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1. Introduction

[{intro} ]
These notes are the true representation and explanation of line graphs, signed graphs,

directed graphs, and geometry. All other representations are false and untrue and not as
weird; or at least, different.

Why do we care about line graphs? The line graph of a graph tells us what the relations
are between edges. Whitney long ago asked: do we need vertices? Can we tell everything
just from edges? In other words, can a graph be reconstructed from its line graph? The
answer: Almost always. This is one reason we like line graphs.

Why do we care about graph eigenvalues? There are some specific theorems, but the
general idea is that it can be hard to calculate important facts about graphs. Eigenvalues
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can tell you some of those facts, and eigenvalues may not be so hard to find. This leads
one to look into eigenvalues, and it turned out that line graphs had a remarkable eigenvalue
property: the least eigenvalue is −2, or greater. Furthermore, several interesting line graphs
are completely determined by their spectrum. Maybe all graphs with the eigenvalue lower
bound of −2 are line graphs? That turned out not to be true, because of Alan J. Hoffman’s
generalized line graphs, but it was finally discovered by Cameron, Goethals, Seidel, and
Shult that aside from those, there hardly are any other graphs with −2 as a lower bound.
This work is deservedly famous.

Meanwhile, signed graphs appeared on the scene, sometimes incognito, sometimes in dis-
guise. If there are signed graphs, don’t they have eigenvalues, just like us graphs? Do they
not have line graphs, just like us? And do not our methods work as well for them? Maybe
so! Read on!

2. Weird kinds of graph

[{graphs} ]

2.1. Graphs. We have a more general notion of a graph than is usual. There are three
kinds of edges. A link is an edge with two distinct endpoints and a loop is an edge with two
coinciding endpoints. A half-edge has one endpoint. Thus, for instance, in calculating the
degree of a vertex, a loop counts twice but a half-edge only once.

So far this is not remarkable, but in addition, we have to think of an edge as composed of
one or two ends (short for “edge ends”). We think of an edge e as made up of two ends if a
link or loop, one end if a half-edge. Each end belongs to exactly one edge and has exactly
one vertex (its endpoint); the endpoints of an edge are precisely the endpoints of the ends
of the edge. Then, a graph Γ is a triple (V, E, H), where V is the vertex set, E is the edge
set, and H is the set of ends.

All our graphs are finite. They may have multiple edges; if there are no loops, no half-
edges, and no parallel edges, then Γ is called simple. Two ends, or two edges, are adjacent
if they have a common endpoint. The number of vertices is n = |V |. The set of links and
loops is E∗. A circle is a connected 2-regular subgraph, or its edge set. The class of circles
is C.

The adjacency matrix A(Γ) is a V × V matrix whose off-diagonal entry avw equals the
number of links between v and w, and whose on-diagonal entry is

avv = 2(number of loops) + (number of half-edges) at v.

An incidence matrix of Γ is a V × E matrix D(Γ) whose (v, e) entry is

• 0 if v is not incident with e, or if e is a loop at v,
• ±1 if v is incident with e and e is not a loop, with the rule that if e is a link its

endpoints have opposite sign.

A well known property of the adjacency and incidence matrices is that

(2.1) [{E:gincidadj} ]D(Γ)D(Γ)T = ∆(Γ)− A(Γ),

where the degree matrix ∆(Γ) is the diagonal matrix whose (v, v) element is the degree of
vertex v. (Recall that the degree is the number of edges plus the number of loops incident
with v, so that a loop is counted twice.)

One often sees in the literature a different incidence matrix, where all −1’s are replaced
by 1’s and (if loops are admitted at all, which is rare) the entry in position (v, e) for a loop
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e at v is 2 instead of 0. We call this the unoriented incidence matrix of Γ and write D0(Γ)
for it. It satisfies the formula

(2.2) [{E:unorincidadj} ]D0(Γ)D0(Γ)T = ∆(Γ) + A(Γ).

Let us define a symmetric relation of incidence on V ∪ E ∪H by saying an edge and its
ends are incident, and also an edge or end and its endpoint(s) are incident. An isomorphism
of graphs Γ1 and Γ2 is a function θ : V1 ∪ E1 ∪ H1 → V2 ∪ E2 ∪ H2 which is a bijection
V1 → V2, E1 → E2, and H1 → H2 and which preserves incidence of edges, ends, and vertices.

2.2. Signed graphs. A signed graph Σ = (Γ, σ) is a graph together with a signature σ :
E∗ → {+1,−1}, the two-element group. (A half-edge does not receive a sign.) Two especially
important kinds of signed graph are +Γ, in which every edge is positive, and −Γ, in which
every edge has negative sign (in both cases excepting half-edges since they have no sign).
We say Σ is simply signed if it has no positive loops, no half-edges, and no multiple edges
with the same sign; but it may have parallel links of opposite sign. A signed simple graph
is a simple graph Γ with signs. A signed simple graph is simply signed, but a simply signed
graph need not be simple, as it can have a negative digon, that is, a pair of parallel edges of
opposite sign.

Reducing a signed graph means deleting negative digons until none remain; a signed graph
without negative digons is called reduced. A signed simple graph is reduced. A simply signed
graph may not be reduced, but its reduction is a signed simple graph.

The adjacency matrix A(Σ) is the V × V matrix in which the value of avw for distinct
vertices v, w is the number of positive edges vw less the number of negative edges vw, while

avv =


2 (number of positive loops)

− 2 (number of negative loops)

+ (number of half-edges)

incident with v.

An incidence matrix of Σ is a V × E matrix D(Σ) whose (v, e) entry is

• 0 if v is not incident with e, or if e is a positive loop at v,
• ±1 if v is incident with e and e is not a loop, with the rule that the endpoints of e

have opposite sign if e is positive and identical sign if e is negative,
• ±2 if e is a negative loop at v.

Observe that an incidence matrix of a signed graph, like that of an unsigned graph, is not
unique since it remains an incidence matrix if any column is negated. It is easy to verify
that

(2.3) [{E:sgincidadj} ]D(Σ)D(Σ)T = ∆(Γ)− A(Σ).

[VERIFY FOR LOOPS, HALF-EDGES.] In this respect we see that an unsigned graph
behaves just like the all-positive signed graph +Γ; (2.1) is a special case of (2.3). On the
other hand, we may take the unique incidence matrix of −Γ that has no negative entries;
this is the unoriented incidence matrix D0(Γ), and since A(−Γ) = −A(Γ), (2.2) is another
special case of (2.3).

Each circle C (and indeed any walk that does not have a half-edge) has a sign σ(C)
obtained by multiplying the signs of its edges; B = B(Σ) is the class of positive circles. A
subgraph or edge set in Σ is called balanced if it has no half-edges and every circle is positive;
it is antibalanced if −Σ is balanced.
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An isomorphism of signed graphs Σ1 and Σ2 is an isomorphism θ : Γ1
∼→ Γ2 of underlying

graphs that preserves edge signs; that is, σ(e) = σ(θ(e)) for each edge e ∈ E1.
Signed graphs and the notions of balance and antibalance were introduced by Harary in

[5, 6]. The incidence matrix appears in [17].

2.3. Bidirected graphs. In a bidirected graph every end has an orientation; thus, a loop
or link has two directions, one at each end. Formally, a bidirected graph B is a pair (Γ, β)
consisting of a graph and an end signature β : H → {+1,−1}, which we call a bidirection of
Γ. We think of β as orienting the ends so that a positive end is directed towards its vertex
and a negative end is directed away from its vertex. The incidence matrix D(B) is the V ×E
matrix in which the (v, e) entry is the sum, over all ends ε of e whose endpoint is e, of the
signs β(ε). That is,

• 0 if v is not incident with e, or if e is a positive loop at v,
• ±1 if v is incident with e and e is not a loop, with the rule that the endpoints of e

have opposite sign if e is positive and identical sign if e is negative,
• ±2 if e is a negative loop at v.

Observe that the incidence matrix of a bidirected graph is unique.
Bidirected edges fall into three types. First, there are the edges whose ends have opposite

signs (such edges must be links and loops); their two directions point consistently along
the edge, so they give the edge a single direction. Then there are edges whose ends are
both positive; we call them extraverted because their directions point outwards, toward
the incident vertices. Last are the edges whose ends are negative; they are introverted edges
because their directions point into the edge. A half-edge has to be introverted or extraverted.
A bidirected graph is negatively homogeneous if every edge is introverted or every edge is
extraverted.

We associate to each bidirected graph B the signed graph Σ(B) in which a link or loop e
with ends ε1 and ε2 has sign

(2.4) [{E:bisign} ]σ(e) = −β(ε1)β(ε2).

Obviously, the incidence matrix of B is an incidence matrix of Σ(B). Given a signed graph Σ,
we call any bidirected graph B for which Σ(B) = Σ an orientation of Σ; that is, a bidirected
graph is an orientation of a signed graph. We see that the nonuniqueness of the incidence
matrix of a signed graph is due to the fact that Σ has several orientations, just as with
ordinary graphs (which in this way again behave like all-positive signed graphs.) As the
positive edges of B are directed, they form a directed graph; conversely, any directed graph
can be viewed as a bidirected graph all of whose edges are positive. On the other hand, the
negative edges have no intrinsic direction.

The adjacency matrix of a bidirected graph is defined to be the adjacency matrix of its
signed graph.

Bidirected graphs B1 and B2 are called isomorphic if there is an isomorphism θ : Γ1
∼→ Γ2

of underlying graphs that preserves the bidirection; i.e., β1(ε) = β2(θ(ε)) for each end ε ∈ H1.
Bidirected graphs are due to Edmonds [3], and later, independently, by Źıtek [21] and

Zelinka under the name “polarized graph”. Zaslavsky [19] observed that they are oriented
signed graphs.
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2.4. Polar graphs. A polar graph is a graph together with a bipartition of the edge ends
incident to each vertex. That is, the ends incident with v are divided into two subsets, say
Mv and Nv (possibly empty).

If we define β : H → {+1,−1} in such a way that, at every vertex, β is constant on Mv

andon Nv but take opposite values on each, then we get a bidirected graph. Conversely, if
we take a bidirected graph and forget the values of β but remember which ends at v have
the same sign, we get a polar graph.

Polar graphs Π1 and Π2 are isomorphic if there is an isomorphism of underlying graphs
that preserves the bipartitions at corresponding vertices.

Polar graphs were introduced by Zelinka in [20] et al.

2.5. Switching. Switching a vertex set W ⊆ V in a signed graph Σ means reversing the
signs of all edges with one endpoint in W and the other in its complement W c. We write
ΣW for the switched graph. A convenient way to represent this is by means of a switching
function η : V → {+1,−1}. We define the switching of Σ by η to be the signed graph
Ση = (Γ, ση) whose signature is given by the rule

(2.5) ση(e) = η(v)σ(e)η(w)

if the endpoints of e are v and w. (The rule naturally does not apply to a half-edge as it has
no sign.) When η is chosen to be negative on W and positive on W c, then Ση = ΣW .

The essential property of switching a signed graph is that it leaves the sign of every circle
invariant. Thus, B(Ση) = B(Σ).

Lemma 2.1 ([17]). [{L:switch} ] It is possible to switch a signed graph so that any desired
balanced subgraph has only positive edge signs.

Switching a bidirected graph B is similar. The directions of ends with endpoints in W are
reversed, while the other directions remain the same. The result is denoted by BW . If we
have a switching function, then

(2.6) βη(ε) = η(v)β(ε),

when ε is an edge end whose vertex is v. Note that switching a bidirected graph by −1
reverses the directions of all ends, but switching a signed graph by −1 has no effect on the
signs. An edge signature is not subtle enough to detect all switching, but a bidirection is.

Lemma 2.2. [{L:biswitch} ] It is possible to switch a bidirected graph so that any specified
forest has a predetermined orientation.

Proof. Switch so that the signs on the forest are as desired. Then the orientation of each tree
is either the desired one, or its opposite. If the latter, switch all the vertices of the tree. �

Call two signed, or bidirected, graphs switching equivalent if one can be switched to become
the other, and switching isomorphic if one can be switched to be isomorphic to the other.
An equivalence class, called a switching class, is denoted by [Σ] or [B]. A switching class [B]
of bidirected graphs, called a bidirected switching class, is obviously equivalent to the polar
graph associated with B (but it is not the same; a polar graph is not a class of equivalent
bidirected graphs). A switching class [Σ] of signed graphs, called a signed switching class, is
determined by its family B(Σ) of positive circles [17]:

Lemma 2.3. [{L:switchingequiv} ] Two signed graphs are switching equivalent if and only
if they have the same underlying graph and the same positive circles.
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Therefore, a switching class is equivalent to what is called a sign-biased graph, namely, the
pair (Γ, B(Σ)). One can characterize the possible sets B(Σ) as the intersection of C(Γ) with
some subspace of the binary cycle space of Γ [16].

In matrix terms switching negates the rows of the incidence matrix that correspond to
switched vertices (or, in terms of the switching function, vertices on which it is negative).
Thus, it negates the corresponding rows and columns of the adjacency matrix. What it
does not change is the eigenvalues of A(Σ) (or their multiplicities). Therefore, although the
adjacency matrix of a switching class is only determined within conjugation by a diagonal
sign matrix, the eigenvalues of a switching class are well defined.

Switching of graphs was introduced by Seidel in [9, 12]. Switching of signed graphs, from
[17] inter alia, is a generalization, suggested by the fact that Seidel’s adjacency matrix of
a simple graph Γ equals the adjacency matrix of a signed complete graph KΓ, and Seidel
switching of Γ is the same as signed switching of KΓ. Switching of bidirected graphs is the
obvious extension of signed switching.
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3. Line graphs

[{linegraphs} ]

3.1. The definition. [{lgdef} ] We want to define line graphs of signed graphs, bidirected
graphs, and polar graphs, but first we have to define the line graph of a plain old graph,
since that is the basis of the other definitions and our graphs are more complicated than in
the usual treatments of line graphs.

Graphs. [{lg} ] The line graph of a graph Γ = (V, E, H) is denoted by L(Γ). The vertex set
is V (L(Γ)) = E. The edge set is

E(L(Γ)) =
{
{ε, ε′} : ε, ε′ are adjacent ends in H}.

Thus, L(Γ) has an edge for every pair of adjacent ends in Γ. The ends in L(Γ) are the ordered
pairs (ε, ε′) such that {ε, ε′} is a line-graph edge. The ends (ε, ε′) incident to a line-graph
vertex e are those such that ε is incident to e as an edge of Γ. A loop in Γ has the somewhat
peculiar effect that, because its ends ε1 and ε2 are adjacent, they create a loop {ε1, ε2} in
the line graph whose ends are (ε1, ε2) and (ε2, ε1).

A line graph L has two kinds of cliques. A vertex clique in L is the set of all L-vertices
that, as Γ-edges, are incident with a single vertex in Γ. A triangular clique is the set of all L
vertices that are the edges of a subgraph of Γ induced by three mutually adjacent vertices.

It also has two important kinds of circles. A vertex triangle is a triangle contained in a
vertex clique. A derived circle is the line graph of a circle in Γ. These circles generate the
binary cycle space.

Hoffman’s generalized line graphs. Hoffman introduced a generalization of line graphs. To
explain it we define the cocktail party graph CP (m); this is K2m with the edges of a perfect
matching deleted. Now, choose a vertex weighting m = (m1, . . . ,mn) ∈ ZV

≥0. In L(Γ), the
edges of Γ incident to each vertex vi of Γ form a clique, call it the ith vertex clique. The
generalized line graph L(Γ;m) is obtained by taking the disjoint union of L(Γ) with the n
cocktail party graphs CP (mi) for 1 ≤ i ≤ n and joining every vertex of the CP (mi) to every
vertex of the ith vertex clique in L(Γ).

Hoffman’s construction is really a line graph of a signed graph. The signed graph is
obtained by adding to each vertex vi of −Γ exactly mi negative digons. Each digon has one
vertex vi and the other a new vertex of degree 2. When we take the reduced line graph of this
expanded signed graph, the negative digons yield a cocktail party graph adjacent to all the
vertices that arise from edges of Γ incident to vi. This is clear if one chooses an orientation
in which every vertex of Γ is a sink (all ends directed into the vertex); then every edge of
Λ′(Γ;m) is negative except the two parallel edges derived from an added digon, and these
two cancel in the reduction. (This observation about digons has been made independently
elsewhere, but in an ad hoc manner, without signs. Our contribution is to show that it is
part of a regular process of eliminating edges whose signs cancel.)

Bidirected and directed graphs. [{bilg} ] The line graph of a bidirected graph B = (Γ, β),

written ~Λ(B), is the line graph L(Γ) with bidirection −β, the negative of the end signature
in B. (We sometimes like to call this a line bidirection of Γ.) The graphical interpretation
is that the direction of an end remains the same but its character reverses: if it was di-
rected into its vertex in B, it is directed away from its vertex in the line graph. See Figure
3.1[{F:bilinegraph}].
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Figure 3.1. A picture of a bidirected graph and its line graph.
[{F:bilinegraph} ]

The line graph of a digraph deserves a closer look. A digraph is an oriented all-positive
signed graph. The edges of its line graph are either positive, hence directed edges, or negative,
hence introverted or extraverted directed edges. If we keep just the positive part of the line
graph, what we have is the Harary–Norman line digraph [7]. If we keep only the negative
part and reinterpret it as a signed graph, extraverted edges being positive and introverted
ones being negative, then we have the signed line graph of a digraph of Muracchini and
Ghirlanda [10]. [VERIFY THE SIGN CHOICE.] (It is rare but not unique in the literature
for a “signed graph” to be really an all-negative bidirected graph; the difference may often
be told from the incidence matrix.)

Signed graphs. [{sgrlg} ] Given a signed graph Σ = (Γ, σ), we define its polar line graph ~Λ(Σ)
by taking any orientation of Σ, that is, a bidirection β such that Σ(Γ, β) = Σ, and finding

its line graph, ~Λ(Γ, β). Reorienting an edge in Σ is the same as switching the corresponding

vertex of ~Λ(Γ, β); therefore, the polar line graph ~Λ(Σ) of a signed graph is a switching class
of bidirected graphs, or equivalently, a polar graph.

The bipartition of ends at a vertex e of the line graph is easy to describe. If e was negative
or a half-edge, there is only one class of edge ends at e as a line-graph vertex; if e was positive
with ends ε1 and ε2, there are two classes, one containing the ends of the form {ε1, ε

′} and
the other the ends of the form {ε2, ε

′}.
In practice, however, we are interested mostly in the signed switching class of the line

graph. We call this the line graph of the signed graph and write it as Λ(Σ).

Polar graphs. [{polarlg} ] Taking the line graph of a polar graph is complementary to taking
a line graph of a signed graph. Think of a polar graph as a switching class [B] of bidirected
graphs. Switching a vertex of B means reorienting the edges of its vertex clique. Thus,
the line graph of a polar graph Π is a class of orientations of a signed graph Σ, but it may
not be the class of all orientations. We can treat Λ(Π) as a signed graph if we show that
the line-graph signature σ determines the switching class of the bidirection, because then
the orientation chosen for Σ does not matter; either it is a line bidirection of the original
polar graph Λ(Π), or it is not a line bidirection at all. We will do this soon in Proposition
3.1[{P:polarlg}].

Proposition 3.1. [{P:polarlg} ] Let [B1] and [B2] be switching classes of bidirected graphs
that have the same underlying graph Γ, and let Σi = Λ(Bi). Then Σ1 = Σ2 if and only if
[B1] = [B2].

Proof. We may assume Γ is connected.
If [B1] = [B2], switch B2 so it equals B1. Switching does not change the signs of the line

graph, so Σ2 is unchanged, but now Σ2 = Λ(B1).
Conversely, by assumption Λ(B1) and Λ(B2) have the same signs. Therefore, the latter

is a reorientation of the former. Switch B2 so that its orientations agree with B1 on some
maximal forest F . This does not change Σ2. We wish to prove that now B2 = B1. We look
at a vertex clique, Ev ⊂ E(Γ), whose vertices are the edges e1, . . . , ek incident with v in Γ;
choose the labels so e1 ∈ F . Let εj be the end of ej that is incident with v. (There are two
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such ends if ei is a loop.) The orientation of εj, j > 1, equals −βi(ε1)σ(ε1, εj), where σ is
the sign in the line graph; this is the same for i = 1, 2. Therefore, after switching B2 does
equal B1. �

Switching classes and sign bias. Combining switching and reorientation, we conclude that
the line graph of a switching class of signed graphs is a well defined switching class of signed
graphs.

Put slightly differently, the reduced and unreduced line graphs of a sign-biased graph are
sign-biased graphs. That is the viewpoint of [18]. We take from there the description of
which circles are positive in the line graph. We begin with two lemmas about signed graphs.

Lemma 3.2. [{L:vertexcliquesign} ] In a line graph of a signed graph, a vertex clique is
antibalanced.

Proof. It is easy to see that every triangle in a vertex clique is negative. �

Lemma 3.3. [{L:derivedsign} ] In a line graph of a signed graph, the sign of a derived circle
Λ(C) equals the sign of C.

Proof. Let l be the length of C. The sign of C equals the product, over all edges ei ∈ C, of
−β(εi1)β(εi2), where εi1 and εi2 are the ends of e; thus it is (−1)l times the product of all
β(εij). The sign of Λ(C) is the product of (−1)l and the product of all −β(εij). Since there
are evenly many ends, the sign of Λ(C) equals that of C. �

Proposition 3.4. [{P:lgbalance} ] Let Λ be the line graph of a signed switching class [Σ].
A circle C of Λ has sign (−1)t+q if it is the set sum of t vertex triangles, q negative derived
circles, and p positive derived circles.

Proof. The proposition follows from four facts. First, the vertex triangles and derived circles
span the binary cycle space. Second, the sign of a circle is a homomorphism from the additive
group of binary cycles (i.e., set sums of circles) to the sign group. Third, every vertex triangle
is negative. Fourth, Lemma 3.3[{L:derivedsign}]. �

3.2. Reduced line graphs. [{reduced} ] The signed line graph Λ(B) may have parallel
edges with opposite sign. Such pairs contribute 0 to the adjacency matrix because their
contributions cancel. (This applies to loops as well as links.) Thus, we define the reduced
line graph Λ′(B) to be the result of removing from Λ(B) as many pairs of oppositely signed
parallel edges as possible. Its adjacency matrix is the same as that of Λ(B).

The reduced line graph, as a bidirected graph, is not usually unique, not even up to
bidirected isomorphism, because, for instance, there may be several negative edges to pair
with a given positive edge, and they may not be oriented similarly. However, when we look
at the signed line graph or line graphs of switching classes, reduction is unique up to vertex-
fixing isomorphisms. Thus, reduction belongs most properly with signed line graphs and line
graphs of switching classes, rather than bidirected graphs.

The work of Vijakumar et al. is based on signed switching classes, though they do not
describe the signed graphs they study as line graphs and all their graphs are reduced line
graphs. [MAKE SURE OF THAT!]
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3.3. Natural classes; graphic line signed graphs. [{natural} ] We have seen three
closed systems under taking line graphs: bidirected graphs, all-negative signed graphs (or
antibalanced signed switching classes), and signed switching classes (or sign-biased graphs).
The familiar one of these is all-negative signed graphs, which correspond to ordinary line
graphs. We should add to the list the class of negatively homogeneous signed graphs—taking
the line graph converts a homogeneously extraverted bidirected graph to a homogeneously
introverted one and vice versa—because this class is the technical means by which all-negative
signed graphs give rise to all-negative line graphs.

We want to find out how a line graph can be antibalanced, or balanced.

Proposition 3.5. [{P:antibalancedlg} ] Suppose Σ is connected. The line graph Λ(Σ) is
antibalanced if and only if Σ is antibalanced except for half-edges. The reduced line graph
Λ′(Σ) is antibalanced if and only if Σ, without its half edges, is an antibalanced signature of
a generalized line graph.

Proof. [NEEDS PROOF!] �

3.4. Reduced line graphs that are graphs. [{lggraphs} ]
A reduced line graph may be treated as an unsigned graph if all its edges have the same

sign. For a switching class, that means the class is balanced (so the signs can be made all
positive) or antibalanced (so the signs can be taken to be all negative).

All negative signs. We saw that the right sign to get the ordinary line graph of the underlying
graph as the line graph of a signed graph is the negative one; that is, one takes Σ = −Γ.
Then, if we orient every edge to be extraverted (by taking β ≡ +1), the line graph has every
edge introverted, hence negative, and the line graph Λ(−Γ) equals −L(Γ). Since negating
the graph negates the eigenvalues, we get graphs with least eigenvalue not less than −2. The
classical question, answered in [1], is to find all other graphs with that eigenvalue bound. In
our terms that means all antibalanced signed graphs whose eigenvalues are not greater than
2. Our theory explain why Hoffman’s generalized line graphs are such graphs.

All positive signs. The opposite sign is also possible. If we begin with an all-positive graph,
its line graph is rarely all positive; in fact, it is rarely balanced. The existence of a vertex
triangle prevents that. The real question, though, is whether we end up with a balanced line
graph. Such line graphs can be treated as all positive and thus as unsigned graphs. They
are graphs that have all eigenvalues ≤ 2. These were also found in [1].

Those that are line graphs of signed graphs. Our contribution to the discussion is the obser-
vation that most of the graphs of the two kinds just mentioned, with eigenvalues ≥ −2 or
≤ 2, that are not line graphs of ordinary graphs are actually line graphs of signed graphs.

[MORE: SAY WHAT THEY ARE.]
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4. Eigenvalues

[{evalues} ] It is well known that, when Γ is simple, the eigenvalues of the adjacency
matrix of its line graph are bounded below by −2. The proof is that, since every diagonal
element of D0(Γ)TD0(Γ) equals 2 and A(L(Γ))+2I = D0(Γ)TD0(Γ), the matrix A(L(Γ))+2I
is positive semidefinite.

Hoffman’s generalized line graphs also have least eigenvalue −2 or greater [8]. The real
reason is that they are reduced line graphs of signed graphs, as we show below.

4.1. Signed graphs. A consequence of our previous discussion is that for the study of
eigenvalues we may look at signed switching classes. However, for calculations, as for instance
in the next lemma, we have to fix an orientation in order to have well defined incidence and
adjacency matrices.

Lemma 4.1. [{L:lgformula} ] Let Σ be a signed graph and let Λ be any signed graph in
Λ([Σ]), the line graph of its switching class. Then

[{E:lgformula} ]A(Λ) = 2I −D(Σ)T D(Σ).

Proof. We examine mef , the (e, f) entry of M = D(Σ)T D(Σ). mef is the dot product of the
columns of D belonging to e and f . To do the calculations we fix the orientation B whose
incidence matrix is D.

If e and f are nonadjacent, the entry is 0.
If they are parallel links, let them have ends ε1 and ε2 of e and ε′1 and ε′2 of f , with εi

adjacent to ε′i. Then

mef = β(ε1)β(ε′1) + β(ε2)β(ε′2) = β(ε1)β(ε′1)
[
1 + σ(e)σ(f)

]
.

This equals 0 if ef is a negative digon and 2β(ε1)β(ε′1) if it is positive. In the latter case, we
have two edges from e to f in the line graph, which we may write as ε1ε

′
1 and ε2ε

′
2. Their

signs both equal −β(ε1)β(ε′1), so their contribution to aef makes aef = −mef , as we wished.
We assume henceforth that e and f meet at only one vertex, v. If neither is a loop, let

ε and ε′ be their ends at v. The dot product equals β(ε)β(ε′). The sign of the edge equals
−β(ε)β(ε′). Thus, mef = −aef , unless e = f . In that case, mef = 1 = aef so aef = 2−mef ,
as desired.

If e is a loop, let its ends be ε1 and ε2. Suppose f is not a loop and its end at v is ε′.
Then the line graph has two parallel edges from e to f . The dot product is

mef =
[
β(ε1) + β(ε2)

]
β(ε′) =

[
1− σ(e)

]
β(ε1)β(ε′).

This is 0 if e is positive; and in that case the two parallel edges have opposite sign so aef = 0.
If e is negative, then the two parallel edges have the same sign so aef = −2β(ε1)β(ε′); while
mef = 2β(ε1)β(ε′) = −aef .

Suppose both e and f are loops; let ε′1 and ε′2 be the ends of f . Now there are four ef
edges in the line graph if e 6= f , or one loop if e = f . The incidence matrix has β(ε1)+β(ε2)
in position (v, e) and a similar expression in position (v, f), so

mef =
[
β(ε1) + β(ε2)

][
β(ε′1) + β(ε′2)

]
;

this is 0 if either e or f is positive, and otherwise it equals 4β(ε1)β(ε′1). When e 6= f , the
four ef edges in the line graph have signs −β(εi)β(ε′j) for all combinations of i, j = 1, 2. The
sum of these values is −mef . As for the case e = f , then the one loop has the same sign as
e (by Lemma 3.3[{L:derivedsign}]), so the adjacency matrix has aee = 2σ(e). The incidence
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matrix leads to the value mee = 0 if e is positive and 4 if it is negative, so mee = 2− 2σ(e),
as we wanted. �

The eigenvalue bound follows at once.

Theorem 4.2. [{T:lgevalues} ] The line graph of a bidirected graph has eigenvalues bounded
above by 2. �
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5. Line systems

[{lines} ]
A system of lines is a set (finite unless we say otherwise) of lines through the origin of

some Rm. We are interested in systems of lines whose angles are among those that arise
from signed graphs with eigenvalues at most 2.

Take two lines L1, L2 in a system L. Define L(L1, L2) to be the set of lines of L that lie
in the plane 〈L1, L2〉 generated by L1 and L2. We say L is star closed if, for any two lines
L1, L2 ∈ L, the subsystem L(L1, L2) is closed under reflection in any line in it, or equivalently,
under every rotation of 〈L1, L2〉 that carries one line of the subsystem to another. The star
closure of a system L is the smallest star-closed system of lines containing it. It is not
obvious that the star closure is actually finite; this will be dealt with later.

Any finite set of nonzero vectors generates a system of lines in the obvious way.
A line system L is decomposable if it is the union of subsets L1 and L2 and every line of

L1 is orthogonal to every line of L2.

5.1. The angles of a signed graph with bounded eigenvalues. [{angles} ]
We start with a simply signed graph Σ of order m whose eigenvalues are not greater than

2. Being simply signed means that Σ has no multiple links of the same sign and no positive
loops, and a vertex supports either one half-edge or one negative loop or neither. (One could
also assume Σ is reduced, since reduction does not affect the adjacency matrix, but we need
not do so.) Thus, the matrix G := 2I − A(Σ) has diagonal entries equal to 1 for a vertex
that supports a half-edge, 4 for a vertex supporting a negative loop, and 2 for any other
vertex. Since G is positive definite, it is the Gram matrix of a set of m vectors x1, . . . , xm, or
in other words, G = XTX where X is an n×m matrix for some value of n ≥ rank A. (The
xi are the columns of X.) Let L(Σ) be the system of lines in Rn generated by the columns
of X; it is a multiset since some of the columns xi might be collinear. The system lies in
Rn and is isometric to every system L(Σ) in Rrank A; thus it is uniquely determined up to
isometries except for the arbitrary choice of n ≥ rank A. Each line of L(Σ) corresponds to a
vertex vi of Σ; we denote it by Li = 〈xi〉.

The norm of xi is 2 if vi supports a negative loop, 1 if vi supports a half-edge, and
√

2 if
vi supports neither. Let us say vi, or xi or Li, has class respectively 0, 1, and 2 in each of
these cases, write Vi for the set of vertices of class i, and classify the lines of L(Σ) similarly
into L)(Σ), etc.

Proposition 5.1. [{P:angles} ] Let Σ be a simply signed graph. The angles formed by
distinct lines Li, Lj of L(Σ) belong to the following list:

(a) 90◦, if vi, vj are nonadjacent,
(b) 60◦, if vi ∈ V1 and vj ∈ V2 are adjacent,
(c) 45◦, if vinV1 and vj ∈ V0 ∪ V2 are adjacent.

Proof. From A(Σ), the inner product xi · xj is 0 in case (a). In case (b), the vectors have

length
√

2 and their inner product equals ±1. In case (c), they have lengths
√

2 and 1 and
the inner product equals ±1 so their angle has cosine ±1/

√
2; or they have lengths

√
2 and

2 and the inner product equals ±2, so the angle also has cosine ±1/
√

2. �

From Proposition 5.1[{P:angles}] we can write down a table of possible angles in L(Σ).
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Norm 2 1
√

2
Class 0 1 2

0 0◦, 90◦

1 45◦, 90◦ 60◦, 90◦

2 90◦ 45◦, 90◦ 90◦

Table 5.1. The possible angles between lines of the three classes. The upper
half of this symmetric table is omitted.

Define a triple system of lines as a system of lines with a tripartition L = L0 ∪ L1 ∪ L2

into three pairwise disjoint subsystems such that the angles between lines of classes i and j
are those allowed by Table 5.1[{Tb:angles}]. (A subset Li can be empty.) Thus, L(Σ) is a
triple system of lines.

5.2. Root systems. [{rs} ]
If x is a nonzero vector in Rn, let ρx denote reflection in the perpendicular hyperplane of

x; that is, ρx(y) = y − 2(x · y)/(x · x). A root system is a nonempty, finite set R of nonzero
vectors in Rn with the following three properties:

(R1) For any vector x ∈ R, the only vectors in R ∩ 〈x〉 are ±x. [{E:rsmultiple} ]
(R2) For any two vectors x, y ∈ R, the reflection ρx(y) ∈ R. [{E:rsreflect} ]
(R3) If x, y ∈ R, then 2(x · y)/(x · x) is an integer. [{E:rsinteger} ]

[VERIFY DEFINITION.] All root systems are known (there are many sources for this;
one is [14, Chapter ??]). Suppose R ⊂ Rn and R′ ⊂ Rn′

are two root systems; then
R′′ := (R × {0}) ∪ ({0} × R′ is a root system in Rn+n′

; such a root system R′′ is called
reducible. All root systems are constructed from indecomposable ones in this way, so it
suffices to know all indecomposable root systems. To describe them, let b1, . . . , bn be the
standard unit basis vectors of Rn. The irreducible root systems are the classical root systems,

• An−1 := {±(bj − bi) : 1 ≤ i < j ≤ n} ⊂ Rn for n > 1,
• Dn := An−1 ∪ {±(bj + bi) : 1 ≤ i < j ≤ n} ⊂ Rn for n ≥ 1,
• Bn := Dn ∪ {±bi : 1 ≤ i ≤ n} ⊂ Rn for n ≥ 1,
• Cn := Dn ∪ {±2bi : 1 ≤ i ≤ n} ⊂ Rn for n ≥ 1,

and the exceptional root systems,

• E8 := {} ⊂ R8,
• E7 := {} ⊂ R7,
• E6 := {} ⊂ R6,
• G2 := {} ⊂ R2,
• F4 := {} ⊂ R4.

[VERIFY LIST.]
We see that An−1 is the set of vectors representing all orientations of edges of the signed

graph +Kn, Dn is the set of vectors representing ±Kn, Bn represents ±K•
n (which is ±Kn

with a half-edge at every vertex), and Cn represents ±K◦
n (that is, ±Kn with a negative

loop at every vertex). The consequence is that, if L is any subsystem of the line system
generated by any of these four root systems, then L = L′(Σ) for some simply signed graph
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Σ. [MAKE SURE ALL THESE ARE DEFINED. MOVE DEFS OF THE GRAPHS TO
GRAPH SECTION.]

Lemma 5.2. [{L:rsstar} ] The system of lines generated by any root system is star closed.

Proof. This is obvious from (R2), since reflection of a line across another line L in a plane
is the same as reflecting it across the perpendicular line L⊥. �

We write R for the system of lines generated by a root system R, e.g., An−1 is the line
system generated by An−1. A system of root lines is any subset of a line system generated
by a root system.

5.3. Lines at 60◦ and 90◦. [{6090} ]
In this subsection we consider the theory for simply signed graphs that have no loops or

half edges; that is (after reduction), for signed simple graphs.
A broad system of lines means a set of lines making angles of 60◦ and 90◦. It is therefore

a triple line system in which L0 and L)1 are empty. The theory here is a simple extension
of the classical theory of lines at angles 60◦ and 90◦ due to Cameron, Goethals, Seidel, and
Shult [1]. ([4, Chapter 12] has a nice treatment.)

To each signed simple graph Σ of order m with eigenvalues not greater than 2 there is
associated a broad system of lines. Conversely, given any broad system L of lines, there is a
signed simple graph Σ. The vertex set V = {v1, . . . , vm} is in one-to-one correspondence with
L′. The signed graph is obtained by choosing one vector of length

√
2 in each line, forming

their Gram matrix G (whose diagonal is 2), and defining Σ by A(Σ) = 2I − G. Since
Σ is determined uniquely up to switching, there is a one-to-one correspondence between
isometry classes of broad line systems and switching isomorphism classes of signed graphs
with eigenvalues ≤ 2. (This construction does not work if the system is not broad.)

A broad system of lines is star closed if, whenever two of its lines, L1 and L2, make an
angle of 60◦, the third line in the same plane that makes an angle of 60◦ with both, L3, is
also in the system.

Lemma 5.3 ([1]). [{T:starclosure6090} ] The star closure of a broad system of lines is a
broad system in the same dimension.

This means that, to classify all broad systems, it is sufficient to classify those that are star
closed.

Lemma 5.4 ([1]). [{T:star6090} ] A star-closed, broad system of lines is either An−1 or Dn

or En.

Since Dn represents the line graphs of ±Kn, An−1 ⊂ Dn, and E6 ⊂ E7 ⊂ E8, we obtain
the main theorem of [1] in its generalization to signed simple graphs:

Theorem 5.5. [{T:lg6090} ] A signed simple graph Σ with all eigenvalues not larger than
2 either is a line graph of a simply signed graph without loops or half-edges, or is a signed
graph representable by E8.

An obvious corollary is that, if Σ has more vertices than the number of lines in E8 (which
is 128), or if its maximum valency is greater than that of the signed graph of E8, then it
has to be a line graph. More careful analysis leads to stronger conclusions. For instance,
Chawathe and Vijayakumar found a list of ?? signed simple graphs of order at most 6 such
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that a signed simple graph is a line graph if and only if no induced subgraph belongs to the
list [2].

We can develop the structure theory a little further without too much trouble. The
question is which simply signed signed graphs are represented by broad systems of lines. Let
us consider what star closure means for Σ. The two lines correspond to vectors x1 and x2

of norm
√

2 whose inner product is ±1. That means the corresponding vertices of Σ are
adjacent. By switching we can assume x1 · x2 = −1. Then L3 gives a vector x3 which may
be chosen so that x3 = −x1 − x2. Then x3 · x1 = x3 · x2 = −1. Thus, the vertices v1, v2, v3

support a negative triangle in Σ. Switching Σ, corresponding to choosing the negative of any
of the vectors xi, does not change the sign of the triangle. We conclude that Σ can contain
only one negative triangle on each edge. Every edge is in a negative triangle if and only if
L′ is star closed.

This says nothing about positive triangles. [MORE ON POSITIVE TRIANGLES??]
[MORE ON WHAT STAR CLOSURE MEANS TO Σ?? (I.e., how the new vertex is

connected to the existing graph.)]
[MORE ON CLASSIFICATION???]

5.4. Lines at 45◦, 60◦, and 90◦. [{456090} ]
Now we allow any simply signed graph. We want analogs of the results of Cameron,

Goethals, Seidel, and Shult; but now they have to apply to a triple line system rather than
just a system with specified angles.

Lemma 5.6. [{L:linesrs} ] Let L be an indecomposable, star-closed triple system of lines.
Then L is the set of lines generated by an irreducible root system other than G2 and F4[OR
SOMETHING LIKE THAT].
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