AN OUTLINE OF MATROID THEORY MATH 580, FALL 2001

Version of January 30, 2008.

Web site: http://math.binghamton.edu/zaslav/580.F01/

I. Basic Examples.

A. Vector Sets.

That is, an arbitrary subset $E \subseteq V$, a (finite-dimensional) vector space.

- 1. Definitions.
 - a. Independent sets: $\mathfrak{I}(E)$
 - b. Bases: $\mathfrak{B}(E)$
 - c. Circuits (minimal dependent sets): $\mathcal{C}(E)$
 - d. Rank function: $r_E(S) = \dim \langle S \rangle$. ($\langle S \rangle$ is the subspace spanned by S.) (We know that $\dim \langle S \rangle = \max\{|I| : I \subseteq S, I \in \mathcal{I}\}.$
- 2. Properties (that have to be proved).
 - a. Independent set properties:
 - (1) $\emptyset \in \mathfrak{I}$.
 - (2) Hereditary property: $I \subseteq J$ and $J \in \mathcal{I} \Rightarrow I \in \mathcal{I}$.
 - (3) Augmentation: If $I, J \in \mathcal{I}$ and |I| < |J|, then there is $y \in J$ such that $I \cup y \in \mathcal{I}$.
 - b. Basis properties:

(1) $\mathcal{B} \neq \emptyset$.

(2) Basis exchange: If $B_1, B_2 \in \mathcal{B}$ and $x \in B_1 \setminus B_2$, then $\exists y \in B_2 \setminus B_1$ such that $B_1 \setminus x \cup y \in \mathcal{B}$.

- c. Circuit properties:
 - (1) $\emptyset \notin \mathcal{C}$.
 - (2) \mathcal{C} is an antichain: If $C_1, C_2 \in \mathcal{C}$ and $C_1 \subseteq C_2$, then $C_1 = C_2$.

(3) Circuit exchange (weak): If $C_1, C_2 \in \mathcal{C}$ and $z \in C_1 \cap C_2$, then there is $C_3 \subseteq C_1 \cup C_2 \setminus z$ with $C_3 \in \mathcal{C}$.

- d. Rank properties:
 - (1) Normalization: (a) $r(\emptyset) = 0$ and (b) $r(\{x\}) \le 1$ for $x \in E$;
 - (2) Monotonicity: If $S \subseteq T$, then $r(S) \leq r(T)$;
 - (3) Semimodularity (also called submodularity):

 $r(S \cap T) + r(S \cup T) \le r(S) + r(T).$

B. Graphs.

A graph for our purposes is $\Gamma = (V, E, \iota)$ where V and E are sets (disjoint), called the vertex set and the edge set, and ι is the *incidence function* that tells you which vertices are the endpoints of an edge e. The rule for ι is that $\iota(e)$ is a submultiset of size 2 of V. If the endpoints of e are distinct vertices, then e is a *link*. If the endpoints coincide, then e is a *loop*.

Terminology: the *size* of a graph is the cardinality of its edge set.

- 1. Definitions.
 - a. $\mathfrak{I}(\Gamma)$: An independent set is the edge set of a forest.
 - b. $\mathcal{B}(\Gamma)$: A basis is the edge set of a maximal forest. If Γ is connected, it is the edge set of a spanning tree (a tree that includes every vertex).
 - c. $\mathcal{C}(\Gamma)$: A circuit is the edge set of a simple closed path. (Synonyms for simple closed path in graph theory: circuit, cycle, circle, polygon.)
 - d. r_{Γ} : The rank of $S \subseteq E$ is the maximum size of a forest in S. One can prove that the rank of $S \subseteq E$ is the number of vertices less the number of connected components of (V, S); that is, $r_{\Gamma}(S) = |V| - c(V, S)$.
- 2. Properties to be proved: the same as with vector sets.
 - a. Independent set properties.
 - b. Basis properties.
 - c. Circuit properties.
 - d. Rank properties.

C. Transcendental field extensions.

Let K be an extension of F.

- 1. Definitions.
 - a. Independence: $x_1, \ldots, x_k \in K$ are independent if for each $i, F(x_1, \ldots, x_k)$ is transcendental over $F(x_1, \ldots, \hat{x}_i, \ldots, x_k)$.
 - b. Basis: $\{x_1, \ldots, x_k\}$ that is independent and such that K is algebraic over $F(x_1, \ldots, x_k)$.
 - c. Circuit: a minimal dependent set.
 - d. Rank: r(S) = transcendence degree of F(S) over F. (E.g., if $S \subseteq F$, then r(S) = 0.)
- 2. Properties to be proved: the same as with vector sets. Proofs: omitted in this course.

II. Definition of a Matroid (start).

A. Definitions.

A matroid is a structure M with several attributes or aspects, amongst which are

- 1. The point set or element set, E(M). (This must be specified.)
- 2. One or more of the following equivalent aspects that determine the structure of the matroid.
 - a. A class of *independent sets*: $\mathfrak{I}(M) \subseteq \mathfrak{P}(E)$ such that the following *independence axioms* hold:
 - (1) $\emptyset \in \mathfrak{I};$
 - (2) \mathfrak{I} is hereditary: $I \subseteq J$ and $J \in \mathfrak{I} \Rightarrow I \in \mathfrak{I}$;
 - (3) augmentation: if $I, J \in \mathcal{I}$ and |I| < |J|, then there is $y \in J$ such that $I \cup y \in \mathcal{I}$.
 - b. A class of bases: $\mathcal{B}(M) \subseteq \mathcal{P}(E)$ such that the following basis axioms hold:
 - (1) $\mathcal{B} \neq \emptyset$;

(2) basis exchange: if $B_1, B_2 \in \mathcal{B}$ and $x \in B_1 \setminus B_2$, then $\exists y \in B_2 \setminus B_1$ such that $B_1 \setminus x \cup y \in \mathcal{B}$.

- c. A class $\mathcal{C}(M) \subseteq \mathcal{P}(E)$ of *circuits* such that the following *circuit axioms* hold:
 - (1) $\emptyset \notin \mathfrak{C};$
 - (2) \mathcal{C} is an antichain: if $C_1, C_2 \in \mathcal{C}$ and $C_1 \subseteq C_2$, then $C_1 = C_2$;
 - (2) (weak) circuit exchange: If $C_1, C_2 \in \mathbb{C}$ and $z \in C_1 \cap C_2$, then there is $C_3 \subseteq C_1 \cup C_2 \setminus z$ with $C_3 \in \mathbb{C}$.
- d. A rank function $r_M : \mathfrak{P}(E) \to \mathbb{Z}$ such that the following rank axioms hold:
 - (1) Normalization: (a) $r(\emptyset) = 0$, and (b) $r(x) \le 1$ for $x \in E$;
 - (2) Monotonicity: if $S \subseteq T$, then $r(S) \leq r(T)$;
 - (3) Semimodularity or submodularity:

 $r(S \cap T) + r(S \cup T) \le r(S) + r(T).$

- e. A class of *dependent sets*, which we might call $\mathcal{I}^{c}(M)$, such that axioms hold that are easily derived from those of independent sets.
- f. Nullity, a function $n_M : \mathcal{P}(E) \to \mathbb{Z}$, such that appropriate axioms hold. (They can be derived from those of rank.)
- g. A closure operator $\varphi_M : \mathcal{P}(E) \to \mathcal{P}(E)$, with the following properties (1–4), of which the first three are those of a general (abstract) closure operator φ (including topological closure, etc.):
 - (1) Increase: $S \subseteq \varphi(S)$;
 - (2) Monotonicity: If $S \subseteq T$, then $\varphi(S) \subseteq \varphi(T)$;
 - (3) Idempotence: $\varphi(\varphi(S)) = \varphi(S)$.

There are various theorems about abstract closure operators. For instance, $\varphi(S \cup x) = \varphi(\varphi(S) \cup x)$.

(4) Maclane-Steinitz Exchange Property: If $x, y \notin \varphi(S)$ and $y \in \varphi(S \cup x)$, then $x \in \varphi(S \cup y)$.

- h. A class $\mathcal{L}(M) \subseteq \mathcal{P}(E)$ of *flats* or *closed sets* satisfying:
 - (1) $E \in \mathcal{L};$
 - (2) Closure Under Intersections: If $A, B \in \mathcal{L}$, then $A \cap B \in \mathcal{L}$;
 - (3) Local Semimodularity: If $A, B \in \mathcal{L}$ and there is a flat G covered by A and B, then there is a flat F that covers A and B.

Any closure operator φ has a class \mathcal{L} of closed sets satisfying (1–2), and conversely. \mathcal{L} forms a *lattice* (in the algebraic sense): this is a set with binary operations \wedge (*meet*) and \vee (*join*) that obey certain laws. Lattices will be discussed later.

i. A class $\mathcal{C}^*(M) \subseteq \mathcal{P}(E)$ of *cocircuits* such that the *circuit axioms* hold of $\mathcal{C}^*(M)$.

Cocircuits will be discussed when we get to duality.

- j. Spanning sets.
- k. Copoints (maximal flats below E). (Called hyperplanes in the book.) l. ...

m. And many more, of which some will show up later in the course.

B. Cryptomorphisms.

All the aspects of a matroid are related by specific conversion rules, or *crypto-morphisms*. Here are a selected "few" of them (there are 11 cryptomorphisms above, making 110 directed pairs of conversions, and I'm only asking you to know 30 of them), left blank for **you to fill in** (test your knowledge!—these are important for working with matroids):

1. $a \rightarrow b$: 2. b \rightarrow a: 3. $a \rightarrow c$: 4. c \rightarrow a: 5. b \rightarrow c: 6. $c \rightarrow b$: 7. a \rightarrow d: 8. d \rightarrow a: 9. b \rightarrow d: 10. d \rightarrow b: 11. c \rightarrow d: 12. d \rightarrow c: 13. $a \rightarrow e$: 14. $e \rightarrow a$: 15. b \rightarrow e: 16. $e \rightarrow b$: 17. c \rightarrow e:

 $18. e \rightarrow c:$ $19. d \rightarrow e:$ $20. e \rightarrow d:$ $21. a \rightarrow f:$ $22. f \rightarrow a:$ $23. b \rightarrow f:$ $24. f \rightarrow b:$ $25. c \rightarrow f:$ $26. f \rightarrow c:$ $27. d \rightarrow f:$ $28. f \rightarrow d:$ $29. e \rightarrow f:$ $30. f \rightarrow e:$