DUALITY
 MATH 580A, SPRING 2013

I. Abstract Duality

(1) Duality in terms of closures. (Assume all sets are finite.)
(a) Given a matroid M, for all $S \subseteq E$ and $x \in E \backslash S$, define $T=E \backslash S \backslash x$. Then either $x \in \operatorname{cl}(S)$ or $x \in \mathrm{cl}^{*}(T)$, but not both. (This is Oxley's Exercise 2.2.5.)
(b) Given two closure operators on a set E, such that for all $S \subseteq E$ and $x \in E \backslash S$, either $x \in \operatorname{cl}(S)$ or $x \in \operatorname{cl}^{*}(E \backslash S \backslash x)$, but not both. Then cl and cl* are the closure operators of a dual pair of matroids. (This is due to Crapo. It's bigger than (a) because we don't assume the closures are matroid closures.)
(2) Find a self-dual axiom system based on circuits and cocircuits and the property

$$
\left|C \cap C^{*}\right| \neq 1 \quad \forall C \in \mathcal{C}, C^{*} \in \mathcal{C}^{*}
$$

II. Duality of Vector Representations

Theorems of concern here are:

- Theorem 2.2.A, $\mathrm{B}=$ Exercise 2.2.6(a,b).
- Theorem 2.2.8.
- Theorem 2.2.W (Whitney's Orthogonality Theorem). In the Euclidean vector space \mathbb{R}^{n} (with dot product), let b_{1}, \ldots, b_{n} be a basis and let W be a subspace. Let y_{i} be the orthogonal projection of b_{i} onto W and let z_{i} be its orthogonal projection onto W^{\perp}. Let M be the vector matroid of y_{1}, \ldots, y_{n}. Then the vector matroid of z_{1}, \ldots, z_{n} is M^{*}.

Problems:

(1) A theorem of linear algebra states: Suppose you have a subspace $W \leq \mathbb{R}^{n}$ with a basis $\alpha_{1}, \ldots, \alpha_{r}$ and you form the matrix A whose rows are the vectors $\alpha_{i}, i=1, \ldots, r$. Then the orthogonal projection onto W of any vector $x \in \mathbb{R}^{n}$ is given by the formula $\operatorname{proj}_{W} x=A^{\mathrm{T}}\left(A A^{\mathrm{T}}\right)^{-1} A x$. Find out how to prove this formula, either by looking it up or by working it out yourself.
(2) Make the assumptions of Theorem 2.2.W with the addition that $\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$ is the standard basis of \mathbb{R}^{n}. Let $A=\left[y_{1}, \ldots, y_{n}\right]$ and $A^{*}=\left[z_{1}, \ldots, z_{n}\right]$ be $n \times n$ matrices. Show directly (using the standard coordinates) that $\mathcal{R}(A)^{\perp}=\mathcal{R}\left(A^{*}\right)$.
(3) In the situation of Problem (2), how are $\mathcal{R}(A), \mathcal{R}\left(A^{*}\right), W$, and W^{\perp} related?

III. Transversal Matroids

Remember the bicircular matroid of a graph, $\mathrm{BG}(G)$?
(1) Show that $\operatorname{BG}(G)$ is a transversal matroid by finding a natural transversal presentation. Which transversal presentations naturally give bicircular matroids?
(2) Characterize the dual bicircular matroids, using the theory of § 2.4 for dual transversal matroids.

IV. Spikes

The graph $2 C_{n}$ is a circle $C_{n}=e_{1} e_{2} \cdots e_{n}$ with each e_{i} doubled by a parallel edge f_{i}. (When needed, I name the vertices $v_{1}, v_{2}, \ldots, v_{n}=v_{0}$ with $V\left(e_{i}\right)=V\left(f_{i}\right)=\left\{v_{i-1}, v_{i}\right\}$.)

We saw in class that a tippy spike is the extended (or complete) lift matroid $L_{0}\left(2 C_{n}, \mathcal{B}\right)$ of a biased graph $\left(2 C_{n}, \mathcal{B}\right)$. Here $E\left(L_{0}\right)=E\left(2 C_{n}\right) \cup\left\{d_{0}\right\}$. The tipless spike is the lift matroid, $L=L_{0} \backslash d_{0}$. I suggest you use that representation of spikes in the following.
(1) Let $I \subseteq[n]$ and define

$$
\begin{cases}s_{I}\left(e_{i}\right)=f_{i}, s_{I}\left(f_{i}\right)=e_{i} & \text { if } i \in I \\ s_{I}\left(e_{i}\right)=e_{i}, s_{I}\left(f_{i}\right)=f_{i} & \text { if } i \notin I\end{cases}
$$

Question: When is s_{I} an isomorphism of L with its dual, L^{\perp} ? For instance, we know it is for $I=\varnothing$ when $\mathcal{B}=\varnothing$. The answer obviously depends on \mathcal{B}.

