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Recall that for a graph I' = (V| E), the chromatic polynomial of T is
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where ¢(S) = ¢(V, S) is the number of components of (V,.S) and Lat I is the lattice of flats
of the graphic matroid of I'. The definition in a biased graph, including a gain graph, is very
similar; there is only one big little difference.

Definition 1. The chromatic polynomial of a biased graph Q = (T", &), where E is the edge

set of T, is
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The second equality follows from the Mobius function formula for matroids mentioned in
Stanley’s notes.
If S is balanced then b(S) = ¢(5), so if Q is balanced the chromatic polynomial of the
gain graph agrees with the chromatic polynomial of the underlying graph.

Recall our definition that, if the empty set is not closed, then p(2&, A) = 0 for every flat A.
Consequently, if €2 contains a loose edge or a balanced loop, then its chromatic polynomial
is identically 0.

Definition 2. A biased graph has a second chromatic polynomial. First we have to define
the meet semilattice of balanced flats,

Lat"(Q) := {A € Lat Q : A is balanced}.

The balanced chromatic polynomial of ) is
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If 2 is balanced, the balanced chromatic polynomial, like the chromatic polynomial, is the
same as the chromatic polynomial of I'. In other words, all three coincide. However, if € is
not balanced, all three are different. (I will not prove that, but you can see that the range
of summation for xP is smaller than that for yq and yr, and the exponents in the two latter
sums are unequal for unbalanced sets S.

We now come to a nice generalization of the theorem about the characteristic polynomial
of a graphic hyperplane arrangement (in Stanley’s notes).

Theorem 3. For a K*-gain graph ®, pya(A) = xa(N).

Proof. In pe(X), the exponent dim h(S) = n —1k h(S) = b(S) because rk h(S) = rka(S) =
n —b(S). (Recall that for S C E, h(S) is the set of corresponding hyperplanes and that the
frame matroid F(®) is isomorphic by h to .# (<7 [®]).) O

Now that we have a polynomial defined on a gain graph. let’s see what it can do.
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Definition 4. Given a gain graph ® we define a k-coloration as a function
v:V(®) — & x [k] U{0}.
A zero-free k-coloration is a coloration that does not use 0; in other words, it is a function
v V(P) = & x [k].

We call the codomain the color set and denote it by C%(&), or Ci(6) when we do not
include 0.

Define a right action of & on C? and thus on Cy by Og := 0 and (h,i)g := (hg, i) for g,h €
® and ¢ € [k]. A coloration is proper if, for every ordinary edge €,,, v(w) # Y(v)p(€yw),
and also y(v) # 0 for each vertex v that supports a half edge or an unbalanced loop.

We come at last to the main result of today’s lecture.

Theorem 5 (Proper Coloration). If & is finite, say of order m, then xo(km+1) is the num-
ber of proper k-colorations of ® and X% (km) is the number of zero-free proper k-colorations.

Observe the interesting fact that the number of proper colorations is independent of the
particular group. It depends only on how big the group is.

Example 6 (Gain Graphs vs. Hyperplane Arrangements). Let & = K* and k = 1. Then
C, = K (as a multiplicative monoid) and C{ = K*.

We can generalize this so as to be able to color the gain graph of a gain-graphic hyperplane
arrangement. Let & be any finite subgroup of K *. Examples are a finite cyclic group of any
order as a subgroup of C* and the multiplicative group of a finite field I, for cyclic groups
of order ¢ — 1 (g being a prime power).

Example 7 (Signed Graphs). The special case of a group of order 2 is exceptionally inter-
esting. Let & = {+1} C K*, where char K # 2 (that is, 1 # —1). We call such a gain graph
® a signed graph. We can treat the color set as a sign-symmetric set of integers if we color
with {0,4+1,+2, ..., +k}—as long as char K is large enough (the colors must be distinct),
and in particular whenever char K = 0.

In signed graphs, x4 (2k + 1) gives us the number of proper k-colorations when A is odd,
provided we set k = $(A—1); and x4 (2k) gives us the number of zero-free proper k-colorations
when )\ even, if we take k = %)\.

There is extensive literature on signed graphs, though not much on their coloring. Much
of it is not in mathematics, but is directed towards social science, inspired by a foundational
article of Cartwright and Harary from 1956. On the other hand, the hyperplane arrangements
of signed graphs are implicitly connected with the major mathematical topic of Lie theory
via root systems (¢.v.), which are becoming important in combinatorial geometry.

Definition 8. Sometimes we only want a 0-free 1-coloration; we call that a group coloration
as it simply maps V' — & (notationally simplified from & x [1]).

Sometimes we like to regard the set [k] as the group Zj and view a k-coloration as a group
coloration, just as we can when k£ = 1.



