Relative Vertices are Translates

We assume \mathscr{A} is an affine hyperplane arrangement in $\mathbb{A}^n(K)$, K a field. Its projectivization is $\mathscr{A}_{\mathbb{P}} := \{h_{\mathbb{P}} : h \in \mathscr{A}\} \cup \{h_{\infty}\}$ in $\mathbb{P}^n(K)$, where for an affine flat $s, s_{\mathbb{P}}$ denotes its extension to a projective flat by adjoining the necessary ideal points, and h_{∞} is the ideal hyperplane.

The relative vertices are the maximal elements of $\mathscr{L}(\mathscr{A})$; that is, the affine intersection flats that are minimal in the containment ordering of affine flats.

Theorem 1. All relative vertices of an affine arrangement \mathcal{A} are translates of one another. In fact, every relative vertex v of \mathcal{A} satisfies $v_{\mathbb{P}} \cap h_{\infty} = \hat{1} := \bigcap \mathcal{A}_{\mathbb{P}}$.

Proof. ¹ We implicitly use the modular law of dimension in projective space, several times.

Let r be the rank of $\mathcal{L}(\mathcal{A}_{\mathbb{P}})$, and assume by way of contradiction that v is a relative vertex of rank at most r-2 (i.e., $v_{\mathbb{P}} \ll \hat{1}$); that is, $v_{\mathbb{P}}$ is covered by $v_{\infty} := v_{\mathbb{P}} \cap h_{\infty}$, which itself is covered by some ideal flat t_{∞} .

We have two ways to complete the result.

Geometrical Proof.² We claim $t_{\infty} = t_{\mathbb{P}} \cap h_{\infty}$ for some $t \in \mathcal{L}(\mathcal{A})$, which means that t > v in $\mathcal{L}(\mathcal{A})$, contradicting the choice of v as a relative vertex. To see this, let $h \in \mathcal{L}(\mathcal{A})$ such that $t_{\infty} = v_{\mathbb{P}} \cap h_{\mathbb{P}}$. Define $t := h \cap v$. Then $t \in \mathcal{L}(\mathcal{A})$ and t > v, so long as $t \neq \emptyset$. If $t = \emptyset$, then $h_{\mathbb{P}} \cap v_{\mathbb{P}} \subseteq h_{\infty}$, so $h_{\mathbb{P}} \cap v_{\mathbb{P}} = h_{\mathbb{P}} \cap v_{\mathbb{P}} \cap h_{\infty} = h_{\mathbb{P}} \cap v_{\infty} = t_{\infty}$, a contradiction. Thus $h_{\mathbb{P}} \cap v_{\mathbb{P}} \not\subseteq h_{\infty}$, so $t_{\mathbb{P}} = t_{\infty}$ and $t \neq \emptyset$. Therefore $v_{\mathbb{P}} < \hat{1} = v_{\mathbb{P}} \cap h_{\infty}$. This means that all relative vertices v have the same ideal part, namely $\hat{1}$, and we are done.

Geometric Lattice Proof. By atomicity of $\mathcal{L}(\mathcal{A}_{\mathbb{P}})$, there is a hyperplane $h_{\mathbb{P}} \in \mathcal{A}_{\mathbb{P}}$ such that $t_{\infty} = v_{\infty} \wedge h_{\mathbb{P}}$. Then $h_{\mathbb{P}} \not\leq v_{\mathbb{P}}$ (since $t_{\infty} > v_{\infty}$) so $h_{\mathbb{P}} \wedge v_{\mathbb{P}} > v_{\mathbb{P}}$ and by semimodularity $v_{\mathbb{P}} \wedge h_{\mathbb{P}} \leqslant t_{\infty}$. Since $v_{\mathbb{P}} \wedge h_{\mathbb{P}} = v_{\infty}$ leads to the contradiction that $t_{\infty} = v_{\infty}, v_{\mathbb{P}} \wedge h_{\mathbb{P}}$ is a projective flat of $\mathcal{A}_{\mathbb{P}}$ but not an idea flat. It therefore is the projective extension of an affine flat t of \mathcal{A} , which is > v. This contradiction shows that $v_{\mathbb{P}} \leqslant \hat{1}$ and $v_{\infty} = \hat{1}$, which implies that all relative vertices have the same ideal part, which in turn implies they are translates of each other.

It is recommended to draw a Hasse diagram to illustrate the proofs.

¹Finally finished by T.Z., 29 Nov. 2019

²Based on notes by Andrew Lamoureux from T.Z. lecture.