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Theorem 1 (Deletion-Contraction for Chromatic Polynomials).

Proof for the balanced chromatic polynomial. The definition is

χbΦ(λ) =
∑
S⊆E

Sbalanced

(−1)#Sλb(S)

=
∑
S⊆E\e

S balanced

(−1)#Sλb(S) −
∑
T⊆E\e

T∪e balanced

(−1)#TλbΩ(T∪e).

By Lemma ??, the last summation equals∑
T⊆E\e

T∪e balanced

(−1)#TλbΩ/e(T )

Since e is a balanced edge, by Lemma ?? the edge set T of Ω/e is
balanced if and only if T∪e is balanced in Ω. Hence, the last summation

=
∑

T⊆E(Ω/e)
T balanced

(−1)#TλbΩ/e(T )

That concludes the proof. �

Switching of colorations. We define the switching γζ of a coloration
γ with respect to a switching function ζ to be

γζ(v) = γ(v)ζ(v).

We see that

(1)
γ(v)ζ(v)(ζ(v)−1φ(evw)ζ(w)) = γ(v)φ(evw)ζ(w) = γ(w)ζ(w)

⇐⇒ γ(w) = γ(v)φ(evw).

Therefore a coloration is proper at a link if and only it is proper at the
link after switching.

Define

K(Φ) := the set of proper k-colorations of Φ,

and similarly K(Φ \ e) = the set of proper k-colorations of Φ \ e and
K(Φ/e) = the set of proper k-colorations of Φ/e. We are now obliged
to mention something that we swept under the rug in defining contrac-
tion: the gains of Φ/e depend on the choice of the switching function
ζ by which we switched e to have gain ε. Nevertheless, all possible
contractions Φ/e are switching equivalent (that is an exercise for the
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reader), so it follows from Equation (1) that, although Φ/e depends
on the choice of switching function, the resulting K(Φ/e)’s are all bi-
jective to each other by bijections that preserve the 0-colored set, and
therefore their cardinalities are all the same.

Counting proper colorations. At last we can prove the main theo-
rem about the chromatic polynomials.

Theorem 2. Assume G is finite and Φ is a G-gain graph of finite
order. Let m = |G|. Then

χΦ(km+ 1) = the number of proper k-colorations of Φ, and

χbΦ(km) = the number of zero-free proper k-colorations.

We formulate the main parts of the proof as two lemmas. The theo-
rem will follow by some special cases and induction on the number of
edges.

For the first part of the theorem we define χ̂Φ(km+1) := the number
of proper k-colorations of Φ. So χ̂Φ is a function evaluated at positive
integers of residue 1 (mod m).

Lemma 1. If e is a link in Φ, then χ̂Φ = χ̂Φ\e − χ̂Φ/e.

Proof. Let evw be a link in Φ, also denoted more briefly by e. We
simplify the proof by assuming Φ has been switched so e has gain ε.
Then contraction of e does not require any switching.

A coloration is proper if and only if it is proper at each edge, i.e.,
γ(b) 6= γ(a)φ(eab) for every edge eab. Since Φ \ e has all the vertices
and edges of Φ except e,

K(Φ) = {γ ∈ K(Φ \ e) | γ(w) 6= γ(v)φ(evw) = γ(v)}.

Consider a coloration that is proper except at evw. It gives a proper
coloration of Φ/e because the color at v is the same as at w. In Φ/e,
the color of the contraction vertex ve is γ(v); all other vertices retain
the same color as in Φ.

Contrariwise, given a proper coloration γ̂ of Φ/e, we construct a
coloration γ of Φ by

γ(u) =

{
γ̂(u) if u 6= v, w,

γ̂(ve) if u = v or w,

where ve is the contraction vertex. It is easy to see that these two
constructions are inverse to each other, so they give a bijection between
{γ ∈ K(Φ \ e) | γ(w) = γ(v)φ(evw)} and K(Φ/e).
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Hence we have proved for the case when e is a link that there is a
bijection

K(Φ) tK(Φ/e)←→ K(Φ \ e).
It follows that χ̂Φ = χ̂Φ\e − χ̂Φ/e. �

For the second part of the proof we define χ̂bΦ(km) := the number
of zero free proper k-colorations of Φ. So χ̂bΦ is a function evaluated at
nonnegative integer multiples of m.

Lemma 2. If e is a link in Φ, then χ̂bΦ = χ̂bΦ\e − χ̂bΦ/e.

We will prove this lemma in the next lecture.


