
Lecture 8: Deletion, Contraction, and Coloration

Notes by Jimmy West

The main topic of this lecture is coloring gain graphs, but for the
principal theorems we have to define not only deletion of edges, which
is obvious, but also contraction of edges, which is far from obvious for
gain graphs, in contrast to how it is for ordinary graphs.

Deletion and Contraction. We begin with gain graphs, then apply
our ideas to biased graphs.

Definition 1 (Deletion of an Edge). Deletion of an edge in a gain
graph or a biased graph is trivial. It should be noted that all gains
remain the same upon deletion and the balanced circles remain the
same, except for those that are no longer circles upon the deletion.

Definition 2 (Contraction of an Edge in a Gain Graph). The notation
for a gain graph Φ with e contracted is Φ/e.

To contract a link e in Φ, first switch Φ so e has gain ε, then coalesce
the endpoints, and finally delete the contracted edge e.

To contract a loose edge or a balanced loop, simply delete the edge.
Do not change the gains of other edges.

To contract a half edge or an unbalanced loop e incident with vertex
v, remove both v and e but not any other edges. This may remove
some endpoints of some edges; in particular, it reduces a link e that
joins v to w to a half edge incident with w, and a loop or half edge at v
(other than e itself) to a loose edge. Do not change the gains of edges
that remain ordinary edges—but an ordinary edge that becomes a half
or loose edge no longer has a gain.

Many different switching functions can give e the switched gain ε, so
the contraction Φ/e is not uniquely defined. All different contractions
are switching equivalent, but the explanation is somewhat complicated
so we postpone it to a later date.

Since a biased graph has no gains, the definition of contraction has
to be adapted, and in such a way that it is compatible with contraction
in a gain graph.

Definition 3 (Contraction of an Edge in a Biased Graph). For a biased
graph Ω = (Γ,B), again there are different rules for different kinds of
edge. The notation for Ω with e contracted is Ω/e.

To contract a link e, we contract it in the underlying graph Γ. Then
we have to define the bias. A circle D in Ω/e is balanced if it is the
contraction of a balanced circle C in Ω that contains e, or if it is a
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circle in Ω that is balanced. Otherwise, it is unbalanced; that is, if it
is the contraction of anun balanced circle in Ω that contains e, or if it
is an unbalanced circle in Ω.

To contract a loose edge or a balanced loop, simply delete the edge.
To contract a half edge or an unbalanced loop e incident with vertex

v, remove both v and e but not any other edges. This may remove
some endpoints of some edges; in particular, it reduces a link e that
joins v to w to a half edge incident with w, and a loop or half edge at
v (other than e itself) to a loose edge.

It is worthwhile to point out why this is a complete definition of the
balanced circle class in Ω/e. Suppose we contract a link e. A circle C
in Ω that contains e will contract to a circle with edge set C \ e in Γ/e,
and whether or not it is balanced will not be affected by contraction.
If C does not contain e, there are two cases. If both endpoints of e, say
v and w, are in C, then C contracts to a pair of circles, each consisting
of one of the two vw-paths in C. Otherwise, C simply remains a circle
in the contracted graph.

There is one little difficulty. Unlike with gain graphs, where it is
obvious, how do we know the contracted biased graph is a biased graph?

Proposition 1. If Ω is a biased graph and e is an edge of Ω, then Ω/e
is a biased graph.

Proof. This is an excellent exercise for the reader. �

Given a gain graph Φ, we denote the corresponding biased graph by
〈Φ〉. It should be clear that, if we have a gain graph Φ and contract
an edge e, then take the biased graph of Φ/e, we get the same result
as if we contract e after taking the biased graph of Φ. Symbolically,

〈Φ/e〉 = 〈Φ〉/e.

Example 1. We do an example of deletion and contraction using the
R×-gain graph Φ in Figure 1.

v1

v2 v3

e1: 3

e2: 5

e3: 2

e4: 15

Figure 1. A gain graph Φ, with the gains listed on each edge.
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In the example we contract the link e4, giving the graph Φ/e4. First,
we switch the gains so that e4’s gain is the identity. In our example we
will use the switching function defined by:

ζ(v1) = 1, ζ(v1) = 1, ζ(v3) =
1

15
.

The resulting gains are then

φζ(e1) = ζ(v1)−1φ(e1)ζ(v2) = 1× 3× 1 = 3,

φζ(e2) = ζ(v2)−1φ(e3)ζ(v3) = 1× 5× 1

15
=

1

3
,

φζ(e3) = ζ(v3)−1φ(e3)ζ(v1) = 15× 2× 1 = 30,

φζ(e4) = ζ(v1)−1φ(e4)ζ(v3) = 1× 15× 1

15
= 1.

v1

v2 v3

e1: 3

e2: 1
3

e3: 30

e4: 1

Figure 2. The gain graph Φζ , with the switched gains.

For the second step, contract e4, keeping all gains. The resulting gain
graph, Φ/e4, is shown in Figure 3. Notice that the digon in Φ/e4 is

v2

v13

e2: 1
3

e1: 3

e3: 30

Figure 3. Φ/e4; The vertex v13 is the coalescence of
vertices v1 and v3.

balanced and that these edges came from the balanced circle e1e2e
−1
4 in

Φ. In fact, when contracting edge e, every circle C through e becomes
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a new circle C/e that is balanced if, and only if, C was originally
balanced. This is because the gains of circles do not change under
switching and the gains of edges do not change when e is contracted.

Example 2. Next, we look at contraction of an unbalanced loop (or a
half edge). Let Ψ = Φ/e4 from Example 1 and consider Ψ/e3. The two
endpoints of this loop coincide and the loop is unbalanced. We delete
the edge and remove its incident vertex v13. All edges incident with v13

lose that vertex; thus, e1 and e2 become half edges. The contraction
Ψ/e3 is shown in Figure 4.

v2

e2

e1

Figure 4. Ψ/e3; Since the only remaining edges are half
edges, there are no longer any gains.

There are no edges not incident with v13, but if there were, they
would retain their gains. If there were any half edges or loops incident
to the deleted vertex, they would become loose edges; see Figure 5.

v2 v13

e2

e1

e3

e6

e5

v2

e2

e1

e5

e6

Figure 5. The left graph Ψ′ is Ψ with two added edges.
The gains of the added edges are irrelevant to the exam-
ple. On the right is the contraction Ψ′/e3, with two half
edges and two loose edges. Those edges no longer have
gains.

Chromatic polynomials.
Now we can return to chromatic polynomials.
An edge is said to be balanced if the edge, as an edge set, is balanced.

That is, a link, a balanced loop, and a loose edge are balanced, while
a half edge and an unbalanced loop are unbalanced.
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Observe that, by their algebraic definitions (andwriting Ω = 〈Φ〉 for
brevity), χΦ = χΩ and χbΦ = χbΩ.

Theorem 1 (Deletion-Contraction for Chromatic Polynomials). For a
gain graph Φ and an edge e,

χΦ(λ) = χΦ\e(λ)− χΦ/e(λ)

and

χbΦ(λ) =

{
χbΦ\e(λ)− χbΦ/e(λ) if e is a balanced edge,

χbΦ\e(λ) if e is an unbalanced edge.

The same is true for a biased graph Ω.

Proof. We will prove the theorem for biased graphs. The result for gain
graphs follows directly because the polynomials are the same.

First, we prove it for the chromatic polynomial. The definition says
χΩ(λ) =

∑
S⊆E(−1)#Sλb(S). We break the sum up into two parts, one

for the edge sets that contain e and one for those that do not. Thus,

χΩ(λ) =
∑
S⊆E\e

(−1)#Sγb(S) +
∑

e∈S⊆E

(−1)#Sγb(S).

The first sum is χΩ\e(λ). For the second sum, we write each edge set
containing e, S, as T ∪ e for some edge set T ⊆ E \ e. The sum
then becomes

∑
T⊆E\e(−1)#T+1λbΩ(T∪e). Note that the exponent is the

number of balanced components in Ω, not Ω/e. We now have

χΩ(λ) = χΩ\e(λ)−
∑
T⊆E/e

(−1)#TλbΩ(T∪e)

The sum overT equals χΩ/e(λ) by the following lemma, which completes
the proof �

Lemma 1. bΩ(T ∪ e) = bΩ/e(T ) for any edge e and any set T ⊆ E \ e.

Proof. The first case we look at is where e is a link. For that we apply
the following lemma.

Lemma 2. If Ω is balanced and e ∈ E, then Ω/e is also balanced.

The proof of this lemma will be given at a later date.
If e is in a balanced component, B, then use Lemma 2.
If e is in an unbalanced component, U , we have three cases.
Case 1. e is a link. If e is in an unbalanced circle C, then C/e is

an unbalanced circle in U/e. Hence U/e is unbalanced. Suppose the
component has an unbalanced circle C such that C is a circle in U/e.
Then C is unbalanced in U/e, so U/e is unbalanced. Suppose U has
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an unbalanced circle C of which e is a chord. Then C ∪ e contains two
other circles, say C1 and C2. At least one of these must be unbalanced,
say C1. Then C1/e is unbalanced in U/e. Therefore U/e is unbalanced
in this case as well. Hence b(Ω/e) = b(Ω).

The remaining cases will be proved in the next lecture.
�


