain graph Φ, with
independent sets given by Theorem 1. This is the frame matroid of Φ.

Theorem 1. For the gain graph Φ, let S ⊆ E(Φ). Then,

(1) rk(S) = n− b(S).
(2) The circuits of F (Φ) belong to one of the following three cate-

gories:
(a) Balanced circles and loose edges.
(b) Contrabalanced handcuffs.
(c) Contrabalanced theta graphs.

(3) The closure of S is given by

cl(S) = (E:V0(S)) ∪ bcl(S:V0(S)c.

(4) S is closed if S is equal to its closure (i.e. the union of unbal-
anced components is an induced subgraph of Φ and each balanced
component is balance-closed)

To explain the notation we give some additional definitions.

Definition 2. For S ⊆ E, we define b(S) to be the number of balanced
components of the spanning subgraph (V, S). Isolated vertices are in-
cluded as balanced components because they are balanced. However,
loose edges are not included as they are not considered components.

We define V0(S) to be the set of vertices that are contained in un-
balanced components of S.

Definition 3. For X ⊆ V and S ⊆ E, the induced subset of S on X,
denoted by S:X, is defined as the set {e ∈ S : all endpoints of e are in X}.
Loose edges are included in the induced subset, as they do not contain
a vertex that is not in X.

Definition 4. The balance-closure of S, denoted by bcl(S), is given
by

S ∪ {e ∈ E : ∃ balanced circle C such that e ∈ C ⊆ S ∪ {e}}
∪ {loose edges},
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which is equal to

S ∪ {e ∈ E : ∃ path P in S joining the endpoints of e

such that P ∪ {e} is a balanced circle}
∪ {balanced loops} ∪ {loose edges}.

In both sets the loose edges could be omitted if we consider loose edges
to be balanced circles.

An edge set S is balance-closed if S = bcl(S).

Before we begin the proof of the theorem, there are two notes about
the balance-closure of S. First, we do not yet know if the balance-
closure satisfies all three conditions to be an abstract closure. Clearly,
S ⊆ bcl(S) and balance-closure is weakly increasing (i.e., adding edges
to S cannot remove an edge from bal(S)). However, it may not be true
that bcl(bcl(S)) = bcl(S). Secondly, the balance-closure of a balanced
set must be balanced, because it contains no unbalanced circles or half-
edges. This requires proof.

Lemma 1. If S is balanced, then bcl(S) is balanced.

Proof. Switch so S has all identity gain. Then an edge added to S by
balance-closure must also have identity gain. It follows that bcl(S) is
balanced. �

We begin the proof of the theorem with part (2).

Proof of Part (2). Let D belong to one of the categories described in
this part and let e ∈ D. From Theorem 1, we know that D is dependent
and that D \ e is independent. Independence comes from the fact
that if we were to remove any edge from D, this would result in a
contrabalanced pseudoforest. Therefore D is a circuit.

Conversely, let D be a circuit. Then D is dependent. By Theorem 1,
D must contain a balanced circle or two unbalanced circles/half-edges
that are in the same component of D (since if they were in different
components, they would not make D dependent). In Theorem 1 we
already showed that this subset D′ of D is dependent and is either
a balanced circle or a contrabalanced handcuff or theta graph. By
minimality, D = D′. �

Proof of Part (1). From the definition of F(Φ) (as corresponding to
M (A [φ])) we have rk(S) = rk(

⋂
h(S)), as the right-hand side is the

rank function in the hyperplane arrangement. This is then equal to
codim

⋂
h(S). We know that rk(S) = rk(I) for any maximal contra-

balanced pseudoforest I because it is a maximal independent set. Thus
we also have rk(S) = rk(I) = codim

⋂
h(I).
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The following is a diagram of the structure of I.

Figure 1. Structure of I. Each box represents an un-
balanced component Ri of I and each circle represents a
balanced component Ii of I. The dashed circle represents
V0(S).

We can break up I into its unbalanced components and its balanced
ones. Collectively, the unbalanced components are I:V0(S). For the
balanced components, each component must be a tree because I is
independent. (We are able to ignore loose edges as they correspond to
the degenerate hyperplane.)

For an unbalanced component Ri, we found in the study of circles
and the proof of Theorem 1 that h(Ri) =⇒ xj = 0 for all vj ∈ V (Ri).
Hence, we have a contrabalanced 1-tree. Therefore codim

⋂
h(Ri) will

be equal to the number of coordinates of the hyperplane equations in
h(Ri). However, this is just the number of vertices of Ri.Therefore
rk(Ri) = |V (Ri)|.

Next, we consider a balanced component Ii. It is a tree, by Theorem
1. All coordinates of

⋂
h(Ii) are determined through the equations of

the tree by fixing any one coordinate arbitrarily (see Figure 2). There-
fore codim

⋂
h(Ii) ≥ |V (Ii)| − 1 = |E(Ii).

vj vk

Figure 2. A possible structure for Ii. By fixing xj, we
can find xk in terms of xj.

Since codim
⋂
h(Ii) ≤ |E(Ii)| because the codimension cannot be

greater than the number of hyperplanes of h(Ii), therefore codimh(Ii) =
|V (Ii)| − 1.
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Now, since each h(Ri) and each h(Ii) uses a different set of coor-
dinates, we can write rk(I) as

∑
i rk(Ri) +

∑
i rk(Ii) (see the previ-

ous lemma about direct sums). Using the formulas we have just con-
structed, this becomes

∑
i |V (Ri)| +

∑
i(|V (Ii)| − 1) = |V (I)| − b(I).

Each vertex is included in either some Ri or some Ii, so this is n− b(I).
For the proof of Part (1) to be complete, it remains to be shown that

the vertex sets of the balanced components of I are those of the bal-
anced components of S; in other words, that I restricted to a balanced
component of S is connected. �

Lemma 2. Suppose I is a maximal independent set in S ⊆ E. Let
S have unbalanced components U1, U2, . . . and balanced components
B1, B2, . . . . Then I ∩ Bi is a tree spanning V (Bi) and I ∩ Ui is a
disjoint union of contrabalanced 1-trees.

Proof. To appear next time. �


