
DUALITY
MATH 580A, SPRING 2013

I. Abstract Duality

(1) Duality in terms of closures. (Assume all sets are finite.)

(a) Given a matroid M , for all S ⊆ E and x ∈ E \ S, define T = E \ S \ x. Then
either x ∈ cl(S) or x ∈ cl∗(T ), but not both. (This is Oxley’s Exercise 2.2.5.)

(b) Given two closure operators on a set E, such that for all S ⊆ E and x ∈ E \ S,
either x ∈ cl(S) or x ∈ cl∗(E \ S \ x), but not both. Then cl and cl∗ are the
closure operators of a dual pair of matroids. (This is due to Crapo. It’s bigger
than (a) because we don’t assume the closures are matroid closures.)

(2) Find a self-dual axiom system based on circuits and cocircuits and the property

|C ∩ C∗| 6= 1 ∀C ∈ C, C∗ ∈ C∗.

II. Duality of Vector Representations

Theorems of concern here are:

• Theorem 2.2.A,B = Exercise 2.2.6(a,b).

• Theorem 2.2.8.

• Theorem 2.2.W (Whitney’s Orthogonality Theorem). In the Euclidean vector space
Rn (with dot product), let b1, . . . , bn be a basis and let W be a subspace. Let yi be the
orthogonal projection of bi onto W and let zi be its orthogonal projection onto W⊥.
Let M be the vector matroid of y1, . . . , yn. Then the vector matroid of z1, . . . , zn is
M∗.

Problems:

(1) A theorem of linear algebra states: Suppose you have a subspace W ≤ Rn with a basis
α1, . . . , αr and you form the matrix A whose rows are the vectors αi, i = 1, . . . , r.
Then the orthogonal projection onto W of any vector x ∈ Rn is given by the formula
projW x = AT(AAT)−1Ax. Find out how to prove this formula, either by looking it
up or by working it out yourself.

(2) Make the assumptions of Theorem 2.2.W with the addition that {b1, b2, . . . , bn} is the
standard basis of Rn. Let A = [y1, . . . , yn] and A∗ = [z1, . . . , zn] be n × n matrices.
Show directly (using the standard coordinates) that R(A)⊥ = R(A∗).

(3) In the situation of Problem (2), how are R(A), R(A∗), W , and W⊥ related?
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III. Transversal Matroids

Remember the bicircular matroid of a graph, BG(G)?

(1) Show that BG(G) is a transversal matroid by finding a natural transversal presenta-
tion. Which transversal presentations naturally give bicircular matroids?

(2) Characterize the dual bicircular matroids, using the theory of § 2.4 for dual transversal
matroids.

IV. Spikes

The graph 2Cn is a circle Cn = e1e2 · · · en with each ei doubled by a parallel edge fi.
(When needed, I name the vertices v1, v2, . . . , vn = v0 with V (ei) = V (fi) = {vi−1, vi}.)

We saw in class that a tippy spike is the extended (or complete) lift matroid L0(2Cn,B) of
a biased graph (2Cn,B). Here E(L0) = E(2Cn)∪ {d0}. The tipless spike is the lift matroid,
L = L0 \ d0. I suggest you use that representation of spikes in the following.

(1) Let I ⊆ [n] and define{
sI(ei) = fi, sI(fi) = ei if i ∈ I,
sI(ei) = ei, sI(fi) = fi if i /∈ I.

Question: When is sI an isomorphism of L with its dual, L⊥? For instance, we know
it is for I = ∅ when B = ∅. The answer obviously depends on B.
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