DUALITY
 MATH 580, SPRING 2008

Version of February 14, 2008.

I. Abstract Duality

(1) Duality in terms of closures. (Assume all sets are finite.)
(a) Given a matroid M, for all $S \subseteq E$ and $x \in E \backslash S$, define $T=E \backslash S \backslash x$. Then either $x \in \operatorname{cl}(S)$ or $x \in \mathrm{cl}^{*}(T)$, but not both.
(b) Given two closure operators on a set E, such that for all $S \subseteq E$ and $x \in E \backslash S$, either $x \in \operatorname{cl}(S)$ or $x \in \operatorname{cl}^{*}(E \backslash S \backslash x)$, but not both. Then cl and cl^{*} are the closure operators of a dual pair of matroids.
(2) I propose this problem as a group research project: Figure out a truly self-dual axiom system based on circuits and cocircuits and the property

$$
\left|C \cap C^{*}\right| \neq 1 \quad \forall C \in \mathcal{C}, C^{*} \in \mathcal{C}^{*}
$$

II. Duality of Vector Representations

Theorems of concern here are:

- Theorem 2.2.A. Given matrices A, A^{\prime} over any field, with n columns. If they have the same row space, $\mathcal{R}\left(A^{\prime}\right)=\mathcal{R}(A)$, then they have the same column matroid: $M[A]=$ $M\left[A^{\prime}\right]$.
- Theorem 2.2.D. Given matrices A, A^{*} over any field, with n columns. If $\mathcal{R}\left(A^{*}\right)=$ $\mathcal{R}(A)^{\perp}$, then $M\left[A^{*}\right]=M^{*}[A]$.
- Theorem 2.2.8.
- Theorem 2.2.G (Whitney's Orthogonality Theorem). In the Euclidean vector space \mathbb{R}^{n} (with dot product), let b_{1}, \ldots, b_{n} be an orthonormal basis and let W be a subspace. Let y_{i} be the orthogonal projection of b_{i} onto W and let z_{i} be its orthogonal projection onto W^{\perp}. Let M be the vector matroid of y_{1}, \ldots, y_{n}. Then the vector matroid of z_{1}, \ldots, z_{n} is M^{*}.
(1) A theorem of linear algebra states: Suppose you have a subspace W of \mathbb{R}^{n} that is generated by a basis $\alpha_{1}, \ldots, \alpha_{r}$ and you form the matrix A whose rows are the vectors $\alpha_{i}, i=1, \ldots, r$. Then the orthogonal projection onto W of any vector $x \in \mathbb{R}^{n}$ is given by the formula $\operatorname{proj}_{W} x=A^{\mathrm{T}}\left(A A^{\mathrm{T}}\right)^{-1} A x$. Find out how to prove this formula, either by looking it up or by working it out yourself.
(2) Make the assumptions of Theorem 2.2.G with the exception that $\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$ is the standard basis of \mathbb{R}^{n}. Let $A=\left[y_{1}, \ldots, y_{n}\right]$ and $A^{*}=\left[z_{1}, \ldots, z_{n}\right]$ be $n \times n$ matrices. Show directly (using the standard coordinates) that $\mathcal{R}(A)^{\perp}=\mathcal{R}\left(A^{*}\right)$.
(3) In the situation of Problem (2), how are $\mathcal{R}(A), \mathcal{R}\left(A^{*}\right), W$, and W^{\perp} related?

III. Transversal Matroids

Remember the bicircular matroid of a graph, $B(G)$? (Look it up in the book.)
(1) Show that $B(G)$ is a transversal matroid by finding a transversal presentation of a special kind. Which transversal presentations naturally give bicircular matroids?
(2) Characterize the dual bicircular matroids, using the theory of $\S 2.4$ for dual transversal matroids.

