
ADDITIONAL ERRATA AND COMMENTS

ABOUT OXLEY, MATROID THEORY

http://www.math.binghamton.edu/zaslav/580.F04/my-errata.ps

Version of January 31, 2008

NEW marks most errata that are new since 2001. VERY NEW since 2008.

Page 1: Sets of positive numbers: Z+ would be better than Z+, which should be reserved for
the additive group of integers. This is by analogy with R+, Q+ which in certain areas
of higher math are actually used for (so should be reserved for) the additive groups
of real numbers, rationals, analogously to R∗, Q∗ for the multiplicative groups.

Page 3: Why not use the familiar notation F r for the r-dimensional vector space instead of
V (r, F )? NEW

Page 27: Prop. 1.3.10: Also, D′′ should not be empty. VERY NEW

Page 35: Running head: The 1.5 should be 1.4.

Page 35: Problem 12: The correct hypothesis is that Cj 6⊆
⋃

i6=j Ci.

Page 44: Fig. 1.17 The line segment 6–8 should cross in front of 3–10, not the reverse.

Page 46: 1.6, par. 2, line 7: “all j in J and the ej are distinct.” NEW

Page 57: line 8: It appears that “by 1.7.4” should read “by the chain condition”. (Since
∨

X ∨ y ≥
∨

X and equal height imply equality.)

Page 57: The standard symbol for the partition lattice is Πn. Pn is rare, at best.

Page 58: proof of 1.7.8 There is no need for different cases. The second-case argument covers
both cases.

Page 72: corank: This is an unfortunate choice of definition. (Not due to Oxley.) Not only
is it common in matroid theory to define corank(S) = r(M) − r(S), but the latter
definition is not confined to matroids but is also used in the more general theory of
ranked posets (because of order duality). We will always use the definition: cr(S) :=
corank(S) = r(M) − r(S). We will call r∗ the dual rank function. NEW

Page 73: Clutter: The definition should state that C 6= ∅. If not, then 2.1.12 is incorrect when
A = ∅ and 2.1.18 needs an additional axiom

(H0) H 6= ∅,

and other corrections might be needed elsewhere. NEW

Page 78: line −4: In Oxley’s erratum for this, a better replacement would be on a known set.
NEW
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Page 78: Definition of fundamental cocircuit: NEW I think the terminology is mistaken.
One should call it “the fundamental cocircuit of e with respect to the basis B” with
the notation C∗(e,B). This is for consistency with graph theory, where the concept
originated. One always speaks of “fundamental cocircuit [or cocycle] with respect
to” a spanning tree, not a cotree. I’m not aware of any variation in this.

Besides that, I consider it preferable to define C∗( ) by (i) and replace (i) by
“Show that C∗

M(e,B) = CM∗(e, E − B). This is also for consistency with graph
theory; besides, it seems reasonable to give C∗( ) an independent meaning.

Page 85: line −12: “vector space” (no plural).

Page 85: The link between matroid duality and vector space orthogonality is much more than
is stated in the book (Theorem 2.2.8 and Proposition 2.2.23), as we have seen in
class. (Oxley chose not to go into greater detail about this, obviously because he
couldn’t do everything.) Here are some theorems that make good exercises. (The
first is about representations but not duality.)

• Theorem 2.2.A. Given matrices A, A′ over any field, with n columns. If they have
the same row space, R(A′) = R(A), then they have the same column matroid:
M [A] = M [A′].

• Theorem 2.2.D. Given matrices A, A∗ over any field, with n columns. If R(A∗) =
R(A)⊥, then M [A∗] = M ∗[A].

• Theorem 2.2.G (Whitney’s Orthogonality Theorem). In the Euclidean vector
space Rn (with dot product), let b1, . . . , bn be an orthonormal basis and let W
be a subspace. Let yi be the orthogonal projection of bi onto W and let zi be its
orthogonal projection onto W⊥. Let M = M [y1 . . . yn]. Then M [z1 . . . zn] =
M ∗.

Page 91: There is a minor confusion of terminology here. Strictly speaking, a particular
embedding of a graph in the plane is called a plane graph but is not a graph (i.e., not
an abstract graph). A planar graph is an abstract graph that can be embedded in
the plane; whether it is or is not embedded at the moment is irrelevant. Every plane
graph has a unique planar dual (as discussed in class) which is a plane graph, not a
planar graph. A planar graph gets a dual graph by being embedded in the plane and
then dualized; there can be more than one dual, from choosing different embeddings.

Page 91: Plane graph: Also, an edge and vertex do not intersect in the interior of the edge.
NEW

Page 91: Probably by an oversight, Oxley neglected to state the basic theorem:
Theorem 2.3.A. If G is a planar graph and G∗ is a dual of G, then M(G∗) =

M ∗(G).

Page 96: “Linked to” might be “linked onto” to distinguish it better from “linked into”.
NEW

Page 104: Terminology for contraction: Also called the contraction “of M by T” or “of M from
T”.

Page 124: γ: It is simpler to define the relation directly and forget about γ(e). The definition
is: eγf if e = f or there is a circuit containing both e and f . NEW

Page 125: Definitions of connectedness and disconnectedness: I think one should say M is con-
nected if it has exactly one component and disconnected if it has more than one
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component. Then the empty matroid is neither connected nor disconnected. This
is how Tutte handles it for graphs in his book. However, one could define M to
be disconnected if it doesn’t have exactly one component. The main thing is that
the empty matroid is not connected. This is clearly correct and intended by Oxley.
NEW

Page 125: Proposition 4.1.4: “if and only if E(M) is nonempty and, for every pair”. NEW

Page 125: line 14, end: Eliminate space before “;”.

Page 125: def. of “block”: This is not the usual definition in graph theory, although usage varies.
The usual definition is: a 2-connected graph (this ignores loops). When we need to
distinguish the two types, we might call Oxley’s an edge block and the usual one a
vertex block. (There is nothing wrong with Oxley’s definition at all. One should just
be aware of the other meaning.)

Page 138: line −6: The -1 should be −1.

Page 145: line 7: This is an unfortunate definition. The natural terminology, that will never
confuse anyone and scarcely needs to be defined, is: planar matroid for a matroid
of rank 3 and planar-graphic matroid for the matroid of a planar graph. These are
the generally used terms as well. In the course we will always say “planar” and
“planar-graphic” as defined here, not as in the book.

Page 149: line 15, etc.: Instead of “generalized cycle” I suggest the term necklace (of graphs).
(The “parts” might then be called “beads”.) One would speak of a “necklace of
blocks” if the parts are blocks. NEW (in part).

Page 150: Proof of Lemma 5.3.5: Date added: December 1, 2004. I believe I have a simpler
proof.

First, we observe that Gj’s being a block =⇒ M(Gj) is connected =⇒ M(Hj)
is connected =⇒ Hj is a block. [As in the existing proof.]

Next, we note that in G there are only two kinds of cycles: a local cycle is contained
in some Gj, and a global cycle contains an edge of every Gi. Therefore, the same is
true in H.

Next we treat the case k = 2. We define Eu ⊆ E(G1) as in the book. We note that
θ(Eu) is a bond, and therefore H1 − θ(Eu) has the two components H ′

1, H1. We also
note that every global cycle contains an edge of Eu. Suppose H ′

1 has two or more
contact vertices with H2. Then there is a cycle in H ′

1 ∪ H2, which is not local but
does not contain an edge of θ(Eu). This is impossible. Therefore there are exactly
two contact vertices of H1 with H2, so we have a necklace of blocks, each with at
least 3 vertices.

Finally, we treat the case k > 2. This uses the notion of the block-cutpoint
graph of a graph and the theorem that the block-cutpoint graph is a forest, with
one component for each component of the original graph. Since H−j has at least two
vertices in common with Hj and both graphs are connected, there is a cycle C that
contains an edge of each. Thus C is global. Thus, C ∩ H−j is a path in H−j that
contains an edge of every Hi, i 6= j. This is possible only if the block-cutpoint forest
of H−j is a path and P has endpoints that belong to the end blocks of that path and
are not cutpoints of H−j. It follows that H is a necklace of blocks H1, . . . , Hk except
that possibly H−j has more than two contact vertices with Hj. However, in that case
one of the end blocks has two (or more) contact vertices with Hj, and then there is
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a cycle contained in their union that is not local but not global; that is impossible.
Thus, H is a necklace of blocks H1, . . . , Hk, as desired.

Page 152: line 17: I think the θ(Hi) and θ(H−i) should not have θ’s.

Page 164: We will not make a distinction between “projective geometry” and “projective
space”. I believe most writers, if pressed, would use the opposite convention to
Oxley’s (“geometry” for the axiomatic definition, “space” for the construction from
coordinates), but most likely they wouldn’t care. For consistency with most writ-
ings on projective geometry and matroids, we will call an abstract system (P,L, ι)
as defined at the bottom of page 164 either a projective geometry or projective space
(synonymously). The projective geometry PG(n, F ) over a field F will be called
an F -coordinatizable projective geometry (space) or simply a coordinatizable projec-
tive geometry (space). (These are also called, depending on the exact hypotheses,
“pappian” and “desarguesian projective geometries” in the technical literature of
projective geometry, for reasons that we need not go into.)

Page 164: Abstract projective space: The definition admits any simple matroid of rank at most
2, with the exception of the 2-point line U2,2.

Page 165: Theorem 6.1.1 The statement must say “dimension > 2” and “integer n > 2”. The
conclusion is false, not only for n = 2, but also for n = 1. Any simple matroid of rank
2 consisting of q+1 points where q < 2 or q is not a prime power is a counterexample.
(Oxley’s errata have this correction.)

Page 170: Prop. 6.1.10: The proof actually shows that the Vamos matroid is not a submatroid
(therefore not a minor) of any projective geometry.

Page 175: lines 23–24: By the above remark on 6.1.10, the Vamos matroid is such a matroid.

Page 184: line −6: “is” should be “are” NEW

Page 185: Definition of vector representation: This is a good place to introduce a more funda-
mental definition. A vector representation of M over F is a mapping f : E(M) → Fm

(for some m ≥ 0) such that a set S ⊆ E(M) is independent in M if and only if f(S)
is independent in Fm. We count multiplicity; thus if f(x) = f(y), then {f(x), f(y)}
is dependent in Fm. (That is, f(S) is a multiset of vectors.) The matrix represen-
tations previously defined are merely a particular way to present the mapping f ; for
some purposes a very valuable way, as we have seen.

A more general definition replaces Fm by any abstract vector space over F . This
is perfectly valid but not especially necessary.

Page 185: Equivalence of representations: I believe the notion of equivalence in the book, which
I shall call matroid equivalence, is not the best. A better one is that of projective
equivalence. We call two representations of M over F projectively equivalent if one is
obtained from the other by a combination of 6.3.1–6 (with no exception in dimension
2). (This definition is based on the fundamental paper of Brylawski and Lucas [1].
Welsh [3, p. 281] defines an equivalence that is projective equivalence without the
field automorphisms.)

A projective automorphism of PG(n, F ) is the projection of an invertible semilinear
transformation T of F n+1. That is, it is the effect of T on the simplification PG(n, F )
of M(F n+1). A matroid automorphism is any permutation that preserves the ma-
troid structure (equivalently, it preserves collinearity). The fundamental theorem of
projective geometry tells us, among other things, that every matroid automorphism
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of PG(d, F ) is a projective automorphism, provided that d ≥ 2. That is, for projec-
tive dimension 2 or more, matroid and projective automorphisms are the same. If
d = 1, this is not true. A projective line PG(1, F ), whose matroid is U2,q+1 where
q = |F | (see Exercise 6.1.3), has as matroid automorphisms the full symmetric group
of its points, but a projective automorphism is determined by its values on any 3
points (as I showed in class for the 3 particular points [1, 0], [1, 1], [0, 1]). There are
more matroid automorphisms than projective automorphisms. (We can say that the
projective structure of a projective line is not entirely determined by the matroid
structure.)

Restating the two definitions of equivalence: Oxley calls two representations of
M in a projective space PG(n, F ) equivalent if one equals the other followed by a
matroid automorphism of PG(n, F ). They are projectively equivalent only if the
matroid automorphism is a projective automorphism.

I will give some reasons for thinking that the correct automorphisms are the pro-
jective ones. (I might summarize as follows: Oxley thinks of PG(n, F ) as a matroid,
but I think of it as a coordinatized projective geometry, which therefore has more
structure than just its matroid. I am following the tradition of projective geometry.
It was not clear to me for a long time that the projective-geometry notion is superior,
but I have finally concluded, after dealing with various representation problems, that
it is, and that we are missing something important about representation of matroids
if we ignore the projective structure on PG(n, F ).)

There are several reasons for preferring projective to matroid equivalence. The
simplest is that it eliminates special exceptions for (or exclusions of) rank 2 or di-
mension 2 in many results, e.g., Proposition 6.3.13 and (less obviously) Theorem
6.3.10. The more important reason is that it has good consistency properties.

To explain this, consider representing a matroid M of rank 2 (let’s say, U2,n with
n > 3) over a field F . (Assume F is large enough that a representation exists. That
is, |F | ≥ n − 1.) We could represent M in PG(1, F ). Then, all representations of M
are matroid equivalent. Now think of the PG(1, F ) as a line in the plane PG(2, F ).
Suddenly, not all representations of M in that line are matroid equivalent. The
reason is that not all matroid automorphisms of the line can be extended to matroid
automorphisms of the plane. In fact, the automorphisms that can be extended are
precisely the projective automorphisms of the line. This seems to me to be a serious
difficulty. Oxley gets around it by requiring representations to be in projective spaces
of rank equal to r(M), but that is not such a good idea: it is artificial; worse, it is
incompatible with some constructions, such as the lift construction (which we haven’t
studied).

(If you like, you can replace the PG(1, F ) and PG(2, F ) in the previous paragraph
by F 2 and F 3. The same difficulty appears.)

Thus, if we want the property of unique representability over F to be independent
of which dimension of projective or vector space we use for the representation, we
have to prefer projective equivalence over matroid equivalence.

Page 186: line 6: “same size” means same dimension. (That is, the dimension of the vector
space.)

Page 186: line −6: Properly speaking, what Oxley is defining is an invertible semilinear trans-
formation.
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Page 186: line −5: “there is” should be “there are”.

Page 189: line 10: “there is” should be “there are”.

Page 190 ff.: This is supposed to be read “D-sharp”. (The correct musical symbol is ♯, not #
(pound (weight) sign.)

Page 193: Prop. 6.4.5: It might be desirable to elucidate this proposition by the following
lemmas, whose proofs are obvious. If the rows of a matrix A are labelled 1, . . . , r and
the columns are labelled 1, . . . , n (corresponding to the matroid points e1, . . . , en),
then A[I, J ] denotes the minor of A consisting of the elements in rows i ∈ I and
columns j ∈ J .

Lemma 1. Let A be an r×n matrix representing a matroid M of rank r. Let S ⊆ [n]
with |S| = r. Then S corresponds to a basis of M if and only if det A

[

[r], S
]

6= 0.

Lemma 2. Let A = [ I |D ] in Lemma 1. Then S corresponds to a basis of M if and
only if D

[

[r] \ S, S \ [r]
]

6= 0.

Page 209: Lemma 6.6.2: The statement is incorrect. It is not sufficient that M be binary; it is
necessary to assume that [ Ir |D1 ] itself is a GF(2)-representation matrix of M.

Furthermore, it should be made clear that the entries of D1 are in {0,±1} when
viewed in characteristic 0 (e.g., over R) and the entries of D2 will then be in {0,±1}
when viewed in characteristic 0. (This is necessary because charF may not be 0.)

Another comment: it seems only necessary that [ Ir |D1 ] represent M over some
field of characteristic not 2 and some field of characteristic 2.

Oxley has a correction for this lemma, but I don’t think it captures everything.

Page 210: R should be F (lines 2, 12, -8). NEW

Page 210: line 21: I would rather say that (i) ⇒ (ii) due to the obvious fact that a totally
unimodular matrix representing M over R (or Q) also represents M over any field.

Page 212: line −7: “over F , and also over GF(2) because, viewing D and D♯ over R, D ≡ D♯

mod 2.”

Page 213: para. 2: Oxley’s Errata pages give a correction for this paragraph. The following is
my commentary on the original paragraph, which supplements Oxley’s correction.

The pivoting is done over F , not R since we don’t know the matrix represents M
over R. We have to know from the proof of Lemma 6.6.2 that the entries in D2 are
still all in {0,±1} even when viewed in characteristic 0, because the only way a pivot
can produce a different value of an entry is to produce a 2, which is ruled out by the
fact that it would be 0 mod 2 but not in F , therefore contradicting the assumption
that M is represented by [ Ir |D1 ] over both GF(2) and F . The conclusion is that
the determinant of D′ is in {0,±1} in characteristic 0. Thus, [ Ir |D1 ] is totally
unimodular and represents M in characteristic 0.

Page 213: line 21: Just a thought: Perhaps, strictly speaking, these results are matroid analogs,
not generalizations, of Kuratowski’s theorem. Kuratowski’s theorem does not follow
from Tutte’s results, except by use of Whitney’s 2-isomorphism theorem, which is
rather complicated.

Page 214: #4 line 1: A is surely intended to be an integral matrix. (This might be considered
implicit but I felt some confusion about interpreting the question.) NEW

Page 230: top equation: This is called the “modular law”. Contrast with the semimodular law.
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Page 248, 287: Grammar: “2-sum” (meaning the operation of performing a 2-sum) should be “2-
summation” or “2-summing”. NEW

Page 258: #4: It would be reasonable to call N a modular filter of sets. (I have a discussion of
this in “Biased graphs. II”, page 59 (top), where I take the dual point of view, of a
modular ideal of sets. The modular ideal corresponding to a modular filter N is the
set of complements of members of N. If N is in M , then the modular ideal is in M ∗.
The modular filter is derived from copoints of M ; the modular ideal is derived from
circuits in M ∗.) NEW

Page 262–4: Exposition: Much of this proof would benefit from the use of corank, cr(X) = r(M)−
r(X). For instance, (iii) with Y = E says that cr1(X) ≥ cr2(X). Lemma 7.3.7
concerns the case of equality.

I suggest that the best way to think of Lemma 7.3.7 is in terms of what is actually
a corollary, let’s call it Lemma 7.3.7 ′: If X ∈ L(M2) and cr1(X) = cr2(X), then
X ∈ L(M1) and [X,E]1 = [X,E]2. NEW

Page 278: 8.2.1 This is really Whitney’s extension of Menger’s theorem. Menger’s theorem is
8.2.1 for nonadjacent vertex pairs only. (Each is stronger in one of the two directions.)
See some graph theory books (not Tutte’s). (Any book has Menger’s theorem; not
many have Whitney’s.) NEW

Page 278: Line after 8.2.2: “n-connectedness” should be “n-connectedness”. NEW

Page 278 ff.: Despite Tutte’s prestige, I think the adjective should be “verticial”, not “vertical”.
Reasons: (1) It’s confusing since it doesn’t contrast with “horizontal”. (2) I think it’s
not etymologically justified. Compare “matrix/matricial” and “simplex/simplicial”
with “vertex/verticial”. NEW

Page 284: Definition of equivalent planar embeddings: The definition by having the same sets of
edges bounding each face is wrong. A and B ought to be inequivalent. The definition
should say that the sequence of bounding edges is the same, up to cyclic permutation.
It’s not so clear how to treat C and D. Maybe also reversing the sequence should be
considered equivalent; this would allow reflections to be equivalent, and I think but
I’m not sure it won’t create improper equivalences. NEW
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Page 284: Line 16 Add comma after “5.3”. NEW

Page 284: Line 19 Add comma after “Evidently”. NEW

Page 284: Line 20 The comma may be omitted. NEW

Page 289: Corollary 8.3.4 “minors of itself”; “operations of direct summation and 2-summation”.
NEW

Page 289: It is worth mentioning that M1 = M |((X1 ∪C)/([X2 ∩C]\p1) and a similar formula
for M2. (These are good exercises.) NEW

Replacing p1 and p2 by a new element p, then M is the 2-sum M1 ⊕p M2 (where
the meaning of ⊕p should be clear). NEW

Page 309: Ex. 2: I think this isn’t exactly right (but I don’t recall why). Am I wrong? NEW

Page 314: Ex. 2(i): In the matrix, the A4 should be I4.

Page 314: Ex. 3(ii): “all non-zero chains in N”.

Page 314: Chain-groups: It is a pity that the only careful and modern treatment of chain-groups
is that in Tutte’s textbook [2, Ch. VIII], and that this treatment avoids mentioning
matroids. It would be very desirable to have a development of the main points in
a matroid book, specifically, a section in this book. (Tutte’s book is “modern” in
that it has the notion of a primitive chain-group, which generalizes chain-groups over
integral domains and clarifies some of the basic ideas.)

Page 393: Corollary 12.2.17: The M and n(M) here are different from those in 12.2.16.
Also, I think that 12.2.17 can be restated in a simpler way: “Let M be a transversal

matroid. There there is an integer N(M) such that M is representable over every
field having at least N(M) elements.”

Page 465: Title (and elsewhere?): The correct title is “Unimodality conjectures”. The conjec-
tures are not unimodal, they concern unimodality. NEW

Page 523: Index of Notation: Add: G∗, 91.
Add: Dn, 52. NEW

Page 524: Index of Notation: The operation of complementary dualization of S ⊆ 2E is omitted
from the list. Its definition, S′ = {E \ S : S ∈ S}, is implicit on page 69, proof of
Corollary 2.1.5.

R(A) should be R(A). NEW
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Page 528: Index: Add: lattice of divisors of an integer, 52.

Page 529: Index: modular short circuit axiom, p. 234.

Page 530: Index: Add: regular matroid, 83.

Page 532: Index: vertex–edge incidence matrix: p. 4. NEW
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