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Theorem 1 (Deletion-Contraction for Chromatic Polynomials).

Proof for the balanced chromatic polynomaial. The definition is

B= X

SCE
Sbalanced
— Z (_1)#5)\17(5) _ Z (_1)#T)\bgz(Tu6)_
SCE\e TCE\e
S balanced TUe balanced

By Lemma 7?7, the last summation equals

Z (_1)#T/\bn/e(T)

TCE\e
TUe balanced

Since e is a balanced edge, by Lemma ?? the edge set T of Q/e is
balanced if and only if T'Ue is balanced in ). Hence, the last summation

= Z (—1)#T \bs/e(T)

TCE(Q/e)
T balanced

That concludes the proof. O

Switching of colorations. We define the switching /¢ of a coloration
~v with respect to a switching function ¢ to be

7 (v) = 7(v)¢(v).
We see that
0 1(©)¢(0)(C(0) T P(ewn)C (W) = V(v (e ) (w) = y(w)((w)
= (w) =7(v)d(evw)-
Therefore a coloration is proper at a link if and only it is proper at the

link after switching.
Define

K (®) := the set of proper k-colorations of &,

and similarly K(® \ e) = the set of proper k-colorations of ® \ e and
K (®/e) = the set of proper k-colorations of ®/e. We are now obliged
to mention something that we swept under the rug in defining contrac-
tion: the gains of ®/e depend on the choice of the switching function
¢ by which we switched e to have gain e. Nevertheless, all possible

contractions ®/e are switching equivalent (that is an exercise for the
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reader), so it follows from Equation (1) that, although ®/e depends
on the choice of switching function, the resulting K(®/e)’s are all bi-
jective to each other by bijections that preserve the 0-colored set, and
therefore their cardinalities are all the same.

Counting proper colorations. At last we can prove the main theo-
rem about the chromatic polynomials.

Theorem 2. Assume & is finite and ® is a &-gain graph of finite
order. Let m = |&|. Then

Xao(km + 1) = the number of proper k-colorations of ®, and

x4 (km) = the number of zero-free proper k-colorations.

We formulate the main parts of the proof as two lemmas. The theo-
rem will follow by some special cases and induction on the number of
edges.

For the first part of the theorem we define y¢(km+1) := the number
of proper k-colorations of ®. So x¢ is a function evaluated at positive
integers of residue 1 (mod m).

Lemma 1. If e is a link in @, then Xo = Xao\e — Xa/e-

Proof. Let e,, be a link in ®, also denoted more briefly by e. We
simplify the proof by assuming ® has been switched so e has gain e.
Then contraction of e does not require any switching.

A coloration is proper if and only if it is proper at each edge, i.e.,
v(b) # y(a)p(eqw) for every edge e, Since @ \ e has all the vertices
and edges of ® except e,

K(®) ={y € K(®\e) | v(w) #v(v)d(ew) = 7(v)}.

Consider a coloration that is proper except at e,,. It gives a proper
coloration of ®/e because the color at v is the same as at w. In ®/e,
the color of the contraction vertex v, is y(v); all other vertices retain
the same color as in P.

Contrariwise, given a proper coloration 4 of ®/e, we construct a
coloration v of ® by

S ifutow,
Y(u) =< . Lo
Y(ve) ifu=wvorw,

where v, is the contraction vertex. It is easy to see that these two
constructions are inverse to each other, so they give a bijection between

{ye K(®\e)|v(w) =y(v)¢(evw)} and K(D/e).
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Hence we have proved for the case when e is a link that there is a
bijection
K(@)UK(P/e) «— K(P\ e).
It follows that Yo = Xao\e — Xa/e- O
For the second part of the proof we define {%(km) := the number

of zero free proper k-colorations of ®. So % is a function evaluated at
nonnegative integer multiples of m.

Lemma 2. If e is a link in ®, then Y4 = )21&,\6 — )2%/6.

We will prove this lemma in the next lecture.



