DUALITY MATH 580A, SPRING 2013

I. Abstract Duality

- (1) Duality in terms of closures. (Assume all sets are finite.)
 - (a) Given a matroid M, for all $S \subseteq E$ and $x \in E \setminus S$, define $T = E \setminus S \setminus x$. Then either $x \in cl(S)$ or $x \in cl^*(T)$, but not both. (This is Oxley's Exercise 2.2.5.)
 - (b) Given two closure operators on a set E, such that for all $S \subseteq E$ and $x \in E \setminus S$, either $x \in cl(S)$ or $x \in cl^*(E \setminus S \setminus x)$, but not both. Then cl and cl^{*} are the closure operators of a dual pair of matroids. (This is due to Crapo. It's bigger than (a) because we don't assume the closures are matroid closures.)
- (2) Find a self-dual axiom system based on circuits and cocircuits and the property

$$|C \cap C^*| \neq 1 \quad \forall C \in \mathfrak{C}, \ C^* \in \mathfrak{C}^*.$$

II. DUALITY OF VECTOR REPRESENTATIONS

Theorems of concern here are:

- Theorem 2.2.A,B = Exercise 2.2.6(a,b).
- Theorem 2.2.8.
- Theorem 2.2. W (Whitney's Orthogonality Theorem). In the Euclidean vector space \mathbb{R}^n (with dot product), let b_1, \ldots, b_n be a basis and let W be a subspace. Let y_i be the orthogonal projection of b_i onto W and let z_i be its orthogonal projection onto W^{\perp} . Let M be the vector matroid of y_1, \ldots, y_n . Then the vector matroid of z_1, \ldots, z_n is M^* .

Problems:

- (1) A theorem of linear algebra states: Suppose you have a subspace $W \leq \mathbb{R}^n$ with a basis $\alpha_1, \ldots, \alpha_r$ and you form the matrix A whose rows are the vectors α_i , $i = 1, \ldots, r$. Then the orthogonal projection onto W of any vector $x \in \mathbb{R}^n$ is given by the formula $\operatorname{proj}_W x = A^{\mathrm{T}} (AA^{\mathrm{T}})^{-1} A x$. Find out how to prove this formula, either by looking it up or by working it out yourself.
- (2) Make the assumptions of Theorem 2.2.W with the addition that $\{b_1, b_2, \ldots, b_n\}$ is the standard basis of \mathbb{R}^n . Let $A = [y_1, \ldots, y_n]$ and $A^* = [z_1, \ldots, z_n]$ be $n \times n$ matrices. Show directly (using the standard coordinates) that $\mathcal{R}(A)^{\perp} = \mathcal{R}(A^*)$.
- (3) In the situation of Problem (2), how are $\mathcal{R}(A)$, $\mathcal{R}(A^*)$, W, and W^{\perp} related?

Version of February 19, 2013.

III. TRANSVERSAL MATROIDS

Remember the bicircular matroid of a graph, BG(G)?

- (1) Show that BG(G) is a transversal matroid by finding a natural transversal presentation. Which transversal presentations naturally give bicircular matroids?
- (2) Characterize the dual bicircular matroids, using the theory of § 2.4 for dual transversal matroids.

IV. Spikes

The graph $2C_n$ is a circle $C_n = e_1 e_2 \cdots e_n$ with each e_i doubled by a parallel edge f_i . (When needed, I name the vertices $v_1, v_2, \ldots, v_n = v_0$ with $V(e_i) = V(f_i) = \{v_{i-1}, v_i\}$.)

We saw in class that a tippy spike is the extended (or complete) lift matroid $L_0(2C_n, \mathcal{B})$ of a biased graph $(2C_n, \mathcal{B})$. Here $E(L_0) = E(2C_n) \cup \{d_0\}$. The tipless spike is the lift matroid, $L = L_0 \setminus d_0$. I suggest you use that representation of spikes in the following.

(1) Let $I \subseteq [n]$ and define

$$\begin{cases} s_I(e_i) = f_i, \ s_I(f_i) = e_i & \text{if } i \in I, \\ s_I(e_i) = e_i, \ s_I(f_i) = f_i & \text{if } i \notin I. \end{cases}$$

Question: When is s_I an isomorphism of L with its dual, L^{\perp} ? For instance, we know it is for $I = \emptyset$ when $\mathcal{B} = \emptyset$. The answer obviously depends on \mathcal{B} .