DUALITY MATH 580, SPRING 2008

Version of February 14, 2008.

I. Abstract Duality

- (1) Duality in terms of closures. (Assume all sets are finite.)
 - (a) Given a matroid M, for all $S \subseteq E$ and $x \in E \setminus S$, define $T = E \setminus S \setminus x$. Then either $x \in cl(S)$ or $x \in cl^*(T)$, but not both.
 - (b) Given two closure operators on a set E, such that for all $S \subseteq E$ and $x \in E \setminus S$, either $x \in cl(S)$ or $x \in cl^*(E \setminus S \setminus x)$, but not both. Then cl and cl^{*} are the closure operators of a dual pair of matroids.
- (2) I propose this problem as a group research project: Figure out a truly self-dual axiom system based on circuits and cocircuits and the property

$$|C \cap C^*| \neq 1 \quad \forall C \in \mathfrak{C}, \ C^* \in \mathfrak{C}^*.$$

II. DUALITY OF VECTOR REPRESENTATIONS

Theorems of concern here are:

- Theorem 2.2.A. Given matrices A, A' over any field, with n columns. If they have the same row space, $\mathcal{R}(A') = \mathcal{R}(A)$, then they have the same column matroid: M[A] = M[A'].
- Theorem 2.2.D. Given matrices A, A^* over any field, with n columns. If $\mathcal{R}(A^*) = \mathcal{R}(A)^{\perp}$, then $M[A^*] = M^*[A]$.
- Theorem 2.2.8.
- Theorem 2.2.G (Whitney's Orthogonality Theorem). In the Euclidean vector space \mathbb{R}^n (with dot product), let b_1, \ldots, b_n be an orthonormal basis and let W be a subspace. Let y_i be the orthogonal projection of b_i onto W and let z_i be its orthogonal projection onto W^{\perp} . Let M be the vector matroid of y_1, \ldots, y_n . Then the vector matroid of z_1, \ldots, z_n is M^* .
- (1) A theorem of linear algebra states: Suppose you have a subspace W of \mathbb{R}^n that is generated by a basis $\alpha_1, \ldots, \alpha_r$ and you form the matrix A whose rows are the vectors $\alpha_i, i = 1, \ldots, r$. Then the orthogonal projection onto W of any vector $x \in \mathbb{R}^n$ is given by the formula $\operatorname{proj}_W x = A^T (AA^T)^{-1}Ax$. Find out how to prove this formula, either by looking it up or by working it out yourself.
- (2) Make the assumptions of Theorem 2.2.G with the exception that $\{b_1, b_2, \ldots, b_n\}$ is the standard basis of \mathbb{R}^n . Let $A = [y_1, \ldots, y_n]$ and $A^* = [z_1, \ldots, z_n]$ be $n \times n$ matrices. Show directly (using the standard coordinates) that $\mathcal{R}(A)^{\perp} = \mathcal{R}(A^*)$.
- (3) In the situation of Problem (2), how are $\mathcal{R}(A)$, $\mathcal{R}(A^*)$, W, and W^{\perp} related?

III. TRANSVERSAL MATROIDS

Remember the bicircular matroid of a graph, B(G)? (Look it up in the book.)

- (1) Show that B(G) is a transversal matroid by finding a transversal presentation of a special kind. Which transversal presentations naturally give bicircular matroids?
- (2) Characterize the dual bicircular matroids, using the theory of \S 2.4 for dual transversal matroids.