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Chapter O. Background and Introduction

Aug 25:
Zaslavsky

These are the notes of an extended course on signed graphs and (eventually) their general-
izations to gain graphs and biased graphs. Briefly, a signed graph is a graph whose edges are
labelled from the sign group, a gain graph has edges labelled (invertibly) from an arbitrary
group, and a biased graph is a combinatorial abstraction of the latter that still preserves
many of its interesting properties without any algebra.

This course is not comprehensive. It is a personal selection of the parts of the theories of
unsigned, signed, and more general graphs that interest me particularly, seem suitable for
an introductory course, and fit into the theme of linear-algebraic structures and geometrical
interpretations. Matroids, which are abstractions of both linear algebra and geometry, lie
behind many of our ideas and results, but they will not be an explicit part of the course.
[Until later, I hope.]

The first part of the course, Chapter I, presents graphs from this point of view. The main
purpose is to show those parts of graph theory that will be generalized in Chapter II. That
chapter is intended to show that and how signed graphs are just like graphs, only more
general. (This statement should not be taken too literally.) For instance, a signed graph
has incidence and adjacency matrices that directly generalize those of an unsigned graph.
Chapter III discusses some of the purely geometrical aspects of signed graphs. Chapter IV
concludes the notes with vast generalizations.

A. Day One

Aug 25:
Simon Joyce

This is a fast overview of graphs, signed graphs, and their equations and hyperplanes.
We begin with a few different definitions of a graph, for discursive purposes. All these

definitions are popular, but in decreasing order. (Of course, the one we use is the least
popular—and the most complicated. We can’t help it.)

Insert picture(s) of graphs here for instructional purposes.

Figure A.1. Pictures of some graphs.
[[LABEL F:0825g]]

Definition A.1. [Simple Graph][[LABEL D:0825simplegraph]] A graph is a pair Γ = (V,E),
where V is a set and E is a subset of P2(V ), the class of unordered pairs of (distinct) elements
of V .

This definition doesn’t account for things like loops, whose endpoints coincide, or parallel
edges, which are edges with the same endpoints as each other, so we need to extend it for
our purposes.

Definition A.2. [Multigraph][[LABEL D:0825multigraph]] A graph is a pair Γ = (V,E),
where V is a set and E is a multisubset of P2(V ).

However, this definition still doesn’t account for loops.
The following definition for a graph is what we will use.
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Definition A.3. [Graph][[LABEL D:0825graph]] A graph is a triple Γ = (V,E, I), where V
and E are sets and I is an incidence multirelation between V and E in which each edge has
incidences of total multiplicity 2.

Definition A.4. [Signed Graph][[LABEL D:0825signedgraph]] A signed graph is a graph
whose edges have signs, + or −. Formally, Σ = (Γ, σ) = (V,E, I, σ), where σ : E → {+,−}.

Insert picture(s) of signed graphs here.

Figure A.2. Pictures of some signed graphs.
[[LABEL F:0825sg]]

Starting at a vertex on a graph we can move along one of its incident edges to another
vertex and repeat the process from the new vertex any number of times, to move around the
graph in any way we please. To describe different ways of moving around a graph we use
the following terms:

• A path has no repeated edges or vertices.
• A trail has no repeated edges.
• A walk may have repeated edges and vertices.
• A circle is a closed path, that is, it has no repeated vertices or edges except that the

initial and the final vertex are the same.

Each edge of a graph implies an equation. The variables correspond to the vertices and
an edge with endpoints vi, vj corresponds to the equation xi = xj in Rn. The family of all
hyperplanes corresponding to all edges, H[Γ], called the hyperplane arrangement generated
by Γ, divides up Rn into regions that have a remarkable combinatorial meaning. For a
signed graph, a positive edge +vivj has hyperplane xi = xj and a negative edge −vivj has
hyperplane xi = −xj. We’ll study the geometry of these arrangements of hyperplanes, both
to learn more about the graph and to use the graph in order to understand the hyperplane
arrangement.

B. As Things Come Up

All kinds of basic background information will be added during the lectures, both in the
beginning of Chapter I and when needed as the lectures progress.
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Aug 27a:
Nate Reff

In this chapter we meet graphs, to develop the understanding and the technical background
for signed graphs. Most of what we say about graphs will generalize later, to the more
advanced topics of signed graphs, gain graphs, and even biased graphs.

A. Basic Definitions

[[LABEL 1.defs]]
Here we meet the basic concepts and vocabulary of our version of graph theory.

A.1. Definition of a graph. [[LABEL 1.defsgraph]]
We give a formal definition in terms of incidence between vertices and edges. This is rather

heavy on notation, so we’ll tend to ignore the technical statement in practice, but it’s what
we mean even when we don’t mention it.

• An incidence multi-relation I between sets V and E is a multi-subset of V × E.
• A graph Γ = (V,E) is an ordered pair consisting of sets V and E with an incidence

multi-relation I between them such that every edge is incident to at most 2 vertices
(not necessarily distinct).
• The elements of V are called the vertices of the graph Γ.
• The elements of E are called the edges of the graph Γ.

An example:
In the figure edge q is incident to vertex v4 twice, so 2 · (v4, q) ∈ I. This is consistent with
our definition since we do not need edges to be incident to distinct vertices.

Valuable notation:

• Always, n := |V |.
• Sometimes, m := |E|.
• V (e) is the multiset of vertices of the edge e.
• Suppose S ⊆ E; then V (S) is the set of endpoints of edges in S.

A.2. Types of edge. [[LABEL 1.edge]]
In the most general definition, there are four kinds of edge in a graph.

• A loop is an edge with two equal endpoints. A notation we often use is e:vv. Another
is evv.
• A link is an edge with two distinct endpoints. A notation is e:vw. Another is evw.
• A half edge is an edge with one endpoint. A notation is e:v.
• A loose edge (or free loop) is an edge with zero endpoints. A notation is e:∅.
• An ordinary edge is a link or a loop.

The set of ordinary edges is E∗ := { links and loops }
A.3. Types of graph. [[LABEL 1.graphtypes]]

There are three essential kinds of graph:

• A simple graph is a graph in which all edges are links and there are no parallel edges
(edges with the same endpoints).
• An ordinary graph is a graph with no half edges or loose edges; that is, all edges are

ordinary.
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Figure A.1. A graph with a loop, but no multiple edges. It is not simple,
because of the loop.

[[LABEL F:0827graph]]

• A link graph is a graph whose edges are links. A simple graph is a link graph and a
link graph is an ordinary graph, but not vice versa, obviously.

Most graph theorists would call these the only kinds of graph, ignoring half and loose
edges. We will need those edges later when we generalize to signed graphs and even further;
but in this chapter, graphs will be ordinary graphs unless we indicate otherwise.

I should confess that a link graph is usually called a multigraph when it isn’t simply called
a “graph”, but both names are also applied to ordinary graphs, where loops are permitted,
so I’m adopting the more specific name. I won’t confuse the reader by listing any other of
the names applied to different kinds of graph.

Special graphs. [[LABEL 1.specialgraphs]]

Aug 29c:
Jackie
Kaminski

Here are some of the main examples of graphs. All of them are simple.

• A complete graph, written Kn, is a simple graph in which every pair of vertices is
adjacent. We write KV when we want a complete graph on a specified vertex set V .
• A bipartite graph is a graph whose vertex set has a bipartition V = V1∪· V2 such that

every edge has one endpoint in V1 and the other in V2. It need not be simple.
• A complete k-partite graph has vertices partitioned into k (non-empty) parts, and

for vertices v, w, if v, w are in the same part, then are no vw-edges. And if v, w are



Section A.5 5

in different parts, there is a vw edge. A complete k-partite graph with part sizes
n1, n2, . . . , nk is denoted by Kn1,n2,...,nk .

Figure C shows a complete tripartite graph with tripartition {x1}, {v1, v2}, {w1, w2}.
Complementation. [[LABEL 1.complements]]

Aug 27:
Zaslavsky

There are three complementations in graph theory: of graphs, of vertex sets, and of edge
sets. I will use a superscript c for all of them, as well as for the complement of an arbitrary
set within a larger set.

• The complement of a simple graph Γ = (V,E) is Γc, whose vertex set is V and whose
edge set E(Γc) := {vw | v, w ∈ V ; v 6= w; vw /∈ E)}. That is, E(Γc) is the set of
edges of KV that are not in Γ.

Only a simple graph has a complement. There is no absolute notation of comple-
mentation for a graph with loops or multiple edges, although one could define the
complement of a subgraph within a graph (but we won’t).
• The notation Xc, when X ⊆ V , denotes the complementary vertex set, V \X.
• The notation Sc, when S ⊆ E, denotes the complementary edge set, E \ S.

A.4. Degree. [[LABEL 1.degree]]

Aug 29c:
Jackie
Kaminski

An edge has a certain number of ends : two for a link or loop, one for a half edge, and none
for a loose edge. To avoid getting lost in notation, we don’t formally define edge ends, but
the reader’s intuition should make the meaning clear. The important points are that a loop,
though it has only one vertex, has two ends, and that the number of ends is the difference
between a loop and a half edge.

Definition A.1. [[LABEL D:0829degree]] The degree or valency of a vertex, denoted by
d(v), is the number of edge ends incident with v.

Hence, a loop adds 2 to the valency (because it has two ends at the same vertex) and a
link or half edge adds 1 to the valency of each endpoint.

See Figure A. [ADD FIGURES]
Notice that the common definition of the valency of v as the number of neighbors of v is

only adequate for simple graphs.

Definition A.2. [[LABEL D:0829isolated]] An isolated vertex is a vertex that has no incident
edges; i.e., a vertex of degree 0.

Definition A.3. [[LABEL D:0829regular]] A k-regular graph is a graph where every vertex
has degree k.

A.5. Types of subgraph. [[LABEL 1.subgraphtypes]]

Aug 27a:
Nate Reff

There are, of course, subobjects in graph theory; not only subgraphs in general, but also
several special kinds.

• A subgraph of Γ is Γ′ such that V ′ ⊆ V , E ′ ⊆ E, has the same incidence multi-relation
between V and E, every endpoint of every edge in E ′ is in V ′, and each edge retains
its type.
• A spanning subgraph is a subgraph Γ′ such that V ′ = V . (Γ′ need not have any edges;

it just must have all the vertices.)
• Γ \ e := (V,E \ e).
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• The deletion of a vertex set, denoted by Γ \X where X ⊆ V , is the subgraph with

V (Γ \X) := V \X and E(Γ \X) := {e ∈ E | V (e) ⊆ V \X}.
The subgraph Γ \X includes all the loose edges, if there are any.
• An induced subgraph of Γ is a subgraph of the following special form: Let X ⊆ V .

The subgraph induced by X is

Γ:X := (X,E:X), where E:X := {e ∈ E | ∅ 6= V (e) ⊆ X}.
We often write E:X as shorthand for (X,E:X). In other words, induced subgraphs
only contain the inducing vertices, not all the vertices of Γ.

Notice that an induced subgraph has no loose edges; this is the difference between
Γ:X and Γ \Xc.
• Similarly, S:X is the set of edges in S that have all of their endpoints in the vertex

set X. We often write S:X as shorthand for the subgraph (S, S:X).

A.6. Vertex sets. [[LABEL 1.specialvsets]]

Aug 29c:
Jackie
Kaminski

Two kinds of vertex subsets are especially important.

• A stable or independent set of vertices is a vertex set that induces the empty set of
edges; that is, W ⊆ V such that E:W = ∅.

In figure C, {x1}, {v1, v2}, {w1, w2} are five stable sets.
• A clique is a vertex set whose members are pairwise adjacent.

A.7. Contraction of an edge. [[LABEL 1.edgecontraction]]

Aug 27a:
Nate Reff

Contraction, intuitively, means shrinking an edge to a point. The two endpoints of a link
therefore become one vertex. Oddly, this intuition fails when it comes to contracting half or
loose edges—which is why I’ll define their contraction here, although it becomes important
mainly in connection with signed graphs in Chapter II. The following descriptions cover the
basics of contracting an edge. (We’ll treat contraction of a set of edges later, in Section C.2.)

The graph Γ with an edge e contracted is denoted by Γ/e.

• Case 1 : For a link e with vertices v and w, Γ/e has v and w identified to a single
vertex and e deleted. Sometimes the identified vertex will be denoted by ve.
• Case 2 : For a loop or loose edge, Γ/e = Γ \ e.
• Case 3 : For a half edge e incident to vertex v, to get Γ/e we remove v and e but

keep all other edges. A link f :vw becomes a half edge f :w. A loop f :vv or a half
edge f :v becomes a loose edge f :∅. All other edges remain as they were in Γ.

Intuitively, I think of contracting a half edge e:v as like cutting the v end off each
edge incident with v, with scissors, and deleting those ends as well as e and v.

Aug 29a:
Jackie
Kaminski B. Basic Structures

[[LABEL 1.importantkinds]]
We introduce here some general kinds of graph and some structures within a graph that

are essential to graph theory.
We start with some definitions. Recall that V (e) is the set of endpoints of the edge e.
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B.1. Walks, trails, and paths. [[LABEL 1.walks]]
There are several different ways to get from one place to another in a graph.

• A walk is a sequence v0e1v1 · · · elvl where V (ei) = {vi−1, vi} and l ≥ 0.
• The length of a walk is the number of edges in it, counted as many times as they

appear. A walk of length zero is just a vertex.
• A closed walk is a walk where l ≥ 1 and v0 = vl.
• A trail is a walk with no repeated edges.
• A path is a trail with no repeated vertex. Sometimes it is called an open path to

distinguish it from a closed path.
• A closed path is a closed trail with no repeated vertex other than that the last vertex

is the first one. Despite the name, a closed path is not a path.

B.2. Connection. [[LABEL 1.connection]]
Two vertices are said to be connected if there exists a path between them. The fundamental

property is this:

Theorem B.1. [[LABEL T:0829connequiv]] The relation of being connected is an equiva-
lence relation on V (Γ).

The proof, which is basic graph theory and is left to the reader, makes use of the next
proposition.

Proposition B.2. [[LABEL P:0829walkconn]] Vertices v, w are connected by a walk ⇐⇒
they are connected by a path.

The proof is also basic graph theory and is left to the reader.
Now we explore the implications for graph structure. Here we are assuming, as we normally

do throughout this chapter, that the graph is ordinary, that is, without half or loose edges. In
this connection (pun intended), half edges are not a problem but loose edges require careful,
special treatment.

• A connected component (or vertex component, or simply component) of Γ is the
subgraph induced by an equivalence class of the connectedness relation on V .
• We write c(Γ) := the number of components (i.e., vertex components). Often, we

write c(E:X) as shorthand for c(X,E:X), the number of connected components in
the subgraph induced by X, and similarly c(S:X) = c(X,S:X) when S ⊆ E.
• We say that Γ is connected if the relation of connection on V has exactly one equiv-

alence class.
• The empty graph, ∅ := (∅,∅) (that is, the graph with no vertices and no edges), is

not connected.
This may seem strange, occasionally even to experienced graph theorists, but it’s

logically correct: the empty graph does not have exactly one connection equivalence
class of vertices.

Aug 27b:
Nate Reff

Connection when there are loose and half edges.
The preceding definitions and properties apply to graphs without loose edges. If we want

to allow loose edges we need more powerful definitions. Here is one approach.
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• A generalized path is a sequence x0x1 . . . xk where the xi’s are alternately vertices and
edges. If xi is a link or a loop with endpoints v and w then {xi−1, xi+1} = {v, w}
(note that these are multisets). If xi is a half edge e:v, it is x0 or xk so that x0x1 = ev
or xk−1xk = ve. Lastly, if xi is a loose edge the path is simply xi.

Similarly, there are generalized walks and trails.
Be aware that a generalized path is not necessarily a path, and also that it is

unconventional. I introduce it only to explain how elements of a graph that are not
necessarily vertices can be considered connected to each other.
• Two elements of Γ, x and y (each of which may be a vertex or edge), are connected

if there exists a generalized path containing both.

The form Theorem B.1 takes in the more general situation is this:

Theorem B.3. The relation of being the same or connected is an equivalence relation on
V ∪ E.

The proof is similar to that of Theorem B.1 so I omit it.
Here are the generalized definitions of connectedness and components:

Definition B.1. [[LABEL Df:0827topcomponent]] A topological component of a graph Γ is
an equivalence class of V ∪ E under the relation of generalized connection.

A component (or vertex component) of Γ is the subgraph induced by an equivalence class
of the connectedness relation on V .

Definition B.2. [[LABEL Df:0827topconn]] We say that Γ is topologically connected if
the relation of connection on V ∪ E has exactly one equivalence class. Equivalently, Γ is
topologically connected if it has exactly one (vertex) component and no loose edges, or it is
a loose edge.

An alternate definition of a topological component of Γ is as a maximal topologically
connected subgraph. Then a component is a topological component that has at least one
vertex.

According to our definitions, a loose edge is not a component. This is admittedly strange.
Sometimes we might want a loose edge to be a component; we defined topological components
to prepare for that possibility, should it ever arise.

Bridges, cutpoints, and blocks.
Bridges are an important concept in connectivity and decomposition of graphs.

Definition B.3. [[LABEL D:1008 bridge]] Let ∆ be a subgraph of a graph Γ. A bridge of ∆
in Γ is a maximal subgraph of Γ that is entirely connected without passing through vertices
or edges of ∆.

Definition B.4. [[LABEL D:1008 block]] A cutpoint of Γ is a vertex with more than one
bridge. A block of Γ is a maximal subgraph of Γ that has no cutpoints. A block (or block
graph) is a graph that has only one block.

Obviously, each block of a graph is a block graph. Indeed, the blocks of Γ are precisely
the maximal block subgraphs.

According to our definition, a vertex is a cutpoint if it supports a loop or half edge and
is incident to any other edge. This is not the only existing definition. In fact, the usual
one is that a cutpoint is a vertex whose deletion, together with that of every incident edge,
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increases the number of connected components. That is equivalent to our definition if one
first removes all loops and half edges; but our definition is better because it has the important
property given in Theorem B.4.

Aug 29b:
Jackie
Kaminski

B.3. Circles and pairs of circles. [[LABEL 1.circles]]

Definition B.5. [[LABEL Df:0829circle]] A circle of Γ is a connected 2-regular subgraph of
Γ which has at least one vertex, or its edge set. Another definition (equivalent to the first)
is that a circle is the graph, or edge set, of a closed path.

For example, any loop is a circle, as is Figure B [FIGURE NEEDED]. We require the
subgraph to have a vertex in order to exclude loose edges as circles.

Please note that a closed path and the graph of a closed path are not quite the same
thing. A closed path has a direction as well as a beginning point. The graph of a closed path
has neither. In another direction there is real ambiguity in our use of the term ‘circle’, as
sometimes we mean the edge set, sometimes the graph; but the context should always make
the meaning clear.

We denote by C(Γ) the set of circles of a graph Γ.
A main theorem of graph theory concerns the relation of belonging to a common circle.

Theorem B.4. [[LABEL T:1008 blocks and circles]] Given a graph Γ and e1, e2 ∈ E(Γ), e1

and e2 are in the same block of Γ if and only if there is a circle in Γ that contains both e1

and e2.

The smallest graphs with two circles are two vertex-disjoint circles, and two circles whose
intersection is a single vertex. There is a third kind of graph that, in a sense, has only two
independent circles, namely, a theta graph, which is the union of three internally disjoint
paths between two distinct vertices. This graph has three circles, but any one of them is the
set sum of the other two. Theta graphs have an absolutely fundamental role in the entire
theory of signed graphs and their graphic generalizations.

FIGURE OF THETA GRAPH

Figure B.1. A theta graph.

B.4. Trees and their relatives. [[LABEL 1.trees]]
Graphs without circles, or with a unique circle, will play a large role in our work, the

latter especially in the later chapters. Some basic definitions:

• A tree is a connected graph which does not contain a circle (as a subgraph).
• A forest is a graph which does not contain a circle (as a subgraph).

Or equivalently, we can define a forest as a graph whose components are all trees.
Please refer to Figure C.

• Observations:
A tree is a connected forest.
An empty graph (no vertices or edges) is a forest, but is not a tree. Recall that a

connected graph must have exactly one connected component.
• A spanning forest is a spanning subgraph of Γ which is a forest.

Observe that for any Γ = (V,E), the graph (V,∅) is a spanning forest for Γ.
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• Similarly, a spanning tree is a spanning subgraph of Γ which is a tree.
Disconnected graphs do not contain any spanning trees.

• A maximal forest is a forest which is not properly contained in any other forest.
Please refer to Figure C.

As an aside, please don’t confuse maximal, which means not properly contained in any
other object (or set) of the same type, with maximum, which means having the most elements.
For forests in a graph, however, they come to the same thing.

Theorem B.5. [[LABEL T:0829maxforest]] All maximal forests in Γ have the same number
of edges, namely n− c(Γ), where n = |V |.

This theorem is elementary, yet not so easy to prove. For a proof see any graph theory
textbook. (If you know matroid theory, notice that it is equivalent to the fact that every
basis of the graphic matroid has the same size.) Usually, Theorem B.5 is combined with
other fundamental properties of maximal forests, as in the following list:

Theorem B.6. [[LABEL T:0829forest]] For an edge set S in Γ, the following properties are
equivalent:

(i) S is a maximal forest (a maximal edge set that contains no circles).
(ii) S is a minimal edge set that connects everything within each component of Γ.

(iii) S has n− c(Γ) edges and connects everything within each component of Γ.
(iv) S has n− c(Γ) edges and contains no circles.

Furthermore:

(1) Γ contains a spanning tree ⇐⇒ it is connected.
(2) A maximal forest consists of a spanning tree of each component of Γ.

The proof is left to the reader—or, see any graph theory textbook.
By definition, the edges not in a maximal forest are the ones that make the circles in Γ.

Thus, the number of non-forest edges is, in a sense that can only be made precise through
the binary cycle space (Section J.1), the number of independently generated circles of the
graph. We call this number the cyclomatic number of Γ; that is,

ξ(Γ) := |E| − |E(T )| where T is any maximal forest

= |E| − n+ c(Γ).

The cyclomatic number of an edge set S is that of the subgraph (V, S), thus |S| − n+ c(S).

Tree-like graphs. [[LABEL 1.treelike]]
Other tree-like graphs are:

• A 1-tree is a tree with one extra edge (not a loose edge). That is, it is a connected
graph with cyclomatic number 1 (except that we allow half edges in this definition).
See Figure D.
• A 1-forest is a graph where every component is a 1-tree.
• A pseudotree is a graph which is a tree or a 1-tree.
• A pseudoforest is a graph in which every component is a pseudotree.
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C. Deletion, Contraction, and Minors

A subgraph is “contained” in the graph in the sense of subsets. There are several other
ways a graph can “contain” another. The most important is called “containment as a minor”.
We say Γ1 contains Γ2 as a minor if we can get Γ2 from Γ1 by any process of repeatedly
taking subgraphs and contracting edge sets. Taking a subgraph, which is the same thing as
deleting edges and vertices (so it is often called “deletion”), is easy; the complicated part of
minors is the operation of contraction.

C.1. Deletion. [[LABEL 1.deletionreview]]
We saw several kinds of deletion in Section A.5. The most important for minors is deletion

of an edge e or an edge set S, written Γ \ e or Γ \ S. There is also deletion of an isolated
vertex. We can get any subgraph of Γ by first deleting the edges not in the subgraph and
then deleting any isolated vertices that are not in the subgraph; every remaining vertex,
including all non-isolated vertices, must be in the subgraph.

C.2. Contraction. [[LABEL 1.contractionbyset]]
[(Most notes are from an earlier class.)]
We are now restricting ourselves to ordinary graphs again.

• We already defined how to contract a link, loop, half edge, and loose edge.
Refer to Figure D for a visual representation of contraction by a single edge.

• The contraction of Γ by an edge set S ⊆ E is denoted by Γ/S = (V/S,E \ S). It
is equivalent to a sequence of edge contractions by the edges in S. It can be shown
that the resulting graph is the same regardless of the order in which the edges are
contracted (provided you aren’t too pedantic about the naming of vertices in the
resulting graph). Proving this certainly takes some work but is left to the reader.

See Figure E for an example.
• For a graph Γ, let π(S) := the partition of V such that each block is the vertex set

of a (connected) component of (V, S). (Partitions and their blocks are defined in
Section D.1.) In other words, V (Γ/S) is π(S). We will let [v] denote the block of
π(S) containing the vertex v.

See Figure F.
• An edge f of the contraction Γ/S is f ∈ E \ S, and for V (f) = {v, w}, f in Γ/S has

endpoints [v], [w].

Sept 3a:
Yash Lodha

C.3. Minors. [[LABEL 1.minors]]
A minor of Γ is defined as a contraction of a subgraph of Γ. It turns out that the order

of contracting and taking subgraphs makes no difference.

Theorem C.1. Any graph obtained from a graph Γ by a series of edge contractions and
deletions and vertex deletions is a minor of Γ.

We’ll prove more general theorems later, in Chapters II and IV [GAINS chapter], so I
omit the proof here.

The following theorem is one of the main ways in which minors are used. It characterizes
the graphs that embed in a surface in terms of forbidden minors. Each successive part is
much harder to prove. The general name for these results is “Kuratowski-type theorems”.
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Theorem C.2 (Kuratowski-type theorems). [[LABEL T:0903kuratowski-type]] Let Γ be a
graph.

(1) [Kuratowski (mainly) and Wagner] Γ is planar iff Γ does not contain either K5 or
K3,3 as minors.

(2) [Archdeacon, Glover, and Huneke] Γ is projective planar iff Γ does not contain as a
minor any of a list of 35 graphs.

(3) [Robertson and Seymour] Γ embeds in a surface S iff Γ does not contain as a minor
any of a finite list of graphs, which depends on S.

D. Closure and Connected Partitions

[[LABEL 1.closure]]
One of the chief ideas in our treatment of graphs is the closure of an edge set, which

corresponds to objects in graph invariants and graphical geometry.

D.1. Partitions. [[LABEL 1.partitions]]
A partition of a set V is a class π of subsets of V , called the blocks or (sometimes) parts

of π, such that

(1) the union
⋃
B∈π B equals V ,

(2) any two blocks are disjoint, and
(3) each block B ∈ π is nonvoid.

(The last property means that, if we want to allow empty blocks, we do not have a partition.)
The size of π is the number of blocks, k. The only partition of the empty set, X = ∅, is
π = {}. In all other cases k ≥ 1. The partition 1̂ = 1̂V := {X} with one block is called the
trivial partition; the partition in which every block is a singleton, 0̂ = 0̂V :=

{{x} : x ∈ X},
is the total partition. Every set except ∅ has a trivial partition; every set has a total partition.

It is unfortunate that the term ’block’ conflicts with the graph-theoretic usage, but it’s
too late to change so we’ll have to live with it.

We define

ΠV := {all partitions of V } and Πn := Π[n].

Partitions of V are partially ordered by refinement, namely, π ≤ τ (π refines τ) if each block
of π is contained in a block of τ . In ΠV , the unique minimum element is 0̂ and the unique
maximum element is 1̂ (if V 6= ∅).

Now let V be the vertex set of a graph Γ. We say π ∈ ΠV is connected (in Γ) if each block
B ∈ π induces a connected subgraph. Let

Π(Γ) := the set of connected partitions of V.

We define the partition of V induced by an edge set S as π(S) := π(V, S) := the partition of V
into the subsets which are the vertex sets of the connected components of S, that is, of (V, S).
That is, the blocks of the partition are the equivalence classes of the connection relation of
V in the subgraph (V, S). Closed sets are intimately related to connected partitions.

D.2. Abstract closure. [[LABEL 1.abstractclosure]]
We now remind ourselves of the definition of an abstract closure operator on E.

Definition D.1. [[LABEL D:0903closure]] An abstract closure operator is a function P(E)→
P(E), written S 7→ S, such that the following axioms hold for subsets S and T of E:
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(1) Increase: S ⊆ S. [[LABEL R:0903clos1]]

(2) Isotonicity: S ⊆ T =⇒ S ⊆ T . [[LABEL R:0903clos2]]

(3) Idempotency: S = S. [[LABEL R:0903clos3]]

A set S ⊆ E is called closed if S = S.

The closed sets when ordered by inclusion form a partially ordered set (poset) which is
closed under set intersection and includes the universe E. (Those two properties characterize
classes of abstractly closed sets.) This poset is a lattice which is described precisely by a
standard result.

Proposition D.1. [[LABEL P:0908meetjoin]] For any abstract closure operator on E, the
class of closed subsets forms a lattice with meet and join defined as follows: For S, T closed
subsets of E, S ∧ T = S ∩ T and S ∨ T = clos(S ∪ T ).

D.3. Graph closure. [[LABEL 1.graphclosure]]
There is a natural operation of closure on the edges of a graph.

Definition D.2. [[LABEL D:0903graphclosure]] In an ordinary graph Γ, for S ⊆ E, the
closure of S is

closS := S ∪ {e : the endpoints of e are joined by a path in S}.
Equivalently, there is a circle C ⊆ S ∪ e such that e ∈ C. We say S ⊆ E is closed if
clos(S) = S.

Notice that it is redundant to list S in the definition of clos(S), since the endpoints of an
edge of S are always connected in S. The restatement in terms of circles, though easy to
prove, is more fundamental than might appear at first sight, as we shall see in Chapters II
and IV [GAINS chapter].

One should keep in mind that Proposition D.1 holds for the closure operator in a graph.
The graph closure operator obeys, besides the abstract closure properties (1–3), a very

important fourth property, the exchange property :

(4) Let S be a closed subset of E. If e, f /∈ S and e ∈ f ∪ S, then f ∈ e ∪ S.

(The proof is a nice exercise.) Those familiar with matroids will know that the exchange
property is what makes the closure operator on edges a matroid closure.

Recall that S:B is the set of edges in S with all of their endpoints in the vertex set B.

Theorem D.2. [[LABEL T:0903indclosure]] For S ⊆ E, closS =
⋃
B∈π(S) E:B.

Proof. An edge e is in E:B for some B ∈ π(S) ⇐⇒ e has both endpoints within one block
B of π(S) ⇐⇒ the endpoints of e are connected by S ⇐⇒ e ∈ closS. This establishes
the partition formula for closure. �

Theorem D.3. [[LABEL T:0903closedptns]] The poset of closed sets ordered by inclusion
is isomorphic to the poset Π(Γ) of connected partitions of Γ ordered by refinement.

Proof. Theorem D.2 presents a bijection between closed edge sets and connected partitions
of Γ. It is clear from the definitions of partition ordering and connected partitions that the
bijection is order preserving. �

Sept 8a:
Jackie
Kaminski
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D.4. Edge sets induced by partitions. [[LABEL 1.partitionsedges]]
Recall that Π(Γ) is the set of all connected partitions of V , i.e., for π ∈ Π(Γ) and B ∈ π,

any two vertices in B are connected in Γ:B. We notice immediately that for any S ⊆ E, the
partition π(S) ∈ Π(Γ). This observation allows us to define a function π : P(E)→ Π(Γ) by
S 7→ π(S). We now present a definition followed by a lemma about π.

Definition D.3. [[LABEL D:0908Epi]] For any partition π of V , E(π) := E:π :=
⋃
B∈π E:B.

We apply this definition mainly to connected partitions, because when π is not a connected
partition some of the terms in the union are not connected and some may be empty. The
following lemma is only for connected partitions.

Lemma D.4. [[LABEL L:0908clos]] For each π ∈ Π(Γ), π(E:π) = π. Furthermore,
E:π(S) = clos(S).

Thus, from π(S) we can’t in general recover S, but we can always recover clos(S).

Corollary D.5. [[LABEL C:0908piofclos]] π(clos(S)) = π(S).

Proof. Let π(S) = {B1, . . . , Bk}. From Theorem D.2, clos(S) =
⋃k
i=1E:Bi. Each part in

π(clos(S)) will be the vertex set of a maximal connected component of
⋃k
i=1E:Bi. These

are precisely the sets Bi. �

Corollary D.6. [[LABEL C:0908piEpi]] For any S ⊆ E, π(E:π(S)) = π(S).

Proof. By definition E:π(S) =
⋃
B∈π(S) E:B, and similarly π(E:π(S)) = π(

⋃
B∈π(S) E:B),

which is precisely π(S) since each E:B is connected. �

We supplement Theorem D.2 with two further characterizations of closed sets, which follow
immediately from that theorem and Corollary D.5.

Corollary D.7. [[LABEL C:0908indclosure]] An edge set S is closed ⇐⇒ it equals E:π
for some π ∈ Π(Γ) ⇐⇒ it equals E:π for some π ∈ ΠV . �

D.5. Lattices. [[LABEL 1.lattices]]
Whenever S ⊆ S ′ ⊆ E, then π(S) is a refinement of π(S ′), that is to say, each of the parts

of π(S) is contained in a part of π(S ′). Readers familiar with partitions of a set V will think
of the last statement as π(S) ≤ π(S ′); this defines a partial ordering of partitions called
the refinement ordering. It is well known that the set Π(V ) of all partitions of V with the
refinement ordering forms a lattice. It is left to the reader to check that the set of connected
partitions also forms a lattice in which the meet operation is the same as in Π(V ) and the
join operation is τ ∨ τ ′ = ∧{π ∈ Π(Γ) : π ≥ τ, τ ′}.

When τ, τ ′ are two partitions of V such that τ ≤ τ ′ (ordered by refinement), then E:τ ⊆
E:τ ′. Here we remind the reader that P(E), ordered by set inclusion, is also a lattice with
the intersection and union operations. These observations and the following definition lead
us to our next theorem.

Definition D.4. [[LABEL D:0908lattice]] Lat(Γ) is the class whose members are the closed
edge sets of Γ, ordered by containment.

Theorem D.8. [[LABEL T:0908LatIso]] Π(Γ) ∼= Lat(Γ). Specifically, π : Lat(Γ) → Π(Γ)
is an order isomorphism.
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Proof. We already noted that S ⊆ S ′ ⊆ E =⇒ π(S) ≤ π(S ′) and that for τ, τ ′ ∈ Π(Γ),
τ ≤ τ ′ =⇒ E:τ ⊆ E:τ ′. So all that’s left to show is that π is a bijection between the
connected (vertex) partitions of Γ and the closed (edge) subsets of Γ.

To see that π is injective, let S, S ′ be closed subsets of E, and assume π(S) = π(S ′). By
Theorem D.2, S = E:π(S) = E:π(S ′) = S ′. To see that π is surjective, we notice that for τ
a (connected) partition of Γ, E:τ is closed by Theorem D.2. This completes our proof. �

Sept 3b:
Yash Lodha

E. Incidence and Adjacency Matrices

[[LABEL 1.matrices]]
Incidence and adjacency matrices let graph theory benefit from the use of matrix theory.

E.1. Incidence matrices. [[LABEL 1.incidmg]]
An incidence matrix describes the incidence relation between vertices and edges. A graph

has two kinds of incidence matrix.

Definition E.1. [[LABEL D:0903orincidencematrix]] An oriented incidence matrix of a
graph is a V ×E matrix H(Γ) (pronounced ‘Eta’) which has, for each edge e, in the column
labelled by e, an entry ηij = +1 at the row of one endpoint and an entry ηij = −1 at the
other endpoint, with 0s elsewhere. If e is a loop incident with vi, the entry ηij = 0 (yes, the
whole column is 0).

There are many different oriented incidence matrices of a graph, in fact, 2m
′

where m′ is
the number of links (and half edges, if allowed).

Definition E.2. [[LABEL D:0903unorincidencematrix]] The unoriented incidence matrix
B(Γ) is a V × E matrix. The entry bij = 0 if the edge ej is not incident with the vertex vi,
and bij = 1 if ej is incident with vi. If e is a loop incident with vi, the entry ηij = 2.

The incidence matrix most commonly seen in graph theory is the unoriented one. However,
its proper place is with signed graphs, as we shall see in Section II.G. For our line of interest,
the right graphical incidence matrix is the oriented one. Most of the reason is the relationship
between linear dependence of columns in the matrix and graph structure to be developed
in Lemmas G.3 and G.4. The fact, which the reader will have noticed, that the oriented
incidence matrix is uniquely defined only up to negating columns, does not affect column
linear dependence.

The oriented incidence matrix has rank n − c(Γ), hence nullity |E| − n + c(Γ), the cy-
clomatic number; we shall prove this as a special case of a signed-graph theorem in Section
II.G. [Make reference more specific when the theorem gets into the notes. NB:
MISSING S.G. THEOREM!]

E.2. Adjacency and valency (degree) matrices. [[LABEL 1.adjmatrix]] [FORMERLY
1.adjmg]

Let V (Γ) = {v1, v2, ..., vn}.
Definition E.3. [[LABEL D:0903adjacencymatrix]] The adjacency matrix A(Γ) is the n×n
matrix (aij) defined by the rules:

• For a simple graph, the entry aij = 1 if vi and vj are adjacent and 0 if they are not.
Thus aii = 0.
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• For an arbitrary ordinary graph, aij is the number of edges that join vi with vj, but
with a loop counting twice, once for each end.

The degree matrix or valency matrix D(Γ) is a V × V diagonal matrix where the entry
dii is the degree of the vertex vi, while the off-diagonal entries are 0. Remember that a loop
counts 2 in the degree, while a half edge counts 1. The next theorem is not quite correct if
there are half edges.

Theorem E.1. [[LABEL T:0903incidence-adjacency]] The adjacency, degree, and incidence
matrices are related by the formula A(Γ) = D(Γ)− H(Γ)H(Γ)T = B(Γ)B(Γ)T −D(Γ).

Proof. To prove that HHT = D − A we check the cases i 6= j and i = j separately when
multipying the ith row of H with the jth column of HT. One should pay special attention
to the diagonal when there are loops.

The proof for B is similar. �

We’ll have a more detailed proof when we get to the signed-graph generalization, Theorem
G.10 in Section G.3.

Sept 5:
Peter Cohen
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F. Orientation

[[LABEL 1.orientation]]

F.1. Orienting a graph. [[LABEL 1.orienting]]

If we have a graph Γ, we orient it by giving every edge a direction. We write ~Γ for an
orientation of Γ.

The notation for an oriented edge can be a bit tricky. We could write v1v2, or −−→v1v2,but
this presents a problem with parallel edges. We will call an oriented edge ei:

−−→v1v2.
The direction of an edge is drawn as an arrow on the edge. Formal notation is more

complicated and is best explained in terms of the incidence matrix; see Section F.2.
I distinguish between an “oriented edge” and a “directed edge”, although in many ways

they are the same. An orientation is not inherent in the edge but is imposed on it for some
purpose. In a directed edge the direction is inherent. Especially, a directed edge can only
be traversed in the direction of the edge, but an oriented edge can be traversed in either
direction, with or against its orientation. An oriented graph is a graph whose edges happen
to be oriented in some way that may vary; a directed graph or digraph is a graph where each
edge has a fixed direction.

A key concept is coherence of an oriented walk, especially a circle. A walk in an oriented
graph is coherently oriented if every two consecutive edges are coherent. Two consecutive
edges, incident at a vertex v, are coherent or consistent if their directions agree, i.e., one of
them is directed into v and the other is directed out of v. If the walk is closed, its last and
first edges are considered consecutive at the initial vertex; we say it is a coherently oriented
closed walk if its orientation is consistent at that vertex as well as at all others.

Definition F.1. [[LABEL Df:0905cycle]] A cycle in an oriented graph is a circle that is
oriented so each vertex is consistent. An orientation of Γ is acyclic if it has no cycles, cyclic
if it has at least one cycle, and totally cyclic if every edge belongs to a cycle.
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Directing a circle means giving the circle as a whole a direction. This is a completely
separate property of the circle from directions on the edges.

Suppose we linearly order the vertex set V , e.g., by numbering the vertices from 1 to n.
We get an orientation of Γ by directing each edge e:vw from the lower to the higher endpoint.
(A loop is oriented either way.) This orientation is acyclic if Γ has no loops. It is obviously
uniquely determined by the linear ordering of V ; on the other hand, different linear orderings
may yield the same acyclic orientation.

Theorem F.1. [[LABEL T:0903acyclic]] Every acyclic orientation arises from a linear or-
dering of the vertices.

Hence there is an equivalence in that statement above.
In an oriented graph there are two special kinds of vertices. A sink is a vertex with only

entering edges. A source is a vertex with only departing edges. The extreme case is an
isolated vertex, which is both a source and a sink.

Lemma F.2. [[LABEL L:0903sourcesink]] Every acyclic orientation has a source and a sink.

Proof. We start on an edge and walk along a path following edge directions. If we repeat a
vertex we form a cycle, which contradicts the assumption that our graph is acyclic. If we
never repeat a vertex in our path, then since |V | is finite we must end our path at a vertex
that only has entering edges. This proves the existence of a sink.

To prove the existence of a source, reverse the orientations of all edges. A sink in the
reversed graph is a source in the original orientation. Alternatively, apply the previous
argument in reverse. �

Proof of Theorem F.1. We perform induction on |V |. If ~Γ is acyclic, then it must have a sink

s. Then by our inductive hypothesis ~Γ\s is acyclic and has an ordering v1 < v2 < · · · < vn−1

The ordering for ~Γ is v1 < v2 < · · · < vn−1 < s. �

A total ordering of V is not necessary for constructing an acyclic orientation. [I will
discuss an example once I learn graphics in Tex.] In fact a partial ordering can suffice
for providing us with a corresponding acyclic orientation of the graph.

Theorem F.3. For each ~Γ, there exists a smallest partial ordering of V that gives the
orientation ~Γ. The linear orderings that give ~Γ are precisely the linear extensions of that
smallest partial ordering.

An important example is the complete graph.

Example F.1. [[LABEL X:0903kn]] Acyclic orientations of Kn. Every partial ordering of
V that gives Kn as its comparability graph is a chain (a total ordering). There are n! of
these, one for each permutation of V .

Corollary F.4. The acyclic orientations of Kn correspond bijectively to the permutations
of V in a natural way.

Proof. The correspondence is that a total ordering of V implies an orientation of each edge
from lower to higher.

Conversely, suppose Kn is acyclically oriented. Then there is a corresponding partial
ordering of V , but it is a total ordering because every pair of vertices is comparable. �
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Example F.2. [[LABEL X:0903compar]] A comparability graph is the graph of all compa-
rability relations in a poset. This means that the vertex set is the set of elements of the
poset, and we connect elements u, v with an edge if u, v are comparable.

There is an extensive literature on comparability graphs. A good, readable source is
Golumbic’s [PG].

Thus, we can think of an acyclic orientation of a graph as a generalization of a permutation.
This point of view gives interesting insights into the regions of the hyperplane arrangement
associated with a graph. See Section G.3.

An orientation that is not acyclic is called cyclic. But we can also have a totally cyclic
orientation, where every edge is in a cycle. (Totally cyclic orientations are dual to acyclic
orientations; but to explain this properly we want either planar graph duality or the theory
of oriented matroids, which are outside our scope.)

Proposition F.5. Γ has an acyclic orientation iff it has no loops. Γ has a totally cyclic
orientation iff it has no isthmi.

Partial proof. We prove the first part. A loop is necessarily a cycle. Conversely, if there are
no loops, we get an acyclic orientation from any linear ordering of V . �

F.2. Incidence matrix. [[LABEL 1.omatrix]]
An oriented graph, in contrast to an unoriented graph, has a unique incidence matrix,

because the orientation of an edge tells us how to determine the signs in its column of the
matrix..

Definition F.2. [[LABEL D:0903orincidence]] An incidence matrix of an orientation of a
graph has, for each edge e, in the column denoted by e, an entry of +1 at the row of its head
vertex and an entry of −1 at the tail.

Thus, an incidence matrix H(~Γ) of an orientation of Γ is one of the oriented incidence ma-
trices of Γ, and an oriented incidence matrix of Γ is the incidence matrix of some orientation
of Γ.

Sept 8b:
Jackie
KaminskiG. Equations and Inequalities from Edges

G.1. Arrangements of hyperplanes.
Now we think of the edge set of Γ as {v1, . . . vn}, and we begin by considering only ordinary

graphs Γ. We define

hij := {x ∈ Rn | xi = xi}.
When i 6= j, hij is clearly a hyperplane (a codimension-1 linear subspace) of Rn. We will
refer to hii, which is all of Rn since it corresponds to the equation xi = xi, as the “degenerate
hyperplane”, because it will be convenient later to allow it as one of a family of hyperplanes.

Definition G.1. [[LABEL D0908hyp]] An arrangement of hyperplanes is a finite set (or
multiset) of hyperplanes in Rn.

Definition G.2. [[LABEL D0908HypGamma]] H[Γ], the hyperplane arrangement induced
in Rn by Γ, is the multiset of hyperplanes {hij | e:vivj ∈ E}. (Recall that n = |V |.)
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We notice that each loop in Γ corresponds to the degenerate hyperplane. And furthermore
we note the obvious correspondence between the multiset H[Γ] and the edges of Γ. In fact
there are many equivalent points of view we can take, as we notice the following (bijective)
correspondences, that we describe on elements, but they extend naturally to their respective
sets.

• The edge e:vivj ←→ the equation xi = xj.
• xi = xj ←→ the hyperplane hij in Rn, by geometry.
• e:vivj ←→ column ce in H(Γ). (Recall that H(Γ) is the incidence matrix of Γ.) This

correspondence is immediate from the definition of H(Γ).
• Column ce in H(Γ) ←→ the equation xi = xj, by vector space duality.

Before looking into further correspondences, we set up a bit more terminology.

Definition G.3. [Region of A] [[LABEL D:0908region]] For an arrangement A of hyper-
planes in Rn, a region of A is a connected component of Rn\⋃A∈AA. Thus, if there is a
degenerate hyperplane in A, then A has no regions.

Now we define

L(A) := {⋂ S | S ⊆ A},

which we will later see is a lattice, and we will later have a theorem saying L(H[Γ]) ∼=
Lat(Γ) ∼= Π(Γ), where the lattice isomorphisms are all natural. This will eventually allow
us to switch between the perspectives of geometry, lattices, and graphs. Furthermore we
can think of any of the correspondences above as correspondences between subsets instead
of between individual elements.

Finally, we close with two lemmas that we will revisit later.

Lemma G.1. [[LABEL L:0908closspan]] For e ∈ clos(S), ce ∈ 〈cf : f ∈ S〉.

Lemma G.2. [[LABEL L:0908hypintersection]] For S ⊆ E,
⋂

H[S] =
⋂

H[clos(S)].

This second lemma is the vector dual of the first.

Sept 10:
Nate Reff

G.2. Graphic hyperplane arrangements and the intersection lattice. [[LABEL 1.graphichyp]]

Lemma G.3. [[LABEL L:0910lemma1a]] e ∈ clos(S) =⇒ ce ∈ 〈cf : f ∈ S〉.

Proof. Let’s draw a nice picture to see how things work.
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v1 v2

v3 v4

v5

v6

v7 v8

v9

e

P (in S)

S

The red lines denote edges of S ⊆ E in a graph Γ = (V,E). If e ∈ (clos(S)\S) as in
the picture, then there exists a path P ⊆ S such that there is a circle. We will show that
〈cf : f ∈ S〉. Because e ∈ (clos(S)\S) and thus e ∈ clos(S), there exists a path P = v1v2 · · · vl
connecting the two endpoints of e. Now let’s label the vertex set in such a way that we start
at v1, one endpoint of e and traverse P until we reach the other endpoint of e, vl (in our
particular example, v6). Then arbitrarily assign the remaining vertices. If we do this then
the columns of P ∪ e are the following:



1 0 0 . . . 0 1
−1 1 0 . . . 0 0

0 1 1 . . .
...

...
...

...
. . . . . .

...
...

0 0 0 . . . −1 −1
0 0 0 0 0 0
...

...
...

. . .
...

...


,

where the columns of the matrix correspond to {e1, e2, . . . , el, e} and the rows correspond to
v1, v2, . . . , vl, vl+1, . . ..

Then ce = ce2 + ce3 + · · ·+ cel , so ce is spanned by the column vectors of edges in S. �

Lemma G.4. [[LABEL L:0910lemma1b]] ce ∈ 〈cf : f ∈ S〉 =⇒ e ∈ clos(S).

Proof. Suppose e /∈ clos(S). Then the endpoints of e belong to different components of
(V, S), simply because there is no path in S connecting the endpoints.

Now, for a working example, let’s consider the following graph Γ:
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The incidence matrix H(Γ) looks like this, where O is a zero matrix, and 0 is a column vector
of zeros:

(V1)

(V2)

(V3)

(V4)

(V5)

(S1) (S2) (S3) (S4) (S5) (e) (Sc \ e)

H(S1:V1) O O O O


0
...
1
...
0

 ∗

O H(S2:V2) O O O


0
...
−1
...
0

 ∗

O O H(S3:V3) O O 0 ∗

O O O H(S4:V4) O 0 ∗

O O O O H(S5:V5) 0 ∗



,

where the columns of the matrix are indexed by the edges of S1, S2, S3, S4, S5, e, and Sc \ e;
the rows of the matrix are indexed by the sets V1, V2, V3, V4, V5; and the column of ∗’s
stands for H(Sc \ e). The nonzero entries in column ce are, in the rows of V1, in row v, and
in the rows of V2, in row w.

Now we return to the general proof. Suppose e:vw has v ∈ V1 and w ∈ V2, and that there
is a sum

∑
ei∈S αicei = ce. The edges in a component Sj of S which doesn’t contain an

endpoint of e have to add up to zero in the sum, so they can be ignored. Thus, looking only
at the rows of V1, ∑

ei∈S1

αici +
∑
ei∈S2

αici = ce,

where for brevity we write ci for the column of ei.
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Looking only at the rows of V1, we note two facts. First, let c′i and c′e denote just the V1

rows of ci and ce. Then

(G.1) [[LABEL E : 0910S1]]
∑
ei∈S1

αic
′
i =


0
...
1
...
0

 .

Second, all columns in S1, restricted to the rows of V1, have entries that sum to zero, so if
we add up all the rows in Equation (G.1), the left-hand side of the equation sums to 0 and
the right-hand side sums to 1. This is a contradiction! Hence there does not exist a linear
combination which is equal to e. Therefore we can say that e ∈ clos(S). �

Lemma G.5. [[LABEL L:0910lemmaSubLemma]] For a hyperplane He ∈ H[Γ],
⋂

H[S] ⊆
He ⇐⇒ e ∈ clos(S).

Lemma G.6. [[LABEL L:0910lemma2]]
⋂

H[S] =
⋂

H[clos(S)].

Proof. Use Lemma G.5, and dualize Lemmas G.3 and G.4. �

We define a subset S ⊆ E to be dependent if there exists an e ∈ S such that e ∈ clos(S\e).
Proposition G.7. S is independent ⇐⇒ S is a forest.

Proof. This is immediate from the definition of closure. �

Theorem G.8. [[LABEL T:0910thm1]] Let S ⊆ E. S is independent in Γ (so S is a forest)
⇐⇒ the columns of S in H(Γ) are linearly independent.

Proof. Immediate corollary of Lemmas G.3 and G.4. �

We define a linearly closed set of columns to be the intersection of {ce : e ∈ E} with a
subspace of F n.

Corollary G.9. [[LABEL C:0910cor1]] The closed edge sets ←→ the linearly closed sets of
columns of H(Γ).

Theorem G.10. [[LABEL T:0910thm2]] There are natural isomorphisms Π(Γ) ∼= Lat(Γ) ∼=
{linearly closed sets of columns} ∼= L(H[Γ]).

Proof. This follows from the relationships we’ve already seen among the various lattices and
closures. �

Corollary G.11. [[LABEL C:0910geomlattice]] Lat Γ and Π(Γ) are geometric lattices.

Proof. The intersection lattice is dual to the lattice of vector spaces spanned by columns of
the incidence matrix, which is known to be a geometric lattice. (See [Oxley], for instance.)

�

G.3. Regions and Orientations. [[LABEL 1.regions]]
An orientation of Γ defines a positive side of each hyperplane hij ∈ H[Γ], called the positive

half-space of the hyperplane. If we orient e:vivj from vi to vj, the positive half-space is the set
{x ∈ Rn : xi < xj}. For each orientation, therefore, there is a family of positive half-spaces.
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Lemma G.12. [[LABEL L:0910lemma3]] A cyclic orientation of Γ gives an empty intersec-
tion of positive half-spaces.

Proof. Suppose that a graph Γ has a cycle on edges e1:v1v2, e2:v2v3, . . . , el:vlvl+1, where
vl+1 = v1. We may assume ej is oriented from vj to vj+1. Then the corresponding positive
half-space for each ej is the set {x ∈ Rn : xj < xj+1}. Therefore the intersection of all the
positive half spaces is {x ∈ Rn : x1 < x2 < . . . < xl < x1} = ∅. �

v1

v2 v3

h23 h13

h12

(a)                                                (b)  

Figure G.1

An example illustrates the proof. Suppose that the graph Γ = K3 is oriented cyclically,
as in (a) of Figure G.1. The corresponding orientation on each hyperplane is shown in (b).
By the definition of the positive half space, the corresponding intersection of all the positive
half spaces is {x ∈ R3 : x3 > x2 > x1 > x3} = ∅.

Thus, any region is the intersection of positive half-spaces in a unique orientation of Γ,
which is necessarily acyclic.

Theorem G.13. [[LABEL T:0910thm3]] The intersection of positive half-spaces of an ori-
entation of Γ is empty if the orientation is cyclic, but it is a region of H[Γ] if the orientation
is acyclic.

Proof. In the cyclic case we just use Lemma G.12. In the acyclic case the orientation corre-
sponds to a linear ordering of vertices, say v1 < v2 < . . . < vn. Then (1, 2, . . . , n) will be in
the intersection of positive half-spaces. Therefore the intersection is nonempty, and in fact
a region. �

Sept 12a:
Simon Joyce H. Chromatic Functions

[[LABEL 1.chromatic]]
Coloring a graph has inspired all kinds of remarkable developments. We’ll concentrate on

counting colorations and how it leads to algebraic properties that apply more widely than
to coloring, but first we have to know what it means to color a graph.

To explain the section title: I call a chromatic function (or a dichromatic function, a term
that will be explained later in this section) any function that depends on coloring or that
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satisfies the main algebraic laws that apply to the chromatic polynomial (another term that
will be explained in this section).

H.1. Coloring. [[LABEL 1.coloring]]
Given a graph Γ, a coloration (or coloring) of Γ in k colors is a function γ : V → Λ, a

set of k colors. It doesn’t matter for the definition exactly which k-element set Λ is, but
often enough it is best to choose it to be the set [k] := {1, 2, . . . , k} of the first few positive
integers.

An edge e:vw is proper if γ(v) 6= γ(w) and a coloration is proper if every edge is proper.
For example, a graph with a loop can’t ever be properly colored. Any coloration γ of a graph
Γ has a set of proper edges and a set of improper edges. We will call the set of improper
edges I(γ).

H.2. Chromatic number. [[LABEL 1.chromaticnumber]]
We say a graph is k-colorable if there exists a proper coloration in k colors.

Definition H.1. [[LABEL D:0912 chrom num]] For a graph Γ we define its chromatic number
to be

χ(Γ) = min{k : Γ is k-colorable}.
For instance, χ(Kn) = n and χ(K̄n) = 1 for n ≥ 1. For a forest F with at least one edge,

χ(F ) = 2. In fact, for any bipartite graph that has at least one edge, χ(Γ) = 2. At the
opposite extreme, χ(Γ) =∞ if, and only if, Γ has a loop.

H.3. The chromatic polynomial. [[LABEL 1.chromaticpoly]]
We now turn our attention to counting functions related to coloring and to the structural

properties of those functions.
First is the number of proper colorations of a graph Γ in λ colors. We define the quantity

χΓ(λ) := the number of proper colorations of Γ in λ colors,

where λ is a positive integer. Obviously, the first non-negative integer for which χΓ(λ) is not
zero is the chromatic number. (I refrain from writing this fact in an inscrutable formula.)

In order to prove results about χΓ(λ) let’s define the set PΓ = {proper colorations of Γ}.
The first property is the famous (believe me!) deletion-contraction identity.

Lemma H.1. [[LABEL L:0912 chrom dc]] For any edge e in Γ we have

χΓ(λ) = χΓ\e(λ)− χΓ/e(λ),

where λ ∈ Z>0.

Proof. If e is a loop the result is clear because the left-hand side equals 0 and on the right-
hand side Γ \ e = Γ/e. If e is a link, first observe that PΓ ⊆ PΓ\e. Consider the set PΓ\e \PΓ:

PΓ\e \ PΓ = {proper colorations of Γ \ e which are improper for Γ}
= {proper colorations of Γ \ e in which

the endpoints of e have the same color}.
So there is a natural bijection from the set PΓ\e\PΓ to the set PΓ/e, under which ve ∈ Γ/e gets
the same color as that of both endpoints of e ∈ Γ\ e. We conclude that |PΓ\e| = |PΓ|+ |PΓ/e|
and the result follows. �
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Lemma H.2. [[LABEL L:0912 chrom mult]] For any positive integer λ,

χΓ1∪· Γ2
(λ) = χΓ1(λ)χΓ2(λ).

Proof. By definition, λ is a positive integer k. There is an obvious one-to-one correspondence
between colorations γ : V → [k] and coloration pairs (γ1, γ2) where γi : Vi → [k] (where
i = 1, 2) are colorations of Γ1 and Γ2. Furthermore, because every edge of Γ is contained
within V1 or V2, γ is proper if and only if γ1 and γ2 are both proper. The lemma follows by
the multiplication principle. �

Theorem H.3. [[LABEL T:0912chromaticpoly]] Given a graph Γ with no loops, then χΓ(λ)
is a polynomial of degree n of the form,

χΓ(λ) = λn − a1λ
n−1 + a2λ

n−2 − . . .± ac(Γ)λ
c(Γ)

where ai > 0. If Γ is simple, a1 = |E|. If Γ has a loop, then χΓ(λ) ≡ 0.

Proof. This is easy to prove inductively on the number of edges by means of Lemmas H.1
and H.2. We assume λ is a positive integer k. We need two obvious examples: χK1(k) = k
and χ∅(k) = 1. It is also obvious that a loop makes the number of proper colorations 0, no
matter the number of colors.

If Γ has no edges, then χΓ(k) = χK1(k)n = kn, a monic polynomial satisfying the descrip-
tion in the theorem.

Suppose Γ has an edge e but no loops. By induction, χΓ\e(k) is a monic polynomial of
degree n and a′1 = |E ′| = |E| − 1, where for convenience we write Γ′ := Γ \ e. If Γ is simple,
then Γ/e has no loops, so χΓ/e(k) is a monic polynomial of degree n − 1; consequently,
a1 = a′1 + 1 by deletion-contraction. In any case, either χΓ/e(k) is a polynomial of degree
n− 1 or is identically zero; in each case χΓ is a polynomial, monic because its leading term
is the same as that of χΓ\e. �

Because of Theorem H.3 we are entitled to call χΓ(λ) by its right name.

Definition H.2. [[LABEL Df:0912chromaticpoly]] The chromatic polynomial of Γ is χΓ(λ).

We may substitute any number for λ; indeed, we should regard λ as an indeterminate that
may take on any value in any commutative ring. The key identities of Lemmas H.1 and H.2
are now polynomial identities, because they are valid for infinitely many values λ ∈ R and
χΓ has integral coefficients.

Proposition H.4. [[LABEL P:0912 gen chrom poly]] The chromatic polynomial has the
subset expansion

χΓ(λ) =
∑
S⊆E

(−1)|S|λc(S).

Proof. This, like many other results, follows from Lemma H.1 by induction on the number
of edges that are not loops.

For no edges, χΓ(λ) = λn. Since S = ∅ only, the proposition is correct.
For a graph with a loop e, the chromatic polynomial equals 0, and the sum equals∑
S⊆E\e

[
(−1)|S|λc(S) + (−1)|S∪e|λc(S∪e)

]
=
∑
S⊆E\e

[
(−1)|S|λc(S) + (−1)|S|+1λc(S)

]
=
∑
S⊆E\e

[0],

which is the correct value.
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For a graph with no loops and at least one link, say e is one of the links. By Lemma H.1
and induction on the number of edges,

χΓ(λ) = χΓ\e(λ)− χΓ/e(λ)

=
∑
S⊆E\e

(−1)|S|λcΓ\e(S) −
∑
S⊆E\e

(−1)|S|λcΓ/e(S)

=
∑
S⊆E\e

(−1)|S|λcΓ(S) +
∑
S⊆E\e

(−1)|S∪e|λcΓ(S∪e)

=
∑
S⊆E

(−1)|S|λcΓ(S),

which is the proposition. �

Sept 12b:
Simon JoyceH.4. Spanning trees. [[LABEL 1.treecount]]

The chromatic polynomial is not the only graph function with algebraic properties like
those stated in Lemmas H.1 and H.2. Define

t(Γ) := the number of spanning trees in a graph Γ.

Lemma H.5. [[LABEL L:0912 tree dc]] The number of spanning trees in a graph has the
deletion-contraction property

t(Γ) = t(Γ \ e) + t(Γ/e)

for any edge e that is not a loop, and

t(Γ1∪· Γ2) = t(Γ1)t(Γ2).

[WE NEED A PROOF. Could one be based on the proof for forests given next
time? Is there a simple direct proof?]

The spanning tree number is really different from the chromatic polynomial, because no
evaluation of the latter can give the former. We show that, with two small examples.

Example H.1. [[LABEL X:0912treechrom]] Consider K1 versus K•1 , a single vertex with a
loop, and K2 versus 2K2, a pair of parallel links.

In the smallest possible example, t(K•1 ) = 1 but χK1(λ) = 0, so evaluating the chro-
matic polynomial cannot give the spanning tree number. But perhaps this example, whose
distinguishing characteristic is that it has a loop, is too trivial.

For a counterexample without loops, consider the fact that K2 and 2K2 have the same
chromatic polynomials (from the definition), but t(K2) = 1 while t(2K2) = 2.

But perhaps the reader wants only simple graphs? I’m sure there are known simple graphs
with the same chromatic polynomial but different numbers of spanning trees, but I can’t giv
an example.

Sept 12c:
Simon JoyceH.5. The dichromatic and corank-nullity polynomials. [[LABEL 1.dichromatic]]

There is a function that encompasses both the chromatic polynomial and the spanning-
tree number, and has the algebraic properties of both of them. That is the dichromatic
polynomial.
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The dichromatic polynomial.
The dichromatic polynomial generalizes the chromatic polynomial to two variables.

Definition H.3. [[LABEL D:0912 dichrom poly]] The dichromatic polynomial of a graph is

QΓ(u, v) =
∑
S⊆E

uc(S)v|S|−n+c(S).

The subset expansion in Proposition H.4 is what tells us the dichromatic polynomial does
specialize to the chromatic polynomial; specifically, χΓ(λ) = (−1)nQΓ(−λ,−1). Many of
the algebraic properties of the chromatic polynomial also generalize; to begin with, the
fundamental deletion-contraction identity.

Proposition H.6. [[LABEL P:0912 dichrom dc]] The dichromatic polynomial of a graph
satisfies

QΓ(u, v) = QΓ\e(u, v) +QΓ/e(u, v)

for any edge e that is not a loop.

Proof. There is a standard way to prove this sort of identity. We divide the defining sum
of QΓ into a part without e and a part with e. The former part is obviously QΓ\e and the
latter part is QΓ/e, but that is not as obvious.

Here is the calculation:

QΓ(u, v) =
∑
S⊆E

uc(S)v|S|−n+c(S)

=
∑
S⊆E\e

uc(S)v|S|−n+c(S) +
∑

T∪e⊆E

uc(T∪e)v|T∪e|−n+c(T∪e)

where T is assumed to be ⊆ E \ e,
= QΓ\e(u, v) +

∑
T⊆E(Γ/e)

ucΓ/e(T )v|T |−|V (Γ/e)|+cΓ/e(T )

because |V (Γ/e)| = n−1 and contracting an edge does not change the number of components,

= QΓ\e(u, v) +QΓ/e(u, v). �

Sept 12:
Zaslavsky Example H.2. [[LABEL X:0912smallQ]] Let’s use the definition to do the smallest exam-

ples. The empty graph K0 = ∅ gives
Q∅ = 1

since there is only one edge set, S = ∅. For the same reason,

QKn = un.

For a single edge, K2, we have
QK2 = u2 + u

from the sets S = ∅ and E.
For a loop, that is, a circle C1 of length 1, we have

QC1 = u+ uv.
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For a digon C2, apply the deletion-contraction law, Proposition H.6. For any edge e in
C2, C2 \ e = K2 and C2/e = C1.

QC1 = QK2 +QC1 = (u2 + u) + (u+ uv) = u2 + 2u+ uv.

Next, we calculate two larger examples by means of, respectively, the definition and Propo-
sition H.6.

Example H.3. [[LABEL X:0912tree]] A forest Fnm of order n ≥ 1 with m edges has

QFnm = un−m(u+ 1)m.

In particular, for a tree Tn of order n,

QTn = u(u+ 1)n−1.

We prove the forest formula by observing that a subset of E gives a forest with the same
order and fewer edges. There are

(
m
k

)
sets S ⊆ E of k edges, each of which has n − k

connected components. From the definition, therefore,

QFnm =
m∑
k=0

(
m

k

)
un−kv0 = un−m

m∑
k=0

(
m

k

)
um−k = un−m(u+ 1)m.

Example H.4. [[LABEL X:0912circle]] For n ≥ 1,

QCn = (u+ 1)n − 1 + uv.

To prove this we may use induction on n, with a single edge contraction that reduces Cn
to Cn−1 and a deletion that reduces it to a tree, actually a path, Tn. The initial case n = 1
is in Example H.2. For higher n,

QCn = QFn,n−1 +QCn−1 = u(u+ 1)n−1 + (u+ 1)n−1 − 1 + uv = (u+ 1)n − 1 + uv.

Example H.5. [[LABEL X:0912multiedge]] At this point, interested readers may compute
QmK2 for themselves, where mK2 consists of m parallel edges joining two vertices, and
compare it to QCn . The comparison is interesting.

Sept 15a:
Yash LodhaThe corank-nullity polynomial.

In the definition of the dichromatic polynomial,

QΓ(u, v) =
∑
S⊆E

uc(S)v|S|−n+c(S),

there are two quantities which are significant for the graph. The corank of S ⊆ E is defined
as c(S)−c(Γ) and its nullity is defined as |S|−n+c(S) (the names come from matrix theory;
see Section E.1). Since c(S) is obviously at least as large as c(Γ), and n− c(S) = |T | ≤ |S|
for a maximal forest T ⊆ S, both the corank and nullity are nonnegative. The definitions
motivate the name of the following polynomial, called the rank generating polynomial or
corank-nullity polynomial, which is

RΓ(u, v) :=
∑
S⊆E

uc(S)−c(Γ)v|S|−n+c(S) = u−c(Γ)QΓ(u, v).

The nullity of Γ equals the cyclomatic number of Γ (Section B.4).
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Proposition H.7. [[LABEL P:0915BR]] The corank-nullity polynomial satisfies the relation
RΓ = RΓ\e +RΓ/e for an edge e that is not a loop or an isthmus.

Proof. We use the standard method, splitting the defining sum into two parts according to
whether e is or is not in S. Thus,

RΓ =
∑
S⊆E

uc(S)−c(Γ)v|S|−n+c(S)

=
∑
S⊆E\e

uc(S)−c(Γ)v|S|−n+c(S) +
∑

e∈S⊆E

uc(S)−c(Γ)v|S|−n+c(S)

=
∑
S⊆E\e

uc(S)−c(Γ\e)v|S|−n+c(S) +
∑
T⊆E\e

uc(S)−c(Γ)v|T∪e|−n+c(T∪e)

because e is not an isthmus so c(Γ \ e) = c(Γ),

= RΓ\e +
∑
T⊆E\e

uc(T∪e)−c(Γ)v|T∪e|−n+c(T∪e)

through replacing S 3 e by T ∪ e where T ⊆ E \ e. The task now is to express the remaining
summation in terms of Γ/e. To do this we make a structural comparison between T ∪ e in Γ
and T in Γ/e. The essential facts are that c(T ∪e, the component count in Γ, equals cΓ\e(T ),
and that |V (Γ \ e)| = n− 1 since e is not a loop. Now we continue the previous calculation:

RΓ −RΓ\e =
∑
T⊆E\e

ucΓ\e(T )−c(Γ/e)v|T |+1−n+cΓ\e(T )

=
∑
T⊆E\e

ucΓ\e(T )−c(Γ/e)v|T |−|V (Γ/e)|+cΓ\e(T )

= RΓ/e.

by the definition of the corank-nullity polynomial. �

(Sometimes I like to write S/e, instead of T , to mean the set S \ e in the graph Γ/e. That
makes the proof look cuter but it can be confusing.)

Sept 17a
(draft):
Peter Cohen
et al.

More properties of the dichromatic and corank-nullity polynomials.
[NOTE: Needs graphs. The source code has notes where the graphs and dia-

grams will go in.]

Proposition H.8. [[LABEL P:0917C]] The dichromatic polynomial has the multiplicative
property QΓ1∪· Γ2

= QΓ1QΓ2 .

Proof. The proof is similar to that of the next proposition. �

The vertex amalgamation of two graphs is defined to be

Γ1 ∪v Γ2 := Γ1 ∪ Γ2,

where Γ1 and Γ2 share a vertex v and have no other vertex or edge in common. This
frequently occurs, e.g. when isthmi are contracted.

[add in graph later]
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Proposition H.9. [[LABEL P:0917CR]] The corank-nullity polynomial has the multiplica-
tive properties RΓ1∪· Γ2

= RΓ1∪vΓ2 = RΓ1RΓ2 .

Proof. Consider the case of a vertex amalgation, Γ = Γ1 ∪v Γ2. Then, first of all, n =
n1 + n2 − 1; secondly, c(Γ) = c(Γ1) + c(Γ2) − 1, because one component of Γ1 merges with
one component of Γ2 in the amalgamation; and thirdly, the same relationship holds for any
spanning subgraph (V, S) if S1 = S ∩ E1 and S2 = S ∩ E2. So,

RΓ =
∑

S⊆E1∪E2

uc(S)−c(Γ)v|S|−n+c(S)

=
∑
S1⊆E1

∑
S2⊆E2

uc(S1∪S2)−c(Γ1∪Γ2)v|S1∪S2|−n+c(Γ1∪Γ2)

=
∑
S1⊆E1

∑
S2⊆E2

u[c(S1)+c(S2)−1]−[c(Γ1)+c(Γ2)−1]v[|S1|+|S2|]−[n1+n2−1]+[c(Γ1)+c(Γ2)−1]

by the preceding remarks, and then by simplifying and rearranging the exponents and sep-
arating the two summations,

=
∑
S1⊆E1

uc(S1)−c(Γ1)v|S1|−n1+c(Γ1)
∑
S2⊆E2

uc(S2)−c(Γ2)v|S2|−n2+c(Γ2)

= RΓ1RΓ2 .

The proof for disjoint unions is similar, but simpler since n = n1 +n2, c(Γ) = c(Γ1)+c(Γ2),
and c(S) = c(S1) + c(S2). �

Sept 15b:
Yash Lodha

H.6. Counting maximal forests and spanning trees. [[LABEL 1.maximalforests]]
Let f(Γ) be the number of maximal forests of Γ and t(Γ) the number of spanning trees. To

understand the polynomials discussed above, we calculate them for the graphs ∅, K1, K2, K̄2

and compare them with the values of the functions f and t for these graphs.

Γ QΓ(u, v) RΓ(u, v) t(Γ) f(Γ)

∅ 1 1 0 1

K1 u 1 1 1

K2 u2 + u u+ 1 1 1

K̄2 QK1(u, v)2 = u2 1 0 1

Lemma H.10. [[LABEL L:0915F]] The following equations hold for the number of maximal
forests of a graph:

f(Γ1∪· Γ2) = f(Γ1)f(Γ2),

f(Γ) = f(Γ \ e) + f(Γ/e)
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if e is not a loop or an isthmus, and

f(∅) = 1.

Proof. The first equation follows simply from the fact that the maximal forests of Γ1∪· Γ2

are in bijective correspondence with pairs of maximal forests in Γ1 and Γ2. So the result
follows from the multiplication principle.

For the second result, we assume that e is a link. There are two kinds of maximal forest
of Γ, the ones that contain e and the ones that do not contain e. The ones that contain e
are in bijection with the maximal forests of Γ/e and the ones that do not contain e are in
bijection with the maximal forests of Γ \ e. This proves the second equation.

For the third equation, we need only keep in mind the empty forest! �

Theorem H.11. [[LABEL T:0915F]] The number of maximal forests in Γ is f(Γ) = RΓ(0, 0).

Proof. Initially, we assume that Γ is connected. We proceed by induction on |E|. There are
three cases—not mutually exclusive.

Case I: Γ has a loop e. Then Γ = (Γ \ e) ∪v K◦1 . By Proposition H.9, RΓ = (1 + v)RΓ\e.
So,

RΓ(0, 0) = 1 ·RΓ\e(0, 0) = 1 · f(Γ \ e) = f(Γ)

since e is a loop.
Case II: Γ has no loop and every edge is an isthmus. Then Γ is a tree. By inspection we

can see that f(Γ) = 1 = RΓ(0, 0).
Case III: Γ has a circle C of length greater than one. Let e ∈ C. Then e is not a loop or

isthmus, so by Proposition H.7 and Lemma H.10,

RΓ(0, 0) = RΓ\e(0, 0) +RΓ/e(0, 0) = f(Γ \ e) + f(Γ/e) = f(Γ).

This proves the theorem when Γ is connected.
If Γ has more than one component, we proceed by induction on the number of components

of Γ. Let Γ = Γ1∪· Γ2, where our theorem holds for Γ1 and Γ2 is a connected graph. Then
by Proposition H.9 and Lemma H.10 we get our inductive step:

RΓ(0, 0) = RΓ1(0, 0)RΓ2(0, 0) = f(Γ1)f(Γ2) = f(Γ). �

Here are a few examples that illustrate the theorem.

R∅(0, 0) = 1 = f(∅),

RK1(0, 0) = 1 = f(K1),

RK◦1
(0, 0) = 1 = f(K◦1),

RK2(0, 0) = 1 = f(K2).

Sept 22a:
Jackie
Kaminski

Theorem H.12. [[LABEL T:0922 tree forest polys]] The number of spanning trees of a
graph Γ 6= ∅ is

t(Γ) = u−1QΓ(u, v)|(0,0) =
∂

∂u
QΓ(0, 0).

We begin with a lemma before we prove this theorem.

Lemma H.13. [[LABEL L:0922 rank poly I/L]] For Γ a graph containing only isthmi and
loops, RΓ(u, v) = (u+ 1)# of isthmi(v + 1)# of loops.
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Proof. First notice that a graph with only isthmi and loops is a forest with loops. We first
introduce notation. For a given edge set S, let S0 be the set of all loops in S, and S1 be
the set of all isthmi in S. Since we are restricted to the case where our graphs contain only
loops and isthmi, S0∪· S1 = S. Now we recall that by definition,

RΓ =
∑
S⊆E

uc(S)−c(Γ) · v|S|−n+c(S)

which, since loops don’t affect c(S) but adding an isthmus to a graph decreases the number
of connected components by exactly 1, is

=
∑
S⊆E

u(n−|S1|)−c(Γ) · v|S|−n+(n−|S1|)

=
∑
S⊆E

un−|S1|−c(Γ) · v|S|−|S1|

=
∑
S⊆E

un−|S1|−c(Γ) · v|S0|

in which, letting E0 be the set of loops of Γ and E1 the set of isthmi of Γ, we can reindex:

=
∑
S0⊆E0

∑
S1⊆E1

un−|S1|−c(Γ) · v|S0|

= un−c(Γ)

( ∑
S0⊆E0

v|S0|
)( ∑

S1⊆E1

(1

u

)|S1|
)

= un−c(Γ|E1)

( ∑
S0⊆E0

v|S0|
)( ∑

S1⊆E1

(1

u

)|S1|
)

= u|E1|(v + 1)|E0|
(1

u
+ 1
)|E1|

= (v + 1)|E0|(1 + u)|E1|. �

Proof of Theorem H.12. In preparation, recall from Lemma H.5 that t(Γ) = t(Γ\ e) + t(Γ/e)
for all links e, and from Lemma H.10 that f(Γ) = f(Γ \ e) + f(Γ/e) for all edges that are
not links or loops. When at least one of Γ1 and Γ2 is not ∅, then t(Γ1∪· Γ2) = 0. This
is immediate since spanning trees must be connected. Lastly, by inspection we see that
t(∅) = 0.

It is easy to see that u−1QΓ(u, v)|(0,0) = ∂
∂u
QΓ(0, 0). From the fact that QΓ is a polynomial

with no constant term, it follows immediately that u−1QΓ(u, v)|(0,0) = ∂
∂u
QΓ(0, 0). Alterna-

tively, an inductive proof of the result that t(Γ) = ∂
∂u
QΓ(0, 0) is almost identical to the proof

that t(Γ) = u−1QΓ(u, v)|(0,0) = ∂
∂u
QΓ(0, 0), the difference being that the last step is due to

linearity of the derivative instead of Proposition H.6.
The proof of the theorem is by induction on |E|. First we look at the base cases, where
|E| ≤ 1; then Γ is a single link with 2 vertices (Γ = K2), a single loop with one vertex
(Γ = K◦1), or a single vertex (Γ = K1).

Notice that t(K1) = t(K◦1) = t(K2) = 1 since K1 or K2 is itself the unique spanning tree.
From the defining formula of the dichromatic polynomial it follows that u−1QK2(0, 0) =
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0 + 1 = 1 and u−1QK1(0, 0) = u−1QK◦1
(0, 0) = 0 + 1 = 1. So t(Γ) = u−1QΓ(u, v)|(0,0) holds

for the base cases.
Now let Γ be a graph with at least two edges, and assume the theorem holds for all

graphs on fewer edges. We will handle all graphs with a non-isthmus link by showing that
both sides of the respective formulas satisfy the same deletion-contraction recursion, with
the same initial conditions. We will then look at the remaining graphs, which contain only
isthmi and loops.

Case 1: Γ contains an edge e which is a link but not an isthmus.
Then t(Γ) = t(Γ \ e) + t(Γ/e) by Lemma H.5, and since both Γ \ e, Γ/e have fewer edges

than Γ, by the inductive hypothesis we may conclude that

t(Γ \ e) + t(Γ/e) = u−1QΓ\e(u, v)|(0,0) + u−1QΓ/e(u, v)|(0,0)

= u−1QΓ(u, v)|(0,0)

by Proposition H.6, since e was not a loop. Therefore t(Γ) = u−1QΓ(u, v)|(0,0).
Therefore we have proven the theorem for all graphs that have a non-isthmus link, assum-

ing that it holds for graphs with only loops and isthmi.
Case 2: Γ contains only loops and isthmi.
Here, since Γ is a forest with loops, t(Γ) = 1 if Γ is connected, and otherwise t(Γ) = 0.

Furthermore, evaluating u−1Q(u, v) at (0, 0), the only possibility for a non-zero term is when
there is a subset S such that c(S) = 1 and |S|+c(S) = n, i.e., there is a spanning, connected
subgraph (V, S) with n−1 edges. That is the case where Γ is connected. As Γ contains only
isthmi and loops, there is at most one non-zero term in the sum; thus t(Γ) = u−1QΓ(u, v)|(0,0).

We have proven Theorem H.12. �

Sept 22b:
Jackie
Kaminski H.7. The number of improper colorations. [[LABEL 1.improper]]

Just as the chromatic polynomial gives the number of proper colorations, the dichromatic
polynomial counts all colorations, grouped by the number of improper edges. In technical
language, the dichromatic polynomial, with a change of variables and normalization, is the
generating function of all colorations by the size of the improper edge set.

Definition H.4. [[LABEL D:0922 improper]] For a k-coloration γ : V → [k], we say e:vw
is improper if γ(v) = γ(w). We let I(γ) denote the set of improper edges of γ.

Definition H.5. For k ∈ Z>0 we define XΓ(k, ·) to be the generating function of k-
colorations by the number of improper edges ; that is,

XΓ(k, w) =
∑
γ

w|I(γ)| =

|E|∑
i=0

miw
i,

where mi is the number of k-colorations with exactly i improper edges.

By definition XΓ is a polynomial in w. We would also like to show that it is a polynomial
in k. But first notice that XΓ(k, 0) = χΓ(k), since χΓ counts the number of k-colorations that
are proper. We now prove a theorem of Tutte’s which implies that X is also a polynomial
in k.
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Theorem H.14 (Tutte). [[LABEL T0922 Tutte]] For a graph Γ, the generating function of
colorations by the number of improper edges satisfies

XΓ(k, w) = (w − 1)nQΓ

( k

w − 1
, w − 1

)
.

Proof. First we reformulate the dichromatic polynomial:

(H.1) [[LABEL E : Qreduced]]QΓ(u, v) =
∑
S⊆E

uc(S)v|S|−n+c(S) = v−n
∑
S⊆E

(uv)c(S)v|S|.

Now we look at XΓ as a sum over all colorations γ:

XΓ(k, w) =
∑

γ:V→[k]

w|I(γ)|

=
∑
S⊆E

w|S| ·#(γ such that I(γ) = S).

Here we apply the fact that the number of k-colorations γ whose set of improper edges is
precisely S equals the number of proper k-colorations of Γ/S. This follows from the fact
that the color on a component of S is constant, because the component is connected through
links whose two endpoints have the same color. On the other hand, any edge not in S must
have different colors at each end. This is the definition of a proper coloration of Γ/S. (Note
that if S is not closed, there are no colorations with it as improper edge set; while, most
conveniently, χΓ/S(k) = 0.) It follows that

XΓ(k, w) =
∑
S⊆E

w|S|χΓ/S(k),

which by Proposition H.4

=
∑
S⊆E

w|S|
∑

T⊆E\S

(−1)|T |kcΓ/S(T )

=
∑
S⊆E

w|S|
∑

T⊆E\S

(−1)|T |kc(S∪T )

since (V, S ∪ T ) has the same number of components as (V (Γ/S), T ). Now we reindex with
S ∪ T = R so T = R \ S:

=
∑
R⊆E

∑
S⊆R

w|S|(−1)|R\S|kc(R)

=
∑
R⊆E

(∑
S⊆R

w|S|(−1)|R\S|
)
kc(R)

and by the binomial formula this simplifies:

=
∑
R⊆E

(w − 1)|R| kc(R).
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Now multiplying by w−1
w−1

in some clever places we get

XΓ(k, w) =
∑
R⊆E

( k

w − 1
(w − 1)

)c(R)

(w − 1)|R|

and by Equation (H.1) this is

= (w − 1)nQΓ(
k

w − 1
, w − 1). �

We end with an example.

Example H.6. [[LABEL P:0922 Cycle]] For n ≥ 1,

XCn(k, w) = (w + k − 1)n + (k − 1)(w − 1)n

=
n∑
i=0

wi
(
n

i

)[
(k − 1)n−i + (−1)n−i(k − 1)

]
.

This follows from Example H.4 and Theorem H.14.
The coefficient of w0 is the chromatic polynomial, so χCn(k) = (k − 1)n + (−1)n(k − 1).
The coefficient of w is the number of k-colorations with exactly one improper edge; that

is n
[
(k − 1)n−1 + (−1)n−1(k − 1)

]
. Think of this number combinatorially; the one improper

edge implies there is one edge whose endpoints have the same color, and contracting that
edge gives a proper coloration. There are n choices for the edge and χCn−1(k) choices for the
proper coloration; thus, the coefficient of w should be nχCn−1(k), which is precisely what we
found.

Sept 17b
(draft):
Peter Cohen
et al.

H.8. Acyclic orientations and proper and compatible pairs. [[LABEL 1.acyclicpairs]]
We defined the chromatic polynomial by its values at positive integers, and extended it

to all real (or complex) numbers by proving it is a polynomial. Now we use the deletion-
contraction property to establish a combinatorial meaning for the values of that polynomial
at negative integral arguments.

Define AO(Γ) to be the set of acyclic orientations of Γ. In an oriented graph, the notation
~P :
→
vw means a directed path from v to w.

Acyclic vs. cyclic orientations.
[next part needs the graph]

Lemma H.15. [[LABEL L:0917ao-dc]] Consider an orientation ~Γ of Γ and an edge e:
→
v1v2

in ~Γ. [This is not necessarily the right lemma. We need to check the notes.]

(1) If there exists ~P :
→
v1v2 in ~Γ \ e then the orientation is cyclic.

(2) If there does not exist ~P :
→
v1v2 in ~Γ \ e for any e, then the orientation is acyclic.

[again, graph]
[small simple circle graph]
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Proof. [(needs simple graphs to show, will add soon)]

[ARE THESE PROOF CASES RIGHT? ~P can’t be a cycle because P is not a
circle. Or, do you mean it’s a cycle in the contraction?]

Case 1: ~Γ/e is oriented as in ~Γ \ e. In this case, ~P is not a cycle. [PROOF NEEDED.]

Case 2: ~P doesn’t exist, so ~Γ/e is acyclic. [PROOF NEEDED.]
[IS THIS enough cases?]

�

Let a(Γ) denote the number of acyclic orientations of Γ, i.e., a(Γ) := |AO(Γ)|. There is a
deletion-contraction formula for this number.

Lemma H.16. For any edge e, a(Γ) = a(Γ \ e)− a(Γ/e).

[MUST DISCUSS. CAN YOU GET ADDITIONAL NOTES FROM JACKIE
OR NATE OR SIMON?]

[STANLEY’S THEOREM a(Γ) = (−1)nχΓ(−1).]
(Notes end, need clarification)
We will denote a color set, (α, γ), by [K].
For two vertices, v1 and v2, γ(v1) ≤ γ(v2)
[needs a lot of work]

Sept 19:
Simon JoyceProper and compatible pairs.

A pair (α, γ) consisting of an acyclic orientation and a coloration of Γ with color set [k]
is called proper if, for each edge e:vw such that α orients e from v to w, then γ(v) < γ(w).
The pair is compatible if under those conditions γ(v) ≤ γ(w).

Lemma H.17. [[LABEL L:0919 AO]] Given a graph Γ and a link e ∈ E(Γ), there is a
bijection

AO(Γ) ∪ AO(Γ/e)↔ AO(Γ \ e).
Proof. If α0 ∈ AO(Γ \ e) is such that α0 is also an acyclic orientation of Γ/e, then α0 can

be extended to an acyclic orientation of Γ by adding e:
→
vw or e:

→
wv. If α0 is not an acyclic

orientation of Γ/e then only one of these is a valid extension to Γ. �

Given a graph Γ and a number of colors k, let

pΓ(k) := # of compatible pairs.

Lemma H.18. [[LABEL L:0919 c pairs DC]] Given a graph Γ and a link e ∈ E(Γ), then

pΓ\e(k) = pΓ(k) + pΓ/e(k).

Proof. For a fixed k ≥ 0, we will prove there exists a 1:1/2:2 correspondence, or sesquijection,
between CP(Γ) ∪ CP(Γ/e) and CP(Γ \ e). Fix α0 ∈ AO(Γ \ e).

First we assume α0 orients both Γ \ e and Γ/e acyclically. The latter means there is no
directed path from v to w where v and w are the endpoints of e. Consider γ, a k-coloration
of Γ \ e that is compatible with α0, so (α0, γ) ∈ CP(Γ \ e).

Either γ(v) = γ(w) or not. In the former case γ properly colors Γ/e but not Γ, and γ is

compatible with both e:
→
vw and e:

→
wv. In the latter case γ doesn’t properly color Γ/e but it

does properly color Γ, and γ is compatible with exactly one extension of α0 since γ(v) < γ(w)
or vice versa.
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If there exists an oriented path from v to w, we may assume γ(v) < γ(w). Then α0 extends

by e:
→
vw and since γ(v) < γ(w) this extension is unique. Calling this extension α we have

(α0, γ)↔ (α, γ). �

Stanley’s famous theorem.
We are now ready to prove our main result.

Theorem H.19 (Stanley). [[LABEL T:0919 Stanley’s]] Given a graph Γ, α ∈ AO(Γ) and γ
a k-coloration of Γ then,

(−1)nχΓ(−k) = pΓ(k).

Proof. If Γ has no links then,

(−1)nχΓ(−k) =

{
0 if Γ contains a loop,

(−1)n(−k)n otherwise.

Also

pΓ(k) =

{
0 if Γ contains a loop,

kn otherwise.

So in this case we have equality.
If Γ contains a link then we use lemma H.18, deletion-contraction of χΓ and induction. �

The geometry of proper and compatible pairs.
Going back to the idea of coloring, if we take γ to be a k-coloration of a graph Γ we

have γ : V → [k] ⊆ R, so we can think of γ ∈ [k]n ⊆ Rn. So if γi and γj are the ith and
jth coordinates of γ then γi 6= γj if ∃ eij ∈ E(Γ), i.e., γ /∈ hij = {x : xi = xj} for every
eij ∈ E(Γ), i.e., γ /∈ ⋃H[Γ]. So we can redefine a proper k-coloration as

γ ∈ Zn \
⋃

H[Γ] such that γ ∈ (0, k + 1)n.

This can be restated as
γ

k + 1
∈ 1

k + 1
Zn and

γ

k + 1
∈ (0, 1)n \

⋃
H[Γ].

The number of these points is given by a polynomial function of k, E◦(k+ 1), known as the
open Ehrhart polynomial of ([0, 1]n,H[Γ]). (See [IOP, Section 5].)

Suppose we have γ : V → {0, 1, . . . , k − 1} and γ ∈ Zn ∩ [0, k − 1]n. Each α ∈ AO(Γ)

corresponds to a region R(α) of H[Γ], defined by xi < xj when ∃ →
vivj in α. Also we have

γi ≤ γj when ∃ →
vivj in α. This defines the closure R(α) of R(α), called the closed region of

α. So given γ the number of compatible pairs (α, γ) = the number of closed regions of H[Γ]
that contain γ.

Given a graph Γ and x ∈ Rn we define

m(x) := number of closed regions of H[Γ] that contain x.

Now we define the closed Ehrhart polynomial to be

E(k − 1) =
∑

γ∈Zn∩[0,k−1]n

m(γ).

Then (by some calculation, which I omit, based on Stanley’s theorem), E0(t) = (−1)E(−t)
for [0, 1]n and H[Γ]. That is, we really have only one geometric polynomial that counts both
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proper and compatible pairs. This is no surprise if we already know Stanley’s theorem, but
it hints at vast generalizations (which are outside the scope of this course, but which apply
to signed graphs and will be mentioned when we get to the signed-graphic Stanley-type
theorem in Section K.4).

Sept 24:
Nate Reff

H.9. The Tutte polynomial. [[LABEL 1.tuttepoly]]
The Tutte polynomial is a universal function that satisfies the relations we’ve been discov-

ering for the corank-nullity polynomial and other polynomials. Let’s review these relations.

Tutte–Grothendieck invariants.
We found:

• Deletion-Contraction Property:
QΓ = QΓ\e +QΓ/e if e is not a loop.
RΓ = RΓ\e +RΓ/e if e is not a loop or isthmus.

• Disjoint Graph Multiplicativity:
QΓ1∪· Γ2

= QΓ1QΓ2 and RΓ1∪· Γ2
= RΓ1RΓ2 .

• Multiplicativity:
Disjoint Graph Multiplicativity, and RΓ1∪vΓ2 = RΓ1RΓ2 .

• Empty-Graph Unitarity:
Q∅ = 1 = R∅.

• Unitarity:
Empty-Graph Unitarity, and RK1 = 1.

• Invariance:
Γ1
∼= Γ2 =⇒ QΓ1 = QΓ2 and RΓ1 = RΓ2 .

We call a Tutte–Grothendieck invariant of graphs any function F on graphs that satisfies
all these properties. Let’s restate them precisely, in the generality of an arbitrary function
F defined on graphs:

(DC) Deletion-Contraction Identity:
F (Γ) = F (Γ\e) + F (Γ/e) if e is not a loop or isthmus.

(M) Multiplicativity:
F (Γ1∪· Γ2) = F (Γ1 ∪v Γ2) = F (Γ1)F (Γ2).

(U) Unitarity:
F (∅) = F (K1) = 1.

(I) Invariance:
Γ1
∼= Γ2 =⇒ F (Γ1) = F (Γ2).

Now let’s look at what it means for a function to satisfy these properties, and head toward
answering Tutte’s question of what are all such functions. First of all, in order for all the
properties to make sense, F has to have values in a commutative ring with unity. Next,
because of the mulitiplicativity property (M), F (Γ) = the product of F (blocks). Due to
the property of invariance (I), F (loop) = a value y that is the same for all loops, and also
F (isthmus) = a value x that is the same for all isthmi. Lastly, there is a simple form for a
basic special case.

Lemma H.20. [[LABEL L:0924lemma1 Loop Isthmus Lemma]] Suppose Γ has l loops and
i isthmi and no other edges. Then F (Γ) = xiyl.
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As another side comment we note that, if the codomain of F is an integral domain, then
(U) is almost superfluous; that is, it can be deduced from the other properties, except for a
small number of functions F . (This is left as a homework exercise. Hint: Derive (U) from
(M) and (I); find the exceptional cases.)

Returning to H.20, let’s look as some simple examples. Suppose we define a graph G as
in figure H.1. Let C2 denote the digon graph, which is a circle of length 2; it consists of two
vertices and two parallel edges between those vertices. Now for the calculation of F using
the deletion-contraction method (as seen in figure H.1) we get the following:

F (G) = F (G\e) + F (G/e)

= F ((G\e)\a) + F ((G\e)/a) + F ((G/e)\a) + F ((G/e)/a)

= (x3) + F (K3) + xF (C2) + yF (C2)

= (x3) + (x2 + x+ y) + x(x+ y) + y(x+ y)

= x3 + 2x2 + x+ 2xy + y + y2.

Theorem H.21. [[LABEL T:0924Theorem1 Main Theorem]] Suppose F is a Tutte–Grothendieck
invariant of graphs. Let x = F (isthmus), and let y = F (loop). Then

(1) F (Γ) = RΓ(x− 1, y − 1), a polynomial function of x and y,
(2) the polynomial has nonnegative integral coefficients, and
(3) any evaluation of RΓ(x, y) gives a Tutte-Grothendieck invariant of graphs.

Proof. One proves the first two statements by induction on |E|, using (DC) and (M). The
third statement follows from the fact that RΓ itself is a Tutte-Grothendieck invariant. �

Corollary H.22. [[LABEL T:0924Corollary1 Main Corollary]] A Tutte–Grothendieck in-
variant F is well defined given any choices of x = F (isthmus) and y = F (loop) and is
uniquely determined by those choices.

Proof. This is an immediate corollary of Theorem H.21. �

The Tutte polynomial.
We define the Tutte polynomial of Γ as the polynomial obtained by reducing a general

F (Γ) to x’s and y’s using the properties defining a Tutte-Grothendieck invariant of graphs.
We denote the Tutte polynomial by TΓ(x, y). Our main theorem, Theorem H.21, tells us that
TΓ(x, y) = RΓ(x−1, y−1). Using previous results we can now also write TΓ(1, 1) = RΓ(0, 0) =
f(Γ), the number of maximal forests, and TΓ(1− λ, 0) = RΓ(−λ,−1) = (−1)nχΓ(λ) as well
as many other such forms.

Theorem H.23. [[LABEL T:0924Theorem2]] TΓ(x, y) is a polynomial, with no constant
term if |E| > 0. The degree of x equals rk(Γ) = n − c(Γ), and the degree of y equals the
nullity of Γ, that is, |E| − n+ c(Γ).

Proof. This is an immediate corollary of Theorem H.21. [NOT SO IMMEDIATE. Needs
some indication of proof.] �

Let’s take another look at the subset expansion of the corank-nullity polynomial:

(H.2) RΓ(u, v) =
∑
S

uc(S)−c(F )v|S|−n+c(F ) =
∑
k,l

aklu
kvl, [[LABEL E : 0924Tutte1]]
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(G\e)\a (G\e)/a (G/e)\a (G/e)/a
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d

b
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c
c

c c c c

a

G

Figure H.1. Calculation of F by the method of deletion and contraction.
[[LABEL F:0924Figure1]]

where akl is the coefficient of ukvl, that is, the number of subsets S ⊆ E that have rank
k = c(S)− c(Γ) and nullity l = |S| − n+ c(S). Write

TΓ(x, y) =
∑
i,j≥0

bijx
iyj.

The significant fact here is:

Proposition H.24. [[LABEL P:0924tuttecoefficients]] All bij ≥ 0.

Proof. This can be proved by induction. [NATE: Can you write a proof? OPTIONAL.
If not, I’ll do it.] �

We deduce from the correspondence between the Tutte polynomial and the corank-nullity
polynomial that

RΓ(u, v) = TΓ(u+ 1, v + 1)
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=
∑
i,j≥0

bij(u+ 1)i(v + 1)j

=
∑
i,j≥0

bij
∑
k

(
i

k

)
uk
∑
l

(
j

l

)
vl

=
∑
i,l≥0

ukvk
∑
i,j≥0

bij

(
i

k

)(
j

l

)
︸ ︷︷ ︸

coefficients of ukvk in (H.2)

=
∑
k,l

aklu
kvl.

This string of equalities shows that:

Proposition H.25. [[LABEL P:0924chromatic-cnp]] akl =
∑

i,j≥0 bij
(
i
k

)(
j
l

)
. �

The proposition allows us to get good lower bounds for certain graph quantities by looking
at the coefficients of the Tutte polynomial. In particular, we infer not only that akl ≥ 0, but
stronger positivity due to the fact that akl is a positive combination of nonnegative integers
bij. [TZ will add something here: For instance, ...]

Properties of the Tutte polynomial.
Here are some significant properties of the Tutte polynomial, that we will not prove. A

graph is said to be separable if it is not 2-connected or it has a loop. A series-parallel graph
is a graph such that each block is derived from a single edge by repeatedly subdividing edges
and adding parallel edges. Assuming |E(Γ)| ≥ 2, we can say that:

• b01 = b10.
• b01 = 0 ⇐⇒ Γ is separable.
• b01 = 1 ⇐⇒ Γ is a series-parallel graph.

Properties of the chromatic polynomial.
Now let’s take a look at the chromatic polynomial. We define wi, called the Whitney num-

bers of the first kind of Γ, to be the coefficients of powers of λ in the chromatic polynomial:
χΓ(λ) =

∑n
i=0wiλ

n−i. Now we can say that:

n∑
k=0

(−1)n−kwn−kλ
k = (−1)nχΓ(−λ)

= TΓ(1 + λ, 0)

= QΓ(λ,−1)

=
∑
i,j≥0

(1 + λ)i0jbij

=
∑
i

(1 + λ)ibi0

=
∑
k

λk
∑
i

(
i

k

)
bi0.
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Therefore, wn−k = (−1)n−k
∑

i

(
i
k

)
bi0. The sum is nonnegative; thus we have the following

theorem.

Theorem H.26. [[LABEL T:0924Theorem3 Alternating Sign Theorem]] The Whitney num-
bers wi alternate in sign, with w0 = 1 and (−1)iwi ≥ 0.

This tells us that the coefficients of the chromatic polynomial alternate in sign. More can
be said about the Whitney numbers with further study involving the Tutte polynomial, but
we stop here.

Sept 26:
Yash Lodha

I. Line Graphs

[[LABEL 1.lg]]
The line graph of Γ, denoted by L(Γ), is defined as follows:

V (L(Γ)) = E(Γ),

E(L(Γ)) = {ef | e, f are adjacent in Γ}.
(Recall that edges are adjacent when they have a common vertex.) This is the simple
definition, valid for simple graphs Γ.

The definition of line graphs raises a few important questions regarding them. First of all,
which graphs are line graphs? Secondly, are there graphs that are isomorphic to their line
graphs? Thirdly, how many non isomorphic graphs can produce the same line graph? We
now provide a few examples:

(1) L(K3) ∼= K3.
(2) L(K1,3) ∼= K3.

According to a theorem of Whitney’s, these are the only two connected (simple) graphs that
have the same line graph.

[I then go on to describe graphically what happens with double edges and loops with
graphics.] [THIS IS NEEDED!]

Let Γ be a simple graph. Let B be the unoriented incidence matrix of Γ (defined in Section
E), and let H be the oriented matrix of Γ. Then the entry xi,j, i 6= j, of BBT is the number
of ij edges for vertices i, j ∈ V (Γ) and entry xi,i of BBT is the degree valency of the vertex i.
It is clear from this that BBT = D+A where D is the degree matrix or the diagonal V ×V
matrix with degrees of vertices in its diagonal entries and A is the adjacency matrix. The
entry xi,j, i 6= j of HHT is negative of the number of vw edges, and the entry xi,i of HHT is
the degree of the vertex i.

Theorem I.1. [[LABEL T:0926rge]] If Γ is loopless and k-regular, then the largest eigenvalue
of A is k, with multiplicity at least c(Γ).

The actual multiplicity is exactly c(Γ), but I won’t prove it. (It follows from the rank of
the incidence matrix. I will provide a more general proof in Section II.M.)

Proof. Notice that HHT is a Gram matrix (which is defined as a matrix G of inner products
of vectors in Rn, i.e., where gi,j = vi · vj, the dot product of vectors vi, vj). This is positive
semidefinite, which means that it is symmetric and ∀x ∈ Y, Ax · x ≥ 0. So all eigenvalues
are greater than or equal to zero.
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Let x be an eigenvector of A with eigenvalue λ. Then Ax = λx. And HHTx = kIx−Ax =
(k − λ)x. This implies that x is an eigenvector of HHT with eigenvalue k − λ.

To show k is an eigenvalue with multiplicity greater than or equal to c(Γ), suppose the
components have vertex sets V1 = {v1, . . . , vn1}, V2 = {vn1+1, . . . , vn1+n2}, . . . . So π(Γ) =
{V1, V2, . . . , Vc(Γ)}. Let xi ∈ Rn be the vector which is 0 except for being 1 on every vertex of
Vi. It is easy to see that Axi = kxi. Therefore we have at least c(Γ) independent eigenvectors,
hence k has multiplicity at least c(Γ). �

Now we look at BTB, which is an E × E matrix. In this matrix the entry xi,j is the
number of edges between the vertices vi, vj, and xi,i is the degree of vertex vi. It is clear that
BTB = A(L) + 2I, where L = L(Γ). Since HTH is positive semidefinite, the eigenvalues are
greater than or equal to zero.

Theorem I.2. [[LABEL T:0926lge]] The eigenvalues of a line graph are greater than or
equal to −2.

Proof. Let λ be an eigenvalue of A(L) with eigenvector x. Then A(L)x = λx. Now

BTBx = (A(L) + 2I)x = (λ+ 2)x.

This implies that λ+ 2 is an eigenvalue of BTB. So λ ≥ −2. �

J. Cycles, Cuts and their Spaces

[[LABEL 1.cyclecut]]

J.1. The binary cycle and cut spaces. [[LABEL 1.binarycyclecut]]

The binary edge space.

Oct 3:
Peter
Cohen,
TZ

In P(E) there is the operation of symmetric difference, or set addition, written ⊕. Under
set summation P(E) is a binary vector space, that is, a vector space over the two-element
field F2, indeed P(E) ∼= FE2 in a natural way.

Definition J.1. The characteristic function of an edge set S ⊆ E is 1S : E → {0, 1}, where
1S(e) = 1 if the edge e is contained in S and 0 otherwise.

The correspondence S ↔ 1S is the natural isomorphism of P(E) with FE2 . In view of this
correspondence we may, and do, regard any subspace of P(E) as a subspace of FE2 and vice
versa. This kind of switching back and forth between different viewpoints (in this case, sets
vs. functions) is a powerful tool in all of mathematics. Still, one should not forget that it is
two different kinds of objects that are being treated as equivalent.

In the vector space P(E) there is an inner product S ·T := |S∩T | (mod 2). It corresponds
to the dot product in FE2 , defined by x · y :=

∑
i∈E xiyi ∈ F2. By that I mean 1S·T = 1S · 1T

in F2.

The binary cycle space.

Sept 15:
Yash Lodha

The first essential subspace of the binary edge space is the cycle space.

Definition J.2. [[LABEL D:0926z1f2]] The binary cycle space is the subspace spanned by
all circles (if regarded as lying in P(E)) or all characteristic functions of circles (if in FE2 ). A
binary cycle is any element of the binary cycle space. We denote the binary cycle space by
Z1(Γ; F2).
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Proposition J.1. [[LABEL P:1003z1even]] The binary cycles are the even-degree subsets of
E.

In fact, the real proposition is stronger; it has Proposition J.1 is an immediate corollary.

Proposition J.2. [[LABEL P:0926evencircles]] Any even-degree edge set is the disjoint
union of circles.

Proof. I’ll sketch the proof. In one direction, it’s easy to see that a sum of any number of
circles (disjoint or not), or any other sets each of which has even degree, will itself have even
degree. In the other direction, one has to prove that any even-degree edge set S that is not
empty contains a circle. This is a standard lemma of introductory graph theory. Deducting
the circle C from S leaves a smaller even-degree edge set, disjoint from C, so the proposition
follows by induction. �

I said at the beginning of the course that the nullity or cyclomatic number of Γ equals the
number of independent circles. It is time to explain the exact meaning of that statement.

Definition J.3. [[LABEL D:0915fundcircles]] Given a maximal forest T of Γ, if we add
another edge e we obtain a circle. This circle is called the fundamental circle associated with
e, written CT (e). The entire set {CT (e) | e /∈ T} is called the fundamental system of circles
associated with T .

Proposition J.3. [[LABEL P:0915fundbasis]] Given T , every circle is a set sum of funda-
mental circles in a unique way.

That is, a fundamental system of circles is a basis of the binary cycle space. (Not every
basis has this form.)

Proof. [NEEDS PROOF]
�

The binary cut space.

Sept 26:
Yash Lodha

The second essential subspace of FE2 is the binary cut space. It is dual to the binary cycle
space. There are many kinds of duality in graph theory; this one is orthogonal duality in the
binary edge space P(E), but it also corresponds to planar duality, although we won’t treat
that in these notes.

Definition J.4. [[LABEL D:0926cutset]] A cut or cutset is the set of edges between a vertex
set X ⊆ V and its complement Xc (if this set is nonempty). A bond is a minimal cut.

For X, Y ⊆ V we define E(X, Y ) to be the set of those edges with one endpoint in X and
the other in Y . Thus, a cutset is any nonempty set E(X,Xc). A particular case is when X
is a singleton:

Definition J.5. [[LABEL D:1003vertexcut]] A vertex cut is the set of all edges incident to
a vertex, i.e., E({v}, V \ v). A vertex bond is a vertex cut that is also a bond.

[WERE THERE EXAMPLES? They would be good here, to illustrate the
possibilities.]

Definition J.6. [[LABEL D:1003binarycutspace]] The binary cut space of Γ, writtenB1(Γ; F2),
is the set {cuts} ∪∅ in P(E) ∼= FE2 .
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Proposition J.4. [[LABEL P:1003cutbonds]] Every cut is a disjoint union of bonds in a
unique way.

This is remarkably similar to its dual, Proposition J.2, but the uniqueness is a difference;
it fails to hold true in Proposition J.2.

Proof. Consider the vertex sets X and Xc. Let E(X,Xc) be the cutset defined above. For
e ∈ E(X,Xc), let v1 ∈ X and v2 ∈ Xc be the vertices incident on e. Then consider the
component C1 of the subgraph induced by X which contains v1 and the component C2 of the
subgraph induced by Xc which contains v2. Let E(C1, C2) be the edge set with one endpoint
in C1 and the other in C2. Now it is clear that E(C1, C2) is a bond, since C1 and C2 are
connected, removing a proper subset of E(C1, C2) will leave C1 ∪ C2 connected, and hence
not increase the number of components of our graph.

From here it follows that E(X,Xc) is the unique disjoint union of edge sets (which are
bonds) connecting a pair of components of X and Xc. �

Properties of the binary spaces.

Oct 3
(draft):
Peter Cohen

Here is a list of the principal properties of the binary cycle and cut spaces, other than
those already mentioned.

Theorem J.5. [[LABEL T:1003binarycutscycles]]

(1) The binary cycle space Z1(Γ; F2) is a subspace of P(E).
(2) The binary cut space B1(Γ; F2) is a subspace of P(E).
(3) B1(Γ; F2) is orthogonal to Z1(Γ; F2).
(4) The binary cycle space is the span of the set of circles. Any fundamental system of

circles is a basis of Z1(Γ; F2).
(5) The binary cut space is spanned by the bonds. In fact, it is spanned by the vertex

bonds, hence by the vertex cuts.
(6) B1(Γ; F2) and Z1(Γ; F2) are orthogonal complements in FE2 .
(7) The sum of dimensions dimB1 + dimZ1 = |E|, the number of edges.
(8) dimZ1 = |E| − n+ c(Γ) = the cyclomatic number.

The proof is a homework exercise, or rather, a series of exercises. For instance, two of the
key parts of the proof are to show that

(a) the intersection of a circle and a cut always has even cardinality, and
(b) the set sum of two different cuts, E(X1, X

c
1)⊕ (E(X2, X

c
2), is a cut.

J.2. The cycle and cut spaces over a field. [[LABEL 1.fieldcyclecut]]
Now we let F be any field.

Definition J.7. A directed circle is a circle given a direction. This is separate from any
orientation of the edges of the circle.

The indicator vector of a circle is a kind of signed characteristic function.

Definition J.8. The indicator vector (or indicator function), IC : E → F , is defined for
a directed circle C. If an edge e ∈ C has the same orientation as the circle, IC(e) = 1. If
e ∈ C is oriented oppositely to the circle’s direction, IC(e) = 1. If e /∈ C, then IC(e) = 0.
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Reversing the direction of the circle negates the indicator vector. Thus, for our purposes,
it doesn’t matter which direction C has; the important point is to distinguish oppositely
oriented edges within C.

Definition J.9. The F -cycle space Z1(Γ;F ) is the span of the indicator vectors of the circles
in the graph Γ.

Definition J.10. A directed cut, denoted by ~E(X, Y ), is a cut with a direction from X to
Y .

Lemma J.6 (2). [[LABEL L:1003 2]] IC · ID = 0 for any directed circle C and directed cut
D.

Proof. [NEEDS PROOF]
�

Theorem J.7. [[LABEL T:1003cyclescuts]]

(1) B1(Γ;F ) = span of {IB : B is a bond} = span of {IB : B is a vertex cut} = span of
{IB : B is a vertex bond}.

(2) B1(Γ;F ) and Z1(Γ;F ) are orthogonal complements in FE.
(3) dimB1 + dimZ1 = |E|.
(4) dimB1 = n− c(Γ).
(5) dimZ1 = |E| − n+ c(Γ).
(6) B1(Γ, F2) = Row H(Γ), and Z1(Γ, F2) = Nul H(Γ).

Proof. [NEEDS PROOF]
�



Chapter II. Signed Graphs

Oct 6:
Jackie
Kaminski

Now at last we’ve arrived at the meat of the course.1 Our purpose is to generalize graph
theory to signed graphs. Not all of graph theory does so generalize, but an enormous amount
of it does—or should, if the effort were made. Since that has not happened yet, there is plenty
of room for a fertile imagination to create new graph theory about signed graphs.

A. Introduction to Signed Graphs

[[LABEL 2.sg]]
A signed graph is a graph with signed edges. But what, precisely, does that mean? In

fact, not every edge has a sign; it is only ordinary edges—links and loops—that do.

A.1. What a signed graph is. [[LABEL 2.sgintro]]
We give two definitions. The first is the simpler: every edge gets a sign. The cost is

that we cannot have loose or half edges; but as we shall see in the treatment of contraction
(Section E.1) that is rather too constraining, whence the second, more general definition.

Definition A.1. [[LABEL D:1006 Ord. Signed Graph]] An ordinary signed graph is a signed
ordinary graph, that is, Σ = (Γ, σ) = (V,E, σ) where Γ is an ordinary graph (its edges are
links and loops) and σ : E → {+,−} is any function.

Definition A.2. [[LABEL D:1006 Signed Graph]] For any graph Γ, which may have half or
loose edges, we define E∗ = {e : E(Γ) : e is a loop or link}. A signed graph is Σ = (Γ, σ) =
(V,E, σ) where Γ is any graph and σ is any function σ : E∗ → {+,−}.

In either case, we call σ the (edge) signature or sign function. Not surprisingly, we refer to
{+,−} as the sign group. One may instead use Z2 as the sign group, or {+1,−1}. We prefer
the strictly multiplicative point of view implied by {+,−} for reasons that will become clear
when we discuss equations (Section I); a hint appears when we define the sign of a walk.

A subgraph Γ′ = (V ′, E ′) of Γ is naturally a signed graph with signature σ′ = σE′ . An
edge subset S ⊆ E makes a natural signed subgraph, (V, S, σS).

Definition A.3. [[LABEL D:1006 Isomorphism]] Signed graphs Σ1 and Σ2 are isomorphic
if there is a graph isomorphism between Σ1 and Σ2 that preserves edge signs.

Many people write +1 and−1 instead of + and−. This is harmless as long as we remember
the symbols are not numbers to be added. (I will eat these words when it comes to defining
the adjacency matrix.)

To some signed graph theorists (in particular, Slilaty), loose edges are positive, and half
edges are negative. This is not a convention I will use.

For general culture, I point out that it is well known that graph theory has been invented
independently by many people. Signed graph theory was also independently invented by
multiple people for multiple purposes.

A curious sidelight is that, in knot theory, there is a similar-looking assignment of labels
{+1,−1} to edges. This is not a signed graph in our sense because the “signs” +1 and −1
are interchangeable, so they do not form a group. The sign group {+,−} is present implicitly
through the action of swapping or not swapping the edge labels.

1For benefit of vegetarians: the term “meat” is intended in its early sense of ‘substantial food’, not ‘flesh’.
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A.2. Examples of Signed Graphs. [[LABEL 2.examples]]

Oct 22:
Jackie
Kaminski

Several different signed graphs can be constructed from an ordinary graph Γ.

• +Γ = (Γ,+), where all edges are positive. We call it the all-positive Γ.
• −Γ = (Γ,−), where all edges are negative. Unsurprisingly, we call it the all-negative

Γ
• ±Γ = (+Γ) ∪ (−Γ), where we differentiate the positive and negative edges, i.e.,
e ∈ Γ 7→ +e,−e ∈ ±Γ. Thus, V (±Γ) = V (Γ) and E(±Γ) = +(E(Γ))∪· − (E(Γ)).
We call this the signed expansion of Γ. Loops and especially half edges can be
problematic here, so we generally would assume Γ is a link graph.
• Σ◦ is Σ with a negative loop adjoined to every vertex (that doesn’t have one)
• We can also define +Γ◦, −Γ◦, ±Γ◦, where we think of doing the +, −, or ± before

the ◦ so that the final result has one negative loop at each vertex, not a positive loop
or two loops.

Definition A.4. [[LABEL Df:1022full]] We say Σ is full if every vertex supports a half edge
or a negative loop.

In other words, referring ahead to Section A.4, every vertex supports an unbalanced edge.
This is not the same as having every vertex supporting a negative edge. Note that the terms
positive and balanced, or negative and unbalanced, are equivalent for circles, but not for
edges.

A.3. Walk and circle signs. [[LABEL 2.walksigns]]

Oct 6:
Jackie
Kaminski

The signs of walks and (especially) circles are fundamental in the subject of signed graphs.

Definition A.5. [[LABEL D:1006 Walk Sign]] For any walk W = e1e2 · · · el, the sign of W
is

σ(W ) := σ(e1) · σ(e2) · · · · · σ(el).

If σ(W ) = + we call the walk positive; otherwise we call it negative. In particular, a circle
is positive if its sign is +; otherwise it is negative.

Note that this definition does not depend on the edge set of the walk, but on precisely
how often each edge appears in the walk. As a circle is simply a closed walk, we can define
the sign of a circle similarly; but since each edge of the circle appears exactly once, the sign
of a circle (as a walk) is also its sign as an edge set.

Definition A.6. [[LABEL D:1006 Set Positive Circles]] In a signed graph Σ,

B(Σ) := {positive circles of Σ}.
The complementary subset of C(|Σ|) is Bc(Σ) := {negative circles of Σ}.

A.4. Balance. [[LABEL 2.balance]]
We are now ready to define the key concept of signed graph theory (as we interpret it):

balanced graphs.

Definition A.7. [[LABEL D:1006 Balanced Graph]] We say Σ is balanced if

(1) every circle is positive and
(2) Σ has no half edges.



50 Chapter II: Signed Graphs

A subgraph is balanced if it is a balanced signed graph. We similarly define a balanced
edge set; specifically:

Definition A.8. [[LABEL D:1006 Balanced Edge Set]] For S ⊆ E, we say S is balanced if
Σ|S is balanced, where Σ|S := (V, S, σ|S).

Note that the existence of loose edges has no effect on the state of balance of either a
graph or an edge set.

We now state Harary’s Balance Theorem (known in psychology as the “Structure Theo-
rem”).

Definition A.9. [[LABEL D:1006 bipartition]] A bipartition of a set X is an unordered pair
{X1, X2} of complementary subsets, that is, subsets such that X1∪X2 = X and X1∩X2 = ∅.
X1 or X2 could be empty.

A bipartition isn’t simply a partition into two parts, since in a partition the parts are not
allowed to be empty.

Theorem A.1 (Balance Theorem (Harary 1953a)). [[LABEL T:1006 Harary]] Σ is balanced
⇐⇒ there is a bipartition V = V1∪· V2 such that every negative edge has one endpoint in V1

and the other in V2 and every positive edge has both endpoints in V1 or both in V2, and Σ
has no half edges.

We call a bipartition as in the Balance Theorem a Harary bipartition of Σ. That is, a
Harary bipartition is a bipartition of V into {X,Xc} such that every positive edge is within
X or within Xc, and every negative edge has one endpoint in each. Notice that we are
ignoring half edges in this definition; thus, the statement of Harary’s theorem is that Σ is
balanced iff it has a Harary bipartition and it has no half edges. (Although, in fact, Harary’s
signed graphs had no half edges!)

The original proof is somewhat long. We’ll have a shorter but more sophisticated proof
soon (Section A.5). For now we make a few observations about balance. First, in a balanced
graph (or balanced subgraph) all loops must be positive. Second is a lemma that can be
useful in many proofs.

Lemma A.2. [[LABEL L:1006 balanced blocks]] Σ is balanced if and only if every block
(maximal 2-connected subgraph) is balanced.

We recall that a graph is 2-connected if every pair of edges is in a common circle. (Some
people define a graph to be 2-connected if does not contain any cutpoints, where a cutpoint
is a vertex whose deletion leaves more connected components than there were before. The
two definitions disagree on whether or not a loop is its own connected component. The
lemma is true in either case, but we shall prove it with the first definition.)

Proof. The forward direction is trivial, since Σ being balanced means every circle in Σ is
balanced, so any circles in a particular block are certainly balanced.

For the reverse direction, assume every block of Σ is balanced, and let C be a circle in
Σ. It is well known that every circle is contained within a single block (since the blocks are
maximal 2-connected subgraphs), so C is balanced since it is a circle in a balanced subgraph.
Therefore Σ is balanced. �
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A.5. Switching. [[LABEL 2.switching]]
We now introduce one of the most useful and powerful techniques in signed graph theory.

Definition A.10. A function ζ : V → {+,−} is called a switching function, or sometimes
a selector. The switched signature is σζ(e) := ζ(v)σ(e)ζ(w), where e:vw, and the switched
signed graph is Σζ := (Γ, σζ).

Looking at examples we notice that switching a single vertex doesn’t change the sign (or
equivalently balance) of any circle. We formalize this with a proposition, in preparation for
the Switching Theorem.

Proposition A.3. [[LABEL P:1006 Switching Circles]] Switching leaves the signs of all
circles unchanged.

Proof. Let ζ be a switching function and C = v0e0v1e1v2 · · · vn−1en−1v0 be a circle. (So ei
has endpoints ei and ei+1 with the indices understood modulo n.) Now

σζ(C) =
(
ζ(v0)σ(e0)ζ(v1)

)(
ζ(v1)σ(e1)ζ(v2)

)
. . .
(
ζ(vn−1)σ(en−1)ζ(v0)

)
.

Since for each vi ∈ V (C), ζ(vi) appears twice in the product above, and ζ(vi) · ζ(vi) = +,
the product above reduces to σζ(C) = σ(e0)σ(e1) · · ·σ(en−1) = σ(C). �

In particular, switching never changes the sign of a loop.
For circles, the terms ‘balanced’ and ‘positive’ are equivalent, as are the terms ‘unbalanced’

and ‘negative’, although this certainly isn’t the case for arbitrary edge sets.
An alternative (and equivalent) point of view on switching is that switching Σ by ζ means

negating every edge with one endpoint in ζ−1(+) and the other in ζ−1(−). (This is immediate
from the definition.) We call this switching the vertex set ζ−1(−), or equivalently ζ−1(+).

Definition A.11. [[LABEL D:1006 vertex set switching]] For X ⊆ V , the signed graph ΣX

is the result of negating every edge with one endpoint in X and the other not in X; that
is, every edge of the cut (X,Xc). We call this operation switching X and we say ΣX is Σ
switched by X.

Vertex switching means switching a single vertex v, i.e., switching {v}. We write Σv for
Σ switched by v.

Note that set switching is simply a change in perspective, from the switching function
ζ : V (Σ) → {+,−} to the vertex set X = ζ−1(−), or conversely from X to ζX which is −
on X and + on all other vertices. We will use whichever notation is more convenient.

Notice also that switching by X is equivalent to switching by Xc, and similarly Σζ = Σ−ζ

for any switching function ζ. Any switching is the product of vertex switchings (in any
order). Specifically, ΣX =

( · · · ((Σv1
)v2
) · · · )vn where X = {v1, v2, . . . , vn}

Switching and balance.

Theorem A.4 (Switching Theorem). [[LABEL T:1006 Switching]]

(1) Switching leaves B unchanged, i.e., B(Σζ) = B(Σ).
(2) If |Σ1| = |Σ2| and B(Σ1) = B(Σ2), then there exists a switching function ζ such that

Σ2 = Σζ
1.

Proof. We notice that (1) follows immediately from Proposition A.3, since switching doesn’t
create or destroy any circles, and it doesn’t change the sign of any circles.



52 Chapter II: Signed Graphs

For part (2), notice that Σ1 and Σ2 have the same vertices and edges (since |Σ1| = |Σ2|);
we will write Γ := |Σ1| = |Σ2|. Since switchings of different components are independent,
we may assume Σ1 is connected. Now pick a spanning tree T in the underlying graph, and
list the vertices in such a way that vi is always adjacent to a vertex in {v0, . . . , vi−1} (this is
a fairly standard exercise in basic graph theory, and the list is not usually unique). Let ti
denote the unique tree edge connecting vi to {v0, . . . , vi−1}.

We take a brief pause to observe that every circle in Γ is the set sum (symmetric difference)
of the fundamental circles of the non-tree edges of C, in other words C =

⋃
e∈C\T CT (e). (This

is closely related to Proposition J.3.)
We now define (recursively) a series of switching functions, ζi for 0 ≤ i < n, where ζ0 ≡ +

and

ζi(vj) =


ζi−1(vj) if j < i,

σ
ζi−1

1 (ti) · σ2(ti) if j = i,

+ if j > i.

(Here σk is the signature of Σk and σ
ζi−1

1 denotes the signature of Σ
ζi−1

1 .) Notice that for each

of the edges in T , t1, . . . , tn−1, σ2(tk) = σζi1 (tk) for i ≥ k, so in particular, σ2(tk) = σ
ζn−1

1 (tk)
for all tk tree edges.

We now consider a non-tree edge f ∈ C\T . Since B(Σ1) = B(Σ2), we conclude that

σ1(CT (f)) = σ2(CT (f)), and by Proposition A.3, σ
ζn−1

1 (CT (f)) = σ2(CT (f)), since ζn−1 is a

switching function. Finally, we notice that by construction σ
ζn−1

1 and σ2 agree on each edge
in CT (f) except f , and on the product (the entire fundamental circle), they must agree on

f . Therefore, σ
ζn−1

1 and σ2 agree on every edge in Γ. Hence, ζn−1 is the desired switching
function. �

This theorem can be regarded as the natural generalization of the standard characteriza-
tion of bipartite graphs.

Corollary A.5. [[LABEL C:1006 bipartite]] An ordinary graph Γ is bipartite ⇐⇒ it has
no odd circles.

Proof. All circles in Γ are even ⇐⇒ all circles in −Γ are positive ⇐⇒ (by definition of
balance) −Γ is balanced ⇐⇒ (by Theorem A.4) V = X1∪· X2 so that all negative edges
(that is, all edges) have one endpoint in X1 and the other in X2 ⇐⇒ Γ is bipartite. �

(Next time we will work on a proof that when T is a maximal forest, Σ can be switched
to be any desired value on the edges of T , which is accidently included in the proof of Thm
A.4.)

Oct 8:
Simon Joyce

One thing to observe is that for a walk W from v to w in a signed graph Σ we have
σζ(W ) = ζ(v)σ(W )ζ(w). In particular, the sign of a closed walk is fixed under switching.

Lemma A.6. [[LABEL L:1008 tree signs]] Given a signed graph Σ and a maximal forest T
of Σ, there exists a switched graph Σζ such that Σζ has any desired signs on T . Furthermore,
ζ is unique up to negation on each component.

Proof. We can treat each component of Σ separately so we’ll assume Σ is connected. Then
T is a spanning tree. Let τ : E(T )→ {+,−} be the desired edge sign function. Pick a root
vertex r in V (Σ). Then

τ(e1) = σζ(e1) = ζ(v1)σ(e1)ζ(r),
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so

ζ(v1) = τ(e1)σ(e1)−1ζ(r)−1 = τ(e1)σ(e1)ζ(r).

For v ∈ V (Σ), let Prv be the unique path in T between r and v. Thus, Prv = re1v1e2v2 . . . elv.
Then σ(Prv) = σ(e1)σ(e2) · · ·σ(el). We want to show σζ(ei) = τ(ei). We know σζ(ei) =
ζ(vi−1)σ(ei)ζ(vi), so we have

σζ(Prv) = [ζ(r)σ(e1)ζ(v1)][ζ(v1)σ(e1)ζ(v2)] · · · [ζ(vl−1σ(el)ζ(v)]

= ζ(r)σ(Prv)ζ(v).

Therefore we must have ζ(r)σ(Prv)ζ(v) = τ(Prv), so ζ(v) = τ(Prv)σ(Prv)ζ(r). Choosing ζ(r)
to be + or −, the rest of ζ is completely determined. Switching by ζ,

σζ(ei) = ζ(vi−1)σ(ei)ζ(vi)

= τ(Prvi−1
)σ(Prvi−1

)ζ(r)σ(ei)τ(Prvi)σ(Prvi)ζ(r)

= σ(ei)τ(ei)σ(ei)

= τ(ei). �

The following immediate corollary is a very useful result.

Proposition A.7. [[LABEL C:1008 balanced positive]] If Σ is a balanced signed graph, then
there is a switching function ζ such that all ordinary edges of Σζ are positive.

Proof. Since Σ is balanced it has no half edges. Let T be a maximal forest of Σ. By the
previous result there is a switching function ζ such that all the edges of T are positive.
Consider an edge e not in T . Either e is a loose edge, it is a balanced loop, or it is a link. If e
is a loose edge then it has no sign. If it is a balanced loop it is positive before and also after
switching. If e is a link, its sign in Σζ equals the sign in Σ of its fundamental circle, which is
+. Therefore, σζ(e) = +; consequently, switching by ζ does in fact make all ordinary edges
positive. �

In particular, this result tells us that for any balanced component Σ:B of a signed graph,
there exists a switching function such that all the edges of Σ:B are positive. More broadly,

Corollary A.8. [[LABEL C:1008 balanced positive subgraph]] If S is a balanced edge set
in Σ, then there is a switching function such that all ordinary edges of S are positive. �

Figure A.1. F:1008 We want σζ(ei) = τ(ei).
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Switching equivalence and switching isomorphism.
Now we examine the relationships between signed graphs that are induced by switching.

Definition A.12. [[LABEL D:1008 switch class]] We say two signed graphs Σ1 and Σ2 are

switching equivalent if |Σ1| = |Σ2| and there is a switching function ζ such that Σζ
1 = Σ2.

Switching equivalence is an equivalence relation; we call an equivalence class a switching
class of signed graphs.

A related concept is that of switching isomorphism, which means that Σ1 is isomorphic to
some switching of Σ2. We call an equivalence class a switching isomorphism class. (In the
literature, the terms “switching equivalence” and “switching class” often refer to switching
isomorphism; one has to pay close attention.)

[THE FOLLOWING REPEATS A THEOREM FROM THE PREVIOUS DAY:]

Theorem A.9. [[LABEL T:1008 switch equiv]] Given two signed graphs Σ1 and Σ2, if
|Σ1| = |Σ2| and B(Σ1) = B(Σ2) then Σ1 and Σ2 are switching equivalent.

Proof. Let T be a maximum forest of |Σ1|. First we take ζ1, a switching of Σ1 and ζ2, a

switching of Σ2 such that Σζ1
1 and Σζ2

2 are all positive on T . We want to show Σζ1
1 = Σζ2

2 .

Take an edge e:vw in the graph. If e ∈ T , then σζ11 (e) = σζ22 (e) = +. If e /∈ T , then
there is a unique path Tvw joining v and w in T . Let C = Tvw ∪ e. So C is a circle. Since
B(Σ1) = B(Σ2), we know σ1(C) = σ2(C). Furthermore, since the sign of a closed walk is
fixed under switching we have,

σζ11 (C) = σ1(C) and σζ22 (C) = σ2(C).

Therefore,

σζ11 (C) = σζ22 (C).

In particular we have,

σζ11 (C) = σζ11 (Tvw)σζ11 (e) = σζ11 (e) and σζ22 (C) = σζ22 (Tvw)σζ22 (e) = σζ22 (e)

Therefore e has the same sign in both Σζ1
1 and Σζ2

2 , ie Σζ1
1 = Σζ2

2 . �

This theorem means two signatures of a graph Γ are switching equivalent if and only if
they have the same circle signs. With this result we can efficiently prove Harary’s original
theorem. [THIS PROOF BELONGS IN THE PREVIOUS DAY’S NOTES.]

Proof of Harary’s Balance Theorem A.1. Suppose Σ has the stated form. Then Σ is obvi-
ously balanced; but we also note that ΣV2 is all positive, hence balanced, hence Σ is balanced
by Proposition A.3.

Conversely, suppose Σ is balanced. Switching by a suitable vertex set X so a maximal
forest F is all positive (which is possible by Theorem A.9), every other edge must be positive
because its fundamental circle C(e) is positive and all edges in C(e) other than e are in F .
Calling this all-positive graph Σ1, Σ = ΣX

1 has every edge within X or Xc positive and every
edge between X and Xc negative. �

Oct 13:
Nate Reff
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B. Characterizing Signed Graphs

[[LABEL 2.basic]]
The next question is: Which circle sign patterns are possible for a signed graph? We give

two kinds of answer: one algebraic and one combinatorial.

B.1. Signature as a homomorphism. [[LABEL 2.shomomorphism]]
A function f : V1 → V2, where V1 and V2 are binary vector spaces, is a homomorphism

if and only if it is additive (we can ignore the scalar multiplication axioms because for
F2 they are satisfied automatically). So any function σ : E → F2 gives a unique extension
σ : P(E)→ F2 that is a vector space homomorphism by the identification σ(S) =

∑
e∈S σ(e).

Oct 15
(draft):
Peter Cohen
and Thomas
Zaslavsky

In this discussion we take signs as elements of the field F2 = {0, 1} and we write Z as
short notation for the binary cycle space Z1(Γ; Z2).

Theorem B.1 (Signature as a linear functional). [[LABEL T:1015signhomomorphism]]
Given any function σ̄ : C→ F2, the following properties are equivalent:

(1) σ̄ = σ|C for some signature σ : E → F2 (extended to Z by linearity).
(2) σ̄ is the restriction to C of a homomorphism τ : Z → F2.
(3) σ̄−1(0) = C ∩ U for some subspace U of Z, with codimension 0Ω1.

Proof. By induction, each part of the theorem implies another part.
1-2) If we let τ = σ : P (E)→ F2, where P (E) is essentially a subspace with the form FE2 ,

then σ is restricted to a homomorphism, so 1 implies 2.
2-3) Given τ , we can set σ̄ = τ |e. In this case, U = nulτ , so σ̄−1(0) = C ∩ nulτ . Since

nulτ is a subspace of Z, 2 implies 3.
3-2) τ : Z → F2 can be defined by τ−1(0) = U , or we could define τ : Z → Z/U ∈ F2, in

which case U = kerτ , so therefore σ̄ = τ |e, and 3 implies 2.
2-1) Given that σ̄ = τ |e [Incomplete.]
[WRITE A PROOF] �

B.2. Balanced circles and theta oddity. [[LABEL 2.oddity]]
Now we give a combinatorial condition characterizing the class of balanced circles of a

signed graph. For a subclass B of all circles of a graph, theta additivity or theta oddity
(formerly called circle additivity) is the property that every theta subgraph contains 1 or 3
members of B.

Theorem B.2 (Characterization of Positive Circles). [[LABEL T:1015poscircles]] Let B be
any subclass of C(Γ). Then B is the class of positive circles of some signature of Γ if and
only if it has an odd number of circles in every theta subgraph.

We need a lemma about expressing circles as theta sums, that will let us use induction in
proving the theorem. A theta sum is a representation of a circle C as the set sum C1 ⊕ C2

of two other circles such that C1 ∪ C2 is a theta graph whose third circle is C. Given T , a
maximal forest in Γ, define ν(C) := |E(C) \ E(T )|.
Lemma B.3. [[LABEL L:1015thetasum]] Each circle is either a fundamental circle with
respect to T , or a theta sum C1 ⊕ C2 of two circles with smaller values of ν.

Proof. NEDS PROOF, NED.
�
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Proof of the theorem. A theta graph is made up of three internally disjoint paths, all with
the same endpoints, which we will call P1, P2, P3. We denote by Cij the circle made by the
two paths Pi and Pj.

First suppose we have a signature σ. The signs of the circles can be found by multiplying
the signs of the paths:

σ(C12) = σ(P1)σ(P2),

σ(C23) = σ(P2)σ(P3),

σ(C13) = σ(P1)σ(P3).

Therefore,

σ(C12)σ(C23)σ(C13) = σ(P1)σ(P2)σ(P2)σ(P3)σ(P1)σ(P3)

= σ(P1)σ(P1)σ(P2)σ(P2)σ(P3)σ(P3)

= +.

The number of negative circles is even, so theta oddity is satisfied.
Now suppose a class B is given that satisfies theta oddity. Let σ̄ : C → F2 be the

characteristic function of Bc, that is, σ̄(C) equals 1 if C is not in B, 0 if it is in B. (In
this part of the proof it is best to regard signs as values in F2.) Theta oddity means that if
C1∪C2 is a theta graph and the third circle in it is C = C1⊕C2, then σ̄(C) = σ̄(C1)+ σ̄(C2).

Choose a maximal forest T . We use the fundamental circles to define σ, namely,

σ(e) :=

{
0 if e ∈ E(T ),

σ̄(CT (e)) if e /∈ E(T ).

Thus, for a non-forest edge e, σ(e) = 0 if CT (e) ∈ B and 1 otherwise. Our task is to prove
that B(σ) = B, which means that

σ(C) = σ̄(C)

for every circle. We employ induction on the number of non-forest edges in C.
Case 1: C is a fundamental circle. Since C = CT (e), by reversing the definition we find

that

σ(C) :=
∑
f∈C

σ(f) = σ(e) = σ̄(C).

Case 2: C is not a fundamental circle. Then ν(C) ≥ 2, so by Lemma B.3, C = C1 ⊕ C2,
a theta sum in which ν(C1), ν(C2) < ν(C). By theta oddity and induction on ν,

σ̄(C) = σ̄(C1) + σ̄(C2) =
∑
f∈C1

σ(f) +
∑
f∈C2

σ(f)

=
∑

f∈C1⊕C2

σ(f) =
∑
f∈C

σ(f) = σ(C).

This establishes that B(σ) = B, as we wished. �

Oct 13:
Nate Reff

C. Connection

[[LABEL 2.connection]]
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C.1. Balanced components. [[LABEL 2.balcomp]]
Suppose we have a signed graph Σ = (V,E, σ) with some subset S ⊆ E. Recall that a path

in Σ, P = e1e2 . . . ek (not containing any half edges), has a sign σ(P ) = σ(e1)σ(e2) . . . σ(ek).
A circle whose sign is + is said to be positive or balanced. We say that S is balanced if
it contains no half edges and every circle is balanced. Recall that we denote by c(S) =
c(V, S) = c(Σ |S) the total number of components (that is, node components). We will
denote by b(S) = b(V, S) = b(Σ|S) the number of balanced components. Recall that

π(S) = {vertex sets of components of S}.
We also write

πb(S) = {vertex sets of balanced components of S}
= {X ∈ π(S) | S:X is balanced}.

This may be called the balanced partial partition of V induced by S. Then c(S) = |π(S)|
and b(S) = |πb(S)|.

Let’s take a moment to review partitions of a set. A partition of V is a class {B1, B2, . . . , Bk}
of disjoint, nonempty sets Bi such that B1 ∪ B2 ∪ . . . ∪ Bk = V . A partial partition of V
is a partition of a subset of V ; its support supp(π) :=

⋃
π is that subset. (One should not

overlook the unique partition of the empty set: it is the empty partition, ∅, and it is a
partial partition of V .) We denote the class of partitions and partial partitions by ΠV and

Π†V , respectively. So as an immediate observation we have π(S) ∈ ΠV and πb(S) ∈ Π†V .
Also one should note that Π†n

∼= Πn+1. This is because a partial partition π is in bijec-
tive correspondence with the partition π ∪ {{0, 1, . . . , n} \ supp(π)} of {0, 1, . . . , n}. (The
block {0, 1, . . . , n} \ supp(π) is called the “zero block” of π, by those who like to have it.
This isomorphism does not give us a new kind of lattice, but instead a new structure to be
studied.)

Now we turn our attention to the natural isomorphism P(E) ∼= FE2 . The latter is a binary
vector space (a structure that is equivalent to an abelian group of index 2). We will denote
by ⊕ the binary vector addition operator. We denote by C = C(Γ) the class of circles in
Γ. Suppose we have three circles C,C1, C2 ∈ C, we say C is the theta sum of C1 and C2 if
C = C1 ⊕ C2 and C1 ∪ C2 is a theta graph.

We know that, given a maximal forest T of an ordinary graph, the fundamental system of
circles with respect to T , {CT (e) | e /∈ T}, is a basis for the cycle space Z1(Γ; F2). In fact we
can say that C =

⊕
e∈C\E(T ) CT (e) since we can rearrange the sum to correspond to a theta

graph.

Lemma C.1. [[LABEL L:1013lemma1]] C can be obtained from {CT (e) | e ∈ E(C) \E(T )}
by theta sums.

Proof. For convenience in the proof we define QC := E(C) \E(T ). Now we do induction on
|QC |. For the base case, if |QC | = 1, then C = CT (e) where {e} = QC . For the induction
step, where |QC | > 1, we give two proofs by two different methods.

First Proof (by a direct argument).
Since |QC | > 1, C \ QC is a disconnected graph. This means that T contains a path

connecting two vertices in different components of C \QC . Now suppose P is a minimal such
path. Then P is internally disjoint from C, by minimality. Therefore, P is chordal path of
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C, so P ∪ C is a theta graph, and C = C1 ⊕ C2 where C1 and C2 are the circles in P ∪ C
that contain P . Hence, the P we wanted exists.

Second Proof (to illustrate the use of bridges).
We split C into two circles C1 and C2 such that C = theta sum of C1 and C2 (We will

prove that this is possible after the induction is completed.) and QC = QC1 ∪· QC2 . Since
|QC1|, |QC1| < |QC |, by the induction hypothesis {CT (e) | e ∈ QC1} generates C1 by theta
sums, and {CT (e) | e ∈ QC2} generates C2 by theta sums. Therefore the disjoint union
QC1 ∪· QC2 = QC generates the entirety of C by theta sums. This completes the induction
argument, so now we turn back to prove the existence of the theta sum.

P

C

C1

C2

Figure C.1. F:1013Figure1

Suppose that C is drawn as in figure C.1.
We say P is a chordal path of C if P is a path which connects two vertices in C but is

internally disjoint from C. Equivalently, C ∪ P is a theta graph.
In the context of this proof we want to find such a P ⊆ T . Notice that all the nontree

edges of C1 are in C1, all nontree edges of C2 are in C2, and all nontree edges of C is the
disjoint union on nontree edges in C1 and nontree edges of C2, so QC = QC1 ∪· QC2 . In figure
C.1 P is a bridge of C, as is the red subgraph seen in figure C.1. Every vertex of C is in T ,
so every edge of C that is not an edge of T is a bridge of T . So T \E(C) splits into bridges
of C and isolated vertices that are not bridges. There is at least one bridge that contains
vertices of two components of T ∩ C = C \QC , which is disconnected since |QC | > 1. This
completes the bridge proof. �

Oct 20:
Yash Lodha

C.2. Unbalanced blocks. [[LABEL 2.blocks]]

Menger’s theorem.
We take a moment to call to mind Menger’s theorem. A block of Γ is a maximal inseparable

subgraph, which means that every pair of edges in the subgraph is in a common circle of the
subgraph. A block graph is a graph that is a block of itself, or in other words, inseparable.



Section C.2 59

C

Figure C.2. F:1013Figure2

Theorem C.2 (Menger’s theorem). [[LABEL T:1020menger]] In a 2-connected graph Γ,
given any two vertex sets X, Y (not necessarily disjoint) such that |X|, |Y | ≥ 2, there exist
two disjoint XY -paths.

Corollary C.3 (Usual Menger’s theorem). [[LABEL C:1020mengervv]] For a 2-connected
graph Γ and any two non-adjacent vertices x and y, there exist two internally disjoint xy-
paths.

Corollary C.4 (Another form of Menger’s theorem). [[LABEL C:1020mengersv]] For a 2-
connected graph Γ, any set X of at least two vertices, and any vertex z, there exist two
internally disjoint Xy-paths whose endpoints in X are distinct.

We use Menger’s theorem (in whichever form) mainly for k = 2. The following Harary-type
vertex and edge theorems show the method.

Vertices and edges in unbalanced blocks.
In an unbalanced block there are no vertices or edges that don’t participate in the imbal-

ance. This is implied by Harary’s second theorem and its edge version.

Theorem C.5 (Vertex Theorem (Harary 1955a)). [[LABEL T:1020unbalblockvertex]] Let
Σ be an unbalanced signed block with more than one edge. Then every vertex belongs to a
negative circle.

Proof. Let D be a negative circle. If v is in D we’re done. Otherwise, by Menger’s theorem
there are two paths from v to D, disjoint except that both start at v. Call them P1:vw1 and
P2:vw2, and let P be the combined path from w1 to w2. Also, let Q and R be the two paths
into which w1 and w2 divide D. Then D ∪ P is a theta graph. As D is negative, one of the
two circles P ∪Q and P ∪R must be negative. �

This is not Harary’s proof. As is commonly true, the original proof was much longer.
A stronger result is the edge version. I don’t know why Harary didn’t think of it, but

probably because his attention was focussed on the vertices, which represented the persons
in a social group to which the theory of signed graphs was intended to apply. The edges
themselves were not interesting in that context.
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Theorem C.6 (Edge Theorem). [[LABEL T:1020unbalblockedge]] In an unbalanced block
with more than one edge, every edge is in a negative circle.

There is a short proof of the Edge Theorem, similar to that of the Vertex Theorem but
slightly harder due to having two nontrivial cases. The proof is a good homework problem.

Oct 22:
Jackie
Kaminski D. Imbalance and its Measurement

[[LABEL 2.imbalance]]
We know what it means for a graph to be balanced, as well as unbalanced, but we could

certainly have more information about unbalanced graphs. For example some unbalanced
graphs might be ‘almost’ balanced, with a single unbalanced circle, and others might be
‘more unbalanced’.

D.1. Things that balance. [[LABEL 2.balancing]]
We now introduce several definitions that help us us talk about the degree of imbalance

of unbalanced graphs.

Definition D.1. [[LABEL D:1022 Bal Vertex]] A balancing vertex in a connected signed
graph Σ is a vertex such that Σ/v is balanced, but Σ is not.

If Σ has a balancing vertex v, then every negative circle in Σ passes through v. Any graph
with a balancing vertex does not contain two vertex-disjoint circles.

Similarly, we define a balancing edge and a balancing edge set. But as these are compli-
cated enough to have two definitions, they get separate lengthy treatment.

Dec 5b:
Peter Cohen
and Thomas
Zaslavsky

D.1.1. Balancing edges. [[LABEL 2.baledge]]
A special kind of edge, actually (though not obviously) the nearest signed-graphic analog

of an isthmus, is an edge whose deletion increases balance—in a certain precise sense.

Definition D.2. [[LABEL D:1205baledge]] A partial balancing edge of Σ is an edge e such
that b(Σ \ e) > b(Σ).

Proposition D.1. [[LABEL P:1205baledge]] There are three types of partial balancing edge:

(1) An edge e that is an isthmus between two components of Σ\e, of which one (at least)
is balanced. In this case, deleting e creates either one balanced component where
previously there was an unbalanced component, or two balanced components where
there was only one before. [[LABEL P:1205baledge isthmus]]

(2) A negative loop or half edge e in an otherwise balanced component. Then e is what
prevents the component from being balanced. [[LABEL P:1205baledge loop]]

(3) A link e:vw added to a component that is otherwise balanced, in such a way that a
vw-path in the component has sign opposite to that of e. For example, a negative link
in an otherwise all-positive component. [[LABEL P:1205baledge link]]

The proof is a good homework problem.
One could make a different definition. A total balancing edge is an edge whose deletion

makes an unbalanced signed graph balanced. One might think that, if Σ is connected, a total
balancing edge and a partial balancing edge are the same thing; but that isn’t so. However,
it is true that:
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Proposition D.2. [[LABEL P:1205stronglybaledge]] If Σ is connected, a total balancing
edge is an edge of type (2) or (3) in Proposition D.1.

This is a two-way result: all total balancing edges are of those types, and any edge of those
types is a total balancing edge. The proof is another good exercise for the mental muscles.

Dec 8:
Yash LodhaProposition D.3 (Balancing Edge Properties). [[LABEL P:1208BE]] In a signed graph Σ

let S be an edge set and e an edge not in S. The following relationships between e and S are
equivalent:

(i) e ∈ clos(S).
(ii) There is a frame circuit C such that e ∈ C ⊆ S ∪ e.

(iii) b(S ∪ e) = b(S).
(iv) e is not a partial balancing edge of S ∪ e.

Proof. Parts (iii) and (iv) are equivalent by the definition of a partial balancing edge. The
equivalence of (i) and (ii) is Theorem F.6. What we need to prove is the equivalence of (ii)
and (iii). We treat a half edge as a negative loop.

Case 1. V (e) ⊆ V (S1) where S1 is a component of S. If S1 is unbalanced, it has a negative
circle Ci and there is a path in S1 joining the endpoints of e.

[figures go here]
Therefore if S1 is unbalanced, C exists as in (ii).(This will be clear from the images) Also

b(S∪e) = b(S). If S1 is balanced, then either every circle e ∈ C ⊆ S1∪e is negative or every
such circle is positive. This is because we can switch so that all edges in S1 are positive and
so the resulting sign of e is the sign of all the circles e ∈ C ⊆ S1∪e. Therefore b(S∪e) = b(S)
⇐⇒ e is positive after switching ⇐⇒ there exists a frame circuit e ∈ C ⊆ S1 ∪ e which
will be a positive circle.

Case 2. e is an isthmus of S ∪ e, joining components S1 and S2.
[diagram]
If S1 and S2 are unbalanced, then e is in a circuit handcuff of S1 ∪ S2 ∪ e, and also

b(S ∪ e) = b(S) because S1 ∪ S2 ∪ e is unbalanced.
[diagram]
Suppose S2 is unbalanced.
[diagram]
Then e is not in a frame circuit [I have to check the cases], and b(S ∪ e) = b(S) − 1

(since S1 is unbalanced implies that one balanced and one unbalanced component, S2 and
S1 become one unbalanced component S1 ∪ S2 ∪ e.)

Case 3. e is a half edge. Treat this as a negative loop, which is Case 1.
Case 4. e is a loose edge. Then b(S) = b(S ∪ e) abd e ∈ {e} which is a circuit.
Hence the proposition is proved. �

Oct 22:
Jackie
KaminskiD.1.2. Balancing sets. [[LABEL 2.balset]]

With a balancing edge set we find two essentially different concepts.

Definition D.3. [[LABEL D:1022 Bal Set]] An edge set is a total balancing set of Σ if its
deletion leaves a balanced graph.
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An edge set S is a partial balancing set of Σ if its deletion increases the number of balanced
components; that is, if b(Σ\S) > b(Σ). A strict balancing set is a partial balancing set whose
deletion does not increase the number of connected components; that is, it makes one or more
existing unbalanced components balanced without breaking any of them apart.

A total balancing set of minimum size has l(Σ) edges, by the definition of frustration
index.

If Σ is balanced, the empty set is a total balancing set but, obviously, not a partial
balancing set. A bond is a minimal partial balancing set but (obviously) not a minimal total
balancing set.

A total balancing set makes Σ balanced, while a partial balancing set may not make it
balanced but does make it, in a sense, more balanced than it was before. Both kinds of
balancing set have to be considered because they serve different purposes. As we shall see,
total balancing sets are related to frustration, while partial and strict balancing sets are
inovlved with cuts and matroids. We are especially interested in minimal balancing sets,
and then there is a simple relationship between the two kinds.

Lemma D.4. [[LABEL L:1022mintbs]] A total balancing set of Σ consists of a total balancing
set of each connected component. An edge set is a minimal total balancing set if and only if
it consists of a minimal total balancing set of each unbalanced component.

Proof. Let S ⊆ E and for each component Σi, let Si := S ∩ Ei. Then Σ \ S is balanced if
and only if every Σi \ Si is balanced. That proves the first part and makes the second part
obvious. �

Lemma D.5. [[LABEL L:1022minsbs]] A minimal strict balancing set is a minimal partial
balancing set.

Proof. By Lemma D.4 we may assume Σ is connected. Let B be a minimal strict balancing
set. Then Σ \ B is connected so b(Σ \ B) = 1. By minimality, adding back any edge e ∈ B
makes the graph unbalanced (since it cannot change the number of components), hence
b((Σ \B)∪ e) = 0; in other words, B \ e is not a partial balancing set. Thus, B is a minimal
partial balancing set. �

The structure of a minimal partial balancing set that is not strict can be rather compli-
cated. It will be developed in our treatment of cuts in Section ??.

A total, or partial, balancing edge is a total, or partial, balancing set of size 1 (more
correctly, the balancing set is {e} if e is the balancing edge). A strict balancing edge is also a
total balancing set of size 1, provided that Σ is connected (and unbalanced); this is the edge
described in Proposition D.1(3). The reader familiar with matroid theory will notice that a
partial balancing edge corresponds to a matroid coloop. (See Proposition D.3 for more about
this.) [THAT WILL REQUIRE EXPLANATION ADDED NEAR THE PROP.
NAMELY, A BALANCING EDGE OF Σ is a balancing edge of E \ e.]
D.2. A plethora of measures. [[LABEL 2.plethoraimbalance]]

We now present a list of eight possible measures (generated in class, some by me and some
by the students) that one might use to measure the imbalance of a signed graph. This list
is in no way meant to be exhaustive. We will follow this this with a discussion of which
ones are actually used in certain situations. We would also like to point out that any of the
following measurements may be normalized by dividing through by an appropriate quantity.
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(1) The minimum number of vertices whose deletion makes Σ balanced. This is the
vertex elimination number (or “vertex deletion number”), denoted by l0(Σ) [[LABEL
R:1022vdeletion]]

(2) The minimum number of edges whose deletion makes Σ balanced. This is the frus-
tration index, which we denote by l(Σ). (Former or alternative names: line index of
balance—whence the letter l; deletion index.) [[LABEL R:1022frustration]]

(3) The minimum number of edges whose negation makes Σ balanced. This is the nega-
tion index. [[LABEL R:1022negation]]

(4) The maximum number of vertex-disjoint negative circles. [[LABEL R:1022vdnegcircles]]
(5) The maximum number of edge-disjoint negative circles. [[LABEL R:1022ednegcircles]]
(6) The number of negative circles in Σ. Or, the normalized version, which is the pro-

portion of all circles that are negative. [[LABEL R:1022negcirc]]
(7) The minimum number of negative fundamental circles with respect to a maximal

forest. (It is not the same for every maximal forest; see below.) [[LABEL R:1022
NFC]]

(8) The minimum number of circles whose successive deletion leaves a balanced graph.
[[LABEL R:1022circdeletion]]

The first two have (relatively) standard names. The ones that seem to me to be worth
studying are the vertex elimination number (1), the frustration index (2), and the two
numbers of disjoint negative circles, (4) and (5).

The frustration index (2) shows up in small-group psychology (usually under Harary’s
name “line index of balance”), which is where it originated (Abelson and Rosenberg 1958a)
and in physics, especially in spin glass theory (Toulouse 1977a). Finding the frustration index
is NP-hard, because it contains the maximum cut problem, one of the standard NP-complete
problems (cf. Akiyama, Avis, Chvátal, and Era (1981a), p. 229); see Section D.3.

The vertex elimination number (1) is NP-hard even when restricted to signed complete
graphs—that is, deciding whether it is ≤ k is NP-complete (due to Akiyama, Avis, Chvatál,
and Era (1981a), p. 232). Evaluating it is also NP-hard, even when restricted to negated
line graphs of signed graphs; see Section M. [Give precise reference to theorem that
l0(−Λ(Σ) = l(−Σ)) in line graphs section. Proof: Deleting the edge set S in Σ
is the same as deleting the vertex set S in Λ(Σ). Λ(Σ) is antibalanced iff Σ is
[EXPLAIN], so −Λ(Σ) is balanced iff −Σ is. Thus, −Λ(Σ)\S is balanced iff −Σ\S
is balanced.]

Although I don’t believe (6) actually has a use (despite some early consideration in the
psychology literature), Tomescu (1976a) and Popescu and Tomescu (1996a et al.) found
things to say about it for signed complete graphs. By the way, evaluating the normalized
(6) seems (to me) more interesting though (obviously) harder than (6) itself.

Example D.1. [[LABEL X:1022negfundcircles]] The value of (7) may in fact differ with the
choice of spanning forest T . To see this consider −K4 with T1 as three edges incident to a
single vertex. Then each of the edges in K4 \T1 has a negative fundamental circle. But if we
take T2 to be a path of length 3, then two edges in −K4 \ T1 have fundamental circles that
are triangles and hence negative, but the third edge has a quadrilateral as its fundamental
circle, which is positive.

The next lemma tells us that minimal total balancing sets are minimal negative edge sets.
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Lemma D.6. [[LABEL L:1022minbalset]] If S is a minimal total balancing set of Σ, then
Σ can be switched so that S is its set of negative edges.

Proof. Σ \S has the same number of connected components as Σ; otherwise S would not be
minimal since one could add to it an edge connecting two of its components that are in the
same component of Σ. Take T a maximal forest in Σ \ S; it is also a maximal forest of Σ.
By Lemma A.6 we can switch Σ so T is all positive. Then every edge not in S is positive,
because its fundamental circuit is positive since Σ\S is balanced. Every edge in S has to be
negative, because if e ∈ S were positive, S \ e would be a smaller total balancing set. Thus,
S is the negative edge set of the switched Σ. �

Proposition D.7. [[LABEL L:1022 2and4]] The imbalance measure in (7) is not less than
the frustration index, and is equal to it for some choice of maximal forest.

Proof. The number of negative fundamental circles with respect to a maximal forest T equals
the number of negative edges when T is switched to be all positive. This number is not less
than l(Σ).

To prove (7) can be equal to l(Σ), take S to be a minimum total balancing set. Then
by Lemma D.6 there is a switching in which E− = S. By the proof of that lemma, Σ \ S
contains a maximal forest of Σ, call it T . (7) for this choice of T equals the frustration
index. �

D.3. Frustration index. [[LABEL 2.frustrationindex]]
It seems that frustration index is far the most important measure of imbalance. Here are

some of its properties. The first one is an essential property, first stated (in their unique
matrix language) by Abelson and Rosenberg (1958a) and then (in more ordinary matrix
language) by S. Mitra (1962a). I don’t remember who gave the first explicit proof.

Lemma D.8. [[LABEL L:1022frustrationindex]] There is a switching of Σ in which the
number of negative edges equals the frustration index, but no switching has fewer negative
edges.

Proof. This is an immediate consequence of Lemma D.6. The frustration index is, by defi-
nition, the size of a minimum total balancing set. Let S be such an edge set and switch Σ
so S = E−. Then |E−| = l(Σ).

On the other hand, any set E− in a switching of Σ is a total balancing set for Σ, so it
cannot be smaller than l(Σ). �

The first part of the next theorem is due to Harary. The second part is the preceding
lemma.

Theorem D.9. [[LABEL T:1022 Harary]] For a signed graph Σ, the frustration index l(Σ)
= the negation index of Σ = minζ |E−(Σζ)|, the minimum number of negative edges in any
switching.

Proof. Suppose negating R ⊆ E makes Σ balanced. Then every circle in Σ \ R is positive,
so Σ \ R is balanced. On the other hand, if S is a minimal total balancing set, switch so it
is the negative edge set. Then negating S makes the switched graph balanced. Therefore,
negating S makes Σ balanced. That proves the first equation.

For the second, Lemma D.8 states that l(Σ) equals the minimum number of negative edges
in a switched Σ. �
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Lemma D.10. [[LABEL L:1022frustrateddegree]] If Σ is a signed link graph such that l(Σ) =
|E−|, then d−(v) ≤ 1

2
d(v) at every vertex.

Proof. Suppose d−(v) > 1
2
d(v), or equivalently d−(v) > d+(v). Then by switching v we

reduce the number of negative edges at v while not changing the signs of the other edges.
Thus, to minimize |E−(Σζ) we have at least to switch so every vertex has negative degree
no larger than its positive degree. �

The problem of frustration index includes the well known max-cut problem for graphs.

Corollary D.11. [[LABEL P:1022 negative frustration]] For a graph Γ, the frustration index
of −Γ is given by

l(−Γ) = |E(Γ)| − |maximum cut of Γ|.
Proof. Recall that a cut E(X,Xc) consists of the edges with one endpoint in each set of a
bipartition {X,Xc} of V . Let E(X,Xc) be a cut of Γ. The cut edges of an all-negative graph
will form an all-negative bipartite graph, where all circles are of even length and therefore
positive. So the remaining edges (the edges of E(Γ) \ the cut) are a set whose deletion
balances −Γ.

Now notice that maxX⊆V |E(X,Xc)| will certainly minimize the size of E(Γ) \ a cut.
Lastly, since every balanced subgraph of an all-negative graph must be bipartite, every

total balancing set is the complement of a bipartite subgraph. This proves the proposition.
�

Corollary D.12. [[LABEL C:1022 NP]] The frustration index of signed graphs is an NP-
hard problem. The question “Is l(Σ) ≤ k?” is NP-complete.

Proof. The maximum-cut problem is already NP-hard, and “Is the max cut size ≤ k?” is
NP-complete. (See any book on algorithmic complexity.) �

D.4. Maximum frustration. [[LABEL 2.maxfrustration]]
Computing the maximum frustration index of any signature of a given graph should be

no less difficult than finding the frustration index of a particular signed graph, although I
don’t know of any proof about this. Nevertheless, there are some theorems.

Definition D.4. [[LABEL D:1022 D]] lmax(Γ) := maxσ:E→{+,−} l(Γ, σ), the maximum frus-
tration index over all signatures.

This number lmax was introduced by Akiyama, Avis, Chvátal, and Era (1981a). Computing
it leads us to an often-rediscovered theorem of Petersdorf.

Theorem D.13 (Petersdorf (1966a)). [[LABEL T:1022 Petersdorf]] For the complete graph,

lmax(Kn) = l(−Kn) =

⌊
(n− 1)2

4

⌋
.

The signatures whose frustration index achieves the maximum are precisely those in the
switching class of −Kn.

Proof. We have three things to prove: the exact value of l(−Kn), that the maximum frus-
tration index is achieved by −Kn, and that no other signature, up to switching, achieves the
same frustration index.

Part 1. To see that l(−Kn) = b (n−1)2

4
c, we observe that by Proposition D.11, l(−Kn) =

|E(Kn)| − |max cut of Kn|. An edge cut is just the set of edges with one endpoint in each
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part of a bipartition of V . In Kn, such a set is a complete bipartite graph Ki,n−i, which
has i(n − i) edges. Therefore, l(−Kn) = max0≤i≤n i(n − i). Since i(n − i) is an increasing
function of i for i < n

2
and decreasing for i > n

2
, maxi=0,1,...,n i(n − i) = bn

2
c(n − bn

2
c). If n

is even this is n
2
· n

2
= n2

4
. If n is odd it is n−1

2
· n+1

2
= n2−1

4
. Both cases can be expressed as

dn2−1
4
e. The frustration index is therefore

⌊(
n
2

) − n2−1
4

⌋
= b (n−1)2

4
c. This gives the value of

l(−Kn), which takes care of the first part of the proof.
Part 2. By definition, lmax(Kn) = maxσ:E→{+,−} l(Kn, σ), which equals the maximum

negation index of any (Kn, σ) by Theorem D.9. We assume from now on that (Kn, σ) is
already switched so the number of negative edges equals its frustration index. By Lemma
D.10 every vertex has negative degree ≤ b(n− 1)/2c. Thus, the number of negative edges is
at most 1

2
nb(n− 1)/2c.

If n is even this is 1
4
n(n− 2) = b (n−1)2

4
c, so −Kn does have maximum frustration.

If n is odd, it is b1
4
n(n− 1)c, which is larger than l(−Kn). We must look deeper. Suppose

there are two positively adjacent vertices, v and w, both with negative degree 1
2
(n− 1). The

total number of negative edges from {v, w} to V \ {v, w} is n − 1. The total number of
edges between {v, w} and V \ {v, w} is 2(n− 2). Therefore, by switching {v, w} we reduce
the number of negative edges. [PICTURE HERE.] That contradicts the hypothesis that
|E−| equals the frustration index; we conclude that no two vertices with negative degree
1
2
(n−1) can be positively adjacent. This implies that, if d−(v) = 1

2
(n−1) for some vertex v,

then all other vertices with the same degree are neighbors of v. Thus, there cannot be more
than 1

2
(n+ 1) vertices with degree 1

2
(n− 1). The remaining 1

2
(n− 1) vertices have degree at

most 1
2
(n− 3). Adding up these degrees, there are no more than n+1

2
n−1

2
+ n−1

2
n−3

2
= (n−1)2

4
negative edges, the exact value of l(−Kn). Consequently, −Kn has maximum frustration in
the odd case.

Part 3. We ask whether there is more than one switching class that has maximum frus-
tration.

In the odd case we get the largest frustration when (Kn, σ) has 1
2
(n + 1) vertices with

d−(v) = 1
2
(n− 1). None of these vertices can be positively adjacent; thus, they form a clique

of order 1
2
(n+ 1) in the negative subgraph. Each vertex has 1

2
(n−1) neighbors in the clique,

so it cannot be negatively adjacent to any other vertex. Thus, the most negative edges arise
when the remaining 1

2
(n−1) vertices also form a negative clique. This is precisely −Kn with

a maximum cut switched to positive. Thus, the only signature on Kn that has maximum
frustration is the all-negative one.

In the even case the negative subgraph Σ− must be n
2
-regular for maximum frustration.

The solution is similar to that for odd n but slightly more complicated. Instead of showing
that two vertices of maximum negative degree must be negative neighbors, we prove that no
three vertices can be positively adjacent and deduce that no two positively adjacent vertices
can have a common negative neighbor.

Suppose first that u, v, w are positively adjacent. Then all their 3(n
2
−1) negative neighbors

are in V \ {u, v, w}. That leaves 3(n
2
− 2) positive edges between {u, v, w} and V \ {u, v, w},

so switching {u, v, w} reduces the number of negative edges, contradicting the hypothesis on
σ. Therefore, no three vertices can be positively adjacent.

Now suppose v, w are positively adjacent. Their negative neighborhoods combined, N−(v)∪
N−(w), constitute at most 2(n

2
− 1) = |V \ {v, w}| vertices. By the preceding para-

graph there cannot be a vertex that is positively adjacent to both v and w. Consequently,
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N−(v) ∪ N−(w) = V \ {v, w}, from which we deduce that N−(v) ∩ N−(w) = ∅. We have
proved that, if two vertices are negative non-neighbors, their neighborhoods are disjoint.
Restating that, if two vertices have a common negative neighbor, they must be negatively
adjacent. Hence, Σ− is a union of disjoint cliques, each of degree 1

2
n − 1, thus of order 1

2
n.

So Σ− = Kn/2∪· Kn/2 and (Kn, σ) is a switching of −Kn. That concludes the last part of
the proof. �

For completeness’ sake we mention that l(any signed forest) = 0, since it has no circles,
and therefore lmax(any forest) = 0. We just did lmax(Kn) above.

A next logical graph to consider is Kr,s; but this is considerably more of a problem than
Kn. With Kn, the ‘obvious’ signing −Kn yields the maximum frustration index. However,
with Kr,s there is no ‘obvious’ signature to yield a high frustration index, since the all-
negative signature has frustration index 0 and there is no clear substitute. In view of the
relatively obscurity of signed graphs within graph theory, it may be surprising that the value
of lmax(Kr,s) has been the subject of several papers. The reason is that it is the ‘rectangular’
generalization of the Gale–Berlekamp switching game, which has been a challenging problem
for the last oh-so-many years (see, i.a., Brown and Spencer (1971a) and Solé and Zaslavsky
(1994a)).

The Gale–Berlekamp switching game is played on Kr,r,, or rather, on an r×r board with a
light bulb in each square and a switch for each row and column. Initially, some of the lights
are on and some are off. A switch will reverse all the bulbs in its row or column. The goal is
to keep switching so as to minimize the number of lit bulbs. The problem is to find the exact
upper bound on that number. Transforming the board into a signed Kr,r by making edge
viwj negative when the bulb in row i and column j is lit, we have the problem of evaluating
lmax(Kr,r).

It follows from coding theory that frustration index of a randomly signed Kr,s (for variable
r and s) is NP-hard; this leads one to expect that lmax(Kr,s) is also NP-hard—although I
don’t know of a proof. Nevertheless, we do know how to solve one general case, that in which
s = k2r−1, from Garry Bowlin’s recent doctoral thesis (2009a). In a signed graph, let v(N)
denote a vertex whose negative neighborhood is N .

Theorem D.14. [[LABEL T:bowlin]] For the complete bipartite graph Kr,k2r−1 with left set
[r], where r, k > 0, the signature with largest frustration index is the one that has k right
vertices v(N) for each N ⊆ [r] such that |N | < r/2 and also (if r is even) for each N ⊆ [r]
such that |N | = r/2 and 1 ∈ N .

Bowlin (2009a) also shows that there are a systematic construction and tight bounds for
all s, given a fixed value of r.

Despite its ineffectiveness on bipartite graphs, the all-negative signature is tempting. I
propose the following problem, about whose solution I have no clue:

Problem D.1. [[LABEL Pr:maxfr]] Find necessary, sufficient, or necessary and sufficient
conditions on a graph Γ for l(−Γ) to equal the maximum frustration lmax(Γ).

D.5. Disjoint negative circles. [[LABEL 2.disnegcircles]]
We now turn our attention to imbalance measure (4) and consider when the maximum

number of vertex-disjoint negative circles is 1. The reader familiar with matroid theory will
be interested to know that for a 2-connected signed graph, having no two vertex-disjoint
negative circles is equivalent to having a binary frame matroid. I state a theorem, first
proposed by Lovasz with an incomplete proof, that was finally established by Slilaty.
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Theorem D.15 (Slilaty (2007a)). [[LABEL T:1022 Slilaty]] Σ has no vertex-disjoint negative
circles if and only if one or more of the following are true:

(1) Σ is balanced,
(2) Σ has a balancing vertex,
(3) Σ embeds in the projective plane, or
(4) Σ is one of a few exceptional cases.

The proof of this remarkable theorem, as well as a formal definition of a signed graph
embedding (technically, “orientation embedding”—see especially Zaslavsky (1992a)), are
beyond the scope of this course. But I note that the backward direction of the proof is easier
than the forward direction, and that in a signed graph embedding, a circle is negative if and
only if it is orientation reversing in the embedding.

24 Oct
2008:
Simon Joyce E. Minors of Signed Graphs

[[LABEL 2.minors]]
For a signed graph, as for a graph, a minor is any result of contracting an edge set in a

subgraph, so before we can discuss minors we must define contraction.

E.1. Contraction. [[LABEL 2.contraction]]
Contraction of edges in a signed graph is substantially more complex than in ordinary

graphs. Thus, we develop the notion of contraction in two stages: first we contract a single
edge, then an arbitrary set of edges.

E.1.1. Contracting a single edge.
If e is a positive link we delete e and identify its endpoints, which is how we normally

contract a link in an unsigned graph. If e is a negative link we take a switching ζ of Σ such
that e is a positive link in Σζ . Now we contract e in the usual way. We must check that this
operation is in some sense well defined.

Lemma E.1. [[LABEL L:1024 link contraction equivalence]] In a signed graph Σ any two
contractions of a link e are switching equivalent. The contraction of a link in a switching
class is a well defined switching class.

Proof. If e is a positive link the result is immediate so let’s assume e is a negative link. Let
ζ1 and ζ2 be any two switching functions of Σ such that e is a positive link in both Σζ1 and
Σζ2 . We want to show Σζ1/e and Σζ2/e are switching equivalent. Since |Σζ1/e| = |Σζ2/e| by
theorem A.4 it will suffice to show B(Σζ1/e) = B(Σζ2/e).

Let C be a circle in Σ. Since switching does not change the sign of the circle, C has the
same sign in both Σζ1 and Σζ2 . If e is not an edge of C, then contracting e won’t affect
the sign of C in Σζ1/e or Σζ2/e. If e is an edge of C, since the sign of e is positive in Σζ1

and Σζ2 contracting it won’t affect the sign of C in Σζ1/e or Σζ2/e either. It follows that
B(Σζ1/e) = B(Σζ1/e). �

When we contract a positive loop or a loose edge e we just delete e.
If e is a negative loop or half edge and v is the vertex of e, you cut out v (as if with

scissors) and delete e. This operation may produce several half and loose edges as can be
seen in Figure E.1.
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Since we are deleting e and v we have V (Σ/e) = V (Σ) \ {v}, and E(Σ/e) = E(Σ) \ {e}.
Also for any edge f 6= e we have VΣ/e(f) = VΣ(f) \ {v}. So if f is a link with endpoints v
and w it becomes a half edge at w in the contraction. If f is a loop at v, f becomes a loose
edge in the contraction. (This is one of two reasons why we have half and loose edges.)

E.1.2. Contracting an edge set S.
Contraction of an arbitrary edge set S of a signed graph Σ will also be more complicated

than contraction for regular graphs. The process now differs for the balanced and unbalanced
components of S. The edge set and vertex set of Σ/S will be as follows:

E(Σ/S) := E(Σ \ S),

V (Σ/S) := {vertex sets of balanced components of (V, S) = Σ|S}
= πb(S).

To contract we first apply a switching function ζ so the balanced components of S are all
positive. Lemma A.6 guarantees we can do this. Once we have switched, we contract each
balanced component of S in the usual way.

To contract the unbalanced components of S we cut them out and delete all the edges and
vertices of each unbalanced component in a similar process to how we contracted a negative
loop or half edge. This may create some half edges or loose edges. If an edge e /∈ S is a link
and has a single endpoint in an unbalanced component of S, then it becomes a half edge in
the contraction. If both endpoints of e are in unbalanced components of S, or if e is a half
edge with it’s endpoint in an unbalanced component of S, then e becomes a loose edge in
the contraction.

The signature σΣ/S is the sign function induced by Σζ . Then any edge that is a link or
loop in Σ/S keeps its (switched) sign. Any half or loose edges have no sign.

To summarise, once we have found such a switching ζ, we have,

Σ/S =
(
V (Σ/S), E(Σ/S), σΣ/S

)
.

Notice that contraction of an unsigned graph Γ behaves exactly like contraction of +Γ as
we have defined it here.

Figure E.1. Cutting out v leaves half and loose edges.
[[LABEL F:1024Figure1]]
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An example of how the contraction process works is presented in Figure E.2. Here Σ =
±K5 and S is the set of red edges. Since |E(S)| = 4 we have |E(±K5/S)| = 16. Notice that
πb(S) = {v3, v4} and this will correspond to the only vertex in the contraction. To contract
we switch the vertex v3 and then contract the edge −e34. +e34 is now a negative loop.

Now we cut out the unbalanced component. All the edges with an endpoint at the new
contracted vertex become half edges and all the edges with endpoint in the unbalanced
component become loose edges.

Figure E.2. A contraction of ±K5.
[[LABEL F:1024Figure2]]

As for contraction of a single edge we must show this process is in some sense well defined.
This is the content of the next result.

Lemma E.2. [[LABEL L:1024 contraction equivalence]]

(a) Given Σ a signed graph and S ⊆ E(Σ), all contractions Σ/S (by different choices
of switching Σ) are switching equivalent. Any switching of one contraction Σ/S is
another contraction and any contraction Σζ/S of a switching of Σ is a contraction of
Σ.

(b) If |Σ1| = |Σ2|, S ⊆ E is balanced in both Σ1 and Σ2, and Σ1/S and Σ2/S are
switching equivalent, then Σ1 and Σ2 are switching equivalent.

Proof. By theorem A.4, since |Σζ/S| is the same for any switching function, if we can show
B(Σζ/S) does not depend on the switching function ζ, our result will follow. When we
contract by S we contract each component of S separately so it will suffice to show the
result holds when we contract a single balanced component or unbalanced component.

First assume S is composed of a single balanced component. To contract S we must apply
a switching function so that all the edges of S are positive. Again, such switching fuctions
exist by Proposition A.7. Let ζ1 and ζ2 be two such switching functions. Let x be the vertex
corresponding to S in Σζ1/S and let C ∈ B(Σζ1/S).

If x 6∈ V (C), then C ∈ B(Σ). Since switching does not change the sign of circles it follows
that C ∈ B(Σζ2/S).

Now suppose x ∈ V (C). Consider the path P ∈ Σζ1 induced by the edges of C. P is
positive since C is balanced. If P is closed, then C ∈ B(Σ) and so C ∈ B(Σζ2/S). Otherwise
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P has distinct endpoints v, w ∈ V (S) and E(P ) ∩ S = ∅. Since all the edges of S in Σζ1

and Σζ2 are positive, there is a positive path Q in S with endpoints v and w in both Σζ1

and Σζ2 . Therefore the circle P ∪Q ∈ B(Σζ1). It follows that P ∪Q ∈ B(Σζ2) and since the
edges in Q are all positive we get that C ∈ B(Σζ2/S).

A similar argument shows that if C ∈ B(Σζ2/S), then C ∈ B(Σζ1/S), so B(Σζ2/S) =
B(Σζ2/S).

Now assume S is composed of a single unbalanced component. Let C ∈ B(Σζ1/S). Since
no vertex of C can be in S we have that C ∈ B(Σ), and therefore C ∈ B(Σζ2/S). It follows
that B(Σζ1/S) = B(Σζ2/S).

If ζ is a switching function of Σ/S, then we can define an extension ζ̂ that is a switching

function of Σ such that ζ̂(v) = + for any v ∈ V (S). Then Σζ̂/S = (Σ/S)ζ , i.e. (Σ/S)ζ is
another contraction of Σ. That Σζ/S is a contraction of Σ where ζ is a switching function
is immediate.

For part (b) of the Theorem, since Σ1/S and Σ2/S are switching equivalent, Σ2/S is a

contraction of Σ1 by part (a). So there is a switching function ζ1 such that Σζ1
1 /C = Σ2/C.

Note all the edges of S are positive in Σζ1
1 so that we can contract S. Now Σ2/C is obtained

from Σ2 by applying a switching function ζ2 to Σ2 that made all the edges in S positive and
then contracting S. This means that the edge signs of Σζ2

2 are the same as the edge signs of

Σζ1
1 and therefore Σ1 and Σ2 are switching equivalent. �

[Proof needs to be checked]
Part (b) of lemma E.2 fails if S is unbalanced. An example of this is shown in Figure E.3.

Figure E.3. Part (b) of Lemma E.2 fails for unbalanced S.
[[LABEL F:1024Figure3]]

E.2. Minors. [[LABEL 2.minors.minors]]
To summarise, by definition a minor of a signed graph Σ can be constructed as follows.

First, delete all edges that are supposed to be deleted. Now all vertices to be deleted become
isolated; delete these vertices. Finally, contract all edges that are supposed to be contracted.
In short, a minor of a signed graph is defined as a contraction of a subgraph.

Theorem E.3. [[LABEL T:1024 minors are minors]] Given a signed graph Σ, the result of
any sequence of deletions and contractions of edge and vertex sets of Σ is a minor of Σ. In
other words, a minor of a minor is a minor.

[Proof of this is in the following day’s notes.]

Oct 27:
Nate Reff
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Proof. (Σ/S)/T = Σ/(S ∪ T ) where S ∩ T = ∅. (Note that we have equality here in the
sense of edges and not just an isomorphism; however in the sense of vertices we do not get
this nice equality.) Notice that V (Σ/S) = πb(V, S). Also notice the following:

V (Σ/(S ∪ T )) = πb(V, S ∪ T ) ∈ Π•V ,

V ((Σ/S)/T )) = πb(V/S, T ) ∈ Π•V/S .

Therefore V (Σ/(S ∪ T )) and V ((Σ/S)/T )) cannot really be equal. If we want equality we
have to allow vertex bijection but the identity correspondence for the edge sets.

We write V0(Σ) = {vertices of unbalanced components}, and Vb(Σ) = {vertices of balanced
components}. So we have

⋃
πb(S) = Vb(S).

S1 S2 S3 S4 Si V0(S)

T T T

Figure E.4. If we throw in T what happens to the unbalanced and balanced components?
[[LABEL F:1027Figure1]]

Let πb(S) = {B1, B2, . . . , Bk}, where Bj = V (Sj) as seen in Figure E.4. Suppose that
every balanced component S:Bi of S is positive. Looking at the components Ci of S ∪ T
with Ti := E(T ∩Ci) (the edge set of T ∩Ci). Any of these Ci that contains an unbalanced
component of S is unbalanced. In Σ/S, Ci becomes loose edges and at least one half edge
⇐⇒ Ti had an edge with an endpoint outside V0(S) ⇐⇒ N(Ci) ⊆ V0(S).

Table E.1 shows how T affects the components of Σ \ T and (Σ \ T )/S. There are four
cases to examine. Notice that there is a natural bijection between C and C ′ in Case III. �

If we zoom in our attention to the specific situations we can discuss them a little more
clearly with visual aid.

Si V0(S)

T

Figure E.5

In Figure E.5 we can see that anything connected to an unbalanced component will make
an unbalanced component of T trivially.

If we have the situation in Figure E.6, a negative T edge in a balanced component makes
the set unbalanced. This is because in the contraction of S this negative edge makes a
negative circle in Σ/S with S, and hence unbalanced in S ∪ T . A positive T edge preserves
that Sj is balanced.
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The effect of T
on Bi ⊆ V (Σ) on Bi ∈ V (Σ/S)

Case I Connects Bi to V0(S) so Bi ⊆
V0(S ∪ T ).

T makes a half edge at Bi, so Bi ∈
V0(Σ/S;T ).

Case II T edges are within V0(S). T is a loose edge.
Case III T edges connect up one or

more Bi into an unbalanced
component of S∪T . Also Bi ⊆
V0(S ∪ T ).

T forms an unbalanced component of
T in Σ/S. Also these Bi ∈ V0(Σ/S;T ).

Case III T connects one or more Bi

into a balanced component C
of S ∪ T , making C a vertex
of Σ/(S ∪ T ). Then C ⊆ V ,
with C =

⋃
Bi ∈ πb(S), so

C ∈ V (Σ/(S ∪ T ))

T connects one or more vertices of Σ/S
into a balanced component of C ′ of
T in Σ/S. Then C ′ is a vertex of
(Σ/S)/T . Then C ′ ⊆ V/S, with C ′ =
{Bi | Bi ∈ πb(S) and Bi ⊆ C}, so
C ′ ∈ V ((Σ/S)/T )), where C ′ = {Bi ∈
πb(S) | Bi ⊆ C in Σ}

Table E.1. The effect of T on balanced components in Σ and Σ/S.

[[LABEL Tb:1027T]]

Si Sj

T

+

+

-

-

Figure E.6

Lemma E.4. [[LABEL L:1027Lemma2]] Let S be balenced in Σ and T ⊆ E\S. Then S ∪ T
is balanced in Σ ⇐⇒ T is balanced in Σ/S.

Si Sj

T circle

Figure E.7

Suppose we have the situation in Figure E.7. If the loop (T circle) is negative then it
gives an unbalanced component in the contraction. One should note that switching does not
change the sign of a circle. Also, contracting a proper subset of circle edges does not change
the sign of the circle.

F. Closure and Closed Sets

[[LABEL 2.closure]]
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Oct 29:
Peter Cohen
and Thomas
Zaslavsky

Closure in a signed graph, while fundamentally similar to that in a graph (very similar,
according to Proposition F.3), is certainly more complicated.

F.1. Closure operator. [[LABEL 2.closure.operator]]
The best way to define the closure of an edge set in Σ is in two steps. First we define an

operator on balanced sets, then we use it to define the closure of any edge set. Notice that
our definition of closure in a signed graph generalizes the characterization of graph closure
in Theorem D.2 rather than the definition of graph closure. There is a generalization of the
latter definition (see Theorem F.6), and it is important, but it is not as simple.

Definition F.1. [[LABEL D:1029closures]] The balance-closure of T ⊆ E is

bcl(T ) := T ∪ {e ∈ T c : ∃ a positive circle C ⊆ T ∪ e such that e ∈ C} ∪ E0(Σ),

where E0(Σ) is the set of loose edges in Σ. (The name is not “balanced closure”; bcl(T )
need not be balanced—but see Lemma F.2.)

The closure of an edge set S ⊆ E is

clos(S) := (E:V0(S)) ∪
k⋃
i=1

bcl(Si) ∪ E0(Σ),

where S1, . . . , Sk are the balanced components of S and V0(S) is the vertex set of the union
of all unbalanced components of S, that is, V0(S) = V \ (B1 ∪ · · · ∪Bk). We can restate this
directly in terms of πb(S) (since Si = S:Bi for Bi ∈ πb(S)) as

clos(S) := (E:V0(S)) ∪
⋃

B∈πb(S)

bcl(S:Bi) ∪ E0(Σ),

which has the advantage of not implying that k is finite. In the definitions of the closure,
the union with ∪E0(Σ) is only necessary in case k = 0, i.e., πb(S) = ∅.

Lemma F.1. [[LABEL L:1029bclpositive]] If T ⊆ E+(Σ), then bcl(T ) = closΣ+(T ), the
graph closure of T in the positive subgraph of Σ.

Proof. First suppose Σ = +Γ, all positive. Then, comparing the definition of bcl in Σ with
the second definition of closΓ in Definition D.1, we see they are the same.

A positive circle contained in T ∪e has sign σ(e); thus only a positive edge can be in bclT .
That means bclΣ T = bcl+Σ+ T = closΣ+ T . �

Lemma F.2. [[LABEL L:1029bclbalance]] If T is balanced, then bcl(T ) is also balanced,
and furthermore bcl(bclT ) = bcl(T ) = clos(T ).

Proof. The main step is to assume by switching Σ that T is all positive. Then we apply
Lemma F.1. Since bclT is again all positive, it is balanced, and that means it was balanced
before switching. Furthermore, as bclT is all positive, bcl(bclT ) = closΣ+(closΣ+ T ) =
closΣ+ T = bclT by idempotency of graph closure.

The equation of bclT and closT is obvious from the definition of closure. �

Note that we have not said balance-closure is an abstract closure operator. In fact, it is
not. It is increasing and isotonic but it is not idempotent. (Exercise: Find a counterexample.
It must be unbalanced, of course.)

It’s easy to see that balance-closure is a direct generalization of graph closure, as we state
formally in the next result (an obvious corollary of Lemma F.1).
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Proposition F.3. [[LABEL P:1029ordinaryclosure]] If Γ is an ordinary graph, then clos+Γ(S) =
bcl+Γ(S) = closΓ(S).

An interesting observation is that the union of the balance-closures of subsets with no
common vertices is the same as the balance-closure of the union of the subsets. That is,

k⋃
i=1

bcl(Si) = bcl
( k⋃
i=1

Si
)

if the vertex sets V (Si) are pairwise disjoint. The sets Si themselves need not be balanced.
The reason for this is that balance-closure acts within the components of an edge set. We
can formalize this as the first statement in the next lemma.

Lemma F.4. [[LABEL L:1029balptn]] For an edge set S, whether balanced or not, π(bclS) =
π(S) and πb(closS) = πb(bclS) = πb(S).

Proof. Set π(S) = {B1, . . . , Bk, C1, . . . , Cl}, where S:Bi is balanced while S:Cj is unbalanced.
All the sets bcl(S:Bi) in the definition of bclS are balanced (by Lemma F.2) and con-

nected; each set bcl(S:Cj) is connected and unbalanced (because it contains the unbalanced
component S:Cj of S); and these are the components of bclS. Thus, the partition due to
bclS is the same as that due to S, and the same is true for the balanced partial partition.

Each E:Cj is unbalanced, because it contains S:Cj. Thus, every component of E:V0(S) is
unbalanced, so the balanced components of clos(S) are the bcl(S:Bi). Therefore, πb(closS) =
πb(S). �

Proposition F.5. [[LABEL P:1029closureclosure]] The operator clos on subsets of E(Σ) is
an abstract closure operator.

Proof. The definition makes clear that S ⊆ closS and that closS ⊆ closT when S ⊆ T .
What remains to be proved is that clos(clos(S)) = clos(S).

As before, let πb(S) = {B1, . . . , Bk}, so S:Bi is balanced. Then πb(closS) = πb(S) so
also V0(closS) = V0(S). Thus,

clos(closS) = (E:V0(closS)) ∪
k⋃
i=1

bcl((closS):Bi)

= (E:V0(S)) ∪
k⋃
i=1

bcl((bclS):Bi)

= (E:V0(S)) ∪
k⋃
i=1

bcl(S:Bi)

= closS. �

Oct 29:
Zaslavsky

Closure via frame circuits.
We have defined closure in terms of induced edge sets and balanced circles (through the

balance-closure); but we also want a definition in terms of circuits, analogous to that of
closure in an ordinary graph.
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Theorem F.6. [[LABEL T:1029cctclosure]][FORMERLY P:1029closure] For S ⊆ E
and e /∈ S, e ∈ closS iff there is a frame circuit C such that e ∈ C ⊆ S ∪ e.
Proof. We treat a half edge as if it were a negative loop, since they are equivalent in what
concerns either closure or circuits.

[The proof needs figures for the cases.]

Necessity. We want to prove that if e ∈ closS, then a circuit C exists. There are three cases
depending on where the endpoints of e are located.

Case 0. A trivial case is where e is a loose edge. Then e ∈ closS and C = {e}.
Case 1. Suppose e has its endpoints within one component, S ′. Then there is a circle C ′

in S ′∪e that contains e. If S ′ is balanced, then e ∈ bclS ′ so there exists a positive C ′, which
is the circuit C. In general, if C ′ is positive it is our circuit C. (This includes the case of a
positive loop e, where C = {e}.)

Let us assume, therefore, that S ′ is unbalanced and C ′ is negative. In S ′ there is a
negative circle C1. If e is an unbalanced edge at v, there is a path P in S ′ from v to C1; then
C = C1∪P ∪e is the circuit we want. If e is a balanced edge, it is a link e:vw contained in the
negative circle C ′. There are three subcases, depending on how many points of intersection
C ′ has with C1. If there are no such points, take a minimal path P connecting C ′ to C1 and
let C = C1 ∪ P ∪ C ′. If there is just one such point, C = C1 ∪ C ′. If there are two or more
such points, take P to be a maximal path in C ′ that contains e and is internally disjoint
from C1. Then P ∪C1 is a theta graph in which C1 is negative; hence one of the two circles
containing P is positive, and this is the circuit C.

Case 2. Suppose e has endpoints in two different components, S ′ and S ′′. For e to be in
the closure, it must be in E:V0. Hence, S ′ and S ′′ are unbalanced. Each of them contains
a negative circle, C ′ and C ′′ respectively, and there is a connecting path P in S ∪ e which
contains e. Then C ′ ∪ P ∪ C ′′ is the desired circuit.

Sufficiency. Assuming a circuit C exists, we want to prove that e ∈ closS. Again there are
three cases, this time depending on C and its relationship with e.

Case 0. C is balanced. Then e ∈ bclS ⊆ closS.
Case 1. C is unbalanced and e is not in the connecting path. Let C1, C2 be the two negative

circles and P the connecting path of C, and assume e ∈ C1. Since C \ e is connected, it
lies in one component S ′ of S. Thus, C2 ⊆ S ′, whence S ′ is unbalanced. It follows that
e ∈ E:V0 ⊆ closS.

Case 2. C is unbalanced and e is in the connecting path. With notation as in Case 1, now
C \ e has two components, one containing C1 and the other containing C2. The components
of S that contain C1 and C2 are unbalanced. (There may be one such component or two,
depending on whether C1 and C2 are connected by a path in S.) Therefore, e has both
endpoints in V0, so again, e ∈ E:V0 ⊆ closS. �

Oct 29:
Peter Cohen
and Thomas
Zaslavsky

F.2. Closed sets. [[LABEL 2.closure.closed]]
Now we look at the closed sets themselves. The first fact is that they form a lattice.

Definition F.2. [[LABEL D:1029lattices]] The lattice of closed sets of Σ is

Lat Σ := {S ⊆ E | S is closed}.
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The semilattice of closed, balanced sets is

Latb Σ := {S ⊆ E | S is closed and balanced}.
(Be careful! By closed, balanced edge sets, we mean edge sets that are both closed and

balanced. This is completely different from sets that are balance-closed, which need not even
be balanced.)

We haven’t yet proved that Lat Σ is a lattice.

Proposition F.7. [[LABEL P:1029lattices]] Lat Σ is a lattice with S ∧ T = S ∩ T , and
S ∨ T = clos(S ∪ T ).

Latb Σ is a meet semilattice with S ∧ T = S ∩ T . It is an order ideal in Lat Σ (that is,
every subflat of a flat in Latb Σ is also in Latb Σ).

Lat Σ is ranked by the rank function rk(S) = n− b(S).

Proof. �

In Lat Σ there is one maximal closed set: E. Its rank is n − b(Σ). All maximal closed,
balanced sets have rank n−c(Σ). These facts are proved in Section ??; they are true because,
in the matrix, each vertex allows one potential dimension, while each balanced component
will have a row dependence relation, reducing the rank by 1. [This should be proved
somewhere and cross-referenced to where it’s proved. – TZ]

Oct 31:
Yash Lodha

F.3. Signed partial partitions. [[LABEL 2.sppartitions]]
Now we come to a new way of looking at the closed sets of a signed graph: it’s the signed-

graph version of partitions of the vertex set. Two refinements are required: we need partial
partitions, and we need signed blocks.

Partial partitions.
A partial partition is a partition of any subset of X. Partitions are found all over combi-

natorics and other mathematics but partial partitions are unjustly rare. We shall have much
to say about them.

Definition F.3. [[LABEL Df:1031ppartition]] A partial partition of a set V is defined as
π = {B1, B2, . . . , Bk} where Bi ⊆ V , each Bi and Bj are pairwise disjoint, and each Bi 6= ∅.
The Bi’s are called the blocks or sometimes parts of π. The support supp π is the union of
the blocks. The set of all partial partitions of V is written Π◦V . Note that ∅ is a partial
partition of V—the unique one with no blocks.

A partition of V is therefore a partial partition with the additional condition that [n] =⋃k
i=1Bi. The refinement ordering of the set ΠV of partitions (see Section D.1) clearly agrees

with the refinement ordering of partial partitions.
The set of partial partitions of [n] is denoted by Π◦n. It is partially ordered in the following

way: For two partial partitions π and τ , we define π ≤ τ if each block of τ is a union of
blocks of π. We say π refines τ—though the support of π need not be contained in that of
τ . The refinement ordering makes Π◦n a poset. This poset is a geometric lattice. In fact:

Proposition F.8. [[LABEL P:1031ppartition]] Π◦n
∼= Πn+1.
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Proof. A partial partition π = {B1, B2, . . . , Bk} naturally corresponds to

π′ := {B1, B2, . . . , Bk, B0}, where B0 := [n+ 1] \
k⋃
i=1

Bi .

It is easy to see that this correspondence is order preserving and bijective, hence a poset
isomorphism. �

The minimum element of Π◦n is 0̂n := {{i} : i ∈ [n]}. Its maximum element is the empty
partial partition ∅.

Signed partial partitions.
Suppose we have a set B and a sign function τ : B → {+,−}. The pair (B, τ) is a signed

set. Two signed sets (B, τ1) and (B, τ2) are equivalent if there is a sign ε ∈ {+,−} such that
ετ1 = τ2. We write the equivalence class of (B, τ) with square brackets: [B, τ ]. (In a way,
an equivalence class is a kind of switching class but defined on vertices rather than edges.)

Definition F.4. [[LABEL Df:1031sppartition]] A signed partial partition of V is a set θ =
{[Bi, τi]}ki=1, where π(θ) := {Bi}ki=1 is a partial partition of V , called the underlying partial
partition, and τi is a function Bi → {+,−}.

The support of θ is supp(θ) := supp(π(θ)) =
⋃k
i=1Bi. The set of all signed partial

partitions of V is denoted by Π◦V ({+,−}), or for short, Π◦V (±).
Signed partial partitions are partially ordered in the following way: θ ≤ θ′ if π(θ) ≤ π(θ′)

and, whenever Bi ⊆ B′j, we have τi = ετj|Bi for some sign ε.

The poset of signed partial partitions of V is denoted by Π◦V ({+,−}), or for short, Π◦V (±).
In particular, the set of signed partial partitions of [n] is written Π◦n(±). It is a poset, in
fact a geometric lattice (as we shall see later); it is the Dowling lattice of the sign group as
originally defined by Dowling (1973b).

(Some people think of a signed partial partition as a sort of partially signed partition
{[B1, τ1], . . . , [Bk, τk], B0}, where {B1, . . . , Bk, B0} partitions [n]∪{0}, having a special “zero
block” B0 3 0 that is not signed. I find this artificial, since the “zero block” is completely
different from all other blocks. However, it may have its uses.)

We define a function Θb : Lat(Σ)→ Π◦V (±), which will be an order preserving injection.
A potential function for T ⊆ E(Σ) is a function ρ : V → {+,−} such that

σ(evw) = ρ(v)−1ρ(w) for every edge in T .

(One can equivalently define ρ as a switching function that makes T all positive; but that is
not a definition which generalizes to gain graphs; see Chapter IV [GAINS CHAPTER].)
If Σ is connected ρ is unique up to negation. If Bi ∈ πb(S) is the vertex set of a balanced
component of (V, S) then ρ is what we want for τi. So Θb(S) sends S to {Bi, τi} where Bi

are the balanced components of Σ|S and τi = ρ(S:Bi).
Note that we can actually define Θb : P(E)→ Π◦v(±), but it will not be an injection.
Now define

Π◦(Σ) := {Θb(S) | S ⊆ E},
which is a subposet of Π◦V (±).

Theorem F.9. [[LABEL T:1031lattices]] Θb : Lat(Σ)→ Π◦(Σ) is a poset isomorphism.

Lemma F.10. [[LABEL L:1031ppartition]] Θb(S) = Θb(clos(S)).
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Proof. The partition π(Θb(S)) is unchanged by taking the closure: π(Θb(S)) = π(Θb(clos(S)))
since πb(S) = πb(clos(S)) by a previous lemma. [(will put in the name)] The potential
function depends on a spanning tree of S:Bi which is still a spanning tree in the closure. So
it is clear that Θb(S) = Θb(clos(S)). Hence the lemma is proved. �

Proof of Theorem F.9. The theorem follows easily from the lemma. �

Example F.1. [[LABEL X:1031dowling]] Π◦(±K◦n) ∼= Π◦v(±).

Proof. We proved that Π◦(±K◦n) ∼= Lat(±K◦n). So it will suffice to prove that Lat(±K◦n) ∼=
Π◦v(±).

To prove this we need to look at the flats of Lat(±K◦n). These flats look like (E:X) ∪
A where X ⊆ V (±Kn) and A is a balanced, balance-closed set of E:Xc. Clearly, the
components of the balanced closed set give us a partial partition of the vertex set V (Σ) and
the signs of each block of this partial partition are exactly the signs that make the balanced,
balanced closed set positive. This construction/map gives us an element of the signed partial
partition lattice of the vertex set of Σ. This mapping is precisely the function Θb defined
above.

We will first show that it is order preserving. Let A,B be two flats of ±K◦n such that
A ≤ B. Let P1, P2 be the elements of Π◦v(±) be the image of A,B respectively in our map
defined above. That π(P1) ≤ π(P2) is obvious from the fact that A ≤ B because π(A), π(B)
are the underlying partial partitions of the vertex set of Σ with blocks as the vertex sets of
the balanced components of A:V and B:V . Given block Ci of π(P1) which is contained in
a block Dj of π(P2), it is clear that the edge set E(B: supp(Dj)) contains E(A: supp(Ci))
so the signs associated with the vertices supp(Dj) must be switching equivalent to the signs
associated with supp(Dj) restricted to supp(Ci). Therefore our map is order preserving.

We now show that our map is an injection. For any two different flats A,B we first present
the case where the components of A:V and B:V are different in which case it is obvious that
the partial partitions associated with these flats will have different supports. In case of
these support being the same we observe that the edge sets of a balanced component of
A:V and one of B:V having the same vertex set have different edge sets, giving us different
switching sets for the same vertex sets because had these switching sets been the same,
because of balanced closure these flats would be the same. [THAT SENTENCE NEEDS
REWRITING. IT’S IMPENETRABLE.] So we get different signed partial partitions
in the image.

Our map is surjective because the method used to obtain a signed partial partition is
reversible. We show an example of such a reverse map. Given a signed partial partition
[Ai, τi], for the vertices a, b ∈ Ai if the signs of a, b are the same, we connect them with a
positive edge, and if the signs are opposite them we connect them with a negative edge. And
if the sign on a is positive, we add the positive loop at a, and a negative loop if the sign is
negative. This way we can obtain the closed set associated with our signed partial partition.

Hence the bijection is established. �

Nov 3:
Jackie
KaminskiF.4. Examples of signed graphs and closed sets. [[LABEL 2.closure.examples]]

We have now built up definitions and some machinery about closed sets, balanced edge
sets, and closed, balanced edge sets. It will be good to know what these sets are for certain
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graphs and types of graphs. This information is presented as both a reference and a tool to
help the reader build up his or her intuition.

Throughout, Γ = (V,E) is an ordinary graph without loops. We recall that Γ◦ = (V,E◦)
is the unsigned graph with a loop at every vertex, in contrast to +Γ◦ which is a signed graph
with a negative loop at each vertex. For B ⊆ V , by KB we mean the complete graph on the
vertex set B.

Remember that an edge set is balanced if it has no negative circles or half edges (Definition
A.8), that the balance-closure of S is

bcl(S) := S ∪ {e 6∈ S : ∃ C ∈ B(Σ) with e ∈ C ⊆ S ∪ e} ∪ {all loose edges of Σ},
and the closure of S is

clos(S) := (E:V0(S)) ∪
k⋃
i=1

bcl(Si),

where V0 is the vertex set of the union of the unbalanced components of S and S1, . . . , Sk
are the balanced components of S. (See Section F.1).

(1) ±K◦n (the complete signed graph [not to be confused with a signed complete graph]).
• Balanced edge sets : Any switching of a positive edge set of Kn. We note that

this is a little imprecise; what we mean is to take any switching of any edge
set in +Kn. Then for an edge e in this switching if e is positive, take the edge
+e ∈ ±K◦n, otherwise take −e ∈ ±K◦n.
• Closed, balanced sets : Take π ∈ Πn, take E(π) :=

⋃
B∈π E(KB), and assign signs

in a balanced way (as above). Notice that Eπ, as the union of pairwise disjoint
complete graphs, is a closed set in Kn.
• Closed sets : To create a closed set S, take any W ⊆ V and a partition π of V \W

and let S := E(±K◦W ) ∪ ⋃B∈π(KB, σB), where (KB, σB) denotes the complete
graph on vertex set B with a balanced signature σB.

(2) ±Γ◦ (the full signed expansion of a graph).
• Balanced edge sets : Any switching of an edge set in +Γ, with the same technical

clarification as in the ±K◦n case.
• Closed, balanced sets: A closed edge set in Γ, signed in a balanced way (i.e., take

a closed edge set S ⊆ E, and take any switching of +S).
• Closed sets : To create a closed set S, take W ⊆ V , and take S∗ to be any closed

set in Γ\W . Sign S∗ in a balanced way. Then S := E(±[Γ:W ]◦)∪S∗ is a closed
set.

(3) Σ◦ (the filled version of a signed graph Σ).
This generalizes the previous examples.
• Balanced edge sets : The balanced edge sets of Σ◦ are precisely the balanced sets

in Σ.
• Closed, balanced sets : The closed, balanced edge sets of Σ◦ are precisely the

closed, balanced sets in Σ.
• Closed sets : For any W ⊆ V , take E(Σ◦:W ) ∪ a balanced closed set in Σ \W .

(This construction is obvious from the definition of closed sets. A closed set has
two parts, an unbalanced part which is the subgraph induced by some vertex set,
and a balanced part, in the complementary vertex set. Neither of these parts
needs to be connected; also, either one may be void.)
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(4) ±Kn (the complete signed link graph).
This is just slightly more complicated than ±K◦n.
• Balanced edge sets : The same as in ±K◦n. (Any switching of a positive edge set

of Kn.)
• Closed, balanced sets : The same as in ±K◦n. (Take π ∈ Πn, take E(π), and

assign signs in a balanced way. In other words, it’s the union of pairwise disjoint,
balanced complete graphs on subsets of V .)
• Closed sets : Similar to ±K◦n. To create a closed set S, take any W ⊆ V and take

a partition π of V \W and let S := E(±KW ) ∪⋃B∈π(KB, σB), where |W | 6= 1
in order to avoid duplication in the construction. (When W is a singleton we
get a closed set but it is the same as that obtained through replacing W by ∅
and adding the singleton set W to π.)

(5) ±Γ (the signed expansion of a graph).
This is similar to ±Γ◦, but again, a bit more complicated because there are no

loops to identify vertices.
• Balanced edge sets : Any switching of an edge set in +Γ, with the standard

technical clarification.
• Closed, balanced sets : Take a closed edge set in Γ and sign it in a balanced way

(i.e., take a closed edge set S ⊆ Γ, and choose any switching of +S).
• Closed sets : To create a closed set S, take W to be any subset of V such that
W is not stable (that is, E:W 6= ∅). Take S∗ to be a subset of E(Γ \W ) and
sign S∗ in a balanced way. Then S = E(±Γ:W ) ∪ S∗ is a closed set.

(6) +Γ (an all-positive graph).
• Balanced edge sets : Any edge set of Γ.
• Closed, balanced sets : Any closed edge set of the unsigned graph Γ.
• Closed sets : The same as the closed, balanced sets.

(7) +Γ◦ (a full all-positive graph).
• Balanced edge sets : Any edge set in Γ.
• Closed, balanced sets : Any closed set in Γ.
• Closed sets : This is similar to Σ◦. For any W ⊆ V , take (E◦:W ) ∪ a closed

set of Γ \W . The set W is identifiable as the set of vertices at which there are
unbalanced edges, so any different choice of W results in a different closed set.
There is another technique that will work here. We could consider the unsigned
graph join, Γ ∨K1 (Γ plus one new vertex adjacent to every vertex of Γ), then
look at the various sets in Γ ∨ K1 (keeping in mind that being closed has a
different definition for Γ ∨K1), and then pull back the results to +Γ◦.

(8) −Γ (an all-negative graph).
• Balanced edge sets : The bipartite edge sets, which are exactly the edge sets

where every circle has even length.
• Closed, balanced sets : Take a connected partition π ∈ Π(Γ), and in each block
B ∈ π, take a maximal cut. Taking any cutset in B will still produce a closed,
balanced set; however, taking only maximal cuts has the nice property that for
π ∈ Π(Γ), and S a set consisting of a maximal cut in each block of π, then
π(S) = π.
• Closed sets : Each closed set has the form S = E(−Γ:W )∪ a closed, balanced set

in−(Γ\W ), where W ⊆ V is such that Γ:W has no bipartite components. Notice
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that if we took a vertex subset W such that Γ:W had a bipartite component,
we would still get a closed set but in more than one way, since the same set
is generated by a smaller vertex subset, namely, the one obtained by removing
from W the vertices of bipartite components of Γ:W .

(9) −Kn (the all-negative, or antibalanced, complete graph).
This is simpler than −Γ, because any cut in Kn is a complete bipartite graph.
• Balanced edge sets : The bipartite edge sets.
• Closed, balanced sets : The union of pairwise-disjoint complete bipartite sub-

graphs in V .
• Closed sets : Take an induced edge set E:W together with disjoint complete

bipartite graphs in V \W . We should require |W | 6= 1, 2 in order that each closed
set arise uniquely, for if |W | = 2 then E:W is a complete bipartite subgraph, and
if |W | = 1 then E:W = ∅; in either case we can restructure S to have empty
W .

(10) −Γ◦ (a full all-negative graph).
• Balanced edge sets : The bipartite edge sets (same as −Γ).
• Closed, balanced sets : As in −Γ, take a connected partition π ∈ Π(Γ), and in

each block of B ∈ π, take a maximal cut.
• Closed sets : Somewhat as for −Γ, take any W ⊆ V , then let S = (E◦:W ) ∪ a

closed, balanced set in −(Γ \W ). We need not restrict W ; each different choice
of W gives a different closed set since W is identifiable as the set of vertices that
support unbalanced edges of S.

(11) −K◦n (the full all-negative complete graph).
This is even simpler than −Γ◦.
• Balanced edge sets : The bipartite edge sets.
• Closed, balanced sets : Take a partition π ∈ ΠV , and in each block B ∈ π, take

a maximal cut, i.e., the edges of a spanning complete bipartite graph.
• Closed sets : As with −Γ◦, take any W ⊆ V ; then each closed set has the form
S = (E◦:W )∪ a disjoint union of complete bipartite graphs on subsets of V \W .

There, wasn’t that fun!

G. Incidence and Adjacency Matrices

[[LABEL 2.matrices]]
A signed graph, like a graph, has incidence and adjacency matrices that describe the

graph.

G.1. Incidence matrix. [[LABEL 2.incidencematrix]]
We now introduce the incidence matrix of a signed graph. Unlike with an unsigned graph,

there is only one kind of incidence matrix, the oriented one. As with an unsigned graph, the
incidence matrix comes in a family, differing in arbitrary sign choices for the columns.
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Definition G.1. [[LABEL D:1103 Incidence Matrix]] An incidence matrix of a signed graph
Σ is a V × E matrix H(Σ) = (ηve), whose column indexed by e is:

v

w



0
...
0
±1
0
...
0

∓σ(e)
0
...
0


for e:vw a link,

v



0
...
0

±1∓ σ(e)
0
...
0



for e:vv a loop,

v



0
...
0
±1
0
...
0



for a half edge e:v,

and a zero column for a loose edge. Thus a link has two nonzero elements in its column,
each of which is ±1 and which are the same for a negative link and the same for a positive
link (we can state this as the requirement that σ(e)ηve + ηwe = 0); positive loops and loose
edges have columns of all zeros; the column of a half edge at v is zero except for ±1 in the
row of v; and for a negative loop, the column is all zero except for ±2 in the v row.

Although we say “the” incidence matrix, it is not unique due to the free choice of one sign
in each non-zero column.

The incidence matrix is a good descriptor of a graph, but not perfect because it cannot
distinguish between positive loops and loose edges, and it doesn’t say where loops are on the
graph.

Signed-graphic incidence matrices let us explain the existence of the two kinds of incidence
matrix, oriented and unoriented, of a graph. The oriented incidence matrix H(Γ) is just
H(+Γ). The unoriented incidence matrix B(Γ) is the incidence matrix H(−Γ) with non-
negative entries.

Nov 5:
Nate Reff

Another way to define an incidence matrix H(Σ) = (ηve)V×E is by giving a formula for the
(v, e) entry, as follows:

ηve =


0 if v and e are not incident,

±1 if v and e are incident once, so that if e:vw is a link then ηveηwe = −σ(e),

0 if e is a positive loop at v,

±2 if e is a negative loop at v.

The columns are still defined only up to negation. The reason for that will be explained when
we come to orientation, and specifically to incidence matrices of bidirected graphs (Section
H.2).

G.2. Incidence matrix and frame circuits. [[LABEL 2.incidencecoldep]]
The relation between the incidence matrix and the closure operation is through one of the

fundamental structures in a signed graph, the frame circuit.
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Definition G.2. [[LABEL Df:1105framecircuit]] A frame circuit of Σ is either of the follow-
ing types of subgraph:

I. A positive circle or a loose edge.
II. A pair of negative circles C1 and C2 which meet in at most one vertex (and no edges),

together with a minimal connecting path P if C1 and C2 are vertex disjoint.

The characteristic of a field K is denoted by char K.

Theorem G.1. [[LABEL T:1105Theorem1]] Let S be an edge set in Σ and consider the
corresponding columns of H(Σ) over a field K.

(1) If char K 6= 2, the columns corresponding to S are linearly dependent ⇐⇒ S contains
a frame circuit.

(2) If char K = 2, the columns corresponding to S are linearly dependent ⇐⇒ S contains
a circle or a loose edge.

From a matroid perspective, this means the frame circuits are circuits of a matroid on a
ground set E, and the incidence matrix represents the matroid. This is the frame matroid of
Σ, sometimes called the signed-graphic matroid [SG] (and formerly called the bias matroid
[BG2]).

Proof of sufficiency (⇐=). For (1) it suffices to prove that a frame circuit, is dependent. For
(2) it suffices to prove that a circle or loose edge is dependent.

We write ce := the column of e in H(Σ) and bi for the ith coordinate unit vector of Kn.
Case I: {e} is a loose edge. Then ce = 0 which is linearly dependent.
Case II : A circle C = v0e1v1e2v2 . . . elvl where v0 = vl. Then the submatrix of this is:

e1 e2 e3 e4 . . . el−1 el
v1 ±1 ±1 0 0 . . . 0 0
v2 0 ±1 ±1 0 . . . 0 0
v3 0 0 ±1 ±1 . . . 0 0
...

... 0
. . . . . . . . .

...
...

vl−1 0 0 . . . . . . 0 ±1 ±1
vl ±1 0 . . . . . . 0 0 ±1
... 0 0 0 0 . . . 0 0
...

... 0
. . . . . . . . .

...
...

... 0 0 0 0 . . . 0 0


,

Look at the first two entries, ηv1e1 and ηv1e2 . By negating columns we can make these opposite
in sign. In other words, by negating columns we can ensure that ηii = −1 for i ∈ {1, 2, . . . , l}
and ηi−1,i = −σ(ei)ηii = σ(ei) by the definition of the incidence matrix.

If we look at our circle as seen in Figure G.2 we get the following sum:

cel + σ(el)cel−1
+ σ(el)σ(el−1)cel−2

+ σ(el−2el−1el)cel−3
+ · · ·

+ σ(elel−1el−2 . . . el−(i−1))cel−i + σ(elel−1el−2 . . . el−i)cel−i−1
+ · · · .

By our definitions we notice the following patterns: [This isn’t very clear. Can you
add explanation to the formulas?]

cel + σ(el)cel−1︸ ︷︷ ︸
cancels out row of vl−1

+σ(el)σ(el−1)cel−2
+ σ(el−2el−1el)cel−3

+ · · ·
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e1

e2

e3el-1

el

v0=vl v1

v2

v3

vl-1

l1n (e1)s= 11n -1=

12n (e2)s=

22n -1=

lln -1=

n (e )s=l-1,l l

Figure G.1. The circle C.

+ σ(elel−1el−2 . . . el−(i−1))cel−i + σ(elel−1el−2 . . . el−i)cel−i−1
+ · · ·

and

cel + σ(el)cel−1
+ σ(el)σ(el−1)cel−2︸ ︷︷ ︸

cancels out row of vl−2

+σ(el−2el−1el)cel−3
+ . . .

+ σ(elel−1el−2 . . . el−(i−1))cel−i + σ(elel−1el−2 . . . el−i)cel−i−1
+ · · ·

And in general we see that at vertex vl−i−1, cel−i contributes σ(elel−1 . . . el−i+1)σ(el−i), and
cel−i−1

contributes σ(elel−1 . . . el−i)(−1). Together these sum to 0 in row l − i − 1. This is
valid for l − 1 ≥ l − i − 1 ≥ 1 where 0 ≤ i ≤ l − 2. So for rows 1 through l − 1 we get a
trivial sum [WHAT is a trivial sum? I don’t think it means zero!], and for row l, cel
contributes −1 and ce1 contributes σ(elel−1 . . . e2)σ(e2) which sum to σ(C) − 1. Hence the
vectors are linearly dependent if C is positive. They generate 2bl if C is negative and hence
they are linearly dependent if char K = 2.

Case III : C is a loop. The conclusion is the same as in case II. �

Rephrasing the conclusions of Case II, if we have a closed walk W = e1e2 . . . el from vk to
vk, then a suitable linear combination of vectors ce1 , ce2 , . . . , cel equals (σ(W ) − 1)bk. The
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precise formula is

l−1∑
i=0

σ(elel−1 . . . el−i)cel−1
= (σ(W )− 1)bk =

{
0 if σ(W ) = +,

−2bk if σ(W ) = −.
Corollary G.2. [[LABEL C:1105Corollary2]] Assume W has an edge that appears just once.

(1) The vectors of W are linearly dependent if σ(W ) = + or char K = 2.
(2) The vectors of W generate 2bk if σ(W ) = −1.

[This needs explanation/proof!]

Nov 7
(draft):
Simon Joyce

Lemma G.3. [[LABEL L:1107 Frame Circuits]] S contains a frame circuit if and only if it
contains a balanced circle or it has two negative circles in the same component.

[Known Proposition?? YES] A connected graph with no theta subgraph is a cactus,
i.e., it is K1 or every block is an isthmus or a circle.

Call a signed graph Σ contrabalanced if it contains no loose edges or balanced circles.
[this needs some attention] A 1-tree is a tree with 1 extra edge on the same vertices.

(Therefore either a half edge or framing a circle).

Lemma G.4. [[LABEL L:1107 circle]] If S is connected and has minimum degree 2 or more
and has cyclomatic number 2 or less, then it is a circle.

Lemma G.5. [[LABEL L:1107 negcircle]] A negative circle is independent.

Theorem G.6. [[LABEL T:1107 dep rk clos]] Given a signed graph Σ and S ⊆ E(Σ). S
may mean the columns of S in H(Σ).

(1) S is linearly dependent if and only if it contains a frame circuit.
(2) S is linearly independent if and only if it is a tree or a negative 1-tree. (ie the circle,

if any is negative.)
(3) S is intersection of column set {xe : e ∈ E(Sigma)} with a flat of Kn if and only if

S is a closed edge set.
(4) [this line needs attention] rk(S)[:= n− b(S)] = dim{xe : e ∈ S} := dim〈xe : e ∈

S〉.
(5) clos(S) = {e ∈ E(Σ) : xe ∈ 〈xf : f ∈ S〉}.

Corollary G.7. [[LABEL C:1107 matrix rank]] The rank of H(Σ) is n− b(Σ). Its nullity is
|E| − n+ b(Σ) and that of H(Σ)T is b(Σ).

Proof. [NEEDS PROOF.]
�

There are two other important corollaries, which a reader who is not involved with matroids
may ignore. Let us define LatM , for an n × m matrix M , to be the family of subspaces
of Rn that are generated by columns of M ; for instance, the smalles such space is the zero
space, generated by the empty set of columns, and the column space Col(M)is the largest
such space. It’s well known that Lat(M) is a geometric lattice (in fact, that’s where the
name comes from).
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Corollary G.8. [[LABEL C:1107 matriod rank]] In a signed graph Σ, the closure operator
is a matroid closure, rk is a matroid rank function, and Lat Σ is a geometric lattice with
rank function n− b(S), isomorphic to Lat H(Σ). Furthermore, Π◦(Σ) is a geometric lattice
with rank function n− |π(θ)|. [notation??]

Proof. The key is to prove that Lat Σ and Lat H(Σ) are isomorphic. The specific isomorphism
is that S ∈ Lat Σ 7→ 〈ce : e ∈ S〉 ∈ Lat H(Σ).

[NEEDS MORE PROOF.]
�

Corollary G.9. [[LABEL C:1107 cor of cor]] The set Π◦(±) := {signed partial partions of [n]}
is a geometric lattice.

Proof. [NEEDS PROOF.]
�

G.3. Adjacency matrix. [[LABEL 2.adjacencymatrix]]
We will now discuss the adjacency matrix A(Σ) of a signed graph Σ. A(Σ) = (aij)n×n,

where

aij = (number of positive vivj edges) - (number of negative vivj edges) (i 6= j).
aii = 2(number of negative loops) + (number of half edges).

A+ HHT = D(Σ), the degree matrix

Diagonal and dii := net degree(vi) = d±(vi)

:= (number of half edges) + 2(number positive loops)

− 2(number of negative loops) + (number of positive links)

− (number of negative links).

Nov 10
(draft):
Peter Cohen

[WHY DO WE HAVE A′? I don’t remember. – TZ]
The definition of A′(Σ) is a′ij = (number of positive links between vertices i and j) −

(number of negative links). When vi and vj are the same vertex, a′ij = 2(number of positive
loops − number of negative loops), as each loop has two orientations because in our formal
definition we can distinguish its two ends from each other (although not by their incident
vertex).

The degree matrix, denoted by D(|Σ|), is the diagonal matrix with dii = d|Σ|(vi). Note
that a loop counts twice.

Theorem G.10. [[LABEL T:1110amatrix]] The adjacency matrix of a signed graph satisfies
A(Σ) = D(|Σ|)− H(Σ)H(Σ)T.

Proof. [WE NEED A BETTER FORMULATED PROOF.] HHT = D(|Σ|) − A for
each (i, j)-entry where i 6= j. HHT will yield a matrix of dot products, specifically, row i
with row j, where the kth column of H represents ek. We will denote row i by ηik, and row
j by ηjk. ηikηjk 6= 0 if and only if ek is an edge connecting vi and vj; it is −σ(ek), the sign
of the edge. �
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Adding up all the signs of the links, +1 for a positive link and −1 for a negative link, gives
a′ij.

For the case where i = j, each edge ek contributes +1 if ηik = ±1, that is, ek is a link or
half edge. ek will contribute 4 if ηik = ±2, that is, ek is a negative loop. ek contributes 0 if
it is a positive loop.

Corollary G.11. [[LABEL C:1110aregular]] If |Σ| is k-regular then all eigenvalues of A(Σ)
are ≤ k. The multiplicity of k as an eigenvalue is b(Σ).

Proof. First, some matrix theory. A Gram matrix G is the matrix of inner products of a set
of vectors. Rephrasing the definition in matrix terms, G = MTM for some matrix M ; that
is, G is the matrix of inner products of the columns of M . If M is real, the Gram matrix
G is real and symmetric, so it has only real eigenvalues, and it has n such eigenvalues (with
multiplicity). Furthermore, G is positive semidefinite so it has no negative eigenvalues. The
rank of G = the rank of M by matrix theory, so the nullity of G, which is the multiplicity
of 0 as an eigenvalue of G, equals the nullity of MT.

Now, D − A = HHT is a Gram matrix (with MT = H). By its positive semidefiniteness,
all eigenvalues of D − A are non-negative. The multiplicity of 0 as an eigenvalue of D − A
is nul HT. By Theorem ?? [TZ: THERE’S A MISSING THEOREM!], this is b(Σ).

We check what that means for A, remembering that D = kI. If λ is an eigenvalue of A
with eigenvector x, then Ax = λx, so (D − A)x = (kI − A)x = (k − λ)x. By the positive
semidefiniteness of D−A = HHT, k−λ ≥ 0 for every eigenvalue λ and the eigenvalue λ = k,
corresponding to the eigenvalue 0 of D − A, has multiplicity nul HT = b(Σ). �

H. Orientation

[[LABEL 2.orientation]]
An oriented signed graph is a bidirected graph; thus, we begin by explaining bidirection.

H.1. Bidirected graphs. [[LABEL 2.bidirected]]
Bidirected graphs were introduced by Jack Edmonds to treat matching theory. Our use

for them is entirely different.

Definition H.1. [[LABEL D:1110bidirected]] An edge with an independent direction at each
end is called a bidirected edge. A bidirected graph is a graph with an independent direction
on each of the ends of each edge; that is, where every edge is bidirected.

Loose edges are bidirected by having no directions, as they have no ends. Half edges are
bidirected by having one direction, as they have only one end. A loop has two ends that
have the same endpoint, so a loop, like a link, is bidirected by getting two directions.

We may think of the directions pictorially as arrows or algebraically as signs. To denote
the signs, we will introduce new notation, τ(v, e), which is the sign of the end of edge ek at
vertex vi. The definition of τ in terms of directions is:

τ(v, e) =


+, if e enters v,

−, if e leaves v,

0, if e and v are not incident.

(We often write τve for τ(v, e); and when the edges and vertices are numbered, τik for τviek .)
A direction into a vertex is positive, while a direction out of a vertex is negative. The edge
itself is positive if it is balanced; both directions are the same (going from one vertex to the
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other, so one is positive and the other is negative). A negative edge has either two negative
or two positive ends. [THIS NEEDS TO BE COORDINATED WITH THE NEXT
DAY’S EXPLANATION OF H(B).]

Example H.1. [[LABEL X:1110small]] [Is this really an example? What is the exam-
ple? What is it for?] For our oriented graph, the matrix H(Γ) will have, as an example,
for the column of edge ek: 

0
−1
0

+1
0

 .

where the −1 indicates the edge leaves that vertex, and a +1 indicates that the edge enters
that vertex. In this example, the edge is a positive edge (in a 5-vertex graph). A positive
loop will have a column like 

0
0
0
0
0

 .

So the matrix H(Γ) cannot distinguish between a positive loop and a loose edge. A negative
loop will have ±2 in one entry of its column while the other entries are zero.

Definition H.2. [[LABEL Df:1110sgbidir]] The signed graph associated with a bidirected
graph B is Σ(B) := (|B|, σB) where |B| is the underlying graph of B and σB(e) := −τveτwe
for a link or loop e:vw. If Σ is the signed graph associated with B, we say that B is an
orientation of Σ.

Nov 12:
Yash LodhaH.2. Incidence matrix of a bidirected graph. [[LABEL 2.orientation.incid]]

We now define the incidence matrix H(B) = (ηik) of the bidirected graph B = (Γ, τ),
where Γ is the underlying graph.

For an edge ek incident to the vertex vi, τik = + if the direction/orientation at the vertex
vi end is directed towards the vertex vi and τik = − if the direction/orientation is directed
away from the vertex. The column of a link e = vivj has i-th entry τik and j-th entry τjk,
and the remaining entries are zero. For a loop vivi the i-th entry equals τik + τ ′ik where each
τ ′ik is the same as τik except for the other end of the loop. For a loose edge all the entries in
the corresponding column are zero.

More formally, ηik =
∑

ε τε, summed over all edge ends ε of ek incident with vi.
Notice that an incidence matrix of a bidirected graph B is an incidence matrix of its signed

graph Σ(B). Conversely, an incidence matrix of Σ is the incidence matrix of an orientation
of Σ.

A source is a vertex where every edge end departs, ie every ηik ≤ 0 for all edges ek. A
sink is a vertex where every edge end enters, i.e. every ηik ≥ 0 for all edges ek.

A cycle in a bidirected graph is an oriented frame circuit with no source or sink. This
means that every vertex of degree two in the circuit must have consistent orientation, i.e.
the direction/orientation of both edge ends incident to the vertex agree. So a positive circuit
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has exactly two orientations with no source or sink, and they are opposite. A negative circle
must have an orientation with sources or sinks.

Definition H.3. [[LABEL D:1112cyclicacyclic]] We say an oriented signed graph ~Σ is acyclic
if it has no cycles, cyclic if it has a cycle, and totally cyclic if each edge is in a cycle.

Recall that Σ(B) has edge signs σ(e:vw) = −τveτwe.
Walks and coherence.

In a walk W = v0e1v1e2 · · · vl−1elvl, the two edge ends (vi, ei) and (vi, ei+1) incident to ver-
tex vi (when 0 < i < l) may have either of two interrelations: they may be coherent or con-
sistent (both terms are used), which means that one of their arrows points into the common
vertex and the other points out (in terms of the bidirection function, τ(vi, ei)τ(vi, ei+1) = −),
or they may be incoherent or inconsistent, which means both arrows point into the vertex
or both point out (that is, τ(ei−1)τ(ei) = +).

Lemma H.1. [[LABEL L:1112coherentwalk]] Let W = v0e1v1 · · · elvl be a walk in which
each vertex vi for 0 < i < l is consistently oriented in W . Then (−1)lτ0lτll = σ(W ).

If W is a closed walk, so v0 = vl, then it is positive if it is consistent at vl = v0, and
negative if it is inconsistent.

Proof. Take the product of the signs of all oriented edge ends ε in W and compute it in two
ways. ∏

ε

τε =
l∏

i=1

(τi−1,i, τii) =
l∏

i=1

−σ(ei) = (−1)lσ(W ).

Also, ∏
ε

τε = τ01(τ11τ12)(τ22τ23)...(τ(l−1),(l−1)τ(l−1),l)τll.

Therefore, (−1)lσ(W ) = (−1)l−1τ01τll =⇒ σ(W ) = −τ01τll. �

Corollary H.2. [[LABEL C:1112coherentclosedwalk]] A closed walk W , in which (as above)
each vertex vi for 0 < i < l is consistently oriented, is consistent at vl if and only if σ(W ) =
+.

An application of the corollary is that a positive circle can be oriented consistently and
a negative circle can be oriented consistently except for one inconsistent vertex, which is a
source or a sink.

[WE NEED DIAGRAMS for all these explanations.]
In a frame circuit with no source or sink, every divalent vertex must be coherent. Therefore

we can orient a positive circle cyclically (i.e., to have no source or sink) in only two ways;
once we have oriented one edge, every other edge orientation is determined by coherence.
Corollary H.2 ensures that it is possible to make every vertex coherent.

A contrabalanced handcuff C likewise has only two cyclic orientations. Each negative
circle, Ci = C1 or C2 must be coherent except at the vertex vi that lies on the connecting
path P . (If the two negative circles share a vertex, we consider that vertex to be the
connecting path.) Since v1 is incoherent, hence a source or sink, in C1, the orientation of the
end (v1, e1P ) of the connecting-path edge e1P is determined by the requirement that v1 not
be a source or sink in the handcuff. (An edge e1 ∈ C1 at v1 is thus coherent with e1P .) The
orientations of all edges of P are then determined by coherence in P , and the orientation of
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(v2, e2P ) determines that of each edge e2 ∈ C2 at v2 and hence everywhere. (If P has length
0 so v2 = v1, the orientations of the ends (v1, e1P ) determine those of the ends (v1, e2P ).)
Summarizing this discussion, we have a proposition:

Proposition H.3. [[LABEL P:1112cycliccircuit]] A frame circuit has exactly two cyclic
orientations, which are negatives of each other.

I. Equations from Edges, and Signed Graphic Hyperplane Arrangements

[[LABEL 2.equations]]
An equation from an edge is dual to its column vector ce from H(Σ). Let x = (x1, ..., xn).

So the equation from an edge e will be ce · x = 0.
For a positive edge we have the following: ce · x = xi − xj or ce · x = xj − xi. So we get

xi = xj.
For a positive loop this is xi = xi, which gives us the “degenerate hyperplane”, Rn.
For a signed edge xi = σ(e)xj because from x · ce = 0 we get ±(bi − σ(e)bj) = 0. So for

a negative edge we get xi = −xj.
For a half edge we get xi = 0.
For a loose edge we get 0 = 0, which gives us the degenerate hyperplane.

So each edge e = eij gives us a hyperplane he = h
σ(e)
ij where hεij = {x | xi = εxj}. For

a half edge ei, hei = {x | xi = 0}, which is a coordinate hyperplane, and for a loose edge
h0 = Rn, the degenerate hyperplane.

So we get a signed graphic hyperplane arrangement H[Σ], and the intersection lattice of
this arrangement, ordered by reverse inclusion, is the poset obtained from the set of flats.
Formally:

L(H[Σ]) = {A ⊆ Rn | A =
⋂

S for S ⊆ H[Σ]} = {
⋂
e∈S

he | S ⊆ E}.

Theorem I.1. [[LABEL T:1112latticeisom]] L(H[Σ]) ∼= Lat(Σ) by the correspondence A 7→
{e | he ⊇ A}.
Proof. By vector-space duality,

L(H[Σ]) ∼= {flats in Rn generated by subsets of the columns of H(Σ)},
which is isomorphic to Lat(Σ) by Corollary G.8. The exact formula is a matter of tracing
the correspondences. �

11/14:
Kaminski

Nov 17
(draft):
Simon JoyceI.1. Binary, affine additive representations. For this section we will be working over

F2, whose additive group is ∼= {+.−}.
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Definition I.1. [[LABEL D:1117 AGIM]] Given a signed [bidirected?] graph Σ define the
augmented graphic incidence matrix, M(Σ) to be as follows.

M =


edges→

edge signs0, 1
v1 H(|Σ|)
... Incidence matrix
vn of|Σ|


x0

x1
...
xn

[This looks awful. Still haven’t figured out a way to make it look nice.]

Definition I.2. [[LABEL D:1117 lift circuits]] In a signed [bidirected?] graph Σ, a lift
circuit is a positive circle, a contrabalanced tight handcuff, or contrabalanced loose bracelets
(i.e., two vertex-disjoint negative circles).

Figure I.1. The different kind of lift circuits.

[[LABEL F:1117liftcircuits]]

Theorem I.2. [[LABEL T:1117 lift circuits]] Given M be the augmented graphic incidence
matrix of a graph Σ, a set of columns of M is linear dependent if and only if the corresponding
edge set contains a lift circuit.

Lemma I.3. [[LABEL :1117 lemma1]] The columns of M corresponding to S ⊆ E generate
b0 if and only if S is unbalanced. [not sure what this is saying]

Lemma I.4. [[LABEL L:1117 lemma2]] Given M be the augmented graphic incidence matrix
of a graph Σ, row 0 of M is a linear combination of the other rows if and only if Sigma is
balanced.

For a signed graph Σ, denote by A[Σ] the affinographic hyperplane arrangement of Σ over
F2.

e : vw ↔


σ(e)

0
1
0
1
0


↔ Equation xj − xi = σ(e)x0 in Fn2 + 1.

↔ Linear hyperplane h
σ(e)

ij in Fn+1
2 .

↔ Affine hyperplane h
σ(e)
ij in An(F2).

[an example goes here]
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Definition I.3. [[LABEL D:1117 intersection sublattice]] For a signed graph Σ, define the
intersection sublattice, L(A[Σ]) to be,

L(A[Σ]) = {∩S|S ⊆ A[Σ],∩S 6= ∅}.
Theorem I.5. [[LABEL T:1117 to prove later]]

L(A[Σ]) ∼= latbΣ

J. Chromatic Functions

Given a signed graph Σ with vertex set V , a k-coloration is a map γ where γ : V → Λ∗k or
γ : V → Λk where Λ∗k = {±1,±2, . . . ,±k} and Λk = Λ∗k ∪ {0}.

We call an edge e : vw in Γ proper if γ(v) 6= 0 andγ(w) 6 +σ(e)γ(v). Call an edge e : vw
improper if γ(w) = σ(e)γ(v). We also consider loose edges to be improper. [the wording
of this should be looked at].

Nov 19:
Nate Reff

K. Chromatic Functions

[[LABEL 2.chromatic]]
As with unsigned graphs, I call any function that depends on coloring or that satisfies

main the algebraic laws of the chromatic polynomial a chromatic (or dichromatic) function.

K.1. Coloring a signed graph. [[LABEL 2.coloring]]
Suppose that Σ = (V,E, σ) is a signed graph.

Definition K.1. [[LABEL D:1119coloration]] A k-coloration is a a mapping γ : V → Λk,
where the color set is

Λk := {±1,±2, . . . ,±k} ∪ {0}.
A coloration is zero free if it does not use the color 0 (that is, 0 /∈ Im(γ)); the zero-free color
set is

Λ∗k := Λk\{0} = {±1,±2, . . . ,±k}.
Just as in ordinary unsigned graph coloring, with respect to a particular coloration there

are two kinds of edges, proper and improper. An edge e:vw is proper if γ(w) 6= σ(e)γ(v), or
improper if γ(w) = σ(e)γ(v). A half edge e:v is proper if γ(v) 6= 0. A loose edge is always
improper. A proper coloration is a coloration with no improper edges. We write χ(Σ) :=
minimum k such that there exists a proper coloration, and χ∗(Σ) := minimum k such that
there exists a zero-free proper coloration. If χ(Σ) =∞ (or χ∗(Σ) =∞) then there does not
exist a proper coloration (zero-free coloration) at all.

Consider the example of a signed graph Σ in Figure K.1. There clearly does not exist a
proper 0-coloration. There is, however, a proper 1-coloration as seen in Figure K.1, and so
χ(Σ) = 1. If we try to find zero-free colorations, it is easy to see that there is no proper
zero-free 1-coloration due to the +K3 subgraph present, but there is a proper zero-free 2-
coloration as seen also in Figure K.1. Therefore χ∗(Σ) = 2.
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v1 v2

v3

e1

e2

e3e4

e5

-1 0

1

2 -1

1

Figure K.1. Signed graph Σ, a proper 1-coloration of Σ, a proper zero-free
2-coloration of Σ.

[[LABEL 1119image1]]

K.2. Chromatic numbers. [[LABEL 2.chromaticnumber]]
Recall that we write Σ• for the signed graph obtained from Σ by adding a negative loop

or half edge at every vertex. One can see that, under our definition of proper coloration,
χ(Σ• ) = χ∗(Σ).

Let’s make a few observations. First,

(K.1) [[LABEL E : 1119chromaticnumberineq]]χ(Σ) ≤ χ∗(Σ) ≤ χ(Σ) + 1.

Furthermore, the lower value obtains if and only if Σ is full, since only then is the color 0
ruled out.

Next, take a look at an all-positive graph:

χ(+Γ) =

⌈
χ(Γ)− 1

2

⌉
and χ∗(+Γ) =

⌈
χ(Γ)

2

⌉
.

Looking at these two equations we can see that if χ(Γ) is even, then χ(+Γ) = χ∗(+Γ). It is
possible that χ∗(+Γ) > χ(+Γ), but Equation (K.1) leaves little room for difference between
the two chromatic numbers.

Coloring the complete signed graph ±K•n , we can only have zero-free proper colorations
due to the negative loop or half edge at each vertex. To ensure a coloration is proper, each
vertex must get a different absolute value of color. Thus see that

χ∗(±K•n ) = χ(±K•n ) = χ(K•n ) = χ(Kn) = n,

χ(±Kn) = χ(Kn)− 1 = n− 1, and χ(±Γ) = χ(Γ)− 1.

A general rule is that, if you switch Σ by ζ, you also switch colorations: γ switches to γζ

defined by
γζ(v) := ζ(v)γ(v).

Lemma K.1. [[LABEL L:1119Lemma1]] e is proper in Σ colored by γ ⇐⇒ it is proper in
Σζ colored by γζ.

Proof. First suppose e:vw is a link. Then e is proper in Σ ⇐⇒ γ(w) 6= σ(e)γ(v) ⇐⇒
ζ(v)ζ(v)ζ(w)γ(w) 6= ζ(v)ζ(v)ζ(w)σ(e)γ(v) ⇐⇒ ζ(w)γ(w) 6= ζ(v)σ(e)ζ(w)ζ(v)γ(v) ⇐⇒
γζ(w) 6= σζ(e)γζ(v) ⇐⇒ e is proper in Σζ with γζ .

Now suppose e:v is a half edge, or e:vv is a negative loop. Then e is proper in Σ ⇐⇒
γ(v) 6= 0 ⇐⇒ ζ(v)γ(v) 6= 0 ⇐⇒ γζ(v) 6= 0 ⇐⇒ e is proper in Σζ with γζ . �

Proposition K.2. [[LABEL P:1119Prop1]] Switching does not change chromatic numbers.
That is, χ(Σ) = χ(Σζ) and χ∗(Σ) = χ∗(Σζ) for all switching functions ζ.
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Proof. Use switching of colors and Lemma K.1. �

K.3. Chromatic polynomials. [[LABEL 2.chromaticpoly]]
The archetypical chromatic functions of signed graphs are the counting functions for the

two types of proper coloration.

Definition K.2. [[LABEL D:1119chromaticpolys]] Let k be any non-negative integer. We
define χΣ(2k+1) := the number of proper k-colorations, and χ∗Σ(2k) := the number of proper
zero-free k-colorations.

Obviously, the two functions of k are non-decreasing. Evidently, χ(Σ) is the smallest non-
negative integer k for which χΣ(2k + 1) is not zero, and χ∗(Σ) is the smallest non-negative
integer k for which χ∗Σ(2k) is non-zero.

Notice that χ∗Σ(2k) = χΣ• (2k + 1), which reduces χ∗Σ to χΣ• . The functions χΣ and χ∗Σ
will turn out to be polynomials, but just as with ordinary graph coloring, this is not a trivial
fact.

Theorem K.3. [[LABEL T:1119Theorem1]] The chromatic functions χΣ(2k+1) and χ∗Σ(2k)
have the following properties:

Unitarity:

χ∅(2k + 1) = 1 = χ∗∅(2k) for all k ≥ 0.

Multiplicativity:

χΣ1∪· Σ2
(2k + 1) = χΣ1(2k + 1)χΣ2(2k + 1)

and

χ∗Σ1∪· Σ2
(2k) = χ∗Σ1

(2k)χ∗Σ2
(2k).

Invariance: Suppose Σ1
∼= Σ2; then

χΣ1(2k + 1) = χΣ2(2k + 1) and χ∗Σ1
(2k) = χ∗Σ2

(2k).

Switching Invariance:

χΣ(2k + 1) = χΣζ(2k + 1) and χ∗Σ(2k) = χ∗Σζ(2k)

for every switching function ζ.
Deletion-Contraction:

χΣ(2k + 1) = χΣ\e(2k + 1)− χΣ/e(2k + 1)

and

χ∗Σ(2k) = χ∗Σ\e(2k)− χ∗Σ/e(2k).

Figure K.2
[[LABEL 1119image2]]
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Proof. Unitarity holds true by general agreement about functions with domain ∅ (the empty
function). Nullity and invariance are trivial results. To prove switching invariance we use
Lemma K.1.

The hard part is to prove the deletion-contraction property. To prove χΣ(2k + 1) =
χΣ\e(2k + 1)− χΣ/e(2k + 1), we start by coloring Σ\e properly in k colors. If γ(v) 6= γ(w),
then Σ is properly colored (and otherwise if γ(v) = γ(w) Σ is not colored properly). We
can contract γ to γ/e : V (Σ/e)→ Λk such that γ/e(ve) = γ(v)γ(w). To prove that γ/e is a
proper coloration of Γ/e. An improper edge in Σ/e must be incident with ve. If it is a link
veu, then it was a link vu or wu, therefore it is proper. If ve is a loop veve, then it was a
loop vv or ww or link vw, therefore it is proper since the endpoint colors are the same in Σ
and Σ/e. If ve is a half edge f : ve, then it was f : v or f : w in Σ, therefore it it proper
since the endpoint colors are the same in Σ and Σ/e. If ve is a loose edge, then it was a loose
edge in Σ. Conversely, every proper coloration of Σ/e pulls back to a proper coloration of
Σ\e where γ(v) = γ(w). So the number of proper colorations of Σ\e equals the sum of the
number of proper colorations of Σ and Σ/e. Therefore our formula follows. �

Nov 21
(draft):
Peter Cohen
and Thomas
Zaslavsky

In coloring a signed graph, a question arises about the case of the color 0. Intuitively,
0 would represent a blank or neutral color, and is treated as any other color in unsigned
coloration. However, the 0 color can’t be signed, and while it can be included in signed
coloration, it has only 1 possible coloration (neutral), and can limit the graph in that respect.
Some colorations will include the 0 color, while other colorations, which we will call ”zero-
free”, do not use the color 0. [CLARIFY]

Definition K.3. [[LABEL T:1121full]] A graph is full if every vertex supports at least one
unbalanced edge. We denote a signed graph, Σ, to be full by Σ• . [FIX. Also, should this
appear earlier? Does it?]

Theorem K.4. [[LABEL T:1121dczero-free]] χ∗Σ(λ) = χ∗Σ\e(λ) − χ∗Σ/e(λ), where λ is the

number of colors. [DOES THIS DUPLICATE A PREVIOUS THEOREM?]

[picture with v, e, sigma e, etc]

Proof. In the case of Σ \ e, vertex v has color 6= 0 ⇐⇒ it is a proper coloring of Σ. Vertex
v has color = 0 ⇐⇒ it has a proper coloring of Σ 6= Σ \ e. [FIX?] �

In the zero-free case,

χ∗Σ• (2k) = χΣ• (2k + 1) = χΣ• \e(2k + 1)− χΣ• /e(2k + 1).

Lemma K.5. [[LABEL T:1121fullcontract]] Any contraction Σ• /e is full.

Lemma K.6. [[LABEL T:1121fulldelete]] Σ
• \ e is full ⇐⇒ e is not an unbalanced edge.

Proof. If e is an unbalanced edge, deleting e would make Σ
•

no longer full. In the case where
e is the only balanced edge in an otherwise full graph, deleting e would result in the graph
being full. �

Therefore, if e is not an unbalanced edge,

χ∗Σ(2k) = χ(Σ\e)• (2k + 1)− χ(Σ/e)• (2k + 1)

= χ∗(Σ\e)(2k)− χ∗(Σ/e)(2k)
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Theorem K.7 (Polynomiality). [[LABEL T:1121chromatic polyonmialit]] The chromatic

and zero-free chromatic functions χ
[∗]
Σ (λ) are polynomial functions of λ = 2k + 1 (if gen-

eral) or 2k (if zero-free), monic, of degree n, of the form χΣ(λ) = λn − a, λn−1 + · · · +
(−1)n−b(Σ)ab(Σ)λ

b(Σ) or χ∗Σ(λ) = λn − a∗, λn−1 + · · · + (−1)n−b(Σ)a∗b(Σ)λ
b(Σ) where all ai or

a∗i > 0.

It should be noted that a1 is the number of edges in Σ, and a∗1 is the number of links in
Σ, if Σ is simply signed in the sense that there do not exist any parallel links with the same
sign and no vertex has two (or more) unbalanced edges.

Proposition K.8 (Subset Expansion). [[LABEL T:1121chromaticsubset]] The chromatic
polynomials have the subset expansions

χ
[∗]
Σ (λ) =

∑
S⊆E

[balanced]

(−1)|S|λb(S).

Proof. [ from del/con, let e be any balanced edge]∑
S⊆E

(−1)|S|λb(S) =
∑
S⊆E\e

(−1)|S|λb(S) +
∑
S⊆E/e

(−1)|S|λb(S)

In the zero-free case, where e is not an unbalanced edge,∑
S⊆E

(−1)|S|λb(S) = χ∗(Σ\e)λ+
∑
T⊆E\e

(−1)|S|+1λb(T∪e)

[we had a previous lemma that said S is balanced in sigma, iff S-R is balanced
in Sigma/R, need to find it to cite —— good point – TZ]

Therefore,∑
T⊆E\e

(−1)|T |λbΣ/e(T ) =
∑
T⊆E\e

(−1)|T |+1λbΣ/e(T ) =
∑
T⊆E\e

(−1)|T |+1λbΣ(T∪e)

as we needed.

The components of T ∪ e don’t become disconnected when we contract a balanced edge,
therefore the number of balanced components of T is the same as the number of balanced
components of T ∪ e; that is bΣ/e(T ) = bΣ(T ∪ e).

Suppose that Σ has only unbalanced edges, then Σ only contains half edges or negative
loops, and so Σ has one component per vertex. In other words, c(Σ) = |V |. All vertices in
Σ are either k1 or (k1 + e), an unbalanced edge. The (k1 + e) edges are full, by definition.
So therefore, the coloration is the sum of the coloration of the k1’s and the (k1 + e)’s;

χ
[∗]
Σ (λ) = χ

[∗]
k1

(λ)n−i + χ
[∗]
k
•
1

(λ)i = λn−i + (λi if 0-free, (λ− 1)i if all colorations).

Being disconnected, the sum of the coloration is the same as the product of the sums;∑
S⊆E

(−1)|S|λb(V,S) =
n∏
i=1

∑
Si⊆Ei

(−1)|Si|λb(Vi,Si)

�
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Definition K.4. [[LABEL T:1121unbalcount]] The number of unbalanced components of a
graph (or subgraph) is u(Γ). This equals the number of components minus the number of
balanced components; u(Γ) = c(Γ)− b(Γ).

Thus, the chromatic polynomial of a signed graph is

χΣ(λ) =
∑
S⊆E

(−1)|S|λb(S)1u(S)

and the zero-free chromatic polynomial is

χ∗Σ(λ) =
∑
S⊆E

(−1)|S|λb(S)0u(S).

We can define a comprehensive chromatic polynomial, which I call the total chromatic
polynomial, as

χΣ(λ, z) =
∑
S⊆E

(−1)|S|λb(S)zu(S),

so that when z = 1 we have the chromatic polynomial, and when z = 0, we have the zero-free
chromatic polynomial.

Nov 24:
Jackie
Kaminski

K.4. Counting acyclic orientations. [[LABEL 2.acycliccount]]
We now take up the generalization to signed graphs of Stanley’s theorem, Theorem H.19

interpreting the chromatic polynomial at negative arguments.

The sesquijection of acyclic orientations.
The key to everything is the generalization of the sesquijection, or 1:1/2:2 correspondence,

of acyclic orientations of a graph (Lemmas H.17 and H.18) to a sesquijection between acyclic
orientations of Σ and those of Σ \ e and Σ/e.

Definition K.5. Two walks,

W = v0, e1, v1 . . . vl−1elvl and W ′ = v′0, e
′
1, v
′
1 . . . v

′
l′−1e

′
l′v
′
l′ ,

are internally disjoint if each internal vertex of one walk, W or W ′, is not in the other,
respectively W ′ or W . That is, no vj = any v′j except that v0, vl may be v′0, v

′
l′ .

Recall that AO(Σ) is the set of all acyclic orientations of Σ.

Lemma K.9. [[LABEL L:1124aonumber]] |AO(Σ)| = |AO(Σ \ e)|+ |AO(Σ/e)| for e not a
positive loop or loose edge. [corrected].

Proof. [This is as much of the proof as we did Monday]
Let α be an acyclic orientation of Σ\e with e not a positive loop or loose edge. This means

e is a link or half edge or negative circle. If e is a link, we assume we have used switching so
e is positive. We would like to show that there is a 1:1/2:2 correspondence (a sesquijection)
between AO(Σ) and AO(Σ\e)∪AO(Σ/e). We will show that the 0, 1, or 2 acyclic extensions
of α to Σ are in sesquijective correspondence to α as an element of AO(Σ \ e) and possibly
AO(Σ/e).

As we consider adding e back to Σ \ e, there are two possible orientations for it, e: ~vw and
e: ~wv, and each of these orientations may or may not contain a cycle. This gives us four types
of situation, which really reduce to three:
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• Type II: both orientations of e produce acyclic orientations of Σ,
• Type I: adding e: ~vw produces an acyclic orientation of Σ, but adding e: ~wv produces

a cyclic orientation of Σ,
• Also Type I: adding e: ~vw produces a cyclic orientation of Σ, but adding e: ~wv produces

an acyclic orientation of Σ,
• Type O: both orientations of e produce cyclic orientations of Σ,

where the middle two cases can be treated identically.
Since α (and α extended to include e in Σ and α “restricted” to Σ/e) are the only orien-

tations in question, we will drop the cumbersome arrows in the notations ~Σ,
−−→
Σ/e, etc.

Type II: Both orientations of e produce acyclic orientations of Σ.
In other words α extends to two acyclic orientation of Σ. Since α is an acyclic orientation

of Σ \ e, we simply want to show that α applied to Σ/e is also acyclic. Then we will have a
2:2 correspondence between the two acyclic orientations extending α in AO(Σ) and the two
acyclic orientations of Σ\ e and Σ/e implied by α. We will look at two subcases: when e is a
link (which we assume is positive by switching), and when e is a negative loop or half edge.

Subcase A: e is a positive link.
First we note that since e is positive link any consistently oriented walk W containing e

will still be consistently oriented in Σ/e. Now, for a proof by contradiction, suppose that
Σ/e contains an oriented cycle. Since Σ \ e is acyclic, this cycle must contain the vertex ve,
let W = vee1v2 · · · vk−1ekve be a closed walk around the oriented cycle in Σ/e beginning at
ve.

2 Now consider the closed walks in Σ. Notice that if e1 and ek are both incident to v or
both incident to w in Σ, then the closed oriented walk W is an oriented circle in Σ\ e, which
contradicts our assumption that α ∈ AO(Σ \ e). So one of e1 and ek is incident to v and the
other to w, by choice of notation, we choose e1 incident to v and ek incident to w.

Now we consider two coherent closed walks in Σ that contain e in opposite orientations,
namely,

W1 = w, e: ~vw, v, e1, v2, . . . , vk−1, ek, v

and

W2 = w, e: ~wv, v, e1, v2, . . . , vk−1, ek, w.

Since W was a walk around a consistently oriented circle [MORE?]
If W in Σ/e was oriented so e1 left ve and ek−1 entered ve then W2 is consistently oriented

in Σ. Furthermore, since σ(e) = + (by assumption), the circle(s) (and paths) of W2 are
still circles(s) (and paths) in W2 ∪ e: ~wv with the same sign(s). Therefore W2 ∪ e: ~wv is a
cycle in Σ, and since it was oriented we have an oriented cycle in Σ, which is contrary to
the assumptions of Subcase A. Furthermore, if we don’t have W ∈ Σ/e oriented so e1 left
ve and ek−1 entered ve then W ∈ Σ/e was oriented so e1 enters ve and ek−1 leaves ve (since
W is consistently oriented in Σ/e these are the only two options). In this case we have an
identical argument with W1 ∪ e: ~vw, and we reach the same contradiction.

Therefore Σ/e does not contain an oriented cycle, and in particular α ”restricted” to Σ/e
is acyclic. Therefore we have the two acyclic extensions of α to Σ in 2:2 correspondence with
the two acyclic orientations α of Σ \ e and the ”restricted” α on Σ/e.

Subcase 2: e is a negative loop or half edge. To simplify this proof we will assume that e
is actually a half edge with vertex v.

2If the circuit is a handcuff circuit, then this walk will simply repeat the circuit path.
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This subcase is similar to the first. For proof by contradiction we assume that α ∈
AO(Σ \ e) extends to two acyclic orientations of Σ, namely α ∪ e: ~vw and α ∪ e: ~wv, but that
α “extended” to Σ/e contains an oriented cycle.

We note that this cycle must use a half edge f created by contracting e, in other words,
f was a v, v1 link in Σ.3 If this isn’t the case it is immediate that we have an oriented cycle
in Σ. Now we note that f is itself an unbalanced circle, so the oriented cycle containing f
in Σ/e must be of the negative handcuff type. So there exists a circuit path P beginning
at v leading to another unbalanced circle C where P ∪ C∪ the half edge f is consistently
oriented in Σ/e. Now we notice that since f was a v, v1 link C ∪ P ∪ fΣ ∪ e is a cycle in
Σ. Furthermore, this cycle is consistently oriented for C ∪ P∪ the half of f at v1, than no
matter which way f is oriented at v, one of the orientations of e is consistent with f at v,
meaning we have an oriented cycle in Σ, which contradicts our assumption.

Therefore Σ/e does not contain an oriented cycle, and in particular α ”restricted” to Σ/e
is acyclic. Therefore we have the two acyclic extensions of α to Σ in 2:2 correspondence with
the two acyclic orientations α of Σ \ e and of α on Σ/e.

Thus we have proved our 2:2 correspondence for Type II.

[ THE PROOF IS IN CASES.
WHERE TO FIND THE CORRECT PROOFS OF THE CASES (guide for who
writes what):
Case I. e is a positive loop or loose edge. (Trivial; see 11/24 or 11/26.) Case II.
e is a link (+ by switching). Case III. e is a half edge or negative loop.
Case II has 3 types. We have an acyclic orientation α of Σ \ e. Type Two. α ∪ e
is acyclic in both orientations of e. Type One. Only in one orientation. Type
Zero. Not in any orientation.
I think Types Two, One were dealt with on 11/26 with some supplementation
on 12/1.
Type Zero was treated on 11/26 and 12/1. It has three cases. Case 1. P is a
path. (Done 11/26.) Case 2. P is a handcuff with e in the connecting path.
Case 3. Same with e in one of the circles. These were treated on 12/1. ]

[The following should all be redone by 11/26 and 12/1 people, and is provided
here just in case it helps:]

Type I: Adding e: ~vw produces an acyclic orientation of Σ, but adding e: ~wv produces a cyclic
orientation of Σ.

Let P be a closed walk in Σ \ e s.t. P ∪ e: ~wv is a an oriented circuit in Σ. This implies
that P is oriented consistently (within P ) from v to w. We would like to show that α is
acyclic when extended to Σ, but not acyclic on Σ/e (for either orientation of e), thus giving
a 1:1 correspondence.

We now look at 3 subcases,

• Subcase A: P ∪ e is a positive circle

3Note that f could not have been a negative loop or half edge at v. If it were a half edge or negative loop,
then f together with one of the orientations of e would yield an oriented cycle in Σ. And if f was a positive
loop then f (with any orientation) is an oriented cycle in Σ.
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• Subcase B: P ∪ e is a negative handcuff, with e in the circuit path of the circuit
• Subcase C: P ∪ e is a negative handcuff, with e in a negative circle of the circuit

Subcase A: We consider α extended to σ/e (with either orientation of e). Note that
since e is a positive link by assumption, this contraction makes sense. Furthermore, the
contraction doesn’t alter the sign of the circle P ∪ e, by Lemma E.4 (For S balanced in Σ
and T ⊆ E \ S . Then S ∪ T is balanced in Σ ⇐⇒ T is balanced in Σ/S.) P is balanced
(positive) in Σ/e. Furthermore, since the contraction didn’t affect the internal vertices of P ,
the edges of the circle P is oriented coherently at all vertices except ev. And since the path
P in Σ \ e was oriented from v to w, the circle P is oriented coherently in Σ/e. Therefore
Σ/e is cyclic.

Since α extended to Σ is acyclic for exactly one orientation of e by assumption, we have
a one to one correspondence between AO(Σ \ e) and AO(Σ), which is in fact one to one
between AO(Σ \ e) and AO(Σ) ∪ AO(Σ/e) for Case 2 C.

For the other subcases, we need a sublemma.

Lemma K.10. [[LABEL L:1124 SubLemma]] For e a positive link, and P ∪ e a coherently

oriented walk in ~Σ, then P is a coherently oriented walk in ~Σ/e.

proof of sublemma. On Wed? �

Subcases B & C: (If the SubLemma is true we can treat A, B, C together, otherwise we
need to do work here on wednesday)

This concludes Type I.

Type O: The acyclic orientation of Σ \ e extends only to cyclic orientations of Σ.
We wish to show that this is impossible, that there are no acyclic orientations of Σ \ e

with Σ ∪ e: ~vw and Σ ∪ e: ~wv cyclic orientations of Σ. We will do so by contradiction.
[THIS ENTIRE PROOF (OF CASE 3) IS SUPERSEDED.]
Let P : ~wv and Q: ~vw be oriented walks in Σ \ e (oriented by α of course) s.t. P ∪ e: ~vw is a

coherently oriented cycle, and similarly Q∪e: ~wv is a coherently oriented cycle. Furthermore,
the concatenation PQ is a coherently oriented closed walk. Now we wish to show that there
is subwalk of PQ that is a coherently oriented cycle. To this end, we look 2 cases,

• Subcase A: P,Q are internally disjoint
• Subcase B: P,Q are not internally disjoint

Subcase A: Then we have several subsubcases. (Note that we have omitted the cases
where the rolls of P and Q are simply reversed.) In each of these cases we will find a circuit
in Σ \ e, giving us a contradiction.

• P ∪ e is a positive circle Q ∪ e is a positive circle
• P ∪ e is a handcuff with e in one of the negative circles and Q ∪ e is a positive circle
• P ∪ e is a handcuff with e in one of the negative circles and Q∪ e is a handcuff with
e in one of the negative circles
• P ∪ e is a handcuff with e in one of the negative circles and Q∪ e is a handcuff with
e in the circuit path
• P ∪ e is a handcuff with e in the circuit path Q ∪ e is any circuit
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[This all needs pictures and a few words about why the orientations are still
coherent.]

Subcase B: By choice of notation, Q meets P internally at some vertex u. So u is a
vertex in Q and an internal vertex in P .

Note that this includes the possibility that u = v or u = w, since v (or w) could be internal
to P , and v (and w) are vertices in Q.

[This is where things got really messy in class. I haven’t straightened them
out yet. [They probably can’t be salvaged without re-doing. – TZ]]

�

11/26:
Joyce

Dec 1:
Nate Reff

A coherent balloon consists of a negative circle (or half edge) C and a path P of any length
(possibly zero) that is disjoint from C except at one end v, oriented so that C ∪ P has no
source or sink except one. This vertex is called the tip of the balloon. It is easy to see that
an oriented negative circle (or half edge) cannot be coherent at every vertex; thus, if it is
coherent at the largest number of vertices, there is a unique incoherent vertex. This must
be the vertex common to P and C; we call it the jointure of the coherent balloon. (When P
has length 0, we define it to be P = v and the tip is v.) Since C is negative and is coherent
everywhere but at v, it cannot be coherent at the v; thus, the orientation of C determines
that of P and the tip is the only source or sink. The oriented signed graph seen in Figure
K.3 is an example.

Figure K.3
[[LABEL F:1201image1]]

Lemma K.11. [[LABEL L:1201Lemma1ImprovedLemma4]] Suppose we have a coherently
oriented balloon with tip w. Extend coherently from w until you meet the (extended) balloon.
Then the extended balloon will contain a cycle.

Proof. Let v be the jointure of the balloon. When the extension of P hits the extended
balloon, the configuration looks like one of the two types seen in Figure K.4. (If the hit
point is v, we are in the second type.) Each type contains a cycle, as we explain next. The
arguments are based on the description in Lemma ?? of a closed walk that is coherent at
every internal vertex.

In diagram (a), let x be the point at which the extended path meets the balloon. Follow
the circle from x in the direction that makes v coherent; then when we arrive back at v we
have a coherent, hence positive, circle, which makes a balanced cycle.
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(a) (b)

Figure K.4
[[LABEL F:1201image2]]

In diagram (b), when we hit the extended path, say at y, we either form a positive circle,
which is coherent because it is coherent by definition at every vertex other than y, or a
negative circle, which means the entire figure is a handcuff and an unbalanced cycle. �

Proof of Sesquijection Lemma, continued. Suppose that α is an orientation of Σ \ e. We are
trying to prove that if α∪~e and α∪←−e are both cyclic, then α is cyclic (ie ”type zero”REF???
does not exist from our previous discussion). We are basically assuming that we have a link
e : vw. More specifically we assume e : vw is a positive link, P ∪ (e : ~vw) is a cycle, and
Q ∪ (e :←−wv) is a cycle.

Case 1: P is a path. (We already did this case.)
Case 2: P is a handcuff and e is in its connecting path. We may also assume that Q is

not a path, since that was taken care of in Case 1. Look at Figure K.5. By Qw we mean

cw

cv

w

v

Qw

Qv

Figure K.5
[[LABEL F:1201image3]]
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the part of Q we can get to by backtracking coherently along Q from w. If Qw hits Pw, then
lemma K.11 tells us that it is a cycle in Σ \ e (since we are extending coherently and we
must hit somewhere). By Qv we mean to forward track coherently along Q from v. Then
the result is similar.

(a) (b)

Qw

Qw

Figure K.6
[[LABEL F:1201image4]]

This means that Q must be one of the shapes seen in Figure K.6.
If Qw does not hit Pw, then Pw ∪Qw is a cycle.

Qw
Pw

w

v

Figure K.7
[[LABEL F:1201image5]]

Case 3: P is a handcuff and e is in one of its circles. We may also assume Q has the
same type, or we would be in Case 1 or 2. Looking at Figure K.7, we call the red path Pw,
and the blue path Qw. If we backtrack along Qw and do not hit P then we will close up and
will be back in Lemma K.11. So this is similar to Case 2.

The essential part of Cases 2 and 3 is that Pw and Qw are two balloons that meet coherently
at their tips.

Corollary K.12. [[LABEL C:1201CorollaryToCaseII]] The union of two coherent balloons,
not necessarily internally disjoint, that are joined coherently at their tips, contains a cycle.
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Possible pairs (γ, α):
Proper Compatible

(a) Extroverted γ(w) + γ(v) > 0 γ(w) + γ(v) ≥ 0
(b) Positive γ(v) < γ(w) (This includes

a positive loop v = w)
γ(v) ≤ γ(w)

(c) Introverted γ(v) + γ(w) < 0 (For a neg-
ative loop 2γ(v) < 0

γ(v) ≤ γ(w)

(d) Introverted half edge γ(v) < 0 γ(v) ≤ 0
(e) Extroverted half edge γ(v) > 0 γ(v) ≥ 0

[[LABEL Tb:1201pair types]]

Case III: Suppose e is an unbalanced edge at v, there exists a cycle P ∪ ~e in α ∪ ~e, and
there exists a cycle Q ∪←−e in α ∪←−e (See Figure K.8).

P Q

S\e

v

Figure K.8
[[LABEL F:1201image6]]

Therefore, P and Q are balloons and meet coherently. Apply Corollary K.12. Thus Σ \ e
has a cycle at v.

This concludes the proof of the Sesquijection Lemma. �

Proper and compatible pairs.
Recall that a coloration of Σ is a mapping γ : V → Λk where Λk := {0,±1,±2, . . . ,±k}.

A zero-free coloration of Σ is a mapping γ∗ : V → Λ∗k where Λ∗k := {±1,±2, . . . ,±k}.
A pair (γ, α) where γ is a coloration and α is an acyclic orientation, can be of any of the

types in Figure K.9 defined in the following table.

w

v

e

w

v

e

w

v

e

v

e

v

e

(a) (b) (c) (d) (e)

Figure K.9. An edge e which is (a) extraverted, (b) positive, (c) introverted,
(d) an introverted half edge, (e) an extraverted half edge.

[[LABEL F:1201image7]]
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Note: If α exists then there are no loose edges or positive loops.
Let x(e) := column of e in H(Σ, α). We are saying that x(e)·γ > 0 (proper), and x(e)·γ ≥ 0

(compatible).

The number of acyclic orientations.
Stanley’s theorem on the number of acyclic orientations of a graph (Theorem H.19) extends

to signed graphs. The original theorem is the special case of an all-positive signature. For
a fixed k ≥ 0, we write a(Σ) := the number of acyclic orientations, a2(Σ) for the number of
compatible pairs, and a∗2(Σ) for the number in which the coloration is zero free. Let’s make
three important observations:

(1) Given an acyclic orientation α and a coloration γ, an edge e is proper if and only if
x(e) · γ > 0 and it is compatible with γ if and only if x(e) · γ ≥ 0. [DEFINE x(e)
before this statement. Give a proof?—a lemma?—cite Table K.4?]

(2) A proper pair (γ, α) is determined by γ. Therefore the number of proper pairs is equal
to the number of proper k-colorations (or zero-free k-colorations), which is equal to
χΣ(2k + 1) (or χ∗Σ(2k)).

(3) If we have an improper compatible pair (γ, α), then γ is improper. In other words,
if there exists an e such that x(e) · γ = 0, then γ is improper. If such an e does not
exist, then γ is proper.

Theorem K.13. [[LABEL T:1201Theorem1StanleyType]] Let k be a non-negative inte-
ger. In a signed graph Σ, the number of compatible pairs of an acyclic orientation and a
k-coloration is (−1)nχΣ(−(2k + 1)). The number of compatible pairs with a zero-free k-
coloration is (−1)nχ∗Σ(−2k).

Proof. We proceed by induction on the number of links. For zero links we have a2(Σ) =∏
v a2(Σ:v) and χΣ(λ) =

∏
v χΣ:v(λ). If there exists a link e:vw then to prove a2(Σ) =

a2(Σ \ e) + a2(Σ/e) (and for the zero-free case a∗2(Σ) = a∗2(Σ \ e) + a∗2(Σ/e)), we may assume
e is positive by switching and then deletion and contraction of χΣ and χ∗Σ give us the result.

Let (γ, α) be a compatible pair in Σ \ e.
Case 1: e is proper in γ. Then α extends uniquely to Σ and we get a compatible pair (γ, αΣ).
Also, γ does not color Σ/e because γ(v) 6= γ(w). Therefore we have a bijection of compatible
pairs. In other words one pair in Σ corresponds to one pair in each Σ \ e and Σ/e.
Case 2: e is improper in γ. Therefore γ(v) = γ(w) and γ colors Σ/e. If we add e to α, we
have

AO(Σ)
sesquijection←→ AO(Σ \ e) ∪ AO(Σ/e),

where the left-hand side is thought of as the number of extensions and the right-hand side
is thought of as α applied to Σ \ e and also to Σ/e.

Since we have a sesquijection this gives us the correct numbers for the compatible pairs
with k-colorations. Notice that if γ is zero-free then γ/e is zero-free and vice versa, so the
proof is the same. Therefore the theorem is proved. �

12/3:
Kaminski

Dec 5
(draft):
Peter Cohen
and Thomas
Zaslavsky
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K.5. The dichromatic and corank-nullity polynomials. [[LABEL 2.dichromatic]]
The algebraic form of the chromatic polynomials, i.e., the subset expansion in Theorem

K.8, allows us to generalize greatly. The dichromatic polynomials of a signed graph, like
that of a graph, are two-variable generalizations of the chromatic polynomials that have
combinatorial properties of their own. A modification, the corank-nullity polynomials, have
slightly but significantly different properties.

Dichromatic polynomials.
We begin with the algebraic definitions of three dichromatic polynomials.

Definition K.6. [[LABEL D:1205dichromatic]] The (ordinary) dichromatic polynomial of
a signed graph Σ is

QΣ(u, v) :=
∑
S⊆E

un−b(S)v|S|−n+b(S).

The balanced dichromatic polynomial is

Q∗Σ(u, v) :=
∑
S⊆E

balanced

un−b(S)v|S|−n+b(S).

The total dichromatic polynomial is

QΣ(u, v, z) :=
∑
S⊆E

un−b(S)v|S|−n+b(S)zc(S)−b(S).

The definitions are concocted so that QΣ(u, v) = QΣ(u, v, 1) and Q∗Σ(u, v) = QΣ(u, v, 0).
The purpose of the total dichromatic polynomial is to give a common expression to the
ordinary and balanced polynomials, but I do not know of any interpretation of it for values
of z other than 1 and 0.

The definitions show that, for an ordinary graph, Q+Γ(u, v) = Q∗+Γ = QΓ(u, v). That is,
we are generalizing the dichromatic polynomial of a graph. That, of course, is the point.

The chromatic polynomials can be expressed as χ
[∗]
Σ (λ) = (−1)nQ

[∗]
Σ (−λ,−1). That follows

from the algebraic forms of the chromatic polynomials (Theorem K.8).

Theorem K.14 (Theorem Q). [[LABEL T:1205Qdc]] Let e be an edge in the signed graph
Σ. If e is neither a balanced loop nor a loose edge, then

QΣ(u, v, z) = QΣ\e(u, v, z) +QΣ/e(u, v, z) if e is a link,

QΣ(u, v) = QΣ\e(u, v) +QΣ/e(u, v),

Q∗Σ(u, v) = Q∗Σ\e(u, v) +Q∗Σ/e(u, v) if e is a link.

If e is a balanced loop or a loose edge, then

QΣ = QΣ\e + vQΣ/e.

Proof. Clearly, if the first formula holds for three variables, it will hold for any specialization
of those three variables. Setting z to 0, the formula will simplify to

Q∗Σ(u, v) = QΣ(u, v, 0) = QΣ\e(u, v, 0) +QΣ/e(u, v, 0) = Q∗Σ\e(u, v) +Q∗Σ/e(u, v),

with a similar argument for Q(u, v), so the second and third parts of the theorem are valid
for any link, contingent of course on the first part.
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For the remaining proof, let’s write uΣ(S) := c(S)− b(S), for short; this is the number of
unbalanced components of Σ|S. The definition gives
(K.2)

[[LABEL E : 1205Qsimp]]QΣ(u, v, z) =
∑
S⊆E

ubΣ(S)v|S|−n+b(S)zuΣ(S) = v−n
∑
S

(uv)bΣ(S)v|S|zuΣ(S)

(a very handy simplification in many computations) and, for Σ \ e with this simplification,

QΣ\e(u, v, z) = v−n
∑
S⊆E\e

(uv)bΣ\e(S)v|S|zuΣ\e(S) = v−n
∑
S⊆E\e

(uv)bΣ(S)v|S|zuΣ(S).

By subtraction,

(K.3) [[LABEL E : 1205Qdiff]]QΣ(u, v, z)−QΣ\e(u, v, z) = v−n
∑

S⊆E:e∈S

(uv)bΣ(S)v|S|zuΣ(S).

This is valid for any edge e.
Now there are three cases. The edge e may be a link, or it may be unbalanced (a negative

loop or a half edge), or it may be a positive loop or a loose edge.
The easiest case first. Suppose e is a positive loop or a loose edge. What distinguishes

such an edge is that then Σ/e = Σ \ e, as we saw in Section E.1. Also, it’s easy to see that
b(T ∪ e) = b(T ), u(T ∪ e) = u(T ), and |T ∪ e| = |T | + 1 for any set T ⊆ E \ e. Applying
these facts in Equation (K.3), we have

QΣ(u, v, z)−QΣ\e(u, v, z) = v−n
∑

S⊆E:e∈S

(uv)bΣ(S)v|S|zuΣ(S)

= v−n
∑
T⊆E\e

(uv)bΣ(T )v|T |+1zuΣ(T )

= v · v−n
∑
T⊆E\e

(uv)bΣ\e(T )v|T |zuΣ\e(T )

= vQΣ\e(u, v, z) = vQΣ/e(u, v, z).

Therefore, QΣ = QΣ\e + vQΣ/e if e is a balanced loop or a loose edge.
If e is any other kind of edge, then Σ/e has one vertex less than either Σ or Σ \ e. The

next step in the proof is to write out the simplified definition (K.2) for Σ/e; it is

QΣ/e(u, v, z) = v−(n−1)
∑
T⊆E\e

(uv)bΣ/e(T )v|T |zuΣ/e(T ).

If e is a link, we can rewrite this as

QΣ/e(u, v, z) = v−n
∑
T⊆E\e

(uv)bΣ(T∪e)v|T∪e|zuΣ(T∪e)

because bΣ/e(T ) = bΣ(T ∪ e) by Lemma ?? [CAN’T FIND IT ANYWHERE!] and
cΣ/e(T ) = cΣ(T ∪ e) by Lemma I.?? [CAN’T FIND IT ANYWHERE!], and of course
|T ∪ e| = |T | + 1. This is the same as QΣ − QΣ/e, so we have the familiar equation QΣ =
QΣ\e +QΣ/e.

But suppose e is a negative loop or a half edge? Then we cannot predict the number
of components of the contraction. However, the rest is as before: bΣ/e(T ) = bΣ(T ∪ e) (by
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Lemma ?? [FIND IT!]) and |T ∪ e| = |T |+ 1. Thus, if we set z = 1 to eliminate the effect
of c(T ), we get a valid identity,

QΣ/e(u, v) = v−n
∑
T⊆E\e

(uv)bΣ(T∪e)v|T∪e|.

This is the case z = 1 of the expression in (K.3); so we have the desired reduction formula
for Q(u, v).

Another way to eliminate the effect of c(T ) is to set z = 0, which means we are talking
about Q∗. Sad to say, this doesn’t help. Because Q∗ restricts the sum to balanced edge sets,
we can no longer compare the sum in Q∗Σ/e, which is over balanced sets T ⊆ E(Σ/e), to the

sum in Q∗Σ − Q∗Σ\e, which is over balanced sets S ⊆ E(Σ) that contain e. But no such sets
exist! That is why we are satisfied to prove the reduction formula for Q∗ only when e is a
link. �

Corank-nullity polynomials. [[LABEL 2.crn]]
The corank-nullity polynomial is most easily defined in terms of the dichromatic polyno-

mial, by the following formulas. There are two important corank-nullity polynomials, which
can be combined into one by the addition of a third variable—exactly as with the dichromatic
polynomials.

Definition K.7. [[LABEL D:1205crn]] The corank-nullity polynomial (or rank generating
polynomial) of a signed graph is

RΣ(u, v) := u−b(Σ)QΣ(u, v).

The balanced corank-nullity polynomial is

R∗Σ(u, v, z) := u−b(Σ)Q∗Σ(u, v).

The total corank-nullity polynomial is

RΣ(u, v, z) := u−b(Σ)QΣ(u, v, z).

Thus, RΣ(u, v) = RΣ(u, v, 1) and R∗Σ(u, v) = R∗Σ(u, v, 0).

Dec 8:
Yash Lodha

[VERIFY THE STATEMENT of this result:]

Theorem K.15 (Theorem R). [[LABEL T:1208R]] The corank-nullity polynomials of a
signed graph have the following properties:

(1) RΣ(u, v, z) = RΣ\e(u, v, z) +RΣ/e(u, v, z) if e is a link and not a balancing edge of Σ.
(2) RΣ(u, v) = RΣ\e(u, v) +RΣ/e(u, v) if e is not a balancing edge and not a positive loop

or loose edge.
(3) R∗Σ(u, v) = RΣ\e(u, v) +RΣ/e(u, v) if e is a link but not a balancing edge.

Proof. Use “Theorem Q” (Theorem K.14) and Proposition D.3.
[We need details here! WHAT IS THE PROP?]

�

Theorem K.16 (Theorem QRM). [[LABEL T:1208QRM]] QΣ(u, v, z) and RΣ(u, v, z) sat-
isfy the following identities.
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(M) Multiplicativity:
QΣ1∪· Σ2

= QΣ1QΣ2 ,
RΣ1∪· Σ2

= RΣ1RΣ2 ,
QΣ1∪vΣ2 = QΣ1QΣ2 .

(U) Unitarity:
QK1 = u, RK1 = 1, Q∅ = R∅ = 1,
QK◦1

= u+ z = RK◦1
.

(I) Invariance:
Σ1
∼= Σ2 =⇒ QΣ1 = QΣ2 and RΣ2 = RΣ2 .

(BE) If e is a balancing edge of Σ1 which is not an isthmus, then
QΣ = (u+ 1)QΣ\e,
RΣ = (u+ 1)RΣ\e.

Proof. The proofs are an exercise. One should consult Section I.H.5 for guidance. �

K.6. Counting colorations. [[LABEL 2.allcolorations]]
Recall that I(γ) := set of improper edges of γ. Define

XΣ(k, w) :=
∑

γ:V→Λk

w|I(γ)|,

which is the generating function of all k-colorations by the number of improper edges, and

X∗Σ(k, w) :=
∑

γ:V→Λ∗k

w|I(γ)|,

which is the generating function of all zero-free k-colorations.

Theorem K.17. [[LABEL T:1208allcolorations]]

X
[∗]
Σ (k, w) = (−1)b(Σ)(w − 1)nQ

[∗]
Σ (
−λ
w − 1

, w − 1)

where λ = 2k+1 if all colors are allowed and 2k if 0-free. (λ = size of the color set ,Λk or Λ∗k.)

Lemma K.18 (Lemma A). [[LABEL L:1208A]] For a coloration γ, I(γ) is closed, and it is
balanced if γ is 0-free.

Proof. Exercise. �

Lemma K.19 (Lemma B). [[LABEL L:1208B]] γ|V0(I(γ)) ≡ 0.

Proof. Recall V0(S) = { Vertices of unbalanced components } = V \ ⋃ πb(S). Look at an
unbalanced component of I(γ). It contains a negative circle or a half edge. A negative
circle of improper edges [diagramcomes here] generates an equation 2γi = 0. (From
[1− σ(C)]γi = 0.)

Therefore γ(vi) = 0 if vi ∈ V0(I(γ)). Hence proved. �

This means that V0(I(γ)) together with γ|V \V0(I(γ)) completely determine γ.

12/10:
Joyce

Dec 12:
Nate Reff
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L. Signed Complete Graphs

[[LABEL 2.complete]]
Signed complete graphs Σ = (Kn, σ) have especially nice properties due, in part, to

the existence of adjacencies between all vertices, and in further part, to the fact that the
adjacency matrix is zero only on its diagonal. We can regard a signed Kn as determined by
its negative subgraph Σ−. From this point of view we like to write it as Σ = KΓ where Γ is
a simple graph of order n; this signed graph is −Γ∪+Γc; that is, Σ− = Γ and Σ+ = Γc, the
complementary graph. Then KΓc = −KΓ.

The trivial examples are +Kn = K(V,∅) = KKc
n

and −Kn = KKn . The nontrivial examples
are those in which ∅ ⊂ E(Γ) ⊂ E(Kn), so they have edges of both signs.

L.1. Coloring. [[LABEL 2.complete.coloring]]
How does this relate to signed graph coloring? Let’s look at a zero-free coloration γ. What

makes it proper? Looking at Figure L.1 we see that γ−1(±i) must be properly colored for
each i. This leads to two observations. The first is that KΓ:γ−1(±i) has to be antibalanced.
Here recall Harary’s Balance Theorem A.1: Σ is balanced iff the negative edges are a cut.
Thus, Σ is antibalanced iff the positive edges are a cut. The second is that there are 2 ways
to put vertex signs on γ−1(±i), because it induces a connected subgraph of KΓ.

These observations suggest a three-step coloring procedure.

(1) Choose a partition of V into antibalanced sets B1, . . . , Bl (in other words, KΓ:Bi is
antibalanced; equivalently, Γc:Bi is complete bipartite).

(2) Assign + and − to the two halves of each Bi (there are 2l ways to do this because
each Bi induces a connected subgraph).

(3) Assign l distinct labels from [k] to the Bi’s (there are (k)l = l!
(
k
l

)
ways to do this).

Figure L.1. Assigning signs to the vertices of γ−1(±i) in a signed Kn. The
diagram shows the case in which there are 6 vertices colored ±i. The positive
edges (in red) are complete bipartite.[NATE, NOTE: Figure uses too
much white space!]

[[LABEL 1212image1]]

Suppose we have a definite signed graph Σ. Let’s define a partition of V to be antibalanced
if every part induces an antibalanced signed graph. Our coloring procedure leads to the
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following description of the chromatic polynomial of a signed Kn, or indeed (by the same
proof) of any signed graph that is complete in the sense that each pair of vertices is joined
by one or more edges.

Theorem L.1. [[LABEL T:1212antibalanced chromatic]] If Σ is a signed graph in which all
vertices are adjacent, then χ∗Σ(λ) =

∑
π 2|π|(k)|π|, where λ = 2k and the sum is taken over

all antibalanced partitions of V .

This means the zero-free chromatic polynomial encodes the number of partitions into
antibalanced sets.

Corollary L.2. [[LABEL C:1212minantiptn]] For any signed graph Σ in which all vertices
are adjacent, χ∗(Σ) = the minimum size of a partition of V into antibalanced sets.

A clique is a vertex set that induces a complete subgraph. In the next corollary we
include ∅ as a clique, i.e., K0 as a complete subgraph, since one part of a bipartition may
be empty. The corollary gives a structural interpretation, in terms of Γ or its complement,
of the zero-free chromatic number of KΓ.

Corollary L.3. [[LABEL C:1212mincliquepairptn]] χ∗(KΓ) = the minimum size of a par-
tition of V into induced complete bipartite subgraphs of Γc, which also = the minimum size
of a partition into pairs of nonadjacent cliques in Γ.

We can apply this to get a (less satisfactory) interpretation of the chromatic number.

Corollary L.4. [[LABEL C:1212Corollary4]] χ(KΓ) = minv∈V χ
∗(KΓ\v).

Proof. You can use the color 0 only once since all vertices are adjacent. �

Open questions on coloring of signed complete graphs.

(1) What is maxΓ χ
∗(KΓ), over all graphs Γ of order n? Tom thinks +Kn should maximize

with χ∗(+Kn) = dn
2
e, and −Kn should minimize. Also, χ∗(−Kn) = 1 since they can

all be the same color.
(2) Similarly, what is maxΓ χ(KΓ), over all graphs Γ of order n?
(3) Are the graphs that achieve the maxima unique (up to switching)?

I wrote a short paper, Zaslavsky (1984a), on chromatic number that looked at the very
easiest questions of this kind. There is certainly much more to be accomplished by anyone
who is interested.

L.2. Two-graphs. [[LABEL 2.twographs]]
A two-graph is a set of triples chosen from V , in other words T ⊆ P(3)(V ), such that every

quadruple from V contains an even number of triples of T. T is regular if every pair vivj is
in the same number of triples of T.

Observe that Tc is a two-graph if T is, and moreover that Tc is regular if T is.
A signed complete graph KΓ generates a two-graph T(KΓ) by the rule:

T(KΓ) := { vertex sets of negative triangles }
= { triples of vertices that support an odd number of edges in Γ }.

Lemma L.5. [[LABEL L:1212swclasstg]] The class T(KΓ) is a two-graph, and the whole
switching class [KΓ] generates the same two-graph.

Proof. A nice elementary exercise for the reader. �
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Theorem L.6. [[LABEL T:1212tggraph]] Every two-graph is a T(KΓ) for some graph Γ,
which is unique up to switching.

Proof. We construct Γ from T as follows: (1) Choose any vertex v. (2) Define all v-edges
to be positive. (3) Define the edge uw to be − (negative) if vuw ∈ T and + (positive) if
not. Then check that this definition is consistent, i.e., that T = T(KΓ). [THIS IS WHAT
YOU SHOULD DO in the write-up!]

To prove uniqueness notice that you can switch any graph so everything agrees on a
spanning tree. [NATE: EXPLAIN HOW THIS PROVES UNIQUENESS.] �

Graph switching.
Switching originated in the work of J.J. Seidel, who studied equiangular lines, which are

sets of lines that all make the same angle with each other. (See van Lint and Seidel (1966a)
in [JJS].) We’ll see in Chapter III [GEOMETRY] that equiangular lines are cryptomorphic
[sic] to signed complete graphs. Seidel described switching in terms of the graph Γ, not signed
graphs; consequently I call switching a graph Seidel switching, or simply graph switching.
This switching means taking Γ and reversing the adjacencies between X ⊆ V and Xc, for
some vertex set X ⊆ V . From the definitions it is plain to see that switching KΓ corresponds
to (graph-) switching Γ; specifically, that (KΓ)X = KΓX . (This is how I came to the notion
of switching a signed graph.)

The Seidel adjacency matrix of Γ is what we are calling A(KΓ). Seidel introduced this
matrix early (cf. Seidel (1968a) in [JJS]), strictly in terms of the graph Γ; he called it
the (0,−1,+1)-adjacency matrix of Γ. It turned out to be a powerful tool because of its
eigenvalue theory (cf. Seidel (1976a) in [JJS]). From the perspective of this matrix, switching
either Γ or KΓ corresponds to conjugating A(KΓ) by a diagonal ±1-matrix.

Lemma L.7. [[LABEL L:1212Lemma5]] Switching does not change the eigenvalues of A(KΓ).

Proof. Similar matrices have the same eigenvalues. �

We write A(T) := any A(KΓ) such that KΓ ↔ T. Thus, A(T) is well defined only up
to conjugation by a diagonal ±1-matrix, but that is sufficient to make its spectrum (its
eigenvalues and their multiplicities) well defined.

Lemma L.8. [[LABEL L:1212tga]] Any adjacency matrix A of a two-graph T satisfies

(L.1) [[LABEL E : 1212tga]]A2 = (n− 1)I + (n− 2)A− 2(σijtij)ij,

where tij := the number of triples on vivj.

Notice that this is, properly, a statement about signed complete graphs that is invariant
under switching. That is why we can formulate it in terms of a two-graph, which corresponds
to a switching class of signed Kn’s.

Proof. Note that the incidence numbers tij satisfy 0 ≤ tij ≤ n− 2. We write σij := σ(vivj).
On the diagonal, (A2)ii = n − 1, since A has n − 1 ±1’s in each row and 0’s along the

diagonal. This accounts for the diagonal elements of all the matrices in Equation (L.1) Thus,
we only have to examine an off-diagonal element (i, j) where i 6= j.

In A2, the entry is (A2)ij =
∑n

k=1 aijajk =
∑

k 6=i,j σikσjk.
Suppose σij = +. Then vivjvk is a triple in T ⇐⇒ aikajk = −1. So, tij = the number

of triples on vivj that are in T = the number of negative paths vivkvj. Since n − 2 − tij=
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the number of triples on vivj that are not in T = the number of positive paths vivkvj,
(A2)ij = (n− 2− tij)− tij = n− 2− 2tij.

Suppose on the contrary that σij = −. Then vivjvk is a triple in T ⇐⇒ aikajk = +1
⇐⇒ σ(vivkvj) = +. So tij = the number of positive paths vivkvj. Meanwhile, n− 2− tij =
the number of negative paths vivkvj. Therefore, (A2)ij = tij− (n−2− tij) = −(n−2−2tij).

We conclude that (A2)ij = σij(n− 2− 2tij) off the diagonal. With our calculation of the
diagonal, we have proved Equation (L.1). �

Proposition L.9. [[LABEL P:1212rtga]] Any adjacency matrix A of a regular two-graph
with t triples on each pair of vertices satisfies

(L.2) [[LABEL E : 1212rtga]]A2 = (n− 1)I + (n− 2− 2t)A.

Conversely, if some adjacency matrix of a two-graph T satisfies a quadratic equation, then
it satisfies (L.2) and T is regular with t triples on each vertex pair.

Proof. The first part is direct from Lemma L.8. The second part follows from comparing the
presumed quadratic equation A2 = βI + αA with (L.1). We deduce from the diagonal that
β = n − 1 and from the off-diagonal that σij(n − 2 − 2tij) = aijα. But we also know that
aij = σij 6= 0, hence every tij = 1

2
(n − 2 − α), a constant. Hence, T is regular. Comparing

with (L.2), this constant is t. �

Theorem L.10. [[LABEL T:1212Theorem8]] For n ≥ 3, T is regular ⇐⇒ A(T) has at
most 2 eigenvalues. Moreover, A(T) cannot have only one eigenvalue.

Proof. We write A := A(T). Now, T is regular ⇐⇒ A satisfies a quadratic equation,
specifically Equation (L.2) ⇐⇒ A has at most two eigenvalues (by matrix theory).

For A to have just one eigenvalue, it must have a linear annihilating polynomial, that is,
A− αI = O. This is impossible since A is non-zero off the diagonal and n > 1. �

The multiplicity trick.
There is a standard but clever and effective trick used in the analysis of integral symmetric

matrices, especially the adjacency matrices of graphs, which uses basic facts about the eigen-
value multiplicities. We’ll apply this trick to signed complete graphs with two eigenvalues,
a.k.a. regular two-graphs. (Again, my account is based on papers by Seidel in [JJS]; see
especially Seidel (1976a).) Let the eigenvalues be ρ1 and ρ2 with multiplicities µ1 and µ2.

By Proposition L.9, A2 − (n − 2 − 2t)A − (n − 1)I = O is an annihilating polynomial of
A. It is the minimal polynomial since A cannot have only one distinct eigenvalue. Hence,
the eigenvalues are the two zeros of ρ2 − (n− 2− 2t)ρ− (n− 1) = 0. Specifically,

ρ1, ρ2 =
n− 2− 2t±√(n− 2− 2t)2 + 4(n− 1)

2
=
α±√∆

2
,

where for simplicity I write

∆ := (n− 2− 2t)2 + 4(n− 1) = (n− 2t)2 + 8t

for the discriminant and α := n − 2 − 2t. Because (n − 2 − 2t)2 ≥ 0 and (since n ≥ 3)
4(n − 1) > 0, the discriminant is positive. Therefore the eigenvalues are real (and distinct,
as we knew already).

The multiplicity trick depends on three basic facts:

(1) The multiplicities are whole numbers.
(2) µ1 + µ2 = n.



Section L.2 115

(3) µ1ρ1 + µ2ρ2 = tr(A) = 0.

In the simplified notation property (3) becomes

µ1
α +
√

∆

2
+ µ2

α−√∆

2
= 0.

Thus, the multiplicities are

µ1, µ2 =
n

2

(
1∓ n− 2− 2t√

(n− 2t)2 + 8t

)
=

n

2
√

∆
(
√

∆∓ α).

Case 1: ∆ is not a square. Then the eigenvalues are irrational. We can separate their
rational and irrational parts to deduce that

µ1
α

2
+ µ2

α

2
= 0

and

µ1

√
∆

2
− µ2

√
∆

2
= 0.

The first equation tells us that α = 0 and the second tells us that µ1 = µ2. Therefore the
eigenvalues are ±√∆/2 = ±√n− 1, each with multiplicity n/2, and t = n

2
− 1. Evidently,

n− 1 must be odd and not a perfect square.

Case 2: ∆ is a square. Then the eigenvalues are rational; by Eisenstein’s theorem of
number theory, since they are rational zeroes of a monic, integral polynomial, they are
integers.

Let ∆ = q2, where q ∈ Z. Because q2 = (n− 2t)2 + 8t, q ≡ n (mod 2). Write q = n− 2r,
so q2 = (q + 2r)2 − 4t(q + 2r − 2− t). Solve for q:

(L.3) [[LABEL E : 1212q]]q(t− r) = r2 − 2rt+ 2t+ t2 = (t− r)2 + 2t.

We conclude that either t = r or

q = t− r +
2t

t− r .
If t = r then (L.3) implies 2t = 0, so in this case t = r = 0. That corresponds to a trivial

case: the all-positive complete graph, or Γ with no edges. Let’s rule out the trivial cases;
we’ll look for properties of interesting regular two-graphs with rational eigenvalues. That
means t 6= r and 0 < t < n− 2.

If t 6= r, let s = t− r. Then q = s+ 2 + 2r/s and s|2r. Directly in terms of r and s,

t = r + s,

q = s+ 2 +
2r

s
,

n = s+ 2 + 2r +
2r

s
.

The eigenvalues are

ρ1, ρ2 =
α± q

2
=

1

2

[
2r − s2

s
±
(
s+ 2 +

2r

s

)]
=


1 +

2r

s
,

−(s+ 1)
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(the upper value is ρ1, the lower is ρ2) and the multiplicities are

µ1, µ2 =
n

2q
(q ± α) =

n

2

q ∓ (n− 2t− 2)

q
=


(s+ 1)

(
1 +

2rs

s2 + 2(r + s)

)
,

1 +
2r

s
+

2r(s+ 2r)

s2 + 2(r + s)
.

We can therefore express n and t (the parameters of T) and the eigenvalues and their multi-
plicities in terms of r and s, and the problem is to find which values of r and s are numerically
feasible. After that, the real problem is to find examples of regular two-graphs with feasible
parameters, or to show none exist (which is sometimes the case due to more sophisticated
reasons). That takes us into group theory and design theory, and I stop here—save for a
not-so-short digression on strongly regular graphs.

2008 Dec
12:
Zaslavsky L.3. Strongly regular graphs. [[LABEL 2.twographs.srg]]

Let’s take a little digression into strongly regular graphs. A simple graph Γ is called
strongly regular if it is regular—every vertex has degree k—and there are constants λ and
µ such that each pair of adjacent vertices has exactly λ common neighbors and each pair
of nonadjacent vertices has exactly µ common neighbors. We say Γ is an SRG(n, k, λ, µ),
n denoting the number of vertices; the four numbers are the parameters. Strongly regular
graphs are used, for instance, to represent finite simple groups, which puts them in combina-
torial design theory. Seidel discovered remarkable connections between regular two-graphs
and strongly regular graphs through the eigenvalues of the Seidel adjacency matrix of Γ, i.e.,
A(KΓ). I will give some of the flavor of his ideas here.

First, we’ll take the easy way to find a strongly regular graph in a regular two-graph.
Then we’ll glance at the matrix method. In each case we start with a two-graph T of order
n, which has the form T(KΓ) for various switching-equivalent graphs Γ. Choosing the right
Γ is part of the method.

The combinatorics of a detached vertex.
Assume T = T(KΓ) is regular with t triples on each pair of vertices. We can pick any

vertex u and switch as necessary so it is isolated in Γζ . (This determines ζ uniquely.) Write
Γ′ := Γζ \ u = (V ′, E ′). Then we can draw a few conclusions, summarized as:

Proposition L.11. [[LABEL P:1212srg n-1]] If T is a regular two-graph on V , then t ≥ n/3,
t ≡ n (mod 2), and for each u ∈ V , switching so u is isolated in Γζ, then Γζ \u is a strongly
regular graph SRG(n− 1, t, t− 1

2
(n− t), 1

2
t).

Conversely, if u is isolated in Γ and Γ \ u is a strongly regular graph SRG(n − 1, t, t −
1
2
(n− t), 1

2
t), then T(KΓ) is a regular two-graph.

Proof. We just count carefully. First, Γ′ is a t-regular graph, because each edge vw ∈ E ′

makes a triple uvw ∈ T while each non-edge vw makes a triple uvw /∈ T.
Consider an adjacent pair vw ∈ E ′. Let aαβ be the number of vertices in Γ′ \ {v, w} that

are adjacent to v iff α = 1 and to w iff β = 1. Thus, a11 + a10 + a01 + a00 = n − 3. Also,
a11 + a00 = t − 1, because the triples xvw that are in T, besides uvw, are those for which
x ∈ V ′\{v, w} is adjacent to both v and w or to neither. Finally, a11 +a10 = d′(v)−1 = t−1
(because one neighbor of v is w) and similarly a11 + a01 = t − 1. These four equations can
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be solved; one finds that a11 = 1
2
(3t−n). Thus, a11 is independent of the particular vw, and

we have that part of strong regularity which says λ exists and equals t− 1
2
(n− t).

Since a11 counts something it can’t be negative, hence 3t−n ≥ 0. Indeed, if T is nontrivial,
then 3t− n > 0.

Now consider a nonadjacent pair vw ∈ E ′. This time the necessary equations are a10 +
a01 = t, because the triples xvw that are in T are those for which x ∈ V ′ \ {v, w} is adjacent
to exactly one of v and w, and a11 + a10 = d′(v) = t and similarly a11 + a01 = t. The solution
is that a11 = t/2, independently of the pair vw, and we have that part of strong regularity
which says µ exists and equals t/2. �

Example L.1. [[LABEL X:1212pentagon]] Seidel’s favorite example for illustrating the ideas
of two-graphs was what he called “the pentagon”. It is the two-graph T obtained from
Γ = K1∪· C5, in other words, the pentagon (naturally) with an extra isolated vertex. It’s
clear from Proposition L.11 that T is regular with n = 6 and t = 2. The adjacency matrix is

A =


0 1 1 1 1 1
1 0 −1 1 1 −1
1 −1 0 −1 1 1
1 1 −1 0 −1 1
1 1 1 −1 0 −1
1 −1 1 1 −1 0

 .

The eigenvalues and multiplicities are

ρ = ±
√

5, µ1 = µ2 = 3.

Since the eigenvalues are irrational they are negatives of each other and their multiplicities
are equal; we’re in Case 1 of the multiplicity trick.

The matrix of a detached vertex.
Since u is isolated in Γ, its row and column in A := A(KΓ) are all 1 off the diagonal. Thus,

writing A′ := A(KΓ′) and j for the all-ones vector of order n− 1,

A =

(
0 jT

j A′

)
.

Let’s put this into the nonzero terms of Equation (L.2):

A2 − (n− 2− 2t)A− (n− 1)I =

0 0T

0 J + (A′)2 − (n− 2− 2t)A′ − (n− 1)I

 ,

because jjT = J , the all-ones square matrix of order n− 1. The two-graph is regular if and
only if this is zero, in other words, if and only if

(A′)2 = (n− 2− 2t)A′ + (n− 2)I − (J − I).

The diagonal part of this equation is satisfied automatically because A′ has n− 2 nonzeros,
all ±1, in each row and column. The interesting part is therefore off the diagonal. One can
analyze the off-diagonals to prove Γ′ is strongly regular; the best way is to write down the
equation satisfied by the Seidel matrix of a strongly regular graph; but I will omit this as we
already tested Γ′ for strong regularity by combinatorics.
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From a strongly regular graph.
The two-graph T(KΓ) associated with a strongly regular graph may happen to be regular

itself.

Proposition L.12. [[LABEL P:1212srgtg]] If Γ is a strongly regular graph with parameters
(n, t, λ, µ), then T(KΓ) is regular if and only if λ + µ = 2k − 1

2
n. Then n is even, k ≥ 1

4
n,

and t = 2(k − µ).

Proof. Like the proof of Proposition L.11, this is simply a matter of counting up edges and
triangles. Define aαβ for Γ just as for Γ′ in the proof of Proposition L.11.

Consider first adjacent v, w. The number of common neighbors is a11 = λ. The number of
neighbors of v not neighbors of w is a10 = k− 1− λ since the total number of neighbors is k
and w is one of them. Similarly, a01 = k−1−λ. This leaves a00 = (n−2)−λ−2(k−1−λ) =
n− 2k + λ. The number of triples on vivj is then tij = a11 + a00 = n− 2k + 2λ.

Now suppose v, w are nonadjacent. The number of common neighbors is a11 = µ. v has
a10 = k − µ neighbors that are not adjacent to w, and of course a01 = k − µ also. Then
tijj = a10 + 101 = 2k − 2µ.

For T(KΓ) to be regular, tij must be a constant, regardless of whether v and w are adjacent
or not. Thus, we have a regular two-graph iff n− 2k + 2λ = 2k − 2µ, or 2(λ+ µ) = 4k − n,
which is therefore a non-negative integer. �

To a strongly regular graph.
The natural next question is the converse: whether, when T(KΓ) is a regular two-graph,

Γ can be switched to become strongly regular. Not always!
Part of the reason comes from applying Proposition L.11 in reverse, which shows that t

would have to be even. Another obstacle might be that it’s impossible to switch Γ to be
regular; an example is the “pentagon” two-graph of Example L.1 (Exercise!).

One can deduce a lot from the eigenvalues and multiplicities. Assume we have a regular
two-graph T(KΓ) where Γ is strongly regular, and let A := A(T(KΓ)). The eigenvalue of A
associated with eigenvector j is ρ0 = n − 1 − 2k, and all other eigenvectors are orthogonal
to j (by matrix theory). The combinatorial definition of strong regularity implies that

A(Γ)2 = kI + λA(Γ) + µA(Γc),

where A(Γ) is the standard (0, 1)-adjacency matrix. As A(Γc) = J − I − A(Γ), we have

A(Γ)2 = (λ− µ)A(Γ) + (k − µ)I + µJ.

One can easily calculate that the two-graph’s adjacency matrix is A = J − I− 2A(Γ). Thus,
A satisfies the somewhat quadratic equation
(L.4)
[[LABEL E : 1212srgquadratic]]A2−2[λ−µ+1]A− [2(λ+µ)+1−4k]I = [n−4k+2(λ+µ)]J.

I say “somewhat” because the J term on the right makes (L.4) not a polynomial in A. We
use Equation (L.4) in two ways. Postmultiplying by the eigenvector j we get a quadratic
equation in the eigenvalue ρ0; since we already know ρ0, this gives a quadratic equation
in n, k, λ, µ which constrains those parameters. Any other eigenvector x, corresponding to
an eigenvalue ρ, is orthogonal to j, whence Jx = 0. Thus, postmultiplying by x gives a
quadratic equation in ρ,

ρ2 − 2[λ− µ+ 1]ρ− [2(λ+ µ) + 1− 4k] = 0.
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The two roots, ρ1 and ρ2, and their multiplicities can be treated with the multiplicity trick
to extract even more information about the parameters. I will skip further discussion and
only mention a conclusion, along with the elementary facts we noticed:

Proposition L.13. [[LABEL P:1212tgsrg]] Suppose T(KΓ) is a regular two-graph with eigen-
values ρ0 (associated with j), ρ1, and ρ2, and that Γ is strongly regular with parameters
(n, k, λ, µ). Then ρ0 = n− 1− 2k; t is even; and either µ = λ+ 1, or else ρ1 and ρ2 are odd
integers.

All this, once again, is based on Seidel in (1976a) and other papers reprinted in [JJS].

2009 Jan
29:
Jackie
Kaminski

M. Line Graphs of Signed Graphs

[[LABEL 2.lg]]
Now we come to one of the more exciting topics: the line graph of a signed graph, and

how it extends the notion of a line graph in ways that are important even beyond signed
graphs themselves.

M.1. What are line graphs for? [[LABEL 2.lg.review]]
We begin by reviewing the definition and properties of the line graph of an unsigned graph.

For an ordinary link graph Γ, the line graph is L(Γ) = (V (L), E(L)), where V (L) = E(Γ)
and E(L) is the set of adjacencies of edges in Γ. Figure M.1 shows a graph Γ and its line
graph L(Γ).

Figure M.1. A simple graph Γ, and Γ with its line graph L(Γ) superimposed
in heavy lines.

[[LABEL F:0129 Line Graph]]

When Γ is a simple graph, E(L) can be described as {ef : e, f are adjacent in Γ}. However
the edges of a line graph of a multigraph can’t be described any more concisely than as the
adjacencies of edges in Γ. We do point the readers attention to Figure M.2 which illustrates
that if e, f are two parallel edges in Γ, then they are adjacent twice, which is reflected in
L(Γ) as the two edges between vertices e, f . Loops make things very messy, which is why
we are restricting our attention to link graphs.

As further motivation for the line graph of a signed graph, we back up and recall that
B(Γ)TB(Γ) = 2I + A(L), where B(Γ) is the unoriented incidence matrix of Γ and A(L) is
the adjacency matrix of the line graph. Furthermore, we recall the corollary, Theorem I.2,
that all eigenvalues of a line graph are greater than or equal to −2.

We can’t interpret H(Σ)TH(Σ) (where H(Σ) is the oriented incidence matrix of Σ) for line
graphs, we need signed graphs.
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Figure M.2. A graph Γ with parallel edges, and Γ with its line graph L(Γ)
in heavy lines.

[[LABEL F:0129 Line Graph Parallel]]

M.2. Ideas for the line graph of a signed graph. [[LABEL 2.lg.defs]]
It is time to look at possibilities for defining the line graph of a signed graph. Let Σ be a

simply signed link graph. Recall that being simply signed means that there are no parallel
edges with the same sign. We definitely want our line graph Λ(Σ) to satisfy |Λ(Σ)| = L(|Σ|),
in other words, we want our line graph to have the same underlying graph as the line graph
of |Σ|. Presuming that we want Λ(Σ) to be a signed graph, we need to decide how to sign
the edges of Λ(Σ). Let’s review two ideas that have been tried.

Two previous definitions.
One natural idea would be that for e′ ∈ E(Λ), with endpoints e, f ∈ V (Λ), σΛ(e′) =

σΣ(e) ·σΣ(f). However, once we notice that every cycle in Λ is balanced (since every vertex e
of the cycle, e ∈ V (L), e contributes σΣ(e) ·σΣ(e) to the cycle sign), we see that this method
is trivial: it only gives us line graphs that are balanced, i.e., switching equivalent to +L(|Σ|),
which means we’ve lost all the sign information from Σ. We must look for a better idea.
(Nevertheless, this line graph has been written about by some people.)

Another signature function for Λ(Σ) was proposed by Behzad and Chartrand. For an edge
ef between e, f , σBC(ef) is − when both σΣ(e) and σΣ(f) are both −, and + otherwise.
There is literature based on this definition, but as far as I know it has no useful properties.
(It doesn’t allow us to recover the signs in Σ from the line graph, nor does it preserve the
signs of circles, nor does it have eigenvalue properties, etc.)

The definition through bidirection.
The fact is that eigenvalue properties are the main properties that make line graphs

interesting (to us, at least, and to many graph theorists). For unsigned graphs we know that
BTB = 2I + A(L), and we know that H(Σ)H(Σ)T = ∆(|Σ|) + A(Σ).

So let’s consider H(Σ)TH(Σ). Recall from Section G.2?? that the oriented incidence matrix
of a signed graph is H(Σ) = (ηve)V×E, where

ηve =


0 if v and e are not incident,

±1 if v and e are incident once, so that if e:vw is a link then ηveηwe = −σ(e),

0 if e is a positive loop at v,

±2 if e is a negative loop at v.

So H(Σ)TH(Σ) is an E×E matrix, and we notice that row e of H(Σ)T dot itself is +2, since
we are only considering link graphs. The dot product will look like 02 + · · · + 02 + (±1)2 +
02 + · · · + 02 + (±1)2 + 02 + · · · + 02 = 2. For the off-diagonal entries of H(Σ)TH(Σ), row
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e (of HT) dot column f (of H, which is also row f of HT) gives 0 if e, f are nonadjacent
edge (since they will have no vertices in common, there are no positions where both have
nonzero entries). If e, f are adjacent, nonparallel links, then the e, j entry of H(Σ)TH(Σ) is
±1, depending on how e, f were signed in H(Σ).

To speak more precisely, for this discussion we should be looking at ~Σ = (Σ, τ), not just Σ.
And we have shown that HT(Σ, τ)H(Σ, τ) = 2I ± A(Λ) (for some still unknown convention
on signing Λ). And since reversing the orientation of an edge corresponds to switching vertex
e in the line graph. So, in some sense we really care about defining Λ(Σ, τ) for a switching
class of signed graphs, and moreover, since writing the matrix A(Λ) necessitates choosing a
bidirection for Σ, that’s what we should really be looking at. So rather than try to define
the line graph of a signed graph, we will define the line graph of a bidirected graph, noting
that we can always read signs from a bidirected graph, and if we ever feel compelled to
ignore some of the information in our line graph, we have that ability. In summary the basic
object on which to take notes is a bidirected graph B4 (not to be confused with B(Γ), the
unoriented incidence matrix of Γ). And reorienting B corresponds to switching Λ(B).

So now we look at possibilities for how to create the (bidirected) line graph from a bidi-

rected graph ~Σ. Consider Figure M.3. For a half edge e:v in ~Σ (where e is the edge and v
is the vertex) we have two choices for how to orient the half edge at vertex e in The line
graph. Option 1 looks better the way we’ve drawn it, but we notice that while the half edge
e:v in ~Σ was oriented into the vertex, the corresponding half edge in Λ is oriented out of the
vertex. Option 2 is just the opposite. It looks like we’re switching the arrows to be backward,
however, the half edge that was oriented into the vertex in ~Σ is still oriented into the vertex
in Λ (although the vertex is now e in Λ). Since the matroid theory works out better with
Option 2, Option 2 is the right way to create a bidirected line graph from a bidirected graph.
Lastly we notice that if we begin with an all negative, all extraverted graph, the line graph
(taken with option 1) is all negative, but all introverted, unlike ~Σ. However, the line graph
taken with Option 2 will be an all negative, all extraverted graph, which is the same kind of
object as we started with; and this seems preferable.

Figure M.3. Creating a bidirected line graph from a bidirected graph.
[[LABEL F:0129 Line Graph 2]]

4Note that a bidirection of the unsigned graph Γ does in fact have a sign on each edge, so it is an orientation
of a signing of Γ, Σ = (Γ, σ), and when it is convenient we can refer to B as ~Σ.



122 Chapter II: Signed Graphs

Notice that L(|~Σ|) = |Λ(~Σ)|, as desired. So, we know how to create the line graph of a
bidirected graph: first we create the line graph of the underlying graph, then we bidirect the
edges as above. More formally:

Definition M.1. [[LABEL D:0129 BiDir Line Graph Defn]] The line graph of a bidirected

graph ~Σ is Λ(~Σ), whose underlying graph is |Λ| = L(|Σ|) and whose bidirection is τΛ(e, ef) =
τ~Σ(v, e) (where v is the common vertex of e and f).

Notice that we can determine the sign of an edge between vertices e, f of Λ(~Σ). The
formula is

σΛ(ef) = −τΛ(ε, e)τΛ(ε′, f) = −τΛ(ε)τΛ(ε′).

where ε′ is the end of f at v in Γ (v is between e, f in Γ).
We want to point out also that Option 1 and Option 2 give the same signed graph but the

orientations of the edge ends are exactly opposite: τOption 1 = −τOption 1. In fact, switching
~Σ doesn’t change the signs of the line graph, i.e., it gives the same the signed line graph
Σ(Λ(~Σ)). Therefore, the switching class of the bidirected graph ~Σ gives us a signed line
graph. On the other hand, the line graph of a signed graph is a switching class of bidirected
graphs. Combining these two observations, we can say the line graph of a switching class
[Σ] of signed graphs is a switching class [Λ(Σ)] of signed graphs.

2/3:
Lodha

2009 Feb 5:
Nate Reff N. Circuits, Cocircuits, and their Spaces

[[LABEL 2.cyclescircuitsspaces]]

N.1. Unsigned graphs. [[LABEL 2.]]

N.1.1. Cycles, cuts, circuits and bonds. [[LABEL 2.]]
Suppose we have an ordinary graph Γ = (V,E). A circuit will be what a circle was in

our previous discussions. If {X,Xc} is a partition of the vertex set V, then the set of edges,
denoted E(X,Xc), which have one end in X and the other in Xc will be called a cut. A
bond is a minimal cut. Recall that every cut is a disjoint union of bonds [[??]].

A binary (over F2) set sum of circuits is a symmetric difference of circuits. A binary cycle
space := { set sum of circuits } = Z1(Γ; F2) ⊆ FE2 or P(E). For the nonbinary case (over
a field K with char K 6= 2, or K = Z) we need to work with indicator vectors, which are
defined on orientations (in the binary case this disappears).

N.1.2. Directed cycles and cuts. Indicator vectors. [[LABEL 2.]]
Suppose we have a circle C = e1e2 · · · el−1ele1 in Γ. The characteristic vector, or charac-

teristic function, is defined as:

1C(e) =

{
1 if e ∈ C,
0 if e 6∈ C.

Equipped with 1C + 1D = 1C⊕D mod 2, where C ⊕D means the set sum of C and D. Note
that in characteristic 2 this relation also holds.
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Suppose now that we have a fixed orientation of Γ. Let’s denote this by ~Γ = (Γ, τ) where
τ is a bidirection (orient each edge end). With reference to this orientation we define the
indicator vector, or indicator function, of C:

IC(e) =


1 if e ∈ C and ~e agrees with a chosen direction of C,

−1 if e ∈ C and ~e disagrees with a chosen direction of C,

0 if e 6∈ C,
where ~e means the directed edge e. So IC and −IC are the only two indicator vectors of C.
We write ~C for a directed C and I ~C for its indicator vector. (We think of a function and a
vector as the same thing except for the point of view.)

Observe that C is a cycle (that is, cyclically oriented) if and only if IC ≥ 0 or IC ≤ 0.
This is because the edges have to all agree or all disagree with C.

It is important to notice the circle orientation is independent of edge orientations. Note:
we can direct any walk, including a path and a circle. Therefore we can have an indicator
vector of a path or a circle or a trail (or a walk, where you add up multiple appearances).

P13
P12

P23C1 C2

C3

v1

v2

Figure N.1
[[LABEL 0205image1]]

Consider the theta graph in figure N.1. If ~C1 and ~C2 disagree on ~C1 ∩ ~C2 and ~C3 agrees
with ~C1, ~C2 on the common path then I ~C1

+ I ~C2
= I ~C3

.

Proof. If all paths Pij are directed from v1 toward v2 then

I ~C1
= IP13 − IP12 ,

I ~C2
= IP12 − IP23 ,

I ~C3
= IP13 − IP23 .

This is the proof since we can choose path directions as we like. (We need the minus sign so
we can represent signed graphs later on. They cannot be described modulo 2.) �

The cycle space over K is the subspace of KE generated by all indicator vectors of circuits
(circles). We write Z1(Γ; K) for the cycle space over K.
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X X
c

D
e1
e2
e3
e4

Figure N.2
[[LABEL 0205image2]]

A directed cut ~D is the cut D = E(X,Xc) with a direction specified from X to Xc or vice
versa. In other words it is directed out of X or into X. See figure N.2. Therefore

1D(e) =

{
1 if e ∈ D,
0 if e 6∈ D.

and also

I ~D(e) =


1 if e ∈ ~D and ~e agrees with ~D,

−1 if e ∈ ~D and ~e disagrees with ~D,

0 if e 6∈ ~D.

For example, look at figure N.2. Here we have I ~D(e1) = 1 = I ~D(e2) and I ~D(e3) = −1 =
I ~D(e4).

Note that this requires a fixed orientation of Γ. Therefore we have the following relation:

I−−−−→
D⊕D′ = I ~D ± I ~D′ , where the ± depends on how ~D, ~D′ and

−−−−→
D ⊕D′ are directed. Remember

that ~D ⊕ ~D′ is a cut, otherwise it is ∅. So this is similar to the theta graph property. The
signs present make it possible to work outside of characteristic 2.

The cut space over K is B1(Γ; K) := 〈ID : D is a cut〉, the span in KE of all indicator
vectors of cuts.

N.2. Signed graphs. [[LABEL 2.]]
The theory of cycle and cut spaces of signed graphs is largely due to the recent paper by

Chen and Wang [CW].
Here the circuits are what are properly called frame circuits. (Lift circuits will be men-

tioned and later will be suppressed.) The three kinds of circuit look like the following: A

+
P

C1 C2
(a) (b)

Figure N.3. (a) Positive circle, or Type I circuit, (b) Handcuffs, or Types II
and III circuits.

[[LABEL 0205image3]]
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tight handcuff or Type II circuit is a handcuff where the circuit path (connecting path) P
has length zero. A loose handcuff or type III circuit is a handcuff whose circuit path P has
length greater than zero.

A direction of a circuit is a cyclic orientation (that is, an orientation that has no sources
or sinks). This means that we cannot just give a circle an arbitrary orientation as before.
Recall that if we do not want sources or sinks then the orientation must be coherent. A
divalent vertex is necessarily coherent to avoid being a source or a sink. Therefore orienting
one edge forces the rest of the edges present to be oriented in a specific fashion. This means
that there exists exactly two different cyclic orientations (directions) of a positive circle. The
same will be true for a handcuff, and therefore for all three circuit types.

Indicator vector of C

A circuit walk is a minimal closed walk around C.
Given a fixed orientation of ~Σ, a directed circuit ~C and for each appearance of e in a

circuit walk around C:

I ~C(e) =


1 if e ∈ ~C and ~e agrees with ~C,

−1 if e ∈ ~C and ~e disagrees with ~C,

0 if e 6∈ ~C.

RESTATE:

I ~C(e) =


±1 if e ∈ ~C and e is not in a connecting path ~C,

±2 if e ∈ ~C and e is in a connecting path ~C,

0 if e 6∈ ~C.

2009 Feb 10
(draft):
Simon Joyce

Cycles and Cuts (continued)

Take a walk W = v0e1v1e2 · · · elvl in a signed graph Σ. The direction of W gives us an
orientation of the edges in W such that each vi is coherent in W . Call this oriented walk ~W .

Figure N.4. F:0210 The two kinds of coherent edges you could have at vi ∈ ~W .

If ~Σ = (Σ, τ) is a bidirected graph, then each edge ~ei ∈ ~W is oriented the same or opposite

to the corresponding edge in ~Σ, so for each ei we get a + or - depending on whether the
orientations of ~Σ and ~W agree or not.
τ~Σ = τ orients Σ where τ is a bidirection. We can think of τ as a map where τ :
{edge ends} → {+,−}. τ~Σ orients edge ends in W , where τ~Σ(vi, ej) depends on i and j
where j = i or j = i+ 1. Note that τ ~W = −τ←

W
.
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N.3. Indicator vector of ~W .
For a directed frame circuit ~C we define the indicator vector:

I ~C(e) =


0 if e /∈ C,
±1 for a loose edge or an edge in a circle of C,

±2 for a half edge or a link in the connecting path of a handcuff.

[these need to be checked and possibly more added.]

Definition N.1. [[LABEL D:0210 indicator vector]] Given ~Σ a bidirected graph and ~W and

a directed walk ~W in ~Σ, define the indicator vector, I ~W to be a map I ~W : E → Z such that

I ~W (e) =
∑

ei=e∈W

τ ~W (vi, ei)τ~Σ(vi, ei).

For an abelian group A an A-flow is an oriented function E → A that is conservative at
every vertex. [this sentence needs some attention.] (We’re working over a unital com-
mutative ring K such that 2 6= 0, and possibly we need 2 to be invertible.) [REMEMBER
TO revise this when we figure out what we really need.]

[the caption may need attention]
Ridiculous research questions.

(a) Can there be a matroid on E(Σ) whose circuits are the C3’s, the positive circles (including
loose edges), the ±1 edges in each C0, C1 and C2 (I don’t think so).
(b) Roughly speaking, if not then C3’s should possibly have ±1’s.
(c) Does this help decide between ±1’s on C3 and ±2’s on C3.

Hopeful conjecture: We basically get G(|Σ|). If ±1’s on C3 we get G(|Σ|+ v0) where v0 is
incident to every half edge, but this might need a half edge to be true.

Figure N.5. F:0210 Edge signs of ~W for ~Σ.
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Figure N.6. F:0210 Indicator vectors on the graph ~Σ.

Figure N.7. F:0210 Indicator vectors on frame circuits.

2009 Feb
12:
Jackie
Kaminski

N.4. Flows and Cycles. [[LABEL 2.cyclespaces]]

N.4.1. Flows. [[LABEL 2.flows]]
We begin with the definition of a flow. Throughout this section, we will assume Σ is an

oriented signed graph, that is, a bidirected graph. R is a commutative ring.

Definition N.2. [[LABEL D:0212 flow]] An R-flow on Σ (also known as a 1-cycle over R)

is a function f : ~E → R such that at every vertex v,

∂f(v) :=
∑

ε:v(ε)=v

f(e(ε)) · τ~Σ(ε) = 0,

where the sum is over edge ends ε of |Σ|, v(ε) denotes the vertex of the edge end ε, and e(ε)
denotes the edge containing the edge end ε. The cycle space or flow space of Σ over R is the
set of all R-valued flows (or 1-cycles), denoted by Z1(Σ;R).
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The condition that ∂f(v) = 0 is often stated colloquially as ‘the flow is conserved at vertex
v’, and a flow is called conservative if it is conserved at every vertex. The notation Z1 is
chosen to be consistent with that of algebraic topology and homological algebra.

Although we need an orientation on Σ to talk about flows, mostly it’s just as a reference
point.

Proposition N.1. [[LABEL P:0212 Z]] Z1(Σ;R) = the null space Nul(H(Σ)) over R.

Proof. We can think of f : ~E → R as an |E| × 1 column vector ~f with entries in R. (This is
similar to how any function from a finite set of size n can be thought of as an n-tuple.) Now
~f ∈ Nul H(Σ) if and only if H(Σ)~f = ~0, by definition of the null space. Now H(Σ)~f = ~0 if

and only if each row of H(Σ) · ~f is 0, which it is if and only if for each row v of H(Σ),∑
e∈E

ηv,e · f(e) = 0, ⇐⇒
∑
e∈E

( ∑
ε:

e(ε)=e & v(ε)=v

τ~Σ(ε)
)
· f(e) = 0.

Combining into a single summation over all edge ends incident with v, we see that the above
is true if and only if ∑

ε:v(e)=v

f(e(ε)) · τ~Σ(ε) = 0,

which is of course the definition of ∂f(v) = 0 for all v.

Therefore ~f ∈ Nul(H(Σ) if and only if f is an R-flow. �

Since negating a row doesn’t alter the null space of H(Σ), switching a vertex (in both the
graph and the flow) doesn’t alter a flow. Furthermore, if we negate a column of H(Σ), and
then negate the corresponding edge in f , we haven’t altered anything about the flow. So in
some sense we’re considering switching classes yet again. And more importantly we can see
that in some ways we really are only using the bidirection in Σ to know whether f(e) is a
or −a (for a ∈ R), so it will be nice if we can set things up to have the same orientation on
the flow as on Σ.

Further, orthogonality is unaltered by negating the flow value on an edge as well as by
negating a column of H(Σ). So if the information we are really interested in is orthogonality,
switching doesn’t matter at all.

[These two paragraphs should be a general remark about the effect of reorien-
tation and switching on the various spaces.]

Definition N.3. [[LABEL D:0212 circuit space]] The circuit space of Σ, Z(Σ;R), is the
span over R of the indicator vectors of circuits.

It is clear that Z(Σ;R) ⊆ Z1(Σ;R), but although there is sometimes equality, they may
disagree, for instance when R = Z.

We now return to the argument of what value we want the indicator vectors to have on
circuits of the form of two half edges with a connecting path between.

We have our definitions for IC(e) in circuits as given in ??, but it’s unclear what value we
would like the indicator vector to have on the edges of the connecting path of the circuit of
this type. Arguments can be made for either ±1’s or for ±2’s, where the ± is determined—it
simply depends on whether the given orientation of Σ agrees or disagrees with the chosen
directed circuit walk.
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Figure N.8. A circuit in ~Σ, with orientations omitted.
[[LABEL F:0212 Circuit with Half Edges]]

The arguments in favor of having ±2’s is that this is consistent with a circuit path for
circuits consisting of two negative circles connected by a circuit path. Additionally, it make
it clear that for circuits consisting of one half edge and one negative circle with a circuit
path, there is no ambiguity or confusion about what values IC(e) should have.

As an argument for ±1’s, we notice that when we look at the circuit structure of Σ a
signed graph (no restrictions, half edges and loose edges allowed), we could get the same
information from looking at Σ+v0 under the following construction, V (Σ+v0) = V (Σ)+v0,
and E(Σ + v0) = {e|e is a link or loop in Σ} ∪ {e−:vv0|e is a half edge in Σ incident to v} ∪
{e+:v0v0|e is a loose edge in Σ}∪{e−:v0v0}. Colloquially, keep all links and loops of Σ, then
add a new vertex, v0 with a negative loop. Then replace every half edge (at vertex v), with
a negative edge from v to v0. Finally, Replace every loose edge with a positive loop at v0.

When Σ = +Γ, readers familiar with matroid theory will notice that the matroid for Σ+v0

(as defined above) is isomorphic to the matroid for Σ. Therefore, finally meandering around
to our point, we notice that circuits of the form in Figure N.8 turn into positive circles, and
the indicator vector of an edge in a positive circle has value ±1.

This leads us to the proposition (the justification of which has already been given).

Proposition N.2. [[LABEL P:0212 matroid stuff]] For Σ a signed graph, with |Σ| = Γ,
Σ ∼= ((Γ± + v0) ∪ e:v0)/{e:v0}.

In matrix terms, this says H(+Γ) = H(Γ±+v0), and in matroid terms G(+Γ) = G(Γ±+v0).
We recall that G(+Γ) means the frame matroid of +Γ, and we notice that G((Γ± + v0) ∪

e:v0) = G(+Γ) ⊕ h0 coloop. Finally, we close this section with the comment that in graph
theory (meaning unsigned graph theory) Z and Z1 are the same, since H(Γ) is a totally
unimodular matrix.

N.5. Cuts. [[LABEL 2.cuts]]
Before we even state the definition of a cut in a signed graph, we want to clearly point

out that a cut in Σ is not always a cut in |Σ|—and vice versa.

Definition N.4. [[LABEL D:0212 cut]] A cut in a signed graph is a nonempty set U of the
form U = E(X,Xc) ∪ UX where X ⊆ V , and UX is a minimal total balancing set of Σ:X.

In Figure N.9, we see the edges of a cut indicated. The rectangle represents Σ:Xc, the
oval represents Σ:X. The edges between the two is E(X,Xc) and are part of the cut U .
The other edges in Σ:X represent a minimal balancing set (edges whose removal makes Σ:X
balanced), these are they UX edges, and they are also part of the cut U .

Although the (unsigned) graph cuts E(X,Xc) and E(Xc, X) are identical (both are the
same edge set), in a signed-graph cut, reversing the roles of X and Xc almost always changes
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Figure N.9. A Cut is Σ
[[LABEL F:0212 cut]]

the cut, because it changes which set we need to balance, and consequently where the edges
in UX are taken from.

Definition N.5. [[LABEL D:0212 bond]] A bond is a minimal cut.

Bonds are, in a vector space sense, dual to circuits, although this relationship is very
difficult to express in graph terms. Although for the purpose of justification we point out an
example in (unsigned) graph theory. A minimal cut (bond) in a planar graph, is a circuit in
the planar dual graph. And, although we are not getting into details here, the subset of the
vector space FE spanned by the circuits of Γ is dual to the vector subspace spanned by the
bonds (which is the same subspace spanned by the cuts).

We now define a directed cut in a signed graph. It is an admittedly messy definition.

Definition N.6. [[LABEL D:0212 directed cut]] If E:X \ UX is all positive, direct U as
follows. Orient each edge of U so that its ends in X satisfy τ(ε) = +1 (orient the ends
into the vertex), or so that for all ends of edges in U that are incident with a vertex in
X, τ(ε) = −1 (orient all edge ends out of the vertices in X). (These two conventions are
completely opposite to each other.)

If E:X \UX is not all positive, then switch so that E:X \UX is all positive. This is always
possible since every balanced graph is switching equivalent to an all positive graph. Now
direct the edges of U as above.

Finally, switch back to the original signature function on Σ, using the same switching as
above. Then U is a directed (signed) cut.

Notice that, if ζ is a switching function that makes E:X \ UX all positive, then −ζ also
does so. Thus, we have a choice of two switching functions, one the negative of the other. If
we apply −ζ with the convention that ends in U are oriented into X, then we get the same
directed cut as if we had applied ζ with the opposite convention on orientation. Thus, we
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only need to define a directed cut with the first convention; the opposite alternative exists
of necessity.

Figure N.10. A directed cut in Σ; notice that (Σ:X) \ UX is balanced
[[LABEL F:0212 directed cut]]

Figure N.10 shows a directed cut, where (Σ:X) \ UX is balanced. Here we have chosen
the convention of directing our cut edges into X, but the exact oposite direction is also a
directed cut. We notice that since we assume (Σ:X) \ UX is balanced, and that UX is a
minimal balancing set, all UX edges are negative. Thus the consequence of directing all
edges into X is consistent with the edge signs. For the E(X,Xc) edges, regardless of their
sign, we direct the ends incident to X into X, then the other end of each edge is directed
consistently with its sign.

Finally, we end this section by introducing the indicator vector of a directed cut.

Definition N.7. [[LABEL D:0212 cut indicator]] Let ~U be a directed cut, and τ~U(ε) be the

direction of ε in ~U (for ε an edge end in U), finally assume ~U is directed into X. Furthermore,
assume that the direction of an edge e ∈ Σ agrees with the direction of e in the cut. Then

I~U(e) =
∑

ε:e(ε)=e,
v(ε)∈X

τ~U(ε).

Since we have assumed that the directions of the edges in Σ agree with their directions in
~U ,

I~U(e) =


0 if e 6∈ U,
1 if e ∈ E(X,Xc),
1 if e ∈ UX is a half edge,
2 if e ∈ UX is a link or loop
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If there is an edge whose orientation in Σ disagrees with its orientation in ~U , we just have
a negative value for the indicator vector. On a similar note, if we reverse the orientation of
every edge in a cut, we simply negate I~U(e).

2009 Feb
19:
Nate Reff

N.6. The three types of cut.

Two kinds of balancing set.
Recall from Definition D.3 that a partial balancing set S is a set such that b(Σ\S) > b(Σ).

A total balancing set S is a set such that Σ \ S is balanced.
Notice that if S is a total balancing set then it is not necessary that S be a partial balancing

set. Consider the set S = ∅ where Σ is balanced; then Σ\S is balanced but b(Σ\∅) = b(Σ),
hence S is not a partial balancing set. Further, a partial balacing set is not necessarily a
total balancing set because you only are increasing the number of balanced components in
the deletion and Σ might not be balanced.

Cuts.
There are two kinds of minimal total balancing set S, distinguished by how they change

the components of Σ:
(i) c(Σ \ S) = c(Σ),

(ii) c(Σ \ S) > c(Σ).

Type (i) does not separate components after deletion, but Type (ii) increases the number of
components after deletion.

Recall that a cut in a signed graph is a nonempty set U of the form U = E(X,Xc) ∪ UX
where X ⊆ V , and UX is a minimal total balancing set of Σ:X. Also remember that a bond
is a minimal cut. See Figure N.11 for an illustration of the general form of a cut.

Xc X

Ux

Figure N.11. A typical cut in Σ
[[LABEL F:0219image1]]

Here is an easy but important lemma.

Lemma N.3. [[LABEL L:0219components]] π
(
(Σ:X) \ UX

)
= π(Σ:X), or equivalently,

c
(
(Σ:X) \ UX

)
= c(Σ:X).

Proof. [I can add a short proof, or you can.] �

It’s necessary to distinguish three kinds of cut, depending on which of E(X,Xc) or UX
may happen to be empty. Chen and Wang call them “Types I, II, and III”.

Type I: A graph cut. In other words, UX = ∅. See Figure N.12.
Type II: A cut that is a strict balancing set. In other words, E(X,Xc) = ∅. This means

that Σ:Xc is a union of components of Σ, and Σ:X is a union of components of Σ. See Figure
N.13.
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U=E(X,X )c

Figure N.12. A cut of Type I in Σ.
[[LABEL F:0219image2]]

Xc X

Ux

Figure N.13. A cut of Type II in Σ.
[[LABEL F:0219image3]]

Xc X

X'

Figure N.14. Type I, not a bond.
[[LABEL F:0219image4]]

Xc X

X'

Figure N.15. Type I, not a bond.
[[LABEL F:0219image5]]

In Figures N.14, N.15, N.16 and N.17 we have the two cut types which are not a bond. If
we instead choose X ′ to be our set X then the result would be a bond. [This needs more
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Xc X
X'

U in here

Figure N.16. Type II.
[[LABEL F:0219image6]]

Xc XX'

U in here

Figure N.17. Type II.
[[LABEL F:0219image7]]

explanation. How did we come up with these figures? What are the significant
points about the figures? What is the reason for these statements about them?]

Lemma N.4. [[LABEL L:0219bondII]] In a type II cut, if U is a bond then we can choose
X to be the vertex set of one component of Σ.

Proof. Choose the vertex set of the union of the vertices of the UX ’s in the components of
X. �

Sublemma N.5. [[LABEL L:0219sublemma1]] If Σ has a cut U and a component Σ′, then
U ∩ E ′ is empty or a cut of Σ′.

Lemma N.6. [[LABEL L:0219cutcomponent]] A bond of Σ is a bond of a component, and
a cut is the disjoint union of cuts of one or more components.

This lemma will allow us to work component by component.
Type III: A mixed cut, where UX 6= ∅, E(X,Xc) 6= ∅, and (of necessity) X,Xc 6= ∅.

Lemma N.7. [[LABEL L:0219cut]] If Σ is balanced then a cut is the same as a graph cut
and a bond is the same as a graph bond.

Proof. The balancing set has to be empty, UX = ∅. �

If Σ is unbalanced then we have one of the three types of cuts as described above. What
is a bond, then? A bond is either:

(1) A minimal partial balancing set of Σ, which is not a graph cut.
(2) A graph bond of |Σ|, E(X,Xc) such that Σ:X is balanced but Σ:Xc is not.
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(3) A graph bond that creates no balanced components, with E:X connected, b(Σ:Xc) =
0, together with a minimal total balancing set of Σ:X.

[INSERT PICTURE]
Suppose U is a bond. If one component Σ:X1 of Σ:X is balanced then E(X1, X

c
1) =

U1 ⊆ U . Therefore, no component of Σ:X is balanced. If Σ:X is not connected then
E(X1, X

c
1) = E(X1, X

c) because E(X1, X2) = ∅.

Lemma N.8. [[LABEL L:0219balset]] [DOES the assumption apply to all three
parts?]

(1) If Σ is connected and unbalanced, then a a total partial balancing set is a partial
balancing set.

(2) A minimal total balancing set is not a graph cut.
(3) A minimal partial balancing set is either a graph cut or a total balancing set.

2009 Feb
24:
Yash Lodha

N.7. Spaces and orthogonality.
In the following treatment of edge spaces and subspaces, K is a field or Z or an integral

domain.
The edge space is KE = {f : E → K}. The edge space, its members, and its subspaces

are always defined with respect to an arbitrary fixed orientation ~Σ of Σ. I will omit the
orientation from the notation, but don’t forget about it!

The vertex space is KV .

Flows and 1-cycles.

Definition N.8. [[LABEL Df:0224conserv]] A function in the edge space of Σ is conservative
at v ∈ V if ∑

ε:v(ε)=v

f(e(ε))τΣ(ε) = 0.

Here ε denotes an incidence; v(ε) is its vertex and e(ε) is its edge. It is conservative if it
is conservative at every vertex. We call f a flow, or a 1-cycle, if it is conservative at every
vertex.

The 1-boundary operator ∂ : KE → KV is defined by

(∂f)(v) :=
∑

ε:v(ε)=v

f(e(ε))τΣ(ε).

Thus, f is a flow iff it lies in the kernel of the boundary operator. (We rarely if ever use
other boundary operators, so I will normally omit the “1”.)

The cycle space, or flow space, is the set of all flows:

Z1(Σ; K) := {f ∈ KE : ∂f = 0}.
Lemma N.9. [[LABEL L:0224boundarymap]] For an edge function f regarded as a column
vector, ∂f = H(Σ)f .

That is, H is the matrix of ∂ with respect to the canonical bases of KE and KV .

Proof. ?? �

Proposition N.10. [[LABEL P:0224]] Z1(Σ; K) = Nul H(Σ).
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Proof. By Lemma N.9, an edge function f is conservative iff f ∈ Nul H(Σ). �

The circuit space Z(Σ; K) is the subspace of the edge space KE generated by indicator
vectors IC of directed circuits.

Lemma N.11. [[LABEL L:0224]] Z ⊆ Z1.

Proof. We defined the indicator vector so it is conservative at every vertex, thus ∂IC = 0. �

That lemma is valid over a commutative, unital ring K, because it only requires that there
be a multiplicative identity. The theorem, however, is not as general.

Theorem N.12. [[LABEL T:0224zz1]] Over a field K, Z = Z1.

Proof. We want to show that the null space, Nul H(Σ), is generated by circuit indicator
vectors.

Recall that the minimal dependent sets of columns are the sets corresponding to frame
circuits. (Provided the characteristic of K is not 2. For characteristic equal to 2 everything
is in |Σ|; the incidence matrix is H(|Σ|), the minimal dependent sets correspond to circles,
and so forth. We treated this in Section I.??.)

Therefore, if we take a maximal circuit-free set B of columns in H, every other column is
generated by those columns via indicator vectors of circuits. To be specific, for each edge
e /∈ B, let C(e) be the unique circuit contained in B ∪ e. (The existence of this circuit is
guaranteed by matroid theory. I will leave that step aside.) The column of e, xe, is generated
by using IC(e) to form a linear combination of the columns from C(e). In the indicator vector,
IC(e)(e) = αe, which is ±1 or ±2. IC(e)(f) = ±1 or ± 2 if f ∈ B ∪ e, 0 if f /∈ B ∪ e. We use
the equation

αexe +
∑
f∈B

IC(e)(f)xf = ~0.

We can solve for xe by dividing by αe.
Write B := {e1, e2, . . . , em. Let’s rearrange the incidence matrix into a convenient form

[(Diagram missing here)]. In the edge space:

IC1 is such that IC1(e1) 6= 0, IC1(e2) = 0, . . . ,

IC2 is such that IC2(e2) 6= 0, IC2(e1) = 0, . . . ,

IC3 is such that IC3(e3) 6= 0, IC3(e1) = 0, . . . ,

· · ·
ICm is such that ICm(em) 6= 0, ICm(e1) = 0, . . . .

These vectors are linearly independent and they span Nul H(Σ). Therefore, Nul H(Σ) ⊇
Z(Σ; K). �

N.7.1. Cuts.
Next, let’s look at the signed analogs of cuts. We need the dual of the boundary operator.

The 0-coboundary operator δ : KV → KE, which takes a vertex vector g ∈ KV to an edge
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vector δ(g) ∈ KE, is defined by

δ(g)(e) =


g(w)− g(v) if v >> w,

g(w) + g(v) if v <> w,

−g(w)− g(v) if v >< w,

−g(w) + g(v) if v << w.

(The <> etc. show the orientation of edge e:vw at the endpoints.) [They are to be
replaced by diagrams.]

Definition N.9. [[LABEL Df:0224B1]] B1(Σ; K) := {δg : g ∈ KV }. Thus δ(g) = H(Σ)Tg,
so B1 is the row space of H(Σ).

The cut space is B(Σ; K) = the span (over K) of indicator vectors of cuts.

Notice that I{u} = δ(g) if we define, for a half edge e:v,

I{u}(e) :=

{
±1 when u = v,

0 when u 6= v,

and we treat I{u} as the vector (in KE) of its values on the edges.

Lemma N.13. [[LABEL L:0224BinB1]] B ⊆ B1.

Proof. [PROOF?] �

Theorem N.14. [[LABEL T:0224B1]] B = B1 over a field K.

Proof. Exercise. Possibly a dimension argument. [PROOF?] �

Theorem N.15. [[LABEL T:0224]] Z1 and B1 are orthogonal complements in the edge space
over a field.

Proof. The row and null spaces of a matrix are orthogonal complements. B1 = Row H,
Z1 = Nul H. �

Cuts and minimal cuts.
Now here are some contrasting facts.
For graph cuts: The set sum of graph cuts is a graph cut (or ∅). For signed graph cuts:

that is false.
For graphs: Every cut is a disjoint union of bonds. For signed graphs: Not even a set sum

of bonds.
For signed graphs: A directed bond is a minimal directed cut, but a minimal directed cut

need not be a bond.
[Now comes an example graph with a table of cuts, bonds etc.)]

Theorem N.16 (Chen and Wang [CW]). [[LABEL T:0224dicutunion]] In a signed graph,
every directed cut is a disjoint union of minimal directed cuts.

I refer to Chen and Wang’s important paper for the proof. We just don’t have time for it!
(Alas.)
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A. Geometrical Fundamentals

[[LABEL 3.geometry]]
For the geometry of signed graphs, and later for gain graphs in Chapter IV, we have

to understand vector (or linear), affine, and projective spaces themselves, especially those
related to Euclidean space, and we need to know about point sets, positive span in real
space, and real and complex hyperplane arrangements.

A.1. Linear, affine, and projective spaces. [[LABEL 3.spaces]]
Three kinds of geometry will be most important to us:

(1) Kn: Linear/Vector spaces over a field (or division ring) K.
(2) An(K): Affine spaces.
(3) Pn(K): Projective spaces.

Although one can do our kinds of geometry over a division ring, this leads to some annoying
complexities, so we will always assume in this chapter that K is a field. Linear spaces are
familiar to everyone, but affine and projective spaces are less so. There is one such space
of each dimension for each field (or division ring); we write them An(K) and Pn(K). These
will sometimes be shortened to just An and Pn where K is clear from context.

There are also other affine and projective geometries, which are defined axiomatically,
without the use of coordinates. The coordinatizable geometries An and Pn (for which I reserve
the word “spaces”) are special cases—though not so terribly special, as non-coordinatizable
geometries exist only in dimensions 1 and 2!

I’ll begin with the geometry of a vector space coordinatized by a field; then I’ll show one
way to construct affine space from it. The next step is to construct projective space from
affine space; but this is purely synthetic—independent of coordinates—so it applies to all
projective and affine geometries.

The linear space Kn. [[LABEL 3.linear]]
In the n-dimensional vector space Kn, all subspaces contain the point 0. (They are

called homogeneous subspaces because their equations have no constant term.) Lines are
1-dimensional subspaces, planes are 2-dimensional subspaces and hyperplanes are n − 1-
dimensional subspaces, or codimension 1 subspaces. In the lattice of flats of Kn, all lattice
points are subspaces. This lattice is graded by dimension. If a subspace has height k in the
lattice—that is, dimension k—we call it a flat of rank k.

Construction of An(K) from Kn. [[LABEL 3.lintoaff]]
The affine n-space An(K) has the same set of points but allows more flats than Kn. Here

all translates of linear subspaces are flats, but rank (in the lattice of flats) is now equal to
dimension less 1. The points (0-dimensional subspaces, flats of rank 1) are the translates of
0. Two distinct points generate a line, which has rank 2. (A line is said to have dimension 1
because a point on a line has one degree of freedom. It has rank 2 because it takes 2 points
to determine a line.) Any three distinct points that are not collinear generate a plane, which
has dimension 2 and rank 3. ∅ is a flat in An(K). It has rank 0 or dimension −1.
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Construction of Pn(K) from An(K). [[LABEL 3.afftoproj]]
This construction, unlike the two preceding ones, is synthetic. That means it can be

carried out starting with any abstract affine geometry. (Since I haven’t defined such things,
we won’t be using them, but it’s worth remembering that coordinates are not necessary for
this part of geometry.)

In the affine space An(K) we have parallel classes of lines in the familiar Euclidean way.
We can define parallelism of lines in affine space of any dimension: affine lines l1 and l2
are called parallel if l1 ∩ l2 = ∅ and there is an affine plane (that is, a translate of a 2-
dimensional linear subspace) that contains both lines. Now, for each parallel class P , create
a point P∞ /∈ An(K), and adjoin P∞ to every line in P ; the resulting set, lP := l ∪ P∞,
is called the projective line generated by the affine line l. These points are called points at
infinity or ideal points.

The number of ideal points, when K is finite, is |K
n|−1
|K|−1

. This is equal to the number of

lines through a fixed point, since each parallel class has exactly one representative through
each point of the affine geometry.

For a flat f ⊆ An(K), define

f∞ := {P∞ : ∃ l ⊆ f such that l ∈ P}
and

fP :=
⋃
l⊆f

lP = f ∪ f∞.

(According to our notation, then, l∞ and P∞, where l ∈ P , are two names for the same
thing: the infinite point on the projective line l, which is also the infinite point of every line
parallel to l.)

The points of Pn are the points of An and all the ideal points P∞ of all parallel classes P .
The flats of Pn:

• ∅P = ∅ (rank 0);
• the rank-1 flats (points) are pP = p for each affine point p and P∞ for each parallel

class P ;
• the rank-2 flats (lines) are lP, one for each affine line, and for each affine plane (2-

dimensional, rank 3) π the set π∞ of all infinite points of parallel classes that contain
a line in π;
• the rank-k flats for any k are the sets fP where f is a rank-k flat in An and the sets
g∞ where g is an affine flat of rank k + 1.

The new points constitute a new hyperplane, the set of all ideal points: h∞ := {P∞ :
P is a parallel class of lines in An}. For any flat f we have dim(fP ∩ h∞) = dim(f)− 1. Not
only is h∞ a hyperplane of An(K), but if f is any flat such that dim f ≥ 0, then fP ∩ h∞ is
a hyperplane of fP.

Conversely, given any hyperplane h, Pn\h is an affine geometry. (This fact doesn’t depend
on coordinates.) Then adding back h∞ (constructed as before) to Pn\h gives Pn with h∞ = h.
Not necessarily true: Pn\h is independent of choice of h up to isomorphism. [that sentence
needs attention] It is true if we have a projective space because all Pn(K) \ h ∼= An(K).

Construction of Pn(K) from Kn+1. [[LABEL 3.lintoproj]]
This construction is analytic (it uses coordinates in K).
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The points of Pn(K) are defined to be the lines in Kn+1. The projective flats are defined
to be the sets

s̄ = {l : l is a point of Pn(K) and l ⊆ s}
for each subspace s of Kn+1. For example, {0} = ∅, and l̄ = {l} for each homogeneous
line. The dimension of a flat is defined to be dimP(s̄) := dim(s) − 1, so that a point is a
0-dimensional flat (in contrast to its linear dimension, which is 1), but the codimension is
the same since codimP(s̄) = codim(s) (the latter being in Kn+1).

The points of Pn(K) under this construction have what are called homogeneous coordinates.
The homogeneous coordinates of the point {l} are [x1, . . . , xn, xn+1] where (x1, . . . , xn, xn+1)
is any nonzero vector in l. Thus, [x1, . . . , xn, xn+1] and [cx1, . . . , cxn, cxn+1] are the same
projective point, for any scalar c 6= 0.

[The following stuff does need clarification]
We could regard any hyperplane h̄ as a linear hyperplane h given by h = {x ∈ Kn+1 :

a · x = 0}, where a is some fixed non-zero vector. But the simplest way is to let h̄n+1 be h∞
in Pn(K), where hn+1 is the coordinate hyperplane with (n+ 1)st coordinate xn+1 = 0.

Let A = {x ∈ Kn+1 | xn+1 = 1}. Every line l in Kn+1 meets A in one point or is parallel
to A. Denote by h̄n+1 the set of homogeneous lines parallel to A. Let A0 be the translate of
A that goes through 0. The set A0 as points, with the lines in h̄n+1, is An(K) in the original
definition.

A.2. Vector sets and hyperplane arrangements. [[LABEL 3.repns]]

Real space and positive span. [[LABEL 3.realpos]]
Over R, every homogeneous line, since it has two directions, is made up of two rays

emanating from the origin, and every hyperplane has two sides. [clarification]
For a set S ⊆ R, we define pos(S), the positive span of S, as

pos(S) :=
{ n∑

i=1

αixi | xi ∈ S, αi ≥ 0
}
.

Thus, it is the ‘Minkowski sum’ of the closed rays generated by the vectors in S. (A closed
ray includes the origin. The Minkowski sum is the set of all sums of vectors taken one from
each ray.) If S = {x1, . . . ,xm} (where no xi = 0), we define

hi := {x ∈ Rn | xi · x = 0},
h+
i := {x ∈ Rn | xi · x > 0},
h−i := {x ∈ Rn | xi · x < 0}.

This shows there is a duality between rays and oriented hyperplanes of Rn. The duality
extends to one between positive span and half-space intersection.

Lemma A.1. [[LABEL L:0226 lemma1]] x ∈ pos(x1, . . . ,xm) ⇐⇒ ⋂m
i=1 h

+
i ⊆ h+

x .

I omit the proof, which is standard real geometry.
Let’s look further into the properties of positive span. Assume the vectors xi span Rm.

Then the union of all pos(±x1, . . . ,±xm), over all choices of signs for each generating vector,
is Rn. That is, ⋃

(ε1,...,εm)∈{±1}n
pos(ε1x1, . . . , εmxm) = Rm,
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because every vector is a linear combination of {x1, . . . ,xm}, hence a nonnegative combina-
tion after choosing the signs εi. On the other hand, the intersection of all pos(±x1, . . . ,±xm)
is {0}, because pos(ε1x1, . . . ,±xm) ⊆ (hε1∪h1), with a similar formula for each other i ∈ [m],
and then

(h+
1 ∪ h1) ∩ (h−1 ∪ h1) = h1,

h1 ∩ · · · ∩ hm = {0}.
Homogeneous, affine, and projective hyperplane arrangements. [[LABEL 3.hyps]]

An arrangement of hyperplanes A is a finite set of hyperplanes in Kn. If the hyperplanes
are linear subspaces (i.e., they are given by homogeneous equations), this is called a linear
or homogeneous arrangement. An arrangement of hyperplanes in AN(K) is called an affine
arrangement and one in Pn(K) is called a projective arrangement.

An affine hyperplane has two sides, but a projective hyperplane has only one side. Two
projective planes determine two ‘sides’—I mean, regions.

Comparing a vector set S ⊆ Rn and its dual hyperplane arrangement, A = {h1, . . . , hm},
a region of A corresponds to a choice of side for each hi. The region will be the intersection
of these half spaces when this intersection is non-empty. This corresponds to a choice of ±xi
in calculating the positive span, or equivalently a ray in the line generated by each xi. For
example,

R = h+
1 ∩ h+

2 ∩ h−3 ↔ pos(x1,x2,−x3).

For a hyperplane arrangement A and h ∈ A, the arrangement induced by A in h is

Ah =

{
{h ∩ h′ : h′ ∈ A} if linear or projective,

{h ∩ h′ : h′ ∈ A, h ∩ h′ 6= ∅} if affine.

For a real arrangement, A in Rn, Rn \⋃A is divided into connected components, called
regions, which are open polyhedra. Define r(A) to be the number of regions.

Theorem A.2. [[LABEL T:0226 hyp del regions]] Let A be a hyperplane arrangement in
Rn, An(R), or Pn(R). Let h ∈ A. The number r of regions satisfies

r(A) = r(A \ {h}) + r(Ah).

Proof. I’ll give a proof for the affine case. Each region R of A \ {h} is either disjoint from
h, or bisected by h. In the first case R is a region of A. In the second case, h splits R into
two regions of A and one of Ah, namely R∩ h. Thus, r(A)− r(A \ {h}), the number of new
regions created by adjoining h, is equal to the number of regions cut out in h by the induced
arrangement Ah. �

The characteristic polynomial of an arrangement A in Kn or Pn(K) is

pA(λ) :=
∑
S⊆A

(−1)dim(
T

S).

(This happens to depend only on the intersection lattice

L(A) := {
⋃

S : S ⊆ A}
since it is the same as the characteristic polynomial of the matroid of A except for an extra
factor of λdim

T
A; but I won’t discuss that aspect here). The characteristic polynomial of an
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affine arrangement is just slightly different: the sets S whose intersection is empty must be
omitted from the summation.

Theorem A.3 (Real Case [FUTA]). [[LABEL T:0303regions]] The number of regions of a
real hyperplane arrangement is r(A) = (−1)dpA(−1).

The proof by induction on the number of hyperplanes is an easy consequence of Theo-
rem A.2 and a similar recursive property of the characteristic polynomial (which I omit,
regretfully).

2009 Mar 3:
Nate Reff

Complex hyperplane arrangements. [[LABEL 3.complexhyps]]
Write A for an arrangement of hyperplanes (that is, again, a finite set of hyperplanes) in

Cd.
Complex hyperplanes have real codimension equal to 2 and therefore do not disconnect

the space Cd when they are deleted. The complement of A, M := Cd \ ⋃A, consequently
is connected. However, this space has nontrivial cohomology. Look at H i(M;G), where
G = Z or Q. The rank rk(H i(M; Z)) = βi(M), the ith Betti number of the complement. The
Poincaré polynomial, denoted by PM(t) :=

∑
i≥0 βit

i, is the generating function of the Betti
numbers. Note that βi = 0 if i > d.

Theorem A.4 (Complex Case: Orlik–Solomon Theorem [AH]). [[LABEL T:0303complexcoho]]
PM(t) = (−t)dpA(−1/t).

This is the substantially more subtle complex analog of the real Theorem A.3. I will
sorrowfully omit the proof because the theorem is too far off the subject of signed graphs.

The complex hyperplanes that come up in dealing with signed graphs are (hεij)C := {z ∈
Cn : zj = εzi}. Thus, they have the same equations as the real hyperplanes hεij. A complex
hyperplane arrangement whose equations have real coefficients corresponds to a real arrange-
ment A with the same equations; it is called the complexification of A. That is the kind
of complex arrangement we get from a signed graph. We shall see other kinds of complex
arrangements when we get to gain graphs in Chapter IV.

A.3. Signed graphs, vectors, and hyperplanes. [[LABEL 3.sgrepn]]
Now we turn our attention to vector representations and hyperplane representations of

signed graphs. These are dual to each other.

Vector representations. [[LABEL 3.sgvector]]
Here we have vectors e 7→ xe ∈ Kn, where xe is the column of e in H(Σ). We allow K to

be any field or division ring, but when we want orientations we use R. Remember that for
signed graphs we must have char K 6= 2 in order to distinguish positive from negative edges.
For ordinary graphs we allow char K = 2.

By a (vector) representation over K we mean the dependent sets of vectors xe, which we
know by Theorem ?? are the vector sets that correspond to edge sets that contain a frame
circuit. We are really representing the relationships between the edges. What we get as
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vectors are the following:

±



0
...

+1
0
...
−1
0


+links

, ±



0
...

+1
0
...

+1
0


−links

,



0
...
0
0
...
0
0


+loops, loose edges

, ±



0
...

+1
0
...
0
0


half edges

, ±



0
...

+2
0
...
0
0


−loops

.

Now, consider a finite group W generated by reflections in Rn. To explain reflections:
We have a reflecting hyperplane h, and the reflection ρh : Rn → Rn with fixed point set
Fix(ρh) = h. We can define our hyperplane as h = {x ∈ Rn | 〈α, x〉 = 0} where α ∈ Rn\{0}.
Note that here, as usual, the inner product is the normal Euclidean dot product.

x

h

ax

Figure A.1. Reflection across a hyperplane h.
[[LABEL F:0303image1]]

Looking at Figure A.1 we want to find the projection of x onto α and reverse it with
respect to our hyperplane h. This gives us the following formula for the reflection:

ρα(x) = ρh(x) = x− 2projαx

= x− 2〈x, α̂〉α̂

= x− 2
〈x, α〉α
||α||2 .

A root system connected with W is a set RW of vectors (called the roots) such that:

(1) The roots span Rn.
(2) The only scalar multiples of a root x ∈ RW that belong to RW are x and −x.
(3) If x, y ∈ RW then ρx(y) ∈ RW. In other words ρx(RW) = RW.

(4) If x, y ∈ RW then 2 〈x,y〉||y||2 ∈ Z.

If we are given W, RW is a set of normal vectors to the reflecting hyperplanes. We write
R1 ⊥ R2 if x1 ∈ R1, x2 ∈ R2 =⇒ 〈x1, x2〉 = 0 and R1, R2 6= ∅. Suppose R is a root system.
A decomposition of R is R = R1∪· R2 where R1 ⊥ R2.
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Obvious fact: if R1 is a root system in Rd1 , and R2 is a root system in Rd2 , then R1∪· R2

is a root system in Rd1+d2 . (The technically precise definition of R1∪· R2 is {(x, 0) : x ∈
R1} ∪ {(0, y) : y ∈ R2}.)

Therefore, to classify all root systems we can limit ourselves to those that are indecom-
posable (also known as irreducible).

Theorem A.5 (Killing). Let {b1, b2, . . . , bn} denote the standard orthonormal basis of Rn.
The only irreducible root systems are the following:

Classical Root Systems
An−1 = {bi − bj}i 6=j,

Dn = An−1 ∪ {±(bi + bj)}i 6=j,
Bn = Dn ∪ {±bi},
Cn = Dn ∪ {±2bi}

Exceptional Root Systems
E6, E7, E8,

F4,
G2

What we are interested in from a signed graph perspective are the classical root systems
because of the following correspondences:

Kn ↔ An−1,

±Kn ↔ Dn,

±K ′n ↔ Bn,

±K◦n ↔ Cn.

Positive span, reflected in the graph. [[LABEL 3.posspangraphs]]
Let’s examine how positive span of real vectors, denoted by pos, translates into transitive

closure in graphs and signed graphs. Let b1, . . . , bn be the standard unit basis vectors of Rn.
If we look at b5 − b2 = (b5 − b4) + (b4 − b3) + (b3 − b2),

v2 v5 v2 v5v3 v4

(a) (b)

Figure A.2. (a)b5 − b2,(b)(b5 − b4) + (b4 − b3) + (b3 − b2)
[[LABEL F:0303image2]]

In Figure A.2 we indicate the edges of the transitive closure with dashed lines. So b5−b2 ∈
pos(b5 − b4, b4 − b3, b3 − b2).

v1 v2 vn

Figure A.3
[[LABEL F:0303image3]]
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The transitive closure of the path in Figure A.3 is all of Kn oriented low-to-high and
corresponds to pos(bi − bi−1 : 2 ≤ i ≤ n) = An−1.

This leads to a more general statement. Let R be a classical root system and let ER ⊆ R
be a subset corresponding to the edges of a signed graph Σ. Then

pos(R)↔ transitive closure in ~Σ.

The general definition of transitive closure in a signed graph such as +Kn, ±Kn, which
corresponds to a classical root system, is based on the following steps. Consider the pair of
edges shown in Figure A.4.

vi vj vk
eij

a b

ejk

Figure A.4
[[LABEL F:0303image4]]

So σ(~eij) = −α and σ(~ejk) = β. Then the following edge ~eik, with sign σ(~eik) = −αβ is

vi vka b

eik

Figure A.5
[[LABEL F:0303image5]]

in the transitive closure. This leads us to define the transitive closure of S in an oriented
signed graph ~Σ to be

trans(S) := S ∪ {~e:vw ∈ ~E | ∃ a coherent walk W = e1e2 . . . el from v to w

with sign σ(e) = σ(W ) and orientation

τ(v, e1) = τ(v, e), τ(w, el) = τ(w, e)}.
The reason the definition requires a walk rather than a path is situations like that in Figure
A.6, where V = {v1, v2, v3}, E = {e+

12, e
−
12, e

+
13, e

−
13}, oriented so e+

12 goes from v1 to v2, e−12

is introverted, and e+
13 goes from v3 to v1; we leave the orientation of e−13 unspecified for the

moment. Let S := {e+
12, e

−
12, e

+
13} and W := e+

12, e
−
12, e

+
13. Then e−13 ∈ trans(S) if it is oriented

to be introverted but not if it is extraverted. If the definition specified a path from v to w,
then no orientation would put e−13 into trans(S). But we know it should be in the transitive
closure, because the vector −b1 − b3 ∈ pos{b2 − b1,−b2 − b1, b1 − b3}.

Figure A.6. Transitive closure
[[LABEL F:0303image6]]
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B. Day of Everything That’s so Awful We’ve Been Putting It Off.

B.1. Lift matroid. [[LABEL 3.liftmatrixrepn]]

2009 Mar 5:
Jackie
Kaminski

So far in this course we’ve been neglecting lift circuits and the lift matroid, so now we
return to them. Recall from Definition I.2 that a lift circuit is either a positive circle, two
negative circles that share exactly one vertex (and no edges), or two vertex-disjoint negative
circles (with the usual note that half edges act like negative loops). We also defined the
augmented incidence matrix H̄(Σ), over a field that contains F2 as a subfield, as


e1 . . . em

σ̄(e1) . . . σ̄(em)
v1
... H(|Σ|)
vn

,
where σ̄(e) = 0 if σ(e) = + and 1 if σ(e) = −.

Theorem B.1. The minimal dependent sets of columns of H̄(Σ) correspond to the lift circuits
of Σ.

The proof of this is an excellent exercise for the reader. We point to Theorem G.8 if you
are in need of inspiration.

This theorem gives us a lift representation of Σ by vectors, namely the columns of H̄(Σ),
so named because the minimal dependent sets are the lift circuits. Notice that this represen-
tation cannot be done over the reals, as we need a field in which the sign group is an additive
subgroup of order 2. Otherwise, the dependent columns don’t correspond to lift circuits.

This leads us to mention that Σ has a frame representation only over fields of characteristic
6= 2, where we can represent the sign group as a multiplicative subgroup of the field, and a
lift representation only over fields of characteristic 2, where we can represent the sign group
as an additive subgroup of the field.

B.2. Hyperplane representation (of the frame matroid). [[LABEL 3.framehyprepn]]

March 5:
Jackie
Kaminski

Recall that for a link e:vivj with sign ε, the associated hyperplane (denoted by hεij, h
ε
e, hij,

or he, depending on our mood, and whether the simpler notations will introduce ambiguity)
is {x ∈ Rn | xj = ε · xi}. See Figure B.1. Similarly, for a half edge f :vi, the associated
hyperplane (denoted by hi or hf ) is {x ∈ Rn | xi = 0}. Similarly for a negative loop
at vi, the associated hyperplane is {x ∈ Rn | xi = −xi} = {x ∈ Rn | xi = 0} (since
xi = −xi =⇒ 2xi = 0). For a positive loop (g:vi in Figure B.1), the associated hyperplane
is the degenerate hyperplane, {x ∈ Rn | xi = +xi} = Rn. As before, the hyperplanes
associated with a signed graph Σ are, when taken together, an arrangement of hyperplanes,
H[Σ], in Kn = K|V |, which in turn gives a representation of Σ by the intersection lattice
L(H[Σ]) ∼= Lat Σ, where the isomorphism is the natural isomorphism induced by he ↔ e.
Note that although K can be any field of characteristic 6= 2, we usually work in R. In that
case, H[Σ] divides up Rn into regions, which are the connected components of Rn \⋃H[Σ].
Define r(H[Σ]) to be the number of regions of Rn\⋃H[Σ]. Recall that χΣ(λ) is the chromatic
polynomial of Σ. (See Definition K.2 for more information.)

Lemma B.2. [[LABEL L0305: counting hyperplane regions]] The number of regions of
H[σ]) in Rn satisfies r(H[Σ]) = (−1)nχΣ(−1) = |χΣ(−1)|.
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Figure B.1. Several edges, their associated hyperplanes are described above.
[[LABEL F0305: Edges]]

Proof. Notice that the first equals sign is the thing we need to prove. The second equals sign
is obvious since χΣ actually counts something (namely the number of colorings).

We prove this using induction on |E| via deletion/contraction of Σ. That corresponds
to the formula r(H[Σ]) = r(H[Σ] \ e) + r(H[Σ]he), where H[Σ]he means the hyperplane
arrangement induced in the hyperplane he. This formula will be proved as a sublemma. The
formula holds only when he isn’t the degenerate hyperplane (that is, e is not a loose edge
or a positive loop), and that for deletion/contraction of the chromatic polynomial (see Thm
K.3) we will need to exclude e’s being a negative loop or half edge.

So, let’s handle all the ‘troublesome’ cases first, namely any graph without a link e on
which we can use deletion/contraction and induction.

Special Case A: Σ contains a positive loop or loose edge.
There are no proper colorings of Σ from any set of colors, so χΣ is identically 0. On the

other hand, if Σ has a positive loop or loose edge, then the associated hyperplane is the
degenerate hyperplane Rn, so Rn \⋃H[Σ] ⊆ Rn \ Rn = ∅; therefore there are no regions.
Thus,

r(H[Σ]) = 0 = (−1)nχΣ(−1),

so our result holds for any signed graph containing at least one positive loop or loose edge.

Special Case B: Σ contains only negative loops and half edges.
When e is a negative loop or half edge, he is the coordinate hyperplane he = {x ∈ Rn |

xi = 0}, where e is incident to vi. Any set of k distinct coordinate hyperplanes divides Rn

into 2k distinct regions.
A graph whose only edges are negative loops and half edges is the disjoint union of com-

ponents, each with one vertex (we assume that there are no multiple edges in our graph;
we leave the generalization with multiple edges incident to the same vertex to the reader).
From Definition K.4 we can determine the chromatic polynomial in this case. Recall that
b(S) is the number of balanced components of Σ:S and u(S) is the number of unbalanced
components of Σ:S. Then,

χΣ(λ) =
∑
S⊆E

(−1)|S|λb(S)1u(S) =⇒ χΣ(−1) =
∑
S⊆E

(−1)|S|(−1)b(S)
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For each subset S, (−1)|S|λb(S) = (−1)|S|+b(S) = (−1)u(S)+b(S), and since u(S) = c(S)− b(S),
and in our case u(S) = n− b(S), our chromatic polynomial is actually of the form

χΣ(−1) =
∑
S⊆E

(−1)|S|(−1)b(S) =
∑
S⊆E

(−1)u(S)+b(S) =
∑
S⊆E

(−1)n = (−1)n · 2|E|.

Therefore, in this case r(H[Σ]) = 2|E| = (−1)n · 2|E| · (−1)n = (−1)nχΣ(−1), which proves
our theorem.

Before the inductive step, we prove two sublemmas we will need in the proof.
[The following belongs in the geometry section III.1.)] Recall from Section ??

that Hh denotes the hyperplane arrangement induced by H in the hyperplane h.

Sublemma B.3. [[LABEL L:0305 hyperplane regions]] If he is not the degenerate hyper-
plane, then r(H[Σ]) = r(H[Σ \ e)] + r(H[Σ]he).

Proof. [This proof is not right.]
Let R be a region in H[Σ]. Either the topological closure R̄ intersects he in more than

just the origin, or it doesn’t. If R̄ intersects he in more than just the origin, let R′ denote
the region in H[Σ] that is the reflection of R about he. Then R ∩ he is a region in H[Σ]he ,
and R̄′ ∩ he is the same region in H[Σ]he . Furthermore, R and R′ form a single region in
H[Σ \ e]. Therefore the two regions R,R′ contribute 2 to the left side and also 2 to the right
side.

If, on the other hand, R ∩ he = 0, then R corresponds to a single region in H[Σ \ e] and
does not correspond to a region in H[Σ]he . Therefore R contributes 1 to both the left and
the right sides. This completes our proof. �

Sublemma B.4. [[LABEL L:0305 hyperplane arrangement isomorphism]] For any edge e,
H[Σ]he ∼= H[Σ/e]. Furthermore, this isomorphism is equality, if we coordinatize Kn−1 cor-
rectly.

Proof. A hyperplane in H[Σ]he has the form hf ∩ he, for f an edge in Σ. Under the natural
isomorphism hf ∩ he 7→ the hyperplane of f in Σ/e. For convince of notation, we will write
h′′f for the hyperplane of f in Σ/e. 5Similarly we use Σ′′ for Σ/e and h′′ for hyperplanes in
H[Σ′′] and H′′ for H[Σ/e].

Furthermore, if we think of a hyperplane arrangement as a multiset, then this mapping
is a one to one correspondence between hyperplanes in H[Σ]he and H[Σ/e]. Now we notice
that this equality is trivial if he is the degenerate hyperplane. Now if he is a coordinate
hyperplane (say xi = 0) then a hyperplane in H[Σ]he has the format

{(x1, . . . , xi−1, 0, xi+1, . . . , xn) | (x1, . . . , xi−1, 0, xi+1, . . . , xn) ∈ hf , for hf ∈ H[Σ], f 6= e},
now for he a coordinate hyperplane, e

∫
vi is a negative loop or half edge. Therefore the

vertex vi of Σ isn’t in Σ/e. Therefore if we think about h′′f in Kn−1 indexed by the vertices
v1, . . . , vi−1, vi+1, . . . , vn, we notice that if f was not incident to vi in Σ, then the defining
equation of hf doesn’t involve xi and

h′′f = {(x1, . . . , xi−1, 0, xi+1, . . . , xn) | (x1, . . . , xi−1, 0, xi+1, . . . , xn) ∈ hf , for hf ∈ H[Σ], f 6= e}.
If f was incident to vi in Σ, then in Σ/e f is a half edge (since e was a negative loop or half
edge). Furthermore, hf satisfied xj = σ(f)xi (where j may equal i). Then h′′f is a coordinate

5This notation is borrowed from Tutte, who wrote Γ′ := Γ \ e and Γ′′ := Γ/e. That’s all right when there
is no confusion about which edge we are deleting and contracting.
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hyperplane with xj = 0 (unless f was half edge or loop, in which case h′′f is the degenerate

hyperplane). In either case hf = h′′f with a 0 inserted as the ith coordinate. Therefore the
result is proved in the coordinate hyperplane case.

The case where hf is not a coordinate hyperplane is similar, and left as an exercise to the
reader. [We need a proof. It’s not quite so similar, given that we want to identify
the lattices.]

�

We now resume our proof of Lemma B.2.

Main Case: Σ contains at least one link edge e.
Here we will assume that Σ is connected, since separate components can be treated sep-

arately, as is noted often. We will proceed by induction on the number of link edges in Σ.
Notice that our base case is a graph with 0 links. If said graph contains loops, loose edges,
or half edges, it is taken care of above. So the only part of the base case we are left with is
a graph with a single vertex, and no edges. Note that χKi(λ) = λ, and since R1 cut by no
hyperplanes has 1 region we notice that

r(H[Σ]) = 1 = (−1)1 · (−1) = (−1)nχΣ(−1),

and so our result holds here, which completes the base now.
Now we assume that r(H[Σ]) = (−1)nχΣ(−1) holds for any graph with less than k links,

and let Σ be a graph with k links, and let e be a particular link.
So for the inductive step, we assume that r(H[Σ]) = (−1)nχΣ(−1) = |χΣ(−1)| holds

for any graph on k − 1 or less edges, and of course, since we are in the main case we are
considering only graphs with at least one link e. Let Σ be a graph with k edges. By Lemma
B.3, r(H[Σ]) = r(H[Σ \ e]) + r(H[Σ])he (since e is a link). Furthermore, by the inductive
hypothesis, r(H[Σ \ e)] = (−1)nχΣ\e(−1), since H[Σ \ e] has k − 1 edges.

Now we notice, by Lemma B.4, H[Σ]he ∼= H[Σ/e], and therefore r(H[Σ]he) = r(H[Σ/e]).
And, since Σ/e has k−1 edges, we know that r(H[Σ/e]) = (−1)nχΣ/e(−1). Now we see that

r(H[Σ]) = r(H[Σ \ e)] + r(H[Σ])he

= (−1)nχΣ\e(−1) + (−1)nχΣ/e(−1)

= (−1)n
(
χΣ\e(−1) + χΣ/e(−1)

)
= (−1)nχΣ(−1).

The last step is by deletion/contraction of χΣ, since e is a link. This proves our result in the
main case, and therefore this concludes our proof of Lemma B.2. �

Proposition B.5. Let S ⊆ E, corresponding to S ⊆ H[Σ]. The flat
⋂

S of H[Σ] is the
subspace {x ∈ Rn | xi = 0, vi ∈ V0(S)} ∩ {x | ζ(vj)xj = ζ(vi)xi for each edge vivj in any
balanced component of S. }. Here ζ is a switching function such that S:[V \ V0(S)] is all
positive.

We leave the proof as an exercise for the reader. To this end recall the notation that the
balanced components of Σ|S are S:B1, . . . , S:Bk and the unbalanced components are the
components of Σ:V0(S), where V0(S) = V \ (B1 ∪ · · · ∪Bk).

March 5:
Zaslavsky
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Isomorphism of hyperplane arrangements.
[MOVE to the appropriate place in Section III.A.2.]
The definition of isomorphism of arrangements was incomplete. There are several notions

of isomorphism. In class today I only proved that H[Σ]he and H[Σ/e] are lattice-isomorphic.
This is good enough for the theorem about the number of regions.

There are several kinds of isomorphism between hyperplane arrangements. In every case
one assumes they are over the same field. Otherwise, there are significant differences.

Definition B.1. [[LABEL D:realarrcombiso]] A combinatorial isomorphism of real hyper-
plane arrangements H1 and H2 is a bijection ψ : H1 → H2 that induces an isomorphism
of the intersection (semi)lattices and also an isomorphism of the face posets. (This implies
that the bijection can be oriented, i.e., one can give h and ψ(h) positive sides in a way that
leads to the face-poset isomorphism.)

Definition B.2. [[LABEL D:realarriso]] An isomorphism of real hyperplane arrangements
is a combinatorial isomorphism that preserves dimension. [Probably this has no use.]

Definition B.3. [[LABEL D:arrlatiso]] A lattice isomorphism of hyperplane arrangements
over the same field is a bijection ψ : H1 → H2 that induces an isomorphism of the intersection
(semi)lattices. An equivalent definition is that ψ preserves codimension, i.e., codim

⋂
ψ(S) =

codim
⋂

S for every S ⊆ H1, and it preserves the property of a subarrangement’s having
empty or nonempty intersection, i.e.,

⋂
ψ(S) = ∅ ⇐⇒ ⋂

S = ∅ (these can be proved
easily enough).

Definition B.4. [[LABEL D:0503 Lattice Isomorphism]] A lattice isomorphism H1
∼= H2

is a bijection θ : H1 → H2 such that for all S ⊆ H1, either codim(
⋂
θ(S)) = codim

⋂
S or

both intersections are empty.

This is different from the usual isomorphism of arrangements. Two lattice-isomorphic hy-
perplane arrangements will not necessarily have exactly the same characteristic polynomial,
whereas two isomorphic hyperplane arrangements will. The difference depends on the dimen-
sion of the ambient spaces, say Rd1 and Rd2 , respectively; we have pH2(λ) = λn2−n1pH1(λ).

[MERGE the last two defs. Find a def. of isomorphism of arrangements over
any field?]

3/10:
Lodha

2009 Mar
12:
Nate Reff

C. Geometric Representations of Signed Graphs

[[LABEL 3.vertexrepn]]
Suppose we have a signed simple graph Σ. Define σ(vw) := σ(evw) if there is an edge evw,

or 0 if there is not.

C.1. Gramian representations. [[LABEL 3.gramianrepn]]

Definition C.1. [[LABEL D:0312gramian repn]] A Gramian representation of Σ is a map-
ping ψ : V → R∞ such that

ψ(v) · ψ(w) = σ(vw) for v 6= w.
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This means that A(Σ), except for the diagonal elements, is the Gram matrix of a set of
vectors, {ψ(v) | v ∈ V }. (Remember that the Gram matrix G of vectors v1, . . . , vn is the
matrix of dot products, gij = vi ·vj.) By R∞ we really mean Rd of sufficiently high dimension
that there is always plenty of room for any finite set of vectors.

In a Gramian representation, if you scale the whole representation by a constant, in other
words ψ′(v) := αψ(v) for α 6= ±1, you preserve the Gramian property.

C.2. Angle representations. [[LABEL 3.anglerepn]]

Definition C.2. [[LABEL D:0312angle repn]] An angle representation is a Gramian repre-
sentation such that

cos]
(
ψ(v), ψ(w)

)
= ψ̂(v) · ψ̂(w) =

σ(vw)

γ
for all distinct v, w ∈ V,

where γ is a fixed positive number. Equivalently, it is a Gramian representation such that
‖ψ(v)‖‖ψ(w)‖ = γ for every adjacent pair of vertices. We call γ the denominator invariant
of the representation.

An angle representation is equinormal if all vectors have the same length, i.e., all ‖ψ(v)‖
are the same number, which clearly must be

√
γ (if Σ has an edge).

A consequence of this definition is the following: In a walk v0v1 . . . vl, ‖ψ(v1)‖ = γ/‖ψ(v0)‖
and ‖ψ(v2)‖ = γ/‖ψ(v1)‖ = ‖ψ(v0)‖. Therefore ‖ψ(v2i)‖ = ‖ψ(v0)‖ and ‖ψ(v2i+1)‖ =
γ/‖ψ(v0)‖. Therefore in an odd circle all ‖ψ(vi)‖ =

√
γ, and consequently ‖ψ(v)‖ =

√
γ for

every vertex in the component of the odd circle. We have proved:

Proposition C.1. [[LABEL P:0312anglerepnnorm]] Assume Σ is connected.

(a) If Σ is not bipartite, then ‖ψ(v)‖ =
√
γ for all v ∈ V .

(b) If Σ is bipartite, say with bipartition V = V1∪· V2, then there are positive numbers γ1

and γ2 with γ1γ2 = γ such that ‖ψ(v1)‖ = γ1 for all v1 ∈ V1 and ‖ψ(v2)‖ = γ2 for
all v2 ∈ V2. The vectors ψ(v1) for v1 ∈ V1 are mutually orthogonal, and the vectors
ψ(v2i) for v2i ∈ V2 are mutually orthogonal.

Proof. Since cos](v1, v2) = σ(v1v2)/γ, we have v1 ·v2 = σ(v1v2). (Remember that σ(vw) = 0
if v and w are not adjacent.) The result follows. �

In the bipartite case we get another angle representation if we replace all the vectors v1

by scalar multiples αv1 and all the vectors v2 by α−1v2 for any α 6= 0. By choosing α so that
αγ1 = α−1γ2 we normalize so all vectors have the same length α =

√
γ2/γ1. That is, every

angle representation of a connected graph can be equinormalized.
Define two angle representations to be similar if they differ by an orthogonal transforma-

tion of R∞ or by scaling individual ψ(v). We show that γ is an invariant of similarity.

Proposition C.2. [[LABEL P:0312equivalence]] Suppose ψ and ψ′ are two equivalent angle
representations of Σ with denominator invariants γ and γ′, respectively. Then γ = γ′.

Proof. The definition of an angle representation implies that γ = σ(vw)/(ψ̂(v) · ψ̂(w)). The

unit vectors ψ̂(v) and ψ̂(w) are independent of scaling individual vectors by positive numbers.

Reversing a vector v is switching in Σ, so it negates both ψ̂(v) · ψ̂(w) and σ(vw), therefore
leaving γ constant. An orthogonal transformation, of course, also holds γ constant. �
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Proposition C.3. [[LABEL P:0312eigenvalues]] Suppose Σ has an angle representation with
denominator invariant γ. Then −γ ≤ λmin(A(Σ)). The representation vectors are linearly
dependent if and only if −γ is the least eigenvalue of A(Σ).

Proof. Any angle representation can be equinormalized without changing γ. In an equinor-
mal angle representation ψ(v) · ψ(v) = γ, so the Gram matrix of the representation is
A(Σ) + γI. Therefore, the eigenvalues of A are those of G translated down by γ. Remember
that G is positive semidefinite so its eigenvalues are non-negative. Therefore, the eigenval-
ues of A are all greater than or equal to −γ, with −γ showing up if and only if rkG < n,
equivalently rk{ψ(v1), ψ(v2), . . . , ψ(vn)} < n, or in other words the representation vectors
are linearly dependent. �

Corollary C.4. [[LABEL C:0312mineigenvalue]] If λmin is the smallest eigenvalue of A(Σ),
then γ ≥ −λmin for every angle representation of Σ.

I think a better way to state Proposition C.3 would be in terms of A = A(−Σ). Then
γ ≥ λmax(A) and the vectors are dependent if and only if the representation has denominator
invariant γ = λmax(A). This suggests that a representation of Σ should have been called a
representation of −Σ. A second, strong reason for thinking this will appear when we get to
angle representations of line graphs. However, the established terminology is that it is Σ,
not −Σ, which is represented by ψ, so I adhere to that.

C.3. Root representations. [[LABEL 3.rootrepn]]

Definition C.3. [[LABEL D:0312root repn]] A root representation is an angle representation
with denominator invariant γ = 2; that is, where every vector has norm ‖ψ(v)‖ =

√
2.

Equivalently, all angles are 60◦, 90◦ and 120◦, and therefore λmin(A(Σ)) ≥ 2.

Example C.1. [[LABEL X:0312lg]] An example of a signed simple graph Σ with this eigen-
value property is −Λ̄(Σ0), where Σ0 be any simply signed graph whose edges are links. (We
proved that λmax(Λ̄(Σ0)) ≤ 2 in Theorem ??.) Does −Λ̄(Σ0) have an obvious root represen-
tation? The answer is yes. We use the columns of H(Σ0), with Σ0 ⊆ ±Kn, as vectors ψ(e)
where e ∈ V (−Λ̄) (which = V (Λ̄) = V (|Λ̄|)).

We will prove that this example is the norm (pardon the pun).

Theorem C.5 (Cameron–Goethals–Seidel–Shult [CGSS], Vijayakumar [Dinf, Dfs, E8]).
[[LABEL T:0312rootrepn]] A signed simple graph Σ has a root representation ⇐⇒ Σ
is represented by a subset of some Dn (these are reduced line graphs) or E8 (these are not
line graphs, reduced or otherwise).

Corollary C.6. [[LABEL C:0312rootrepnlg]] Every signed simple graph Σ with λmax ≤ 2 is
a reduced line graph of a simply signed link graph, with a finite number of exceptions.

The theorem’s proof is long! The corollary is an easy consequence, since there are only
finitely many signed graphs represented within E8, and all those represented by Dn are
(reduced) line graphs (cf. Theorem ?? OR Section ??). [There should be a discussion
of how the line graph’s vectors are derived from the graph’s vectors. In Ch. II?
Ch. III? Is it in missing notes?]

Recall that in R8 we had D8 = {±bi±bj}i 6=j. So there are
(

8
2

)
pairs (i, j) and 4 ways to put

on signs, giving a total of 112 vectors. Since E8 = D8 ∪ {1
2
(
∑∞

i=1 εibi) | εi = ±1 and
∏
εi =

1}, E8 gives 27 = 128 more vectors, and therefore |E8| = 240.
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You can easily verify that ‖ψ(v)‖ =
√

2 for every element of E8. Consequently, E8 =
ψ(Σ(E8)) for some signed simple graph Σ(E8) of order 240, via E8 = {ψ(v1), . . . , ψ(v240)}.
In Σ(E8) we have

σ(vivj) =
1

2
ψ(vi) · ψ(vj) =


+2 if ](vi, vj) = 0◦ (that is, i = j),

+1 if ](vi, vj) = 60◦,

0 if ](vi, vj) = 90◦,

−1 if ](vi, vj) = 120◦.

Question. What signed graph is this? It must be one with interesting properties; what
are they?

3/24:
Kaminski

3/26:
Joyce

2009 March
31:
Yash Lodha

Recall that L is a star-closed line system at angles 60◦ and 90◦. We took S to be the set
of vectors of norm

√
2 that generate the lines of L, i.e.,

S := {x | 〈x〉 ∈ L and ‖x‖ =
√

2}.
We assumed that S is irreducible, with dimension ≥ 2. We chose a, b, c ∈ S such that
a+ b+ c = 0 and a · b = a · c = b · c = −1 and define

Sa := {x ∈ S | x ⊥ a, x · b = 1, x · c = −1},
Sb := {x ∈ S | x ⊥ b, x · c = 1, x · a = −1},
Sc := {x ∈ S | x ⊥ c, x · a = 1, x · b = −1},
S0 := {x ∈ S | x ⊥ a, b, c}.

Note that x ·a+x ·b+x ·c = 0 for any vector x. We found that Sb = c+Sa and Sc = −b+Sa.

Lemma C.7 (Sublemma 6). [[LABEL L:0331 6]] S0 = {x− x′ | x, x′ ∈ Sa, x 6= x′}.
Proof. Let S ′0 be the set on the right-hand side.

First we prove that S0 ⊇ S ′0. Let x, x′ ∈ Sa with x 6= x′. Then x · a = x′ · a, therefore
(x− x′) · a = 0. Also, x · b = x′ · b, therefore (x− x′) · b = 0.

Now we prove that S0 ⊆ S ′0. Suppose S0 6⊇ S ′0. Then there is y ∈ S0 such that y doesn’t
have the form x− x′. y ⊥ a, b, c. Let x ∈ Sa. Then x′+ y ∈ Sa or x′+ y /∈ S (because x′+ y
satisfies the product rules for Sa). Could x′+ y /∈ S? Suppose y ·x′ = ±1. Then if necessary
replace y by −y to get y · x′ = −1. By star closure, −(y′+ x) ∈ S. Therefore y′+ x ∈ S and
x′ + y equals some x ∈ S. So y = x− x′.

Suppose y ⊥ every x′ ∈ Sa. Then let S ′i = {a, b, c} ∪ Sa ∪ Sb ∪ Sc ∪ S ′0. y ⊥ S ′0 because
any member of S ′0 is x− x′, for x, x′ ∈ Sa and y ⊥ Sa. Therefore (S0 \ S ′0) ⊥ S.

This gives a decomposition of S. S = ±S1, where S1 = ... ∪ S0 and since S is irreducible,
this can’t happen. �

Let Γa be the graph with vertex set Sa and edges xy whenever x ⊥ y.

Lemma C.8 (Sublemma 7). [[LABEL L:0331 7]] Let x, y ∈ S. Then x ⊥ y =⇒ z =
b− c− x− y ∈ Sa and z ⊥ x, y so if there is an edge xy then there are edges xz, yz.



154 Chapter III: Geometry

Proof. x + c ∈ Sb and y − b ∈ Sc. Therefore, (x + c) · (y − b) = ±1 or 0. Therefore, star
closure implies (x+ c)− (y − b) ∈ S.

To show z ∈ Sa, we calculate:

z · a = b · a− c · a− x · y − y · 0 = −1− (−1)− 0− 0 = 0,

z · b = b · b− c · b− x · b− y · b = 2 + 1− 1− 1 = 1. �

Lemma C.9 (Sublemma 8). [[LABEL L:0331 8]] Some x, y, z. Let w ∈ Sa 6= x, y, z. Then
w ⊥ exactly one of x, y, z.

Proof. w · (x+ y + z) = w · b− w · c = 1− (−1) = 2.
Therefore, w · x + w · y + w · z = 2 so we must have one of w · x, w · y, w · z equal to 0

and the others equal to +1. �

Corollary C.10 (Corollary 78). [[LABEL C:78]] (a) Every edge of Γa is in one and only
one triangle.
(b) If Γa is a triangle and w is a vertex not in the triangle, then w is adjacent to exactly one
vertex of the triangle.

This leaves us with the Essential Question: What is Γa?
Suppose xy is an edge. Then there exists a unique vertex f(xy), also written f(x, y), that

makes a triangle with x and y. Note that f(u, ·) is a self-inverse function: f(u, f(u, y)) = y.

Lemma C.11 (Sublemma 9). [[LABEL L:0331 9]] If Γa has a vertex adjacent to all other
vertices, it is a windmill.

Proof. Let x be a vertex and y1, . . . its neighbors. The edge xy1 belongs to a triangle.
Therefore, there is an edge y1yi to make the triangle. Since we know that xy is not in any
other triangle, there does not exist an edge y1yj with j 6= i.

Now delete x. We have a graph Γa:N(x) of degree 1. Therefore this is a k-edge matching
Mk, for some k. So, Γa:(x ∪N(x)) = Mk ∨ x = Wk, where k = 1

2
deg(x) and ∨ denotes the

join operation, in which every vertex of the first graph is made adjacent to every vertex of
the second graph.

We conclude that every closed neighborhood in Γa is a windmill. �

Lemma C.12 (Sublemma 10). [[LABEL L:0331 10]] If Γa is neither Kc
n nor a windmill,

then it is one of three special graphs Γn (of order n) for n = 9, 15, 27, which are strongly
regular graphs.

Proof. Step 1: There are no isolated vertices. Consider a vertex v. Since there exists an
edge xy in Γa (since it is not the complement of Kn), there is a triangle xyz. If v 6= x, y, z,
then v ∼ one of x, y, z. Therefore deg(v) > 0 for all v ∈ Sa.

Step 2: The first part of regularity. We know for the case |Sa| = 1, Γa is Kc
1. For |Sa| = 2

it is Kc
2 and for |Sa| = 3 it is Kc

3 or K3. Hence |Sa| ≥ 4, by our assumption that it is neither
a Kc

n nor a windmill.
Notice that Γa is not complete, by Corollary 78(a).
Choose any two nonadjacent vertices, u 6∼ v. The neighborhoods of u and v have the form

N(u) = Nu ∪Nuv and N(v) = Nv ∪Nuv; let N0 := {x | x 6∼ u, v and x 6= u, v}.
Looking at an x in Nuv, an edge xy in Nuv cannot exist since would make triangles xyu

and xyv, contradicting Corollary 78(a). Thus no edge of the matching in N(u) can be in
Nuv. Therefore Nuv matches into Nu. This means f(u, ·) is an injection Nuv → Nu.
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Let y ∈ Nu. Then f(u, y) ∈ Nu ∪ Nuv. For v such that v 6∼ y and v 6∼ u, by Corollary
78(b) v ∼ f(u, y). Therefore f(u, y) ∈ Nuv. Therefore f(u, ·) : Nu → Nuv and f(u, ·) is an
injection. It follows that |Nu| = |Nuv| and all edges in N(u) are NuNuv edges.

Similar reasoning shows that |Nu| = |Nuv| = |Nv|; let k be their common value. It follows
that deg(u) = 2k = deg(v). We’ve shown that u 6∼ v in Γa implies that deg(u) = deg(v).

Step 3: The rest of regularity. We will show that Γca is connected, whence Γa is regular.
Suppose to the contrary that Γca has r > 1 components.
If r ≥ 3 and |V1| ≥ 2, choose x ∈ V2, y ∈ V3, and u, v ∈ V1. Then we get the two triangles

uxy and vxy on the one edge xy in Γa [(shown in missing figure)]. This is not allowed.
Therefore, each |Vi| = 1 if r ≥ 3. Therefore Γa = Kn, which is excluded. Consequently,
r < 3.

Now we look at the 2-component case.
Since there are triangles in Γa, there is an edge in, say, V1, call it xy. If |V2| ≥ 2 then we

have over lapping triangles, which is not allowed.
Therefore |V1| = 1 and we’re in Lemma DQ ?? with Γa as a windmill.
Therefore r = 1, Γca is connected, so Γa is regular.
Conclusion: Γa is 2k-regular, where k equals the number of common neighbors of two

nonadjacent vertices.
Since any two adjacent vertices have exactly one common neighbor, Γa is a strongly regular

graph with parameters (n, 2k, 1, k).
Furthermore, edges in N(u) are a perfect matching from N(u) \Nuv to Nuv if v 6∼ u.
Also, Nu is a coclique and Nuv is a coclique. �

4/2:
Joyce

2009 July 9:
Jackie
Kaminski

Root representations (continued).

C.3.1. A review of the proof of Lemma 10 C.12.
Recall that Lemma C.12 states that if Γa is not equal to K̄l or a windmill, then it is one

of three special graphs, Γn with n = 9, 15, 27, which are regular of order 2, 3, 5 respectively.
Since (this) proof of Lemma 10 C.12 is so long, let’s take a minute and review what we’ve
done to this point.

We recall first that a root representation (Defn C.3) is ψ : V → R∞ such that ‖ψ(v)‖2 = 2
and ψ(v) · ψ(w) = 0,±1 when v 6= w, and ψ(v) · ψ(w) = σ(vw) when vw is an edge. Recall
also the definitions of the particular root sytems Dl, E8, and Al−1 from ??:

Dl := {±b1 ± bj | i 6= j} ⊆ Rl,

E8 := D8 ∪
{

1
2

∑8
i=1 εibi | εi = ±1 and

∏8
1 εi = +1

}
,

Al−1 := {±(bi − bj) | i 6= j} ⊆ Dl,

where the bi are the standard unit basis vectors. And in particular all these vectors (some-
times called “roots”) have norm

√
2, and pairs have dot product 0,±1—except of course for

pairs of the same vector twice, or a vector and its negative, in which case the dot product

is ±2. Recall also that we defined the map ψ̂(v) := ψ(v)
‖ψ(v)‖ , whose main effect is that inner

products are now 0, ±1/2, ±1 instead of 0, ±1, ±2.
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To prove that Imψ ⊆ D∞ or E8, we now ignore the signed graph, and focus on any set of
vectors S in Rl, satisfying the following conditions (note that we drop the x notation, and
instead refer to the vectors as x):

(1) For x ∈ S, x is a unit vector.
(2) For x, y ∈ S, the inner product is 0, ±1

2
, or ±1.

(3) S is maximal with respect to first 2 properties.
(4) S is indecomposable (irreducible). Meaning there does not exist a partition S =

S1∪· S2 such that S1 ⊥ S2 and neither part is the empty set.

These properties guarantee that S is centrally symmetric. We also proved Lemma ?? which
guaranteed that if a, b ∈ S and ](a, b) = 120◦, then for c = −(a + b), c ∈ S; see Figure
C.1. Notice also that Figure C.1 cannot be a root system as is, at a minimum it needs the
negatives of the vectors a, b, c.

Figure C.1. Vectors a, b, c.
[[LABEL F0709: vectors]]

As an interesting side note, if there do not exist a, b ∈ S such that a · b = 1/2, then
S = S1∪· S2 · · · ∪· · Sk, where every Si one dimensional. In this case, every two vectors not
negatives to each other are actually orthogonal.

Next we introduced some notation. Fix a, b, c ∈ S such that a · b = −1
2

, and let c be as
above, then we defined Sa, Sb, Sc, S0 ⊆ S:

Sa :=
{
x ∈ S | x ⊥ a, x · b = 1

2
, x · c = −1

2

}
,

Sb :=
{
x ∈ S | x ⊥ b, x · c = 1

2
, x · a = −1

2

}
,

Sc :=
{
x ∈ S | x ⊥ c, x · a = 1

2
, x · b = −1

2

}
,

S0 := {x ∈ S | x ⊥ a, b, c} .
We have shown that these four sets are all pairwise disjoint. When we defined S ′ :=
{a, b, c}∪· Sa∪· Sb∪· Sc∪· S0, we were able to prove several lemmas about the structure of
S and these subsets, listed here to refresh your memory:

Lemma C.13 (Lemma ??: Sublemma 2). [[LABEL L:0709 Lemma 2]] S = S ′ ∪ (−S ′).

This is not a disjoint union because S0 = −S0 (which we show later).

Lemma C.14 (Lemmas ??: Sublemmas 3–4). [[LABEL L:0709 Lemma 3/4]] Sb = c + Sa
and Sc = −b+ Sa, by isometries.
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In other words, when seeking to understand the structure of Sa, Sb, and Sc, it suffices to
understand the structure of Sa only.

Lemma C.15 (Lemma C.7: Sublemma 6). [[LABEL L:0709 Lemma 6]] S0 = {x − x′ |
x, x′ ∈ Sa, x 6⊥ x′, x 6= x′}. Therefore S0 = −S0.

What these lemmas combine to give us, is that to study all of S, it suffices to pick a, b ∈ S
such that a · b = 1

2
. Then a, b, and Sa (once you understand its structure) give you all the

information about S.

The next lemmas provide help understanding the geometry of Sa, and we’re building
toward being able to describe and understand Sa through a graph, Γa, that we will construct.

Lemma C.16 (Lemma ??: Sublemma 5). [[LABEL L:0709 Lemma 5]] In Sa, all dot products
are ≥ 0.

Lemma C.17 (Lemma C.8: Sublemma 7). [[LABEL L:0709 Lemma 7]] For x, y ∈ Sa,
x ⊥ y =⇒ z := b− c− x− y ∈ Sa and z ⊥ x, y.

This lemma rules out anything 2-dimensional and indecomposable.

Lemma C.18 (Lemma C.9: Sublemma 8). [[LABEL L:0709 Lemma 8]] If w ∈ Sa and x, y, z
as above with w 6= x, y, z then w ⊥ exactly one of x, y, z.

At this point we begin a new part of the proof. We move on to classifying the indecom-
posable root systems by graph theory, after reinterpreting the last few lemmas graphically.
Information on graph structure will allow us to explore all the possibilities for S, which will
turn out to be two infinite families and a handful of special examples.

We begin the second part of the proof of Lemma 10 C.12, by reviewing the definition of
the graph Γa.

Definition C.4. [Definition ??] [[LABEL D:0709 Gamma]] The orthogonality graph of Sa
is Γa, which has vertex set Sa and has an edge xy ∈ E(Γa) ⇐⇒ x ⊥ y.

Note that Γa is an ordinary, simple, unsigned graph. Lemma C.16 that implies it is an
unsigned graph. There are clearly no loops, since x 6⊥ x for any vector x ∈ Sa ⊂ S, and by
definition there are no multiple edges. Additionally, from Lemmas C.17 and C.18 we derived
the following corollary:

Corollary C.19 (Corollary “78” ??). [[LABEL C:0709 Cor 78]]

(a) Every edge is in a unique triangle.
(b) Given a triangle and a vertex w not in the triangle, w is adjacent to exactly one vertex

of that triangle.

Knowing that each edge is in a unique triangle, we were able to define the following
function on edges xy in Γa: f(x, y) := f(xy) := the third vertex of the unique triangle on
edge xy.

This brought us to the question of what the possibilities for Γa are. K̄l is a possibility as
the conditions are vacuously satisfied; Γa = K̄l can arise from a root system like Figure C.1
(and its negative). Another possibility is that Γa may have one vertex that is adjacent to all
others; in this case by, Lemma C.20 Γa is a windmill (see Figure C.2.
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Figure C.2. A windmill at vertex v.
[[LABEL F:0709: windmill]]

Lemma C.20 (Lemma C.11: Sublemma 9). [[LABEL L:0709 Lemma 9]] If Γa has a vertex
that is adjacent to all others, then Γa is a windmill.

This left us at Lemma 10 C.12, where we examine (exhaustively) what the possibilities are
for the orthogonality graph (Γa) if it is not edgeless or a windmill. The result is a graph which
has a large number of edges (relative to |V |) and is most definitely not planar. Though we
do our best to draw it as we examine its structure, bear in mind that the following diagrams
often focus on what is most important, leaving out details that clutter the graphics (and our
understanding).

So, now we have a graph that does have at least one edge, and there is no vertex that is
adjacent to all others (and in particular every vertex has at least one other vertex that it
is not adjacent to). Let u, v be a pair of non-adjacent vertices, and let Nu,v be the set of
vertices that are adjacent to both u, v, let Nu be the set of vertices adjacent to u and not
adjacent to v, and similarly let Nv be the set of neighbors of v that are not adjacent to u.
Finally, let N0 be V (Γa) \ ({u, v} ∪Nuv ∪Nu ∪Nv).

We conclude that we have as much of the picture of Γa as is in Figure C.3.

Figure C.3. Part of Γa.
[[LABEL F:0709: Gamma a first]]
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Now, we know that each edge is in a (unique) triangle. Therefore the edge uzi must be
in a triangle, and f(u, zi) 6= zj, otherwise zizj would be in a triangle with u and also with
v, a contradiction. Therefore f(u, zi) 6∈ Nuv, but since the neighbors of u are Nu∪· Nuv

by construction, f(u, zi) ∈ Nu, and by choice of notation, let’s call f(u, zi) = xi. By a
symmetric argument f(v, zi) = yi.

We then concluded that |Nuv| = |Nu| = |Nv|. Furthermore, we concluded that the only
Nu to Nuv edges were of the form xizi

6, and similarly, the only Nu to Nuv edges were of the
form yizi. This affords us a more complete picture of Γa; refer to Figure C.4 to see what
information we have thus far.

Figure C.4. Part of Γa, note the Nu to Nv edges are omitted.
[[LABEL F:0709: Gamma a second]]

At this point we had also proved that Γa is regular (of degree 2k), that Γa:Nu, Γa:Nv, and
Γa:Nuv all have no edges, and that Γa:(Nu ∪ Nv) is a complete bipartite graph, minus the
perfect matching xi ∼ yi. Where this leaves us is that Figure C.4 is accurate, except for
edges with at least one end point in N0, and except for the xi ∼ yj for i 6= j edges. We omit
the Nu to Nv edges because they simply clutter up the diagram, and have yet to draw any
conclusions about the edges with at least one endpoint in N0.

From here we proved a few more things about the structure of Γa. We showed that Γa
induced in the neighborhood of any vertex is a windmill (with k blades), which has proved
to be a very useful fact. See Figure C.5 which focuses on the neighborhood of a vertex in
Nuv. We also showed that Γa has n = 6k − 3 vertices total, and m = k(6k − 3) edges total,
and than, Γa:N0 has n0 = 3k − 5 vertices and m0 = k(k − 2) edges.

Next we recall a few sublemmas to Lemma 10 ?? to get a handle on the structure of N0

(both within N0, and how the vertices of N0 are adjacent to the rest of Γa).

6If there were an xizj edge for i 6= j, then the edge uzj would be in a triangle with both xj and xi, a
contradiction.
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Nu Nuv Nv

N0

u v

z1x1

xk

y1

yk

zi
xi yi

Figure C.5. Part of Γa, focusing on zi.
[[LABEL F:0709: Gamma a third]]

Sublemma C.21. [[LABEL C:0709 sublemma 10.E]] For w ∈ N0 and for all i ∈ [k], exactly
one of the following is true:

(1) w ∼ xi and yi.
(2) w ∼ zi.
(3) Neither (1) nor (2).

In particular, (1) and (2) cannot both be true.

(This was originally Sublemma ??.)
Furthermore, we established that for w ∈ N0, either w ∼ xi, yi for either exactly 2 i’s, or

w is not adjacent to any vertices in Nu, Nv. Furthermore, deg0(w) = # of vertices zi ∈ Nuv

that are adjacent to w, where deg0(w) is the degree of w ∈ Γa:N0. In particular, deg0(w) = k
if w ∼ xi, yi for exactly 2 i’s, or deg0(w) = k − 2 if w 6∼ xi, yi for any i. We then proved
Sublemma 10F ??.

Sublemma C.22. [[LABEL C:0709 sublemma 10.F]]

(1) f(xi, yj) 6= f(xi, yk) for k 6= j.
(2) f(xi, yj) = f(xj, yi) for i 6= j.

(This was originally Sublemma ??.)
Part (2) of Sublemma C.22 is illustrated in Figure C.6. The sublemma says that given

the solid edges (of the form xiyj and xjyi) the two unique triangles on these two edges has
the same third point (w in this figure), which will be in N0.

The last part of the proof of Lemma 10 C.12 that we did last semester (and hence the last
part in this review) is to look at the possibilities for Γa when k = 2. We can immediately
start with |Nuv| = |Nu| = |Nv| = 2, and with those standard edges. Additionally, since
n = 6k− 3 = 9, (or since n0 = 3k− 5 = 1) we know that |N0| = 1, we will name w the single
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Nu Nuv Nv

N0

u v

z1

zk

xi

xj

yi

yj

w

Figure C.6. Illustrating Part 2 of Lemma C.22 in Γa.
[[LABEL F:0709: Gamma a forth]]

vertex in N0. We also know the graph should be 2k = 4-regular. This leaves us with Figure
C.7.

Nu Nuv Nv

N0w

u v

z1

z2

x1

x2

y1

y2

Figure C.7. The ‘obvious’ information about Γa when k = 2.
[[LABEL F:0709: k=2 first]]

This leaves us with very little information to add. Because u, v, z1, z2 all have degree
2k = 4, there are no more edges incident to these four vertices. Furthermore, x1, x2, y1, y2

all need one edge to N0, which in this case is the vertex w, and once we add those four edges,
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we are done. Note that we also could have considered the vertex w, and since deg0(w) must
be 0 = k− 2, w must be adjacent to xi and yi for exactly two i’s in {2}—in other words, for
every i. This leaves us with the unique Γa for k = 2, which is depicted in Figure C.8.

Nu Nuv Nv

N0w

u v

z1

z2

x1

x2

y1

y2

Figure C.8. Γa when k = 2.
[[LABEL F:0709: k=2 second]]

At this point what’s left to do in the proof of Lemma 10 C.12 is to determine what the
possible Γa’s are for larger k (when Γa is not a windmill or K̄l).

(Incidentally, some of this proof about the structure of Γa might possibly have been simpler
if we had first proved that in the closed neighborhood of any vertex Γa is a windmill.)
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C.4. Root systems (3/10–12).

C.5. Gramian representation. Gram matrix vs. adjacency matrix (3/10–12).

C.6. Angle representation. Bipartite and nonbipartite graphs (3/10–26).

2009 July
14:
Nathan Reff
PARTIALLY
EDITED

C.7. Root representation vs. root systems (3/26–7/23).

C.8. Angle Representations. [[LABEL 3.angle]]

C.8.1. The proof of Lemma 10 C.12, so far.
Recall the following data for Γa: n = 6k − 3 = 3(2k − 1), m = 3k(2k − 1) = 6k2 − 3k,

d = 2k. For Γa:N0 we have: n0 = 3k− 5, m0 = k(k− 2). Also, since Γa is 2k-regular we can
possibly find some upper bound on k.

We can construct the following table of information; we’ll prove the rightmost column
throughout the lecture:

k n d n0 m0 Graph
2 9 4 1 0 L(K3,3) = P (9)

3 15 6 4 3 L(K6)
4 21 8 7 8 (none)
5 27 10 10 15 Schläfli

where P (9) is the Paley graph of order 9 [GR].

C.8.2. Continuation of the proof of Lemma 10 C.12: The cases k ≥ 3.
See Figure C.9 for the basic picture in the case k = 3. There are two possibilities for the

x1

x2

x3

z1

z2

z3

y1

y2

y3

u v

wN0

Nu Nuv Nv

Figure C.9
[[LABEL F0714: k3case]]

valency of the w vertex in N0. If w is adjacent to all the z vertices then deg0(w) = k. If w
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is adjacent to all but two of the z vertices then deg0(w) = k− 2. Therefore the number of z
vertices adjacent to w is deg0(w).

In N0 we are counting pairs of x vertices. Notice the different types of pairs in Figure
C.10. For each pair of x vertices, there exists a unique w adjacent to both. Notationally, if

x1

x2

x3

z1

z2

z3

y1

y2

y3

w0

N0

Nu Nuv Nv

w1 w2 w3

Figure C.10
[[LABEL F0714: pairs]]

wi ∼ xj, xk then wi ∼ zi where {i, j, k} = {1, 2, 3}. This leaves the vertex w0 in N0 which
is not adjacent to any of the x vertices. Hence w0 is adjacent to z1, z2, and z3. We also
know that wi and wj are not adjacent for i, j ∈ {1, 2, 3} because if they were adjacent, then
the edge wiwj would be contained in one of the following two triangles: wiwjxk or wiwjyk,
which is not allowed. Therefore Γa exists and is unique.

Now we demonstrate that Γa = L(K6). Let’s draw L(K6) by first looking at K6 (see
Figure C.11). So we can construct Γa in this case (see Figure C.12).

Now let’s try to construct Γa in the case when k = 4 (see Figure C.13). Here we have
n0 = 3(4)−5 = 7 vertices, m0 = 4(4−2) = 8 edges, and

(
4
2

)
= 6 pairs of x vertices. Therefore

six of the w vertices have deg0(w) = k − 2 = 4 − 2 = 2 and are adjacent to two z vertices
and two xy’s (meaning two of the x1y1, x2y2, x3y3, x4y4). So w0 has deg0(w) = k = 4 and is
adjacent to all four z vertices. However now suppose w1 ∼ zi, zj. Since w0 ∼ zi, zj we have
two possible triangles on edge w0w1 (see Figure C.13) which are w0w1z4 and w0w1z2. This
is impossible, hence k = 4 is impossible.

Now we’ll construct Γa in the case when k = 5 (see Figure C.14). Here we have n0 =
3(5)− 5 = 10 vertices, m0 = 5(5− 2) = 15 edges, and

(
5
2

)
= 10 pairs of x vertices. So each

w vertex is adjacent to either two or zero x vertices. Since there are 10 pairs of x vertices,
each w is adjacent to exactly two x vertices. Let’s say wij ∼ xi, xj, yi, yj and also wij is
adjacent to all other zh where h ∈ {1, 2, 3, 4, 5} \ {i, j}. Notice that w12 and w1k have two
common z neighbors zl and zm where l,m 6= 1, 2, k. Therefore there is no edge w12w1k. In
general, there is no edge wijwik since this would imply two triangles on the edge wijwik.
Therefore the 15 edges are of the form wijwkl. The Peterson graph P has E = {(ij, kl)}, and
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1 2
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v

z2

z1

z3

w0

x1

x2

x3

y1

y2

y3

w3

w2

w1

Figure C.11. K6 with edges labelled as the vertices in Γa.
[[LABEL F0714: lk6]]

x3

z1

z3 y3

w0

N0

Nu Nuv Nv

w1 w2 w3

x1

x2

z2

y1

y2

u = 12 v = 16

56

46

36

25

24

23

15 14 13
26

45

35

34

Figure C.12. L(K6) with vertices grouped as in Γa.
[[LABEL F0714: lk6const]]

therefore Γ:N0 ⊆ P , but P has 15 edges and therefore Γ:N0 = P with standard labelling as
L(K5) (meaning we have labeled this exactly the way we want). Therefore Γa is completely
determined. This completes the proof of Lemma 10 C.12. Hence, there exists Γa if k = 2, 3, 5
and there is no Γa for k = 4.
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x1

x2

x3

z1

z2

z3

y1

y2

y3

u v

N0

x4
z4

y4

w1

w2 w3 w4 w5 w6

w0

Figure C.13
[[LABEL F0714: k4case]]

x1 z1
y1

u v

N0 wjk

x2 z2
y2

x3 z3
y3

x4 z4
y4

x5 z5 y5

w1k
w12

k 6= 2 k, j 6= 1, 2

xk yk

yjxj

zk

zj

Figure C.14
[[LABEL F0714: k5case]]

Now let’s do a much shorter proof of this Lemma 10 C.12. We make a new table and fill
it in as we discuss strongly regular graphs.
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k n d λ µ graph
√

∆ θ τ mθ mτ

2 9 4 1 2 L(K3,3) = P (9) 3 1 -2 4 4

3 15 6 1 3 L(K6) 4 1 -3 9 5
4 21 8 1 4 (none) 5 1 -4 fractional fractional
5 27 10 1 5 Schläfli 6 1 -5 20 6

A strongly regular graph SRG(n, d, λ, µ) is a d-regular simple graph of order n, such that
any two adjacent vertices have λ common neighbors and any two nonadjacent vertices have
µ common neighbors. (Note that the parameters here are given by different letters than in
[GR, p. 218] where we would write SRG(n, k, a, c). Also see the notes on [Dec 12 2008]
for a prior discussion of strongly regular graphs. [Note: the parameters there are also
different, we have written k for d, so perhaps we should change one of these to
be consistent throughout. – Thanks Nate (TZ)]

From Corollaries 7 and 8 [REF ???], every edge is contained in a unique triangle. We also
proved that if u and v are nonadjacent vertices, then they must have k common neighbors
and Γa is 2k-regular (with 2 ≤ k ≤ 5). This means that Γa is a SRG(6k − 3, 2k, 1, k). We
have the following result from the theory of strongly regular graphs.

Theorem C.23. Suppose an SRG(n, d, λ, µ) is connected. Then the eigenvalues of the ad-
jacency matrix are d with multiplicity 1, θ with multiplicity mθ, and τ with multiplicity mτ ,
where

θ =
λ− µ+

√
∆

2
, τ =

λ− µ−√∆

2
,

mθ =
1

2

(
n− 1− 2d+ (n− 1)(λ− µ)√

∆

)
, mτ =

1

2

(
n− 1 +

2d+ (n− 1)(λ− µ)√
∆

)
,

∆ = (λ− µ)2 + 4(d− µ).

Proof. We find the discriminant of the quadratic polynomial in A (the adjacency matrix) for
the strongly regular graph to be ∆ = (1− k)2 + 4k = (1 + k)2 [REF ??? I think showing

the details of this was done on 12/12/2008 – NR]. So we can write
√

∆ = 1+k which
is nice to work with. We have θ = 1−k+k+1

2
= 1 and τ = 1−k−k−1

2
= −k.

Notice that

2d+ (n− 1)(λ− µ)√
∆

=
4k + (6k − 4)(1− k)

k + 1

=
−2

k + 1
(3k2 − 7k + 2)

= −2(3k − 10)− 24

k + 1
.

Substituting into mθ we obtain:

mθ =
1

2

(
n− 1− 2d+ (n− 1)(λ− µ)√

∆

)
=

1

2

(
6k − 4 +

(
6k − 20 +

24

k + 1

))
= 6k − 12 +

12

k + 1
.
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Since mθ is a multiplicity, it must be an integer, which means that k + 1 must divide 12.
Compare the table we constructed with the information in Table 10.1 of [GR, p. 227]. �

7/16:
Joyce

2009 July
21:
Jackie
Kaminski

C.9. The signed graphs with root representations (continued).
We need to finish showing the existence of root systems that have the signed graphs (and

Γas) described above. We now turn our attention to two examples.

Example C.2. [[LABEL E:0721 empty graph]] To get Γa = K̄l, we take S = An−1 with
a = b2 − b1 and b = b3 − b2. Then Γa = K̄n−3 (so l = n− 3). The details of this example
are from a previous day.

Example C.3. [[LABEL E:0721 windmill ]] To get Γa to be a windmill with l blades, we
take S = Dn := {±bi ± bj | i 6= j and i, j ≤ n} (where the bi’s are standard basis vectors).
Then take a = b2 − b1 and b = b3 − b2, which makes c = −(a + b) = b1 − b3. Then
Sa = {x ∈ Dn | x ⊥ a and x · b = −1[ +1 ]}.

From the condition that x ⊥ a, we conclude that i, j ≥ 3 or x = ±(b2 + b1). We will
consider these two cases separately.

Case 1: x = ±bi ± bj with i, j ≥ 3.
From the condition that x · b = 1[ +1 ], we get (±bi±bj) · (b3−b2) = +1 which implies

(±bi · b3) + (±bj · b3) + 0 + 0 = +1 (since i, j ≥ 3). The only way this can be true is if
exactly one of i, j = 3 and the coefficient of b3 in x is +1. So in this case x = b3 + bi for
i > 3.

Case 2: x = ±(b2 + b1).
From x · b = +1, so that ±(b2 + b1) · (b3 − b2) = +1, we see that 0∓ 1 + 0 + 0 = +1. So

x = −(b2 + b1) in this case.
Now we are close to determining Γa precisely. We know Sa = {−b2−b1}∪{b3±bi | j > 3}.

To find the orthogonality graph, Γa, we need to know which pairs of vectors in Sa are
orthogonal.

Note that −b2 − b1 is orthogonal to all vectors b3 ± bi with j > 3. Since (b3 + bi) ·
(b3 − bi) = 0, any pair b3 + bi, b3 − bi are orthogonal. For i, j > 3 and i 6= j, we have
(b3±bi) · (b3±bj) = 1 + 0 + 0 + 0 = 1, so no two vectors in Sa of the form b3±bi, b3±bj
with i 6= j are orthogonal. Therefore, Γa is the windmill in Figure C.15.

We conclude that, for Dn with a = b2−b1 and b = b3−b2, Sa = {−b2−b1}∪{b3±bi |
j > 3} and Γa is a windmill with n− 3 blades.

The signed graph represented by An−1 is the all-positive line graph +L(Kn) (Section I.I),
which equals −Λ(+Kn) (cf. Section II.M). We can see this from the fact that the vectors
of An−1 are the columns of an oriented incidence matrix of Kn (cf. Section I.??), or their
negatives.
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−b −b2       1

b −b3      4

b +b3       4

b −b3      5

b +b3     

b +b3       n

b −b3      n

Figure C.15. Γa, the orthogonality graph for Sa = {−b2 − b1} ∪ {b3 ± bi | j > 3}
[[LABEL F:0721: windmill]]

But which signed graph is represented by Dn? The root system Dn is the set of all vectors
of the form 

...
0
±1
0
...
0
±1
0
...


,

where the ±’s are independent of each other. For the signed graph representing Dn, remem-
ber that we are really talking about a switching class. For each pair of opposite vectors in
Dn, x,−x, we have a vertex (denoted by x). The choice, across all vertices, between x and
−x corresponds to a choice of a particular representative of the switching class. Once we
have chosen a representative vector from each line 〈x〉 (where x ∈ Dn), we know the signed
graph Σ(Dn) has an edge vw with sign σ(vw) 6= 0 if and only if the vectors v and w have
dot product σ(vw).
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Now let’s order the vectors of Dn as the columns in a matrix M where

M =



...
0
±1
0
...
0
±1
0
...

with all
possible
placements
and signs


=
(
H(±Kn) | −H(±Kn)

)

In other words, the first half of the columns of M contains one choice of representatives from
the pair x,−x, and the second half of the matrix contains the opposite choices in the same
order. With the appropriate choice of labels, M is actually the oriented incidence matrix of
±Kn,7 augmented by the same incidence matrix from the opposite orientation of ±Kn.

Now, MTM is a 4
(
n
2

)× 4
(
n
2

)
matrix, indexed by the vectors in Dn, whose (x,y) entry is

0 if supp(x) ∩ supp(y) = ∅ (hence x ⊥ y),

1 if supp(x) ∩ supp(y) = {k} and x(k) = y(k),

−1 if supp(x) ∩ supp(y) = {k} and x(k) = −y(k),

0 if {x,y} = {±(bi − bj),±(bi + bj},
2 if x = y,

−2 if x = −y.

(Here x(k) denotes the kth component of x ∈ Rn.)

Going back to the structure of M as
(
H(±Kn) | −H(±Kn)

)
, we see that

MTM =

(
H(±Kn)TH(±Kn) −H(±Kn)TH(±Kn)
−H(±Kn)TH(±Kn) H(±Kn)TH(±Kn)

)
The upper left corner is −A(Λ(±Kn)) = A(−Λ̄(±Kn)). Therefore, Σ(Dn) = −Λ̄(±Kn).

I point out here that representing a signed graph Σ by a set of vectors (W ⊆ R∞) means
we take one vector for each vertex. To represent Σ as a subset of Dn, we take at most one of
each opposite pair ±x ∈ Dn. Therefore we’re choosing at most one orientation of the edges
in ±Kn that corresponds to the vectors in Dn. Furthermore, for any root representation of
Σ we have ψ : V → Dn where ψ is injective such that ψ(v) · ψ(w) = σ(v, w) (and = 0 if
v 6∼ w). Obviously, this assumes that Σ is a signed simple graph, so that σ(v, w) is well
defined. This definition implies that we can’t have ψ(v) = −ψ(w) for any distinct vertices
v, w, since ψ(v) · (−ψ(v)) = −2. Therefore, for x ∈ Dn, either x or −x or neither, but not
both, is in Im(ψ); said another say, {x,−x} 6⊆ Im(ψ).

C.9.1. The matrix of a root representation in Dn.

7Recall that ±Kn is the complete signed link graph; it is the signed graph on n vertices, whose edges are
a positive and negative link between every pair of vertices.
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Let’s look more closely at the matrix representation of a simply signed link graph Σ in
Dn. A Gramian representation of Σ, written as the columns of a matrix, has the form

G(Σ) =
(
ψ(v1) · · · ψ(vn)

) ⊆ H(±Kn)

for some orientation of Kn. Remember that this is the vertex matrix of the root representa-
tion of Σ; it is not the incidence or adjacency matrix of Σ!

Since the vectors of Dn have norm
√

2, G(Σ)TG(Σ) is a V × V matrix with 2’s along the
diagonal, and σ(vw) in the (v, w) entry otherwise.8 So G(Σ)TG(Σ) = A(Σ) + 2I.

Examining the Gram matrix G further, we see that the largest possible Σ with a root
representation ψ where Im(ψ) ⊆ Dn is when ψ(V ) ∪ −ψ(V ) = Dn. In this case, G(Σ) =
(±Kn); therefore A(Σ) + 2I = H(±Kn)TH(±Kn) = 2I −A(Λ̄(±Kn)). 9Therefore the signed
graph Σ represented by all of Dn is −Λ(±Kn).

C.9.2. Signed graphs with angle representation in Dn.
In other words, we have shown that Dn (which contains An−1) represents the negatives

of reduced line graphs of simply signed link graphs, since all simply signed link graphs are
⊆ ±Kn. (One could think the standard definition of a vector representation may have
gotten the sign wrong. In other words, introducing an artificial negative into the definition
of a representation would have led to the cleaner conclusion that Dn represents reduced
line graphs (of simply signed link graphs). However, we’ll continue to follow established
tradition.) This leads us to the following theorem.

Theorem C.24. [[LABEL T: 0721 Signed Graphs with Root Rep’s]] The signed graphs that
have root representations are the negatives of the reduced line graphs of simply signed link
graphs, and a finite number of exceptions, where each exceptional graph has order n ≤ 120.
All the exceptions are subgraphs of Σ(E8)

Definition C.5. [[LABEL D: 0721 Sigma of a vector set]] Let Σ(W ) := the largest signed
graph which has a root representation in W , where Σ(W ) is understood as the switching
class [Σ(W )].

Recall that the choices of whether to label the vertices of Σ(W ) with x or −x corresponds
to a choice of representative from [Σ(W )].

Now that we have proved that all the negatives of reduced line graphs of simply signed link
graphs all have root representations (as subsets of Dn), it is left to show that the only other
signed graphs with root representations are the finite number of exceptions, all of which are
subgraphs of Σ(E8).

C.9.3. The mystery of the En signed graphs.
I close with two small notes. As far as I know, no one knows much about the signed

graphs Σ(En). I remind you that signed line graphs were based on an orientation of the
original signed graph (which is arbitrarily chosen in most cases), so signed line graphs are
really about switching classes of signed graphs, not individual signed graphs.

2009 July
23:
Nate Reff

8As usual, we interpret σ as the extended sign function, where σ(vw) = 0 if v 6∼ w.
9Recall that Λ̄ means the reduced signed line graph, where pairs of oppositely signed parallel edges are

canceled. In terms of notation, think of Λ̄(Σ) as Λ(Σ), since the operation ‘take the reduced line graph’ is
made up of the operation ‘take line graph’ followed by the operation ‘reduce.’
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C.10. Eigenvalues bounded below by −2.
I begin today with a ‘complete’ version, so to speak, of the theorem of Cameron, Goethals,

Seidel and Shult [CGSS], that every simple graph with all eigenvalues ≥ −2 is a Hoffman
generalized line graph or one of a finite number of exceptions. I give it the form that seems
more suitable to signed graphs, by negating all the signs.

Theorem C.25. [[LABEL T:20090723evalues2]] With finitely many exceptions, every signed
simple graph with all eigenvalues ≤ 2 is a reduced line graph of a simply signed link graph.
The exceptions have ≤ 120 vertices and are, up to switching, subgraphs of one exceptional
signed graph on 120 vertices.

Proof. Suppose we have a signed simple graph Σ with root representation ψ. Then

λmax(Σ) ≤ 2 ⇐⇒ 2I − A(Σ) is positive-semidefinite

⇐⇒ 2I − A(Σ) is a Gram matrix

⇐⇒ 2I + A(−Σ) is a Gram matrix

⇐⇒ Σ ⊆ Λ̄(±Kn) or Σ ⊆ Σ(E8)

since by our classification theorem from [CGSS], −Σ ⊆ −Λ̄(±Kn) or ψ(Σ) ⊆ E8 and Σ(E8)
is the representing graph of E8,

⇐⇒ Σ = Λ̄(Σ0) for some Σ0 ⊆ ±Kn

or Σ = Σ(S) where S ⊆ E8. �

[CGSS] would look at the theorem slightly differently, because to them the ‘correct’ sign
is given by unsigned line graphs. Thus, instead of eigenvalues at most +2, they would look
at eigenvalues at least −2, and they would express the theorem in these terms:

Corollary C.26. [[LABEL C: 20090723evalues-2]] With finitely many exceptions, every
signed simple graph with all eigenvalues ≥ −2 is the negative of a reduced line graph of
a simply signed link graph. The exceptions have ≤ 120 vertices and are, up to switching,
subgraphs of one exceptional signed graph on 120 vertices.

The exceptional signed graph, of course, is −Σ(E8) in the theorem and Σ(E8) in the
corollary.

I hope Cameron et al. forgive me for putting words in their mouths, since they didn’t
actually look at signed graphs. They did recognize that negating the graph gives the opposite
theorem—i.e., with negated eigenvalue bound—and so they produced two theorems, one
characterizing the unsigned graphs with eigenvalues ≥ −2, and the other characterizing
those with eigenvalues ≤ 2. The latter was a much less interesting collection of graphs; I
cannot say I fully understand why, but it may have to do with the way eigenvalues shift
when a vertex is deleted; see [GR, ?] for more on that.

C.11. The exceptional signed graphs.
We need to know more about the exceptions in the theorem. Actually, not enough is

known, but there are some elementary facts to look at closely.
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C.11.1. Verification of En.
Let’s look back at our original definitions for En where n = 6, 7, or 8. Recall that

E8 := D8 ∪
{

1
2

8∑
i=1

εibi

∣∣∣ εi ∈ {−1, 1} and
8∏
i=1

εi = +1
}
,

E7 := {x ∈ E8 | x ⊥ w0 for any one w0 ∈ E8},
E6 := {x ∈ E7 | x ⊥ w1 for any w1 ∈ E8 \ E7 except ± w0}.

Alternatively, E6 is the subset of E8 formed by the set of vectors orthogonal to a fixed pair
of vectors with inner product ±1 [GR, p. 274].

Homework: (a) Verify that E8 has the correct angles. (b) Why is E8 “vertex transitive”,
meaning that Aut(E8) is transitive on E8’s vectors?

C.11.2. Construction of E6 and E7.
Let’s go through an explicit construction of E7 and E6. Choose w0 = 1

2

∑8
i=1 bi and define

yS :=
∑

i∈S bi, for S ⊆ {1, . . . , 8} = [8].

Proposition C.27. [[LABEL P:20090723E7]] E7 = A7 ∪ {w0 − yS | S ∈ P(4)([8])}.
Proof. Homework exercise. �

Let w1 = w0 − (b7 + b8) = 1
2
(b1 + . . .+ b6 − b7 − b8)

Proposition C.28. [[LABEL P:20090723E6]] E6 = A5 ∪ {±(b7 − b8)} ∪ {±(w1 − bi − bj) |
1 ≤ i < j ≤ 6}.
C.11.3. The exceptional signed graph/s.

Suppose W ⊆ Rn and W is a root system An−1, Dn, or En. We write Σ(W) for the signed
graph of which W is a root representation. [WHAT IS W doing here? I don’t see
the purpose.] The graph Γa is the graph of orthogonality. Therefore the complement Γca
is the graph of nonorthogonality so it must have all + edge signs. [NO; the fact that it
has all + signs is proved.] The subgraph of Σ(En) (for n = 6, 7, 8) that is induced by
Sa := {x ∈ En | x ⊥ a, x · b = 1}, where 〈a, b〉 = −1, is an identifiable all-positive signed
graph, namely +Γca. Therefore Σ(En) has an all-positive induced subgraph +Γca. (This may
not be the largest all-positive induced subgraph. Homework exercise: Find the maximal
all-positive induced subgraphs.)

Open Problem 1: Identify the signed-graph switching classes which are [Σ(En)] or
[−Σ(En)], similarly to how we identified [Σ(Dn)] = [−Λ̄(±Kn)] and [Σ(An−1)] = [−Λ̄(−Kn)].

Open Problem 2: Show how +Γca fits into Σ(En). We have a partial solution to this
problem. We had to choose 〈a, b〉 = −1, so that means ab ∈ E−(Σ(En)). If 〈x, a〉 = 0 we
can say x /∈ N(a) in Σ(En). If 〈x, b〉 = −1 we can say x ∈ N−(b) in Σ(En). Therefore
Sa ↔ N(a)c ∩N−(b) where a and b are any negative neighbors, and Γa = Σ(En):Sa.

Do we have to switch Σ(En) in a particular way to get Sa as the alleged set of (non)neighbors?
For example, do we have to assume Σ(En) is switched so all edges at b are negative? This
appears to imply that if we switch Σ(En) so that all edges at a vertex v are negative, then
Σ(En):N(v) is all positive. Is that true?

We write N [v] for the closed neighborhood of v, N(v)∪{v}. Open Problem 2 is equivalent
to the following: Σ(En):N [v] is balanced for all v.
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Semi-Open Problem: Identify the maximal induced balanced and antibalanced sub-
graphs of Σ(En). The former are (or correspond to) maximal non-line [CAN THAT BE
RIGHT? maximal non-positive?] graphs with eigenvalues ≥ −2, and the latter are (or
correspond to) maximum non-negative line graphs with eigenvalues ≤ 2. This is possibly
solved by [CGSS]. [TZ SHOULD figure out what that means.]

D. Equiangular and semi-equiangular lines

7/29:
Joyce

2009 July
30:
Jackie
Kaminski
[Finishing
the
chapter!]

D.1. Equiangular Lines (continued). [[LABEL equiangular]]

More on two-graphs.
In looking for ‘large’ sets of equiangular lines in ‘small’ dimensions we are lead to the

problem of finding signed graphs Σ = (Kn, σ) in which ρmin(Σ) has high multiplicity, where
ρmin(Σ) denotes the minimum eigenvalue of A(Σ). We would also like to acknowledge that
we have made no effort to make precise what a ‘large’ sets of equiangular lines in ‘small’
dimensions is, this is mostly because there is no general theory yet about what pairs of ‘large’
and ‘small’ are possible or impossible. We now continue to explore this question from our
point of view of switching and eigenvalues.

Recall from Section II.?? that we associate to each signed complete graph Σ = (Kn, σ)
the two-graph T ⊆ P(3)(V ) where {x, y, z} ⊆ V is in T if and only if Σ:{x, y, z} is a negative
triangle.

Definition D.1. [[LABEL D:0730 two-graph of Sigma]] For Σ a signed graph, let T(Σ) :=
{triples of vertices that support negative triangles in Σ}.

To see that this definition actually gives us a two-graph we need to show that every 4
vertices contain an even number of elements of T. Note that if Σ = +Kn, then T is empty
and the result holds vacuously. Now consider replacing any positive edge e with a negative
edge. Any set of 4 vertices that does not containing e is unaffected, and for any set of 4
vertices containing e, the swap changes the sign of exactly two triangles on those 4 vertices10,
meaning there are still an even number of negative triangles. So inductively, we see that
T(Σ) as defined above is actually a two-graph.

In general the map from signed graphs to two-graphs is not one-to-one, specifically, if Σ
and Σ′ are switching equivalent than T(Σ) = T(Σ′). However if we restrict our domain to
switching equivalence classes then the map {[Σ]} → {T} given by [Σ] 7→ T(Σ) is one-to-one,
and in fact a bijection.11

Recall from Chapter II (Theorem L.6) that Seidel did something similar with unsigned
graphs Γ. The corresponding signed complete graph is simply KΓ, where an edge e ∈ E(Kn)
is negative if and only if e ∈ E(Γ).

Definition D.2. [[LABEL D:0730 regulartg]] T is regular is every vertex pair is in the same
number of triples in T.

10Since Σ is a signed complete graph.
11Where we interpret {[Σ]} as the set of switching classes of signed complete graphs on V and {T} as the

set of all two-graphs on V .
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By the adjacency matrix of T, we mean A(Σ) for any signed graph Σ corresponding to T.
Note that for any subset T ⊆ P(3)(V ), T is a two-graph if and only if Tc is a two-graph, and
similarly T is regular ⇐⇒ Tc is regular.

Theorem D.1. [[LABEL T:0730 eigenvalues]] A two-graph T is regular if and only if A(T)
has at most two distinct eigenvalues.

Proof of ( =⇒ ). For any T, pick a Σ←→ T, recalling that Σ is some signing of Kn. Since T

is regular, every edge of Σ is in the same number of negative triangles, say t of them. Now
choose a vertex v and switch Σ to Σ′ where all the edges incident to v are positive.12 See
Figure D.1.

v

vi
vj

vk
vl

+

−

Figure D.1. A portion of a switched Σ.
[[LABEL F:0730: switched]]

Now, we can see by direct combinatorial calculation (this is Theorem II.??) that the (i, j)
entry of A(Σ)2 is the number of positive paths of length 2 between vi and vj less the number
of negative paths of length 2 between them. This means that the diagonal entries are n− 1,
since a length-2 path from vi to vi in a signed Kn must leave vi along an edge, then return
along the same edge; regardless of the sign of that edge, the path is positive.

Now we consider any two different vertices v, w. If the edge vw is positive then any
positive length-2 vw-path makes a positive triangle, and a negative length-2 vw-path makes
a negative triangle. See Figure D.2. Since Σ is a regular two-graph, the edge vw is in t
negative triangles; so there must be t negative length-2 vw-paths (and consequently n−2− t
positive ones). This means that the (v, w) entry of A(Σ)2 is (n − 2 − t) − t = n − 2 − 2t.
Refer again to Figure D.2: if vw is a negative edge, then there must be t positive length-2
vw-paths (since Σ is a two-graph), and n−2− t negative paths. In this case the (v, w) entry
of A(Σ)2 is t− (n− 2− t) = −n+ 2 + 2t.

We can combine both cases elegantly by saying that the (v, w) entry of A(Σ)2 equals
σ(vw) · (n− 2− 2t), for v 6= w. The consequence is that we can describe A(Σ)2 completely
as

A2 = (n− 1)I + (n− 2− 2t)A.

This means that the matrix A(Σ) satisfies a quadratic equation, and therefore has at most
two eigenvalues, and therefore A(T) has at most two eigenvalues. �

12Recall that every signed graph can be switched to have specified signs on a spanning tree.



176 Chapter III: Geometry

v w v w

pos.
paths

neg.
paths

pos.
paths

neg.
paths

+ +

− −

n−2−t
paths

n−2−t
paths

t
paths

t
paths

Figure D.2. Triangles on the edge vw in a signed complete graph Σ.
[[LABEL F:0730: triangles]]

One can calculate A(T) in general. Given any two-graph, not necessarily regular, the edge
vw is in a certain number tvw of negative triangles, and then

(D.1) (A2)vw = (n− 1)δvw + σ(vw) · (n− 2− tvw).[[LABEL E : 0730tga]]

Proof of (⇐= ). Now, we assume that A(T) has at most two eigenvalues. Thus, it satisfies
a quadratic equation A2 − αA − βI = 0, or A2 = αA + βI. But by the calculation in the
first part we see that A2

vw = (n − 1)δvw + σ(vw) · (n − 2 − tvw), which means that β must
equal n−1, and that σ(vw)α must equal σ(vw)(n−2− tvw), and more importantly tvw must
equal some constant t for all v, w. Therefore each edge is in the same number of negative
triangles, and therefore the two-graph is in fact regular. �

This mean that regularity of a two-graph is essentially an eigenvalue property. We would
like to point out to the reader that in an earlier chapter we actually calculated the multi-
plicities of these eigenvalues.

[Tom: I have a note that ‘this all started from people wanting a permutation
representation of groups’, but you weren’t sure if that was right. So I don’t
really know what to do with that comment other than to remind you about it.]

Definition D.3. [[LABEL D:0730 Sigma v]] For Σ = (Kn, σ), let Σv denote the unique
switching of Σ where v has no negative neighbors.

Note that in some graphs there might be multiple switchings where a given vertex has no
negative neighbors, but in a signed Kn, there is only one switching where this is true, hence
the ‘unique’ is justified.

Theorem D.2. [[LABEL T:0730 G. R.]] T(Σ) is regular if and only if (Σv)
−, the spanning

subgraph of the negative edges of Σv, is a SRG(n, k, λ, µ), with k = 2µ.

Readers with a further interest in the subject should see Godsil and Royle [GR], particu-
larly Theorem 11.6.1, which is a stronger version of Therorem D.2.

Problem D.1. [[LABEL P:0730 SRG]] For Theorem D.2 , deduce k, λ, µ from n, t, to what-
ever extent possible. Are these independent of the choice of vertex v?
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The end of equiangularity.
This treatment of regular two-graphs concludes our look at equiangular lines. Next, we

look at a generalization suggested by general signed (simple) graphs.

D.2. Semi-equiangular lines.
The problem we have with equiangular lines is that root systems often give a system of

lines with two angles, 60◦ and 90◦ for example. But we notice that 90◦ is a special angular,
this leads to the definition of of semi-eqiangular lanes.

Definition D.4. [[LABEL D:0730 Semi-equi lines]] A set of lines is semi-eqiangular if every
non-orthogonal pair of lines makes the same angle θ.

In other words, semi-equiangular lines allow any pair of distinct lines to make one of two
angles, either a fixed angle θ < 90◦, or 90◦. Examples of semi-eqiangular line sets include
the root systems An−1, Dn, and E8; simply think of each pair of opposite vectors x, −x as
defining a line.

Another important example is the root system G2, a set of four lines in R2 at angles 45◦

and 90◦. See Figure D.3.
[Tom: You said to look up if G/R called this G2, I couldn’t find any info either

way.]

Figure D.3. A system of four semi-equiangular lines, generated by the root
system G2.

[[LABEL F:0730: 45]]

Now, for any system of semi-equianglar lines, we can choose one unit vector on each line.
This will give us (a particular switching of) a signed graph, with the rule that σ(vw) =
sgn(cos](x̂i, x̂j)) = sgn(x̂i · x̂j). Since the angle between any two vectors is always ≤ π

2
, we

may conclude that in a set of semi-eqiangular lines, θ ≤ π
2
. And therefore x̂i ·x̂j = σ(vw)·θ =

σ(vw)/γ where γ = 1/ cos θ, which we recognize from angle representations of signed graphs.
Therefore we have xi =

√
γ · x̂i, so in an angle representation all vectors have norm

√
γ.

Conversely, if we start with a signed graph Σ, and create an angle representation, we will
have ‖xi‖ =

√
γ if |Σ| is not bipartite. If |Σ| is bipartite, we only know that ‖xi‖ · ‖xj‖ = γ

for adjacent vertices vi, vj. We can then renormalize the vectors so all ‖xi‖ =
√
γ. In both

cases, the angle between xi and xj is then cos−1(x̂i · x̂j) = θ or π − θ. (It is π/2 if vi 6∼ vj.)
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Thus, θ = arccos(1/γ) is the non-right angle of the semi-equiangular lines generated by the
angle representation of Σ. Most of the elementary theorems about signed complete graphs
go through, but we have no analog to two-graphs. This is a cop-out; we could develop more
theory on the subject, but we won’t. I do, however, leave the reader with the following
conjecture (so named because I’m not certain whether it is true or not).

Conjecture D.1. [[LABEL C:0730 angle min]] Σ has an angle representation if and only if
ρmin(Σ) ≤ 0.

We leave this section by noting that one of the reasons we like regular two-graphs is that,
unlike arbitrary two-graphs, they tend to correspond of systems of equiangular lines with a
‘large’ number of lines in ‘small’ dimension.

D.3. Which signed graphs have angle representations?
Recall that in a root system with γ = 2, the matrix A(Σ) + 2I has eigenvalues ≥ 0, which

means that A(Σ) has e-values ≥ 2. Recall further that line graphs of signed graphs have
eigenvalues ≥ −2. Therefore, if we had introduced an arbitrary negative into the definition
of angle representations, we would have the same relationship.

Now notice that a signed graph Σ has an angle representation

⇐⇒ A(Σ) + γI is positive semi-definite

⇐⇒ ρmin(A(Σ) + γI) ≥ 0

⇐⇒ ρmin(A(Σ)) + γ ≥ 0

⇐⇒ γ ≥ −ρmin(A(Σ)) = ρmax(A(−Σ))

⇐⇒ γ ≥ ρmax(A(−Σ))

We are, of course, more interested in nontrivial angle representations.

Definition D.5. [[LABEL D:0730 nt angle rep]] An angle representation with n vectors is
nontrivial if the vectors are in Rm and m < n.

An angle representation is nontrivial

⇐⇒ rk(A(Σ + γI)) < n

⇐⇒ −γ is an eigenvalue of A(Σ)

⇐⇒ γ is an eigenvalue of A(−Σ)

⇐⇒ γ = ρMax(A(−Σ)), since γ > 0 in the non-trivial angle representations.

That proves the following theorem:

Theorem D.3. [[LABEL T:0730 nt angle rep]] A signed graph Σ has a non-trivial angle
representation ⇐⇒ ρmax(A(−Σ)) > 0. �

Notice that ρmax(A(−Σ)) < 0 =⇒ ρmax(A(Σ)) > 0. Therefore, if we think of signed
graphs in pairs Σ,−Σ, than one of each pair of signed graphs has a nontrivial angle repre-
sentation, unless all eigenvalues are 0, in which case Σ = Kn.

We close this section with some questions about signed simple graphs in general, not
necessarily complete.
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(1) Q: What is the equivalent of a two-graph?
A: It’s a switching class. (But what does that mean? Is there a more direct

combinatorial description, analogous to that of complete switching classes by two-
graphs?)

(2) Q: What’s the equivalent of a regular two-graph?
A: We’re not sure, but presumably it’s a signed graph with ≤ 2 eigenvalues.

(3) Q: In view of the relevant theorem, what is a strongly regular signed graph? [Does
this mean the theorem about regular tg vs. srg? Do I have that?]

A: Stick around a year or so.



Chapter IV. Gain Graphs and Biased Graphs

The monster in the cupboard throughout the theory of signed graphs has been the question:
What about larger groups? It is time to answer the monster. Yes, we can have edge labels
from groups with more than two elements—I call them ‘gains’—but no, they are not just like
signs, because for the theory to work, the gain of an edge has to depend on its orientation.
Allowing for that difference, a great part of signed graph theory generalizes, not only to
gains in any group, but even to a purely combinatorial abstraction, called a ‘biased graph’,
that dispenses with groups altogether.

2010 Jan
28:
Jackie
Kaminski

A. Gain Graphs

[[LABEL 4.gg]]
We define our first subject.

A.1. Basic definitions. [[LABEL 4.ggdefs]]
Recall from Definition A.3 that a graph Γ is a triple (V,E, I) (but usually written (V,E)),

where V and E are sets and I is an incidence multirelation between V and E in which
each edge has incidences of total multiplicity at most 2. Consequently we have four types of
edges: links, with two distinct endpoints, I(e) = {v, w} with v 6= w; loops, which have two
coinciding endpoints, I(e) = {v, v} (these two kinds are ordinary edges); half edges, with
one endpoint, I(e) = {v}; and loose edges, which have no endpoint, I(e) = ∅. See Figure
A.1 for pictures of these four types.

Each type of edge, except a loose edge, has two possible orientations, as suggested by
Figure A.2.

A.1.1. What a gain graph is. [[LABEL 4.ggis]]
We are now ready to define a gain graph. The set of oriented links and loops of a graph

is ~E∗. This set contains two copies of each ordinary edge, with opposite directions. If e is
an edge in one direction, then e−1 denotes the same edge in the other direction.

Definition A.1. [[LABEL D:20100128: Gain Graph]] A gain graph is a graph whose links
and loops are labelled invertibly by elements of a group. More precisely, a gain graph Φ
consists of a graph ‖Φ‖, a group G, and a function ϕ : ~E∗ → G such that

(A.1) [[LABEL E : 20100128oriented]]ϕ(e−1) = ϕ(e)−1,

where e−1 denotes the oriented edge e with its direction reversed.
We often write, for a gain graph, Φ = (Γ, ϕ), (Γ, ϕ,G), or (V,E, ϕ), etc., according to

the needs of the situation; in particular, if we need to emphasize the gain group we call Φ a
G-gain graph.

We call ‖Φ‖ the underlying graph, G the gain group, and ϕ the gain function. The value
ϕ(e) is the gain of the (oriented) edge e.

By our definition, changing the gain group changes the gain graph. One can enlarge the
group without changing the gains; that will give a new gain graph, though the difference is
slight.
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Link

v

Half EdgeLoop Loose Edge

w

v v

Figure A.1. The four types of edge in a graph
[[LABEL F:20100128: edges]]

I call a function orientable, or invertible, if it satisfies Equation (A.1). I am usually relaxed
about how to write the gain function; for simplicity of notation I usually write ϕ : E → G
or ϕ : E∗ → G; but ϕ is always defined on oriented ordinary edges and is always inverted by
reversing the orientation; and it is never defined on half or loose edges.

Since ϕ is orientable, we must indicate (at least implicitly) the direction in which the gain
is taken. I use several notations for the gain of e in the direction from v to w, depending on
which is most clear in context; they all have the same meaning:

ϕ(e) = ϕ(e:vw) = ϕ(evw) = ϕvw(e) = ϕ(e:−→vw).
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Link
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v
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Figure A.2. The possible directions of an edge.
[[LABEL F:20100128: directed edges]]

The first of these is sufficient when we know the direction in which the gain is calculated,
as for instance in computing the gain of a walk (see later). Several of the notations actually
imply the direction of the edge, namely, e:vw, evw, and e:−→vw. Notice that the notations are
ambiguous for a loop; but that will almost never make any difficulty. (The reason for so
many notations is partly that the one I like best, e:vw, is the least well known and the least
immediately understandable, partly indecision, and partly that I have trouble remembering
which one I’m using at the moment, so I may switch back and forth.) In whatever notation,
we always have the inversion law (A.1), that is, ϕ(e:wv) = ϕ(e:vw)−1.
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A.1.2. Groups. [[LABEL 4.groups]]
We will write general gain groups multiplicatively. In the group G, 1 := 1G is the identity

element, unless (of course) the group is written additively. The conjugate of g by h is defined
as

gh := h−1gh for g, h ∈ G.

Some of the more important and common examples of gain groups are the two-element
group G = {+,−}, in which case Φ is a signed graph, and the trivial group G = {1}. Other
important gain groups are Z+, the additive group of integers, R∗ (or R×), the multiplicative
group of reals, the multiplicative and additive groups F ∗ and F+ of any field, and the finite
cyclic groups Zr or, isomorphically (but multiplicatively), the groups of complex rth roots of
unity.

A.1.3. The free group of edges. [[LABEL 4.freegroup]]
Another way to look upon a gain is as a homomorphism from a free group. Think of E∗

as the generators of a free group, F(E∗) (which for brevity I like to write FE). We interpret
a generator e as an edge in one orientation, and the free-group inverse e−1 as the same
edge in the opposite direction. Then a gain function can be treated as a homomorphism
ϕ : FE → G, since the values of ϕ on the generators, no matter what they happen to be,
determined the homomorphism. Everything works out nicely; especially, the gain of a walk
is the value ϕ(W ) of the homomorphism applied to the word in GE that expresses the walk.

This point of view is sometimes best, but usually I find the more direct interpretation of
gains, as a function on edges, to be more suitable.

A.2. Walk and circle gains. [[LABEL 4.walkcirclegains]]
We now introduce more notation, in order to be able to talk about balance, which is a

not-unexpected generalization of balance in a signed graph.

Definition A.2. [[LABEL D:20100128: Gain of a walk]] The gain of a walk is

ϕ(W ) := ϕ(e1)ϕ(e2) · · ·ϕ(vl),

where the walk is W = v0e1v1e2v2 · · · elvl, from v0 to vl.

According to this definition and the usual convention about an empty product, the gain
of a walk of length 0 is 1G.

The gain of a walk is invertible. Since W−1 = vle
−1
l vl−1 · · · e−1

1 v0,

ϕ(W−1) = ϕ(e−1
l )ϕ(e−1

l−1) · · ·ϕ(e−1
1 ) = ϕ(el)

−1ϕ(el−1)−1 · · ·ϕ(e1)−1 = ϕ(W )−1.

Recall that a trail is a walk with no repeated edges and a path is a walk without repeated
edges or vertices. A path or trail has a gain, as it is a walk. Recall also that a closed walk
begins and ends at the same vertex, i.e., it has v0 = vl, where l > 0 (although l = 0 is
allowed for a walk in general). The same applies to a closed trail or path (but remember
that a closed path, since v0 = vl, is technically not a path!). Finally, recall that a circle is
the edge set of a closed path.

Proposition A.1. [[LABEL P:20100128: Gain of a Circle]] The gain of a circle is well
defined up to conjugation and inversion.

Proof. Let W = v0e1v1 · · · elvl be a closed walk (vl = v0). Consider its gain, ϕ(W ). If we
started and ended our walk at v0, but traversed the circle in the opposite direction, the
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resulting gain would be ϕ(W−1) = ϕ(W )−1. If l > 1, we could also have started the walk at
a different vertex. Choose 0 < k < l, and define Wk := vkek+1vk+1 · · · elv0e1 · · · ekvk. Then

ϕ(Wk) = ϕ(ek+1)ϕ(ek+2) · · ·ϕ(el)ϕ(e1) · · ·ϕ(ek)

=
[
ϕ(e1) · · ·ϕ(ek)

]−1[
ϕ(e1) · · ·ϕ(ek)

][
ϕ(ek+1)ϕ(ek+2) · · ·ϕ(el)ϕ(e1) · · ·ϕ(ek)

]
=
[
ϕ(e1) · · ·ϕ(ek)

]−1[
ϕ(e1) · · ·ϕ(ek)ϕ(ek+1)ϕ(ek+2) · · ·ϕ(el)

][
ϕ(e1) · · ·ϕ(ek)

]
=
[
ϕ(e1) · · ·ϕ(ek)

]−1
ϕ(W )

[
ϕ(e1) · · ·ϕ(ek)

]
= ϕ(W )ϕ(e1···ek).

Therefore the gain of a circle is only defined up to conjugation and inversion. �

While the gain of a circle, or any closed walk, isn’t well defined, whether or not the
gain equals 1G is well defined, since the identity element is invariant under conjugation and
inversion in G.

Definition A.3. [[LABEL D:20100128: Neutral]] We call a walk W neutral if ϕ(W ) = 1G.

Notice that the gain of a walk (ignoring direction) is well defined up to inversion, but only
up to inversion, since it depends on the direction of the walk. The gain of a closed walk is
well defined up to inversion and conjugation—conjugation, because the gain is conjugated if
one changes the starting vertex; see Equation (A.2). Normally, though, a walk comes with
direction and initial vertex, so these potential ambiguities do not arise.

A.3. Balance. [[LABEL 4.ggbal]]
Now we come to the fundamental notion of gain graph theory.

Definition A.4. [[LABEL D:20100128: Balance]] An edge set S ⊆ E is balanced if every
circle C ⊆ S is neutral and S has no half edges. A subgraph is balanced if its edge set is
balanced.

In particular, a circle is balanced if and only if it is neutral. We write B(Φ) to denote the
set of balanced circles of Φ.

There is a difference between balance and neutrality. The word “neutral” refers only to a
walk, whereas the word “balanced” refers to an edge set (or subgraph). This is an important
distinction. A walk can be neutral but not balanced, and vice versa. It is balanced if its
underlying subgraph has only neutral circles, while it is neutral only when the product of
edge gains in the order the edges appear in the walk is the group identity, regardless of
whether its graph contains non-neutral circles.

The most obvious balanced gains are those which are identically 1. Write 1E for that gain
function; the gain graph is (Γ, 1E). This does not imply that the gain group is trivial; G
could be any group.

Definition A.5. [[LABEL D:20100128: Balanced Components]] Let b(Φ) denote the number
of connected components of Φ that are balanced and contain at least one vertex. (That is,
we exclude loose edges. A component that has a vertex is a vertex component ; a loose edge
is not a vertex component.)

Definition A.6. [[LABEL D:20100128: Contrabalance]] We call Φ contrabalanced if it con-
tains no neutral circles.
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Example A.1. [[LABEL X:20100128: Z3 Gain Graph]] This example is displayed in Figure
A.3. Here Φ is a graph with gain group Z3, the integers modulo 3 under addition. The
values of ϕ are given for each of the edges in the indicated direction. So ϕ(a) = ϕ(g) = 2
and ϕ(b) = ϕ(e−1) = 1, etc. Let W denote the closed walk a, b, c, d, e, f, g (where vertex
labels are omitted to streamline notatoin). Notice that,

ϕ(W ) = ϕ(a) + ϕ(b) + ϕ(c) + ϕ(d) + ϕ(e) + ϕ(f) + ϕ(g) = 0 ∈ Z3.

So W is a neutral walk. But ϕ(abcd) = 2, so the circle abcd is not neutral. Therefore
W is not balanced, and since ϕ(efg) = 1, W is in fact contrabalanced. However the set
S = {a, b, f} is balanced, since it contains no half edges and no circles (and consequently
no unbalanced circles). Finally since ‖Φ‖ is connected, and Φ is contrabalanced, its only
component is unbalanced, so b(Φ) = 0.

a

c

g

e

b

d

f
1

2

2

2

2

0
0

Figure A.3. A gain graph Φ with G = Z3. Gains are given for the indicated
direction of each edge.

[[LABEL F:20100128: Z3 Gain Graph]]

Notice that for any ‖Φ‖, if ϕ is identically 1G, then Φ is in most ways just like ‖Φ‖. In
particular B(Φ) = C(‖Φ‖), where C is the set of all circles in the underlying graph.

The next result is the fundamental characteristic of balanced circles.

Proposition A.2. [[LABEL P:20100128: Theta Graph]] No theta subgraph has exactly two
balanced circles.
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Proof. Given a theta graph, let P1, P2, P3 denote the three internally disjoint vw-paths. For
a proof by contradiction, assume that two circles are neutral. By choice of notation we may
assume that ϕ(P1P

−1
2 ) = ϕ(P2P

−1
3 ) = 1G, and ϕ(P1P

−1
3 ) 6= 1G. Now notice that

ϕ(P1P
−1
2 ) = ϕ(P1)ϕ(P2)−1 = 1G ⇐⇒ ϕ(P1) = ϕ(P2).

Similarly, ϕ(P2) = ϕ(P3). Consequently, ϕ(P1) = ϕ(P3). Therefore

ϕ(P1P
−1
3 ) = ϕ(P1)ϕ(P3)−1 = ϕ(P1)ϕ(P1)−1 = 1G,

a contradiction. Thus, no theta subgraph can have two neutral circles unless the third circles
is neutral as well. �

We’ll see more properties of balance in Section A.5 after developing the theory of switching
and potentials in Section A.4.

We end this section with two general notes. First, many interesting properties of gain
graphs don’t depend on the actual values of the gains; they only depend on the set of
balanced circles. These properties tend to be closely related to Proposition A.2. Second, we
don’t have a Harary-type structure theorem for balanced gain graphs as we did for signed
graphs. The nearest thing to such a theorem is (i)⇐⇒ (iii) in Proposition A.6, in which the
“structure” is a potential function which intrinsically depends upon the gain group.

2010 Feb 2:
Nathan Reff

A.4. Switching and potentials. [[LABEL 4.sw]]
Let Φ = (Γ, ϕ,G) be a gain graph with gain group G. A switching function (or selector)

is any function ζ : V → G. Switching the graph Φ (or the gain function ϕ) means replacing
ϕ by ϕζ , defined by

ϕζ(e:vw) = ζ(v)−1ϕ(e:vw)ζ(w),

giving us the gain graph Φζ = (Γ, ϕζ ,G). We reserve the notation ζ̄ for the inverse of values
of ζ, i.e., ζ̄(v) = ζ(v)−1. We call Φ1 and Φ2 switching equivalent, written Φ1 ∼ Φ2, when

there exists a switching function ζ such that Φ2 = Φζ
1. Notice that this entails equality—not

isomorphism—of the underlying graphs (in other words, ‖Φ1‖ = ‖Φ2‖). Notice also that

Φ2 = Φζ̄
1.

Proposition A.3. [[LABEL P:20100202sw equiv]] Switching equivalence is an equivalence
relation.

Proof. The proof is a good homework exercise. �

We say Φ1 is isomorphic to Φ2, written Φ1
∼= Φ2, if the gain groups are the same (not

isomorphic) and there exists a graph isomorphism θ : ‖Φ1‖ → ‖Φ2‖ which preserves gains—
in other words, ϕ2(θ(e)) = ϕ1(e) (which we can write θ ◦ ϕ2 = ϕ1). The switching class
of Φ, written [Φ] is the equivalence class under switching equivalence (note: not switching
isomorphism).

We define Φ1 and Φ2 to be switching isomorphic if there exists a switching function ζ such
that Φ2

∼= Φζ
1.

Proposition A.4. [[LABEL P:20100202 Sw pres Balance]] Switching preserves balance (and
imbalance). In other words, B(Φζ) = B(Φ).
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Proof. Let C = v0e1v1 . . . vl−1elvl, where vl = v0, be a circle, considered as a walk (not as a

subgraph or an edge set). Then ϕ(C) =
∏l

i=1 ϕ(ei) (remember that a walk has a direction;
this gain is the one corresponding to the implied direction). If ζ is a switching function, then

ϕζ(C) = ϕζ(e1)ϕζ(e2) · · ·ϕζ(el)
= [ζ(v0)−1ϕ(e1)ζ(v1)][ζ(v1)−1ϕ(e2)ζ(v2)] · · · [ζ(vl−1)−1ϕ(el)ζ(vl)]

= ζ(v0)−1ϕ(e1)ϕ(e2) · · ·ϕ(el)ζ(vl)

= ζ(v0)−1ϕ(C)ζ(v0)

= ϕ(C)ζ(v0),

a conjugate of ϕ(C). Thus, ϕζ(C) = 1 if and only if ϕ(C) = 1. �

What this means is that when we switch a gain graph we do not change anything at the
level of balanced circles. (And you might notice that switching conjugates the gains of any
closed walk W :

(A.2) [[LABEL E : 20100202walk]]ϕζ(W ) = ϕ(W )ζ(v0).

However, what the conjugating element is will depend not only on the order of edges in the
walk but on the vertex v0 where one chooses to start the walk.)

It is interesting that the gain remains unchanged under switching for any circle whose
gain lies in the center, Z(G), and not just when it is the group identity. Furthermore,
for such circles the gain, though it may depend on the direction, is independent of the
choice of initial vertex. Naturally, that includes all circles if the gain group is abelian; you
might guess (correctly) that sometimes abelian gains will be much more manageable than
nonabelian ones.

I want to mention a special kind of switching. Any group element g defines a constant
switching function, whose value is g on every vertex. Then ϕg(e) = [ϕ(e)]g; that is, switching
by g truly is conjugation—every gain is conjugated by g. (This is why I say switching
generalizes conjugation to gain graphs.) We can multiply a switching function by a constant
group element. For g ∈ G and a switching function ζ we have the identities

ϕζg = (ϕζ)g and ϕgζ = (ϕg)ζ .

Recall that an ordinary graph has no half or loose edges, and that Γ|S := (V, S) for any
edge set S—this is the restriction of Γ to S. I will write Γ|T for the restriction of Γ to the
edge set of T when T is a forest; in fact, sometimes I do think of T as an edge set, although
sometimes I have to think of it as a subgraph (and I hope the context will always make the
intention clear).

Lemma A.5 (Unique Balanced Extension). [[LABEL L:20100202uniquebal]] Given an or-
dinary graph Γ, a maximal forest T , and a gain function ψ : T → G for Γ|T . (Here we think

of T as an edge set.) Then there is a unique gain function ψ̂ on Γ such that ψ̂|T = ψ and Ψ̂
is balanced.

This means that, given any gains on a maximal forest, there is a unique balanced extension.

Proof. First we prove that a balanced extension of ψ to Γ, call it ψ̂, is unique if it exists.
MORE PROOF

To illustrate the proof see the following picture:
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[FIGURE]
Here CT (e) is a fundamental circle we want to be balanced in our extension. In other

words Ψ̂(CT (e)) = 1 ⇔ Ψ̂(eP ) = 1 ⇔ Ψ̂(e)Ψ̂(P ) = 1 ⇔ Ψ̂(e) = Ψ̂(P )−1. This tells us
exactly what gain to assign for e to give CT (e) as balanced. By uniqueness of inverses we

get the uniqueness of ψ̂ for free.
Now we take a step back and define a new gain function, ψ̂′, on Γ. Let Φ1,Φ2, . . . ,Φr be the

components of Φ. Root each Φi at some vertex ui. We define θ : V → G by θ(v) := ψ(Tuiv)

for v ∈ Vi, where Tuiv is the path in T from ui to v. Define ψ̂′ := 1θE. This gain function is
balanced by Proposition A.4.

Next, we prove that ψ̂|T extends ψ. Let e:vw ∈ T , and assume that v is closer to ui
than is w; in other words, v ∈ V (Tuiw). Then ψ̂′(e) = θ(v)−11θ(w) = ψ(Tuiv)

−1ψ(Tuiw) =

ψ(Tuiv)
−1ψ(Tuiv)ψ(Tvw) = ψ(Tvw) = ψ(e) = ψ̂(e). So, ψ̂′ extends ψ.

Finally, we prove that ψ̂′ is balanced. But this is immediate from Proposition A.4, because
ψ̂ ∼ 1E, which is the most elementary balanced gain function.

Since ψ̂′ is balanced and extends ψ, it must equal ψ̂ by uniqueness. Therefore, ψ̂ is a
balanced extension of ψ. �

A.5. Balance again. [[LABEL 4.ggbalagain]]
Now we can state and prove a list of properties equivalent to balance, similar to some of

those in Section II.A. A potential function for ϕ is a function θ : V → G such that for every
e ∈ E we have ϕ(e:vw) = θ(v)−1θ(w). Equivalently, ϕ = 1θE, or ϕθ̄ = 1E.

Theorem A.6 (Equivalents of Balance). [[LABEL T:20100202equivbal]] Let Φ be an ordi-
nary gain graph. The following properties are equivalent:

(i) Φ is balanced. [[LABEL T:20100202equivbal Bal]]
(ii) Φ ∼ (‖Φ‖, 1). In other words, ϕ ∼ 1E. [[LABEL T:20100202equivbal Sw]]
(iii) ϕ has a potential function. [[LABEL T:20100202equivbal Pot]]
(iv) For each v and w in V , every vw-path has the same gain. [[LABEL T:20100202equivbal

Path]]
(v) For each v and w in V , every vw-walk has the same gain. [[LABEL T:20100202equivbal

Walk]]

Proof. The method that seems to work best is not the elegant circular implication but a
chain of equivalences. I will prove that (i)⇐⇒ (ii)⇐⇒ (iii)⇐⇒ (v)⇐⇒ (iv).

Four implications are trivial or obvious. Trivial: (iv) =⇒ (v), since every path is a walk.
Obvious: (ii) =⇒ (i), by Proposition A.4 and the fact (obvious) that 1E is balanced. Also

obvious: (ii)⇐⇒ (iii), because ϕ ∼ 1E ⇐⇒ ϕζ = 1E for some ζ ⇐⇒ ϕ = 1ζ̄E for some ζ̄.
MORE TO COME

�

2010 Feb 4:
Simon Joyce

Before the proof of Theorem A.6 we prove some necessary lemmas.

Lemma A.7. [[LABEL L:20100204 edge gain is tree path gain]] Given a balanced gain graph
Φ and a maximal forest T of Φ, then ϕ(e:vw) = ϕ(Tvw) for any edge.

Proof. If e ∈ T , this is trivial, because e is the tree path Tvw. If e /∈ T , then the edges of
Tvw and e will form a circle in Φ. Let C be the closed path Tvwe

−1. Since Φ is balanced,
ϕ(C) = 1. Therefore ϕ(Tvw)ϕ(e)−1 = 1, or ϕ(e) = ϕ(Tvw). �
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Lemma A.8. [[LABEL L:20100204 any desired tree gain]] Given a gain graph Φ with gain
group G, and a maximal forest T of Φ, then for any gain function ψ : T → G there is
switching function ζ of Φ such that ϕζ |T = ψ.

Proof. Let Φi be the components of Φ and root each Φi at a vertex ui. Define a switching
function ζ of Φ by ζ(v) := ϕ(Tuiv)

−1ψ(Tuiv) for v ∈ Vi. Let e ∈ E(T ) with endpoints v and
w. Then,

ϕζ(e:vw) = ϕζ(Tvw) = [ψ(Tuiv)
−1ϕ(Tuiv)]ϕ(Tvw)[ϕ(Tuiw)−1ψ(Tuiw)]

= ψ(Tuiv)
−1[ϕ(Tuiv)ϕ(Tvw)ϕ(Tuiw)−1]ψ(Tuiw)

= ψ(Tvui)[ϕ(TuivTvwTwui)]ψ(Tuiw)

= ψ(Tvui)ψ(Tuiw)

= ψ(Tvw) = ψ(e). �

Proof of Theorem A.6. It is obvious by Proposition A.4 that (ii) implies (i) since if ϕ ∼ 1E
then Φ is balanced. To see that (i) implies (ii), first switch Φ by a switching function ζ so
that ϕζ |T = 1T where T is a spanning forest of Φ. Such a ζ exists by Lemma A.8. Then
ϕζ = 1E since ϕζ(e) = 1 for all e 6∈ T by Lemma A.7.

That (ii) and (iii) are equivalent is obvious since ϕ ∼ 1E if and only if ϕζ = 1E for some

ζ, or ϕ = 1ζ̄E.
Trivially (v) implies (iv), since every path is a walk.
To see that (iv) implies (v), let P be a vw-path in Φ. We want to show that for any

vw-walk W in Φ, ϕ(W ) = ϕ(P ). The proof is by induction on the length of W .
First assume v = w. So W is a closed vv-walk. Then P has length 0 so ϕ(P ) = 1. If

W has length 0, then ϕ(W ) = 1 = ϕ(P ). If W has length 1, it’s a loop , so by assumption
ϕ(W ) = 1. If W has length 2 or more, then it has an internal vertex z (which could be
repeated). Split W at one appearance of z into two subwalks, W1 and W2, so W = W1W2.
Then ϕ(W ) = ϕ(W1)ϕ(W2) = ϕ(W1)ϕ(W−1

2 )−1. By induction ϕ(W1) = ϕ(W−1
2 ) since these

are vz-walks and are shorter than W . Therefore ϕ(W ) = 1.
Now assume v 6= w. If W has no repeated vertices it is a path, so ϕ(W ) = ϕ(P ) by (iv).

Now assume W does have some repeated vertex z. Split W at two appearances of z into three
subwalks, Wvz, Wzz, and Wzw. Then W = WvzWzzWzw so ϕ(W ) = ϕ(Wvz)ϕ(Wzz)ϕ(Wzw).
But ϕ(Wzz) = 1 from the previous part, since Wzz is a closed zz-walk. Therefore ϕ(W ) =
ϕ(Wvz)ϕ(Wzw) = ϕ(WvzWzw). Since WvzWzw is a shorter vw-walk, we conclude by induction
that ϕ(WvzWzw) = ϕ(P ) and we’re done.

For (v) =⇒ (iii), let Φi be the components of Φ and root each Φi at a vertex ui. Define
the switching function θ by the formula θ(v) = ϕ(Wuiv), where v ∈ Vi and Wuiv is any walk
from the root ui to v. This is well defined since all uiv-walks have the same gain by (v).
Now evw is a vw-walk, and consequently ϕ(e) = ϕ(WvuiWuiw) for any walks Wvui and Wuiw

by (v). But,

ϕ(WvuiWuiw) = ϕ(Wvui)ϕ(Wuiw) = ϕ(Wuiv)
−1ϕ(Wuiw)

= θ(v)−1θ(w) = 1θ.

Therefore ϕ = 1θE, i.e., ϕ has the potential function θ.
The last thing to do is to show that (iii) implies (v). This is left to you as an (easy)

homework exercise. �
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[An example of a gain graph for list of examples.] A multiply signed graph has
gain group G = {+,−}k (or Zk

2) for some integer k ≥ 1. When k = 1 this is a signed graph,
as we’re used to. The nice property of this group for us is that it has exponent 2, that is,
every element is self-inverse. Therefore, every edge e satisfies ϕ(e−1) = ϕ(e), so orientation
of edges is unnecessary, as for signed graphs but not for other gain groups. Moreover, since
G is abelian, conjugation has no effect, so switching does not change the gains of closed
walks.

A result we had for signed graphs was that for two signed graphs Σ1 and Σ2 with the
same underlying graph Γ, then B(Σ1) = B(Σ2) if and only if Σ1 ∼ Σ2. However for any
two gain graphs Φ1 and Φ2 on Γ, having B(Φ1) = B(Φ2) does not imply that Φ1 ∼ Φ2. A
counterexample is given in Figure A.4. Here the gain group G = {+,−}2 for both Φ1 and
Φ2. Also B(Φ1) = B(Φ2). Every element in G is self inverse so the orientation does not
matter and since the gain group is abelian in this case, switching does not change the gains
of the circles. But the gains of the two unbalanced circles in both graphs are not the same
so Φ1 and Φ2 cannot be switching equivalant.

Figure A.4. B(Φ1) = B(Φ2) but Φ1 6∼ Φ2.
[[LABEL F:20100204swineq]]

A.6. Two essential parameters. [[LABEL 4.someparams]]
I want to mention here a crucial number and partition associated with an edge set in a gain

graph, that generalize those of signed graphs (Section II.C.1). The right time to treat them,
though, is not now, but in the next section where we perform the ultimate generalization;
so this is a quick sketch.

Let S ⊆ E; then

b(S) := the number of components of S that are balanced,

πb(S) := the family of vertex sets of components of S that are balanced,

where in both cases I mean to exclude loose edges; that is, I consider only components that
have vertices. When I say S here, I mean the spanning subgraph (V, S). (I’ll discuss this
more carefully in the next section.) Obviously, πb(S) is a partial partition of V , i.e., a
partition of a subset of V , and b(S) = |πb(S)|. If S has no balanced components, b(S) = 0,
then πb(S) = ∅, which is (!) the unique partition of the empty set.

2010 Feb 9:
Jackie
Kaminski
and
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Ruiz
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B. Biased Graphs

[[LABEL 4.bg]]
Recall that for a gain graph Φ, the set B(Φ) denotes the class of balanced circles. Important

aspects of Φ, especially the number of balanced vertex components b(Φ), depend only on the
class B, not on the actual gains. This motivates us to study combinatorial properties of B

that are independent of gains.

B.1. Basic definitions. [[LABEL 4.bgdef]]

Definition B.1. [[LABEL D:20100209 Biased Graph]] A biased graph is a pair Ω = (Γ,B),
where Γ is a graph and B ⊆ C(Γ) is such that no theta subgraph contains exactly two circles
of B. An edge set or subgraph of Γ is called balanced if every circle in it belongs to B and it
has no half edges. In particular, a circle is balanced if and only if it belongs to B; thus, we
call B the class of balanced circles of Ω.

We call Γ the underlying graph of Ω. We call any class B ⊆ C(Γ) that satisfies the theta-
graph requirement a linear class of circles. If Ω is a biased graph, we denote its underlying
graph by ‖Ω‖ and its balanced circle class by B(Ω).

I like to think of the ‘bias’ as the departure from balance, so that the more balanced circles
there are, the less ‘biased’ the graph is. Thus, a biased graph is completely unbiased when
it is balanced, and completely biased when it is contrabalanced (Definition D.1).

Since we know from Proposition A.2 that the class B(Φ) of balanced circles of any gain
graph Φ is a linear class (it satisfies the requirements for a biased graph), from any gain
graph Φ we obtain a biased graph 〈Φ〉 := (‖Φ‖,B(Φ)), whose underlying graph and set of
balanced circles are those of Φ. Biased graphs that arise from gain graphs are called gainable.
A gainable biased graph may have gains in many different ways; we’ll discuss this later on
[MAYBE], but you should notice that switching is a trivial way to change the gains without
changing the bias, due to Proposition A.4:

Proposition B.1. [[LABEL P:20100209 switching]] For any switching function ζ, 〈Φζ〉 =
〈Φ〉. �

All the concepts about connected components, balanced components, and their associated
vertex partitions and partial partitions that we had for signed graphs extend to biased graphs,
and since all gain graphs “are” biased graphs, they are included in these definitions. But
first we need to clarify one definition. Recall that, for S ⊆ E(Γ), Γ|S is defined as (V (Γ, S)).

Definition B.2. [[LABEL D:20100209 restricted to S]]
For S ⊆ E(Ω), the restriction of Ω to S (or Ω restricted to S), denoted by Ω|S, is the biased
graph on Γ|S with B(Ω|S) := {B ∈ B(Ω) : B ⊆ S}.

It’s obvious that 〈Φ〉|S = 〈Φ|S〉.
B.2. Balance. Balanced partial partition. [[LABEL 4.balance]]

Recall that a component of a graph, more precisely a vertex component, means a connected
component containing at least one vertex. So, loose edges do not count as components, but
isolated vertices do.

Definition B.3. [[LABEL D:20100209 components]] For a biased graph Ω), c(Ω) denotes the
number of (vertex) components of ‖Ω‖, and b(Ω) denotes the number of (vertex) components
that are balanced in Ω.
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Often, we want these numbers for Ω|S where S is any edge set in Ω. When Ω is clear from
context, we write c(S) as shorthand for c(Ω|S) and b(S) as shorthand for b(Ω|S).

The numbers c(S) and b(S) are associated with partial vertex partitions.

Definition B.4. [[LABEL D:20100209 partition]] Let S ⊆ E(Ω). The partition of V (Ω)
into vertex sets of components of Γ|S is denoted by π(Ω|S) = π(S). The partial partition of
V (Γ) into the vertex sets of balanced components of Γ|S is denoted by πb(Ω|S) = πb(S).

Obviously, c(S) = |π(S)| and b(S) = |πb(S)|. The partition π(S) is always a partition
of V (Ω), while πb(S) is a partition of V only when S is balanced; otherwise it partitions a
proper subset of V . Do not forget the special case, which will often arise, where there are
no balanced components; then πb(S) = ∅, the empty partition of ∅ ⊆ V .

The notations c(Ω), b(Ω), π(Ω), and πb(Ω) mean the same as c(E), b(E), π(E), and πb(E),
respectively, and we’ll use whichever is most convenient.

Definition B.5. [[LABEL D:20100209 edge induced]] For S ⊆ E(Ω), the edge-induced
subgraph, Ω:S, is Ω|S with isolated vertices deleted. We may write V (S) for the vertex
set of Ω:S

We end this section with a small remark that is essentially about matroid theory. Suppose
V is finite. Then |V |−b(Ω|S) = |V (S)|−b(Ω:S). If V is infinite we definitely can’t calculate
the left-hand side, but we can calculate the right-hand side whenever V (S) is finite. Readers
familiar with matroids will like to know that this is the rank function of a matroid (the
‘frame matroid’).

2010 Feb 9:
Thomas
Zaslavsky C. Combinatorialization

[[LABEL 4.combinator]]
Let’s talk philosophy for a moment.
Biased graphs are a ‘combinatorialization’ of gain graphs. We extracted from the prop-

erties of gain graphs a certain key feature that is independent of algebra (in this case, of
groups) and made it into the foundation of a new structural definition. While every gain
graph gives rise to a biased graph, we actually get more from biased graphs since there are
biased graphs that are not gain graphs.

This procedure of combinatorial abstraction has given rise to an enormous range of combi-
natorial structures. One that’s close to home (given the fact that there are matroids hidden
in the background of graphs and biased graphs) is matroids. Matroids are a combinatorial
abstraction of linear independence; but they are a much broader class of objects because
there are matroids that are not the dependence matroid of any set of vectors.

Another example, a relatively simple one, is Latin squares. From a modern point of
view (which is certainly not the one that led Euler to invent them), Latin squares are a
combinatorial abstraction of the multiplication table of a group. Latin squares in turn
suggest generalizing the algebraic definition of a group to loops and quasigroups. (That is
roughly the historical course of development.)

I can’t fail to mention a third example that has also generated a great deal of combina-
torial mathematics (under the name “incidence geometry”), namely, projective planes. A
projective plane (see Section III.A.1) exists with coordinates in any field and even any di-
vision ring—this is the algebraic or “analytic” definition, in the sense of analytic geometry.
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By extracting the incidence properties of a coordinatized plane one can give a synthetic def-
inition (as in synthetic geometry) which is essentially combinatorial and leads to additional
structures, the “non-Desarguesian planes”, that cannot be obtained algebraically. (That’s
my opinion. The algebra of division rings has been extended to “ternary rings” to cover
these planes, but ternary rings are so ill-behaved and intractable that they barely deserve
to be called algebraic. There is a tight connection amongst projective planes, Latin squares,
and ternary rings—but I digress.)

Feb 9:
Jackie
Kaminski
and
Amanda
Ruiz

D. Examples of Many Kinds

[[LABEL 4.x]]
There are all kinds of interesting biased graphs (if I do say so myself). Almost all of them

are gainable—but some are most conspicuously not. Some of them naturally appear as gain
graphs, but others are most natural as biased graphs. Let’s begin with a few examples of
the latter sort.

D.1. Abstract graphical examples. [[LABEL 4.xg]]

D.1.1. Simple bias.
A simply biased graph is a biased graph with no loose edge, no balanced loops or balanced

digons, and no vertex supporting more than one edge (which must be a half edge or an
unbalanced loop).

D.1.2. A plain old graph.
We can think of any graph Γ as a biased graph by defining B(Γ) := C(Γ), the set of all

circles. We write this bias of Γ as 〈Γ〉 := (Γ,C(Γ)), the biased graph where all circles are
balanced. This is one biased graph that is gainable in a huge number of ways, in particular
as 〈+Γ〉 or 〈1GΓ〉 for any group G, or indeed (Γ, ϕ) for any balanced gains in any group,
since all those are ways to make all circles are balanced.

(It is gratifying, but not a coincidence, that in the terminology of ‘bias’, 〈Γ〉 is ‘unbiased’.
I think of bias as a departure from balance.)

Still, 〈Γ〉 is an unsatisfying example of multiple ways to “gain” a biased graph. We know
from Theorem A.6(ii) that any gains that make (Γ, ϕ) balanced switch to identity gains, and
since once the only gain value is the identity the rest of the group is superfluous, we may as
well cut G down to a single element. In other words, the differences in the ways to put gains
on 〈Γ〉 are trivial. We’ll see a more substantial example of multiple gain functions later, but
here is one that is, at any rate, more substantial than a balanced biased graph.

D.1.3. Contrabalance.

Definition D.1. [[LABEL D:20100209 contrabalanced]] A biased graph is contrabalanced if
it has no balanced circles.

The contrabalanced biased graph with underlying graph Γ is (Γ,∅). This also has a large
number of gain functions, most of which are inequivalent under switching or any other simple
group operation—I leave the proof of this to the reader. [BUT CITE EXAMPLE OF
GAIN GRAPHS WITH SAME BALANCE FROM SIMON.]
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Proposition D.1. [[LABEL P:20100209 contrabalanced]] If Ω is contrabalanced, it has gains
in some group. If E is finite, Ω has gains in a finite group, in fact, in any sufficiently large
finite group.

Proof. I leave the proof to the reader—it should be fun. A couple of hints: For the first two
statements, think of the edges as generators of a group (that’s the free-group homomorphism
viewpoint on gains). The third statement is more challenging; if you get stuck, consult Gagola
(1999a). �

D.1.4. Fullness.
Many of the constructions from earlier chapters still apply. For instance, by Φ• or Ω• we

mean Φ or Ω with a half edge added to each vertex. Since half edges don’t receive gains,
there is no need to consider what gain to assign to the new half edges.

Definition D.2. [[LABEL D:20100209 full]] We say Ω is full if every vertex supports an
unbalanced edge, that is, an unbalanced loop or a half edge.

By Ω◦ we mean Ω with an an unbalanced loop adjoined to every vertex that doesn’t
already have an unbalanced edge. This is different than Ω• , where you add a half edge or
unbalanced loop to every vertex.

D.2. Group and group-subset expansions. [[LABEL 4.xgg]]
Now we turn to some examples that are defined in terms of gains.
[THIS SECTION IS DUPLICATED LATER.]

Example D.1. [[LABEL X:20100209 pm gamma]] A nice example is 〈±Γ〉, the biased graph
of ±Γ. Recall that ±Γ := +Γ ∪ −Γ, i.e., Γ with each edge replaced by a pair of parallel
edges, one with a + sign and one with a − sign (Section A.2).

A generalization of ±Γ to groups with more than two elements is the ‘group expansion’.

Definition D.3. [[LABEL D:20100209 group expansion]] For a group G and a graph Γ, the
the group expansion of Γ, more precisely its G-expansion, is the gain graph GΓ whose vertex
set is V (Γ) and in which each ordinary edge (loop or link) of Γ is replaced by |G| edges
having all possible gains in G. That is, for each ordinary edge e, each g ∈ G is the gain of
one of the edges replacing e (in a fixed direction; which direction doesn’t matter). Formally,
E(GΓ) := G×E(Γ); an edge of the expansion is written (g, e) or more concisely ge, and the
gain of this edge is g.

Since G is closed under inversion the choice of direction of e is only due to the necessities
of notation. By our convention about gains, (g, e) is the same edge as (g−1, e−1). The fact
that G−1 = G means that we get the same edges no matter which orientation we give to e.
We can perform the same construction with any self-inverse subset of the group.

Definition D.4. [[LABEL D:20100209 subset expansion]] Let A ⊆ G such that A−1 = A.
The A expansion (or subset expansion) of Γ is the gain graph AΓ on vertex set V (Γ) in which
each ordinary edge of Γ is replaced by |A| edges so that each g ∈ A is the gain of one of the
edges replacing e. Formally, E(AΓ) := A× E(Γ).

The most trivial example is 1GΓ, in which case 〈1GΓ〉 = 〈Γ〉 = (Γ,C(Γ)).
We require A = A−1 so we need not specify an orientation of Γ in order to know which

edges appear with which gains in the expansion. We can generalize even further to an
arbitrary subset of G if we orient Γ first.
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Definition D.5. [[LABEL D:20100209 arbitrary subset expansion]] For any A ⊆ G and an

arbitrary orientation ~Γ of Γ, the A expansion (or subset expansion) of ~Γ is the gain graph

A~Γ on vertex set V (Γ) in which each edge ~e = e: ~vw in ~Γ becomes the family {g~e : g ∈ A}
of edges in A~Γ whose gains are ϕvw(g~e) = g and ϕwv(g~e) = g−1. Once again, formally

E(A~Γ) := A× E(~Γ).

If V = [n] and we don’t explicitly specify an orientation, we will assume ~Γ has edges

oriented from lower to higher vertices, that is, e:~ij where i ≤ j.

Example D.2. [[LABEL X:20100209 Group]] Figure D.1 shows a group expansion of K3. If
the circle with the labeled gains is balanced then ghi−1 = 1G, in other words gh = i. Notice
that the directions on the edges make a difference here.

g

v
1

v
2

v
3

h

i

Figure D.1. A group expansion of K3.
[[LABEL F:20100209 Group]]

Proposition D.2. [[LABEL P:20100209 determined group]] Let G be a group and n ≥ 3.
Then the biased graph 〈GKn〉 determines G.

Proof. I leave this as an exercise to the reader. It is not trivial to give a complete proof,
but not hard if you persist. (Example D.2 contains a hint.) The key here is that for any
path in GKn (of length ≥ 2) there exists a unique edge that closes the path into a balanced
circle. �

The proposition certainly isn’t true for any graph, but only for Kn, or any graph that
contains K3 as a subgraph. Notice that it doesn’t say you can recover the gain graph GKn

exactly, including the gains of all edges (which is obvious, since switching changes gains but
not bias), just that you can recover the gain group G.
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D.3. Gain graphs from geometry. [[LABEL 4.xgeom]]
A kind of gain graph that is popular in combinatorial geometry (although hardly anyone

working with the geometry knows of gain graphs!) is an integral gain graph—whose gain
group is G = Z+, the set of integers under addition—of a certain symmetrical form. Let
A = {0,±1}, or more generally, A = [−l, l]Z := {−l,−(l−1), . . . , 0, . . . , l−1, l} where l ≥ 0.
This can also be generalized with A = {±1} or with A = ±[l] = {−l, . . . ,−1, 1, . . . , l}. The
gain graph we want is AKn, which is well defined since A is symmetric (i.e., closed under
group inversion) so there is no need to specify directions on the edges Kn.

The Catalan gain graph {0,±1}Kn is associated with the Catalan arrangement of affine
hyperplanes in An(R), defined by

Cn := {xj = xi, xj = xi ± 1 : i 6= j}.
(The edge c~ij corresponds to the hyperplane xj = xi + c.) A related arrangement is the
hollow Catalan arrangement defined by

C◦n := {xj = xi ± 1 : i 6= j},
corresponding to the gain graph {±1}Kn. As a reminder of former notation, observe that
Cn = C◦n ∪ H[Kn]. (The lattice of flats, L(Cn), can be thought of as the semilattice of
composed partitions of [n]. For readers unfamiliar with composed partitions—that is, all
readers—it should be enough to think of them as partitions with some additional structure
that we’ll ignore here.)

Another important geometrical example is the Shi gain graph {0, 1} ~Kn, which is associated
with the Shi arrangement of hyperplanes, the set

Sn := {xj = xi, xj = xi ± 1 : i < j} = H[Kn] ∪ S◦n

of hyperplanes in An(R). A related arrangement is S◦n, the hollow Shi arrangement, given by

S◦n := {xj = xi ± 1 : i < j},
whose gain graph is {1} ~Kn.

Let’s illustrate these arrangements and gain graphs for K3.

Example D.3. [[LABEL X:20100209 K 3]] Figure D.2 shows {0,±1}K3, the graph for the
Catalan arrangement C3. The indicated edge is 1e12, which we could also call −1e21. (The

difference is only in the reference orientation of the edge.) Figure D.3 shows {0, 1} ~K3, the
gain graph of the Shi arrangement S3. In both cases the group operation is addition in Z.

2010 Feb
11:
Nathan Reff

D.4. An example with no gains. [[LABEL 4.nogains]]

Example D.4. [A biased graph that has no gains][[LABEL X:20100211 biasg with no gains]]
In the graph of Figure D.4, let

B :=
{
abcd and any quadrilateral that has exactly two edges from {a, b, c, d}}.

We’ll see that this biased graph cannot be obtained from any gain function.
The first step is a simple proposition about any biased graph Ω.

Proposition D.3. [[LABEL P:20100211baldigons]] If ef is a balanced digon in Ω, and if C
is a circle such that e ∈ C, f /∈ C, then C is balanced ⇐⇒ (C \ e) ∪ f is balanced.
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Figure D.2. The gain graph for the Catalan arrangement C3.
[[LABEL F:20100209 Catalan]]
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Figure D.3. The gain graph for the Shi arrangement S3.
[[LABEL F:20100209 Shi]]

Proof. This is another homework exercise. Hint: Think about the theta-graph property of a
biased graph. �
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Figure D.4
[[LABEL F:20100211: biasedgnogains]]

This is why balanced digons are trivial and we don’t need or want them in our example. In
the example we can choose B to be any of the quadrilaterals such that no two quadrilaterals
in B have three common edges. Then (Γ,B) will be a biased graph.

Proof. Two quadrilaterals that have differences in at least two edges do not form a theta
graph. This is why our example works. �

If B contains only quadrilaterals which have an even intersection with abcd then B is a
linear class (it satisfies the theta condition). (Proof: Homework! This is not quite trivial.)

Suppose (Γ,B) has gains. Switch the gains so a, b, c, d have gain 1. (For simplicity I’ll
use the same letter for the edge and its gain, the former in italic and the latter in Fraktur.)
Since abcd is balanced and abgh is balanced, gh = 1. Because efcd is also balanced, ef = 1.
Therefore efgh = 1, so efgh is balanced. However, we assume efgh /∈ B. The conclusion is
that (Γ,B) cannot have gains.

Thus, there are biased graphs not derived from gain graphs; biased graphs are a strict
generalization of gain graphs.

This example works if abcd, abgh, and efcd are all in B but efgh /∈ B, regardless of what
other quadrilaterals may be balanced (subject to the theta-graph condition, of course). So
it is really several examples of biased graphs without gains.

D.5. Circuits. [[LABEL 4.circuits]]
A kind of biased graph that is important not so much in itself but as a subgraph within a

biased graph (including gain graphs) is a circuit. Actually, there are two distinct families of
circuits: the frame circuits and the lift circuits. The two families overlap, but the difference
is very important.

Example D.5. [[LABEL X:20100211 biased subgraphs]] Figure D.5 shows some important
biased graphs. Note that half edges count as unbalanced loops.

The two kinds of circuit are very much like the frame and lift circuits of signed graphs,
but there is the extra type, the contrabalanced theta, which cannot exist in a signed graph
because the gain group is just too small. (“Too small” means order 2. Already order 3 is
not too small!)

16 Feb
2010:
Simon Joyce
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Bal. Balanced circle

Contrabalanced θ graph
(no balanced circle)

Contrabalanced tight handcuff,
tight bracelet, figure eight

Bal. Balanced circle

Contrabalanced θ graph
(no balanced circle)

Contrabalanced tight handcuff,
tight bracelet, figure eight

Contrabalanced loose handcuff Contrabalanced loose bracelets

Frame circuits Lift circuits

Figure D.5
[[LABEL F:20100211: frameandliftcircuits]]

D.6. Balloons. [[LABEL 4.balloons]]
An unbalanced frame circuit that is not a theta graph is made by pasting together two

unbalanced circles (or half edges) with tails (of length not less than 0). These half handcuffs
are significant structures in their own right, which appear in many constructions and proofs.

Definition D.6. [[LABEL D:20100216Balloon]] A balloon is a subgraph of a biased graph
composed of an unbalanced circle or half edge and a path (called the string) such that the
first vertex of the path is incident with a vertex in the circle of half edge (called the tie) and
none of the edges in the path are contained in the unbalanced circle (or half edge, which is
obvious). The last vertex in the path is called the tip of the balloon.

Figure D.6
[[LABEL F:20100216balloons1]]

Two examples of balloons are given in Figure D.6. Suppose you have a balloon in a biased
graph with minimum degree 2. If you extend the string until you either return to a vertex in
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the balloon or the extended string or end the extended string in a half edge, then there is a
frame circuit contained in this subgraph, since the extended balloon will contain a balanced
circle, a contrabalanced theta graph, tight handcuffs, or loose handcuffs. If the extension
returns to the original circle, other than at the tie, then you’ve formed a theta graph, which
is contrabalanced or contains a balanced circle (see the red extension in Figure D.7). If the
extension returns to the original string, possibly at the tie, you’ve formed a handcuff, which
is contrabalanced or contains a balanced circle (see the blue extension in Figure D.7). If
the extension returns to the extended string or ends with a half edge, you’ve also formed a
handcuff (see the green or dashed extension in Figure D.7).

Figure D.7
[[LABEL F:20100216balloons2]]
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D.7. Group expansions and biased expansions. [[LABEL 4.expansions]]
Group and biased expansions are a complicated kind of example that have a rich theory

of their own. Group expansions generalize the signed expansion of a graph, ±Γ, to arbitrary
groups; they were inspired by Dowling lattices (Dowling 1973b), which correspond to com-
plete graphs. Biased expansions are the combinatorial abstraction of group expansions, just
as biased graphs are the combinatorialization of gain graphs. Biased expansions are related
to group expansions in the same way Latin squares are related to groups; indeed, biased
expansions correspond to the higher-dimensional Latin squares called “Latin hypercubes”
(see Denes and Keedwell, Latin Squares and Their Applications [ADD DETAILS]), but
are even more general (see Zaslavsky 2006a).

D.7.1. Group expansions. [[LABEL 4.gx]]
[DUPLICATES EARLIER SECTION in 20100209kaminskiruiz.tex.]
Assume that Γ is a graph with no loose or half edges. We define the expansion graph

GΓ := (V,G × E) and call Γ the base graph. The endpoints for the edge (g, e) are just the
endpoints of e. The gain of (g, e:vw) is g = ϕGΓ(g, e:vw).

Example D.6. [Group expansions of K3][[LABEL X:20100211 Eg group expansions]] In
Figure D.8 we have K3 with two group expansions ±K3 and S3K3. Note that for S3K3 only
four edges are actually labelled.

Example D.7. [S3C4][[LABEL X:20100211 bal circ property of ge]] In Figure D.9 we have
the group expansion S3C4. Observe the following interesting property about group expan-
sions and circles of the graph. Consider the path

W := v1[(321)e12]v2[(13)e23]v3[1S3e34]v4
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1S3e12
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Figure D.8. (a) K3, (b) ±K3, (c) S3K3 (with only four edges labeled).
[[LABEL F:20100211: groupexpexamples]]

(321)e12

(13)e23

1S3
e34

(23)e41

v1 v2

v3v4

Figure D.9. S3C4.
[[LABEL F:20100211: C4example]]

in the group expansion S3C4 (colored red in Figure D.9). Since there is exactly one edge from
v4 to v1, for each element of the gain group S3 there must be a unique edge ge41 ∈ S3 × E
that completes a balanced circle in the group expansion S3C4. In other words, W ∪ ge41

will be balanced. The edge in our example is (23)e41, drawn as a dashed line in Figure D.9.
Multiplying from left to right, the product is (321)(13)1S3(23) = 1S3 , so W ∪ (23)e41 is a
balanced circle.

It seems that with our construction there should be some sort of “projection” from the
expansion graph to the base graph. This is true. In fact, it is still true if we consider
something called a “biased expansion”.

D.7.2. Biased expansions. [[LABEL 4.bx]]
Suppose Γ is an ordinary graph. A biased expansion of Γ is a biased graph Ω together

with a graph homomorphism p : ‖Ω‖ → Γ, called the projection, that is surjective, is the
identity function on V , and has the property that, for any cycle C in Γ, any e ∈ C, and any
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path P̃ in Ω that projects onto C \ e, there exists a unique ẽ ∈ p−1(e) such that P̃ ∪ ẽ is
balanced. We call p−1(e) the fiber over e.

Because p is the identity on V and is one-to-one on E(P̃ ), p necessarily projects tP
isomorphically onto C \ e. Thus, P̃ is a path simply because it contains only one edge for
each edge of C \ e and because C \ e is a path.

Example D.8. [Projection for group expansions][[LABEL X:20100211 Eg group expan-
sions]] In Figure D.10 we have an ordinary graph Γ and its group expansion S3Γ. To

v1

v2

v3

e12 e23

e31

v1

v2

v3

(321)e12 (13)e23

f31

S3Γ

p

(23)e31

(23)f31

Γ S3Γ
Figure D.10. Γ and its group expansion S3Γ.

[[LABEL F:20100211: gammaexample]]

visualize how we defined the map p consider the following two circles in Γ:

C1 = v1e12v2e23v3e31v1 and C1 = v1e12v2e23v3f31v1

And consider the path P = C \ e31 = C \ f31 (drawn red in Γ of Figure D.10). Lifting P
to the expansion graph S3Γ we pick some path P̃ that projects onto P . For example let
P̃ = v1[(321)e12]v2[(13)e23]v3 (drawn red in S3Γ of Figure D.10). Now there exists a unique
element ẽ31 ∈ p−1(e31) such that P̃ ∪ ẽ31 is a balanced circle. This edge ẽ31 = (23)e31 is

drawn in Figure D.10 as a dashed line. Similarly we have the unique element f̃31 = (21)f31 ∈
p−1(f31) which makes P̃ ∪ f̃31 a balanced circle.

Proposition D.4. [[LABEL P:20100211fiber]] If Γ is connected, every edge fiber p−1(e) has
the same cardinality.

Proof. A homework exercise. �

Proposition D.5. [[LABEL P:20100211bxdigons]] If ef is a digon in the base graph Γ, then

there exists a unique pairing (i.e., bijection) ψ : p−1(e) → p−1(f) such that ẽf̃ is balanced

⇐⇒ f̃ = ψ(ẽ).

Proof. A homework exercise. �

Example D.9. [Biased expansion of K3][[LABEL X:20100211 biasedexp of k3]] If m =
|p−1(e)|, sometimes we may use the notation Ω = mK3 to remind us that Γ = K3. Also we
may use the notation ‖Ω‖ = mK3 as the underlying graph of the biased expansion of K3. In
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× b1 b2 . . . bm

a1 c? c? . . . c?

a2 c? c? . . . c?

...
...

...
. . . ?

am c? c? . . . c?

edge in Ẽ31 that makes a balanced circle with a2 and b2.

Ẽ12

Ẽ31

Ẽ23

v1

v2

v3

a1

a2

am

b1

b2

bm

c1

c2

cm

(i) (ii)

Figure D.11. (i) Biased expansion Ω = m ·K3, (ii) multiplication table of m ·K3.
[[LABEL F:20100211: biasexp latinsq]]

Figure D.11 we see the biased expansion Ω = mK3. We label the edges of from vertex v1 to v2

as Ẽ12 = {a1, a2, . . . , am}, the edges of from vertex v2 to v3 as Ẽ23 = {b1, b2, . . . , bm} and the
edges of from vertex v3 to v1 as Ẽ31 = {c1, c2, . . . , cm}. Now we can set up a multiplication
table as follows (see Figure D.11). the product of aj ∈ Ẽ12 and bk ∈ Ẽ23 is some edge

c? ∈ Ẽ31 which makes a balanced circle with aj and bk. From this construction we have the
following theorem.

Theorem D.6. [[LABEL T:20100211bxk3]] The multiplication table is a Latin square and
is the multiplication table of mK3 where m is the order of the Latin square.

We say the Latin square is well defined (from mK3) up to parastrophe, meaning it is well
defined up to isotopy (permuting rows, columns, or names) and conjugation (changing roles).
We can think of a biased expansion as a generalized latin square.

Because of this nice connection between biased expansions and Latin squares we can now
say that biased graphs are indeed a strict generalization of gain graphs.

Corollary D.7. There exist biased expansions that are not group expansions.

Proof. There exist Latin squares that are not equivalent (technically, not isotopic, or more
subtly, not parastrophic) to a group multiplication table (that is, a “Cayley table” of a
group). �

Example D.10. [[LABEL X:20100211 dlattice]] The full group expansion (GKn)• gives the
rank n Dowling lattice of the group G (Dowling 1973b). Specifically, the Dowling lattice
Qn(G) consists of the edge sets of fGK•n that are closed (see Section IV.??), ordered by set
inclusion.

E. Minors

[[LABEL 4.minors]]
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A minor, as always, is a contraction of a subgraph. And, as usual, the difficult part of the
concept is contraction.

E.1. Subgraphs and deletion. [[LABEL 4.deletion]]
We already discussed what a subgraph is of a gain graph or a biased graph: the subgraph

simply inherits the structure of the original.

E.2. Contraction. [[LABEL 4.contraction]]
Technically, one can say the same for contraction. The complication is in the way the

structure passes to the contraction.

E.2.1. Contraction for gain graphs. [[LABEL 4.ggcontraction]]
For a gain graph Φ we will define how to contract an arbitrary edge set S ⊆ E(Φ), rather

than starting with the special case of contraction of a single edge as we did in Chapter II.
As with signed graphs, how we contract balanced components will be different from how we
contract unbalanced components.

Let Bi be the balanced components of S, let Vi := V (Bi), and let

V0(S) := {vertices of unbalanced components of S} = V (S) \
⋃

Vi.

To contract S, first we switch so the edges of each balanced component have identity gain.
Now contract each balanced component to a single vertex as you would normally. Then
delete all vertices in V0 and all remaining edges of S. This may create some number of half
and loose edges.

Formally, Φ/S = (V (Φ/S), E(Φ/S), ϕΦ/S), where V (Φ/S) := πb(S) = {V1, . . . , Vk} (with
k = b(S)) and E(Φ/S) := E \ S. Each edge e ∈ E \ S is incident to Vi ∈ Φ/S once for each
endpoint of e that is in Vi in Φ. Contractions that give loops and half edges are shown in
Figure E.1. Let ζ be the switching function we applied so we could contract the balanced
components of S. We define ϕΦ/S = ϕζ(e) for e ∈ E∗(Φ/S) := {ordinary edges in Φ/S}. If
the gain of e:vw is from v to w in Φ, then its gain is from Vi to Vj in Φ/S where v ∈ Vi and
w ∈ Vj.

Figure E.1
[[LABEL F:20100216halfloop]]

An example of a gain graph contraction is shown in Figure E.2. The graph being contracted
is Φ and the gain groups is G3. Here the red edges are being contracted. The balanced
components are circled in blue. The vertex switches are also given that make all the edge
gains in each balanced component identity.
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Figure E.2
[[LABEL F:20100216gaincontraction1]]

Is there a rational explanation of this complicated procedure? Here is the Gestalt of gain
graph contraction (as Professor Rota would say13). Think of each vertex vi as representing
a variable xi. Then an edge e:vivj with gain g corresponds to the equation xj = xig. A
switching function ζ changes the variable xi to xiζ(vi). Switching e:vivj to have identity
gain ought to make xiζ(vi) = xjζ(vj). Since the switched edge gain is ζ(vi)

−1gζ(vj), we
should have xiζ(vi)ζ(vi)

−1gζ(vj) = xigζ(vj) = xjζ(vj) so this works out. If we can switch so
all the edges in a component of some subset of the edges have identity gain, then it makes
sense that we should be able to treat this component as a single vertex, or variable, since all
the variables in such a component are necessarily equal.

Since the definition involves an arbitrary choice of switching function, we must—as we did
for signed graphs—ask in what sense the contraction of a gain graph is well defined.

Proposition E.1. [[LABEL P:20101216 Gain contractions are switching equiv]] Given a
gain graph Φ and S ⊆ E(Φ):

(i) Any two contractions Φ/S are switching equivalent.
(ii) Any switching of Φ/S is a contraction of Φ.

This proposition means: (i) the contraction Φ/S is well defined up to switching, since
[Φ/S] is a well defined switching class, but (ii) there is no more refined characterization,
since Φ/S could be any member of the switching class.

Proof. We may assume by switching that the edges of the balanced components of Φ|S have
identity gain. Let Vi be the balanced vertex components of Φ|S. These will be the vertices
of Φ/S.

For Part (i), let ζ be a switching function of Φ such that all the edges of of the balanced
components still have identity gain in Φζ so that we can contract by S. Let e:vw be an edge
of S in a balanced component. Notice that ζ(v) = ζ(w) since this edge still has identity

13Combinatorics: The Rota Way, Joseph P.S. Kung and Catherine Yan, Cambridge University Press.
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gain after switching. It follows that for v, w ∈ Vi, a balanced vertex component of Φ|S, then
ζ(v) = ζ(w) since the balanced components are connected.

Now define a switching function ζ ′ of Φ/S that is a restriction of ζ such that ζ ′(Vi) = ζ(v)
for some v ∈ Vi. This is well defined by the previous observation. Then (Φ/S)ζ

′
= Φζ/S

since ϕΦζ/S(e) = ϕ(Φ/S)ζ′ (e) for any edge in E \ S.

For Part (ii), let ζ be a switching function of Φ/S. Define a switching function ζ̂ on Φ that

is an extension of ζ such that for v a vertex of Φ, ζ̂(v) = ζ(Vi) where v is in the balanced

vertex component Vi of Φ|S. Notice that the edge gains of each balanced component of Φζ̂ |S
are still the identity. Then Φζ̂/S = (Φ/S)ζ since every edge in E(Φζ̂) \ S has the same gain
as in (Φ/S)ζ . �

2010 Feb
18:
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Kaminski
and
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Ruiz

In defining contraction of a gain graph we have some freedom of choice in how we switch
to contract. However, given a particular edge set S, regardless of which switching function
we use to give every balanced component of Φ|S all-identity gains, all contractions Φ \ S
are switching equivalent. In other words, contraction is really defined on switching classes
[Φ] of gain graphs rather than on individual gain graphs, and its result is really a switching
class [Φ/S], not an individual gain graph. This observation is made precise in the following
proposition.

Proposition E.2. [[LABEL P:20100218: contraction on switching classes]]

(i) Any two contractions Φ/S are switching equivalent, so [Φ/S] is a well defined switching
class.

(ii) Any switching of a contraction Φ/S is another contraction Φ/S. In other words Φ/S
is well defined only up to switching classes and not any more narrowly.

2010 Feb
16:
Simon Joyce E.2.2. Contraction for biased graphs. [[LABEL 4.bgcontraction]]

For a biased graph Ω and S ⊆ E(Ω), let Bi be the balanced components of S and Vi =
V (Bi). We define Ω/S := (V (Ω/S), E(Ω/S), and B(Ω/S)), where V (Ω/S) = πb(S) =
{V1, . . . , Vk}, where k = b(S) and E(Ω/S) = E \ S. e ∈ Ω/S is incident to Vi once for each
endpoint of e that’s in Vi in Ω. B(Ω/S) = {C ∈ C(Ω/S)|C = C ′ \ S for some C ′ ∈ B(Ω)}.
Any C ′ of this form must be in Ω \ V0(S).

Proposition E.3. For a biased graph Ω and S ⊆ E(Ω), an equivalent formulation of the
balanced circles in Ω/S is that

B(Ω/S) = {C ∈ C(Ω/S) | ∀ C ′ ∈ C(Ω) such that C = C ′ \ S and C ′ ∈ B(Ω)}.
The proof is a nontrivial exercise.
An example of biased graph contraction is given in Figure E.3. If C ′1 is balanced in Ω,

then C1 is balanced in Ω/S. C ′2 becomes two circles in Ω/S. The balance or unbalance of
these circles does not depend on the sign of C ′2, but on the signs of the other two circles in
the theta subgraph formed by C ′2 and the red path in B4. The other circles are lost in the
contraction since they have vertices in V0.

Now suppose Ω = 〈Φ〉. We want to show 〈Φ/S〉 = Ω/S. Clearly ‖Φ/S‖ = ‖Ω/S‖, so
we only need to show a circle is balanced in Ω/S if and only if it has identity gain in Φ/S.
Before we prove this result we need the following lemma.
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Figure E.3
[[LABEL F:20100216biasedcontraction]]

Lemma E.4. [[LABEL L:20100216 circles in gain graphs]] Given a gain graph Φ and
S ⊆ E(Φ). A circle C in ‖Φ/S‖ has the form C = e1e2 · · · el, where there is a circle
e1P1e2P2 · · · elPl in ‖Φ‖, with each Pi a path in some balanced component Bi of Φ|S.

Proof. Since every vertex of Φ/S corresponds to a balanced vertex set Vi in Φ|S, there will
be a path Pi ∈ Bi from the endpoints of ei and ei+1 that are in Vi since Bi is a connected
component as shown in Figure E.4. So e1P1e2P2 · · · elPl forms a circle in ‖Φ‖. �

Figure E.4. C in Φ/S on the left and a circle with the edges of C in Φ on the right.
[[LABEL F:20100216circleblowup]]

Proposition E.5. [[LABEL P:20100216Gain and biased contraction agree]] Given a gain
graph Φ and S ⊆ E(Φ). A circle C in 〈Φ〉/S is balanced if and only if C is balanced in
〈Φ/S〉.
Proof. Let Ω := 〈Φ〉 and let C be a balanced circle in Ω/S. Let C ′ be a circle in ‖Φ‖ that
exists by Lemma E.4. There is a switching function ζ of Φ such that the paths in C ′ have
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identity gain since each path is contained in a balanced component. Then,

ϕΦ/S(C) = ϕΦ/S(e1)ϕΦ/S(e2) · · ·ϕΦ/S(el)

= ϕζ(e1)ϕζ(e2) · · ·ϕζ(el)
= ϕζ(e1)ϕζ(P1)ϕζ(e2)ϕζ(P2) · · ·ϕζ(el)ϕζ(Pl)
= ϕζ(C ′).

It follows that ϕ(C) = 1 ⇐⇒ ϕ(C ′) = 1. So C is balanced in Ω/S if and only if C has
identity gain in Φ/S. �
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E.3. Minors. [[LABEL 4.minorsminors]]
Now that we have defined subgraphs and contraction on gain graphs and biased graphs,

we will spend some time proving an essential property of their relationship.

Definition E.1. [[LABEL D:20100218: minor]] A minor of a gain graph or biased graph is
a contraction of a subgraph.

Theorem E.6. [[LABEL T:20100218: minor of minor]]

(i) Any sequence of taking subgraphs and contracting edge sets in a gain graph Φ results in
a minor of Φ.

(ii) Any sequence of taking subgraphs and contracting edge sets in a biased graph Ω results
in a minor of Ω.

More simply stated, a minor of a minor is a minor.
Usually we need this theorem for gain graphs, but it is true of all biased graphs; it would

be a shame (and foolish) not to prove it for biased graphs in general. We do need separate
proofs for biased graphs and gain graphs, since a proof for biased graphs does not give the
information on the contracted gains that is needed to have the theorem for gain graphs,
while on the other hand, since there are biased graphs that aren’t gain graphs, it certainly
won’t suffice to prove the gain-graph version only.

Still, because the proof for biased graphs is more difficult, this is a fine example of how
useful it is to have gains and switching. “Switching makes the proof go smoother!”

The essential part of the proof of Theorem E.6 is to prove that a contraction of a contrac-
tion is a contraction. This fact is expressed by the following two lemmas.

Lemma E.7. [[LABEL L:20100218: gain]] If S, T are disjoint subsets of E(Φ), then (Φ/S)/T
and Φ/(S ∪ T ) are the same, up to vertex labels and switching equivalence.

Lemma E.8. [[LABEL L:20100218: biased]] If S, T are disjoint subsets of E(Ω), then
(Ω/S)/T and Ω/(S ∪ T ) are the same, up to vertex labels.

To explain “up to vertex labels”: The vertex labels in Φ (or Ω; the facts are the same
for both) are different from those in Φ/S because a vertex in the latter is a set of vertices
of the former. For instance, if S has one edge, a link evw, then v, w ∈ V (Φ) become the
vertex {v, w} ∈ V (Φ/S). Even if v is an isolated vertex in Φ|S, v is not is a vertex in the
contraction; the vertex is {v}. That is why we have to say “up to vertex labels”: the names
of the vertices change under contraction. However, the change is not arbitrary. There is a
natural correspondence of vertices of Φ and Φ/S: a vertex v ∈ V (Φ) which is not deleted in
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contraction corresponds to a unique vertex Vi ∈ V (Φ/S), namely, that Vi ∈ πb(S) such that
v ∈ Vi. (It’s hard to explain the naturality of this correspondence in a principled way in terms
of sets. That’s one reason I think set theory is not an adequate foundation for mathematics;
or if you prefer, mathematics is not merely a higher development of set theory.)

Φ/S

V V V1 2 0

V V1 2

Figure E.5. In the gain graph Φ, the edge set S has balanced components V1

and V2 (more correctly, S:V1 and S:V2), and a union of unbalanced components
V0. Φ/S consists of two vertices V1 and V2, which are its components (as vertex
graphs). The unbalanced vertices, those in V0, are deleted in the process of
contraction.

[[LABEL F:20100218: contract S]]

Before beginning the proof, I want to remind you that in a contraction Φ/S, the unbalanced
components of Φ|S disappear (potentially turning some edges of Sc into half or loose edges),
and a balanced component of Φ|S is contracted down to a single vertex. Figure E.5 shows
Φ|S and then what happens to these graph elements in Φ/S.

Contraction2 of a gain graph.
We now begin the proof of Theorem E.6 by establishing Lemma E.7.

Proof of Lemma E.7. We need to examine both (Φ/S)/T and Φ/(S∪T ) and compare them.
Let’s begin with the former. To consider (Φ/S)/T , we must first consider Φ/S. To this end,
choose a switching function ζS such that ϕζS is identically 1G on the balanced components
of Φ|S. In most cases there are many possible choices for ζS; fix one of them. As is often
true in a proof by switching, we can simplify the details by adequate switching: according
to Proposition E.2(ii), we may as well assume Φ has been switched by ζS before we begin;
in other words, we may assume ϕ|S ≡ 1G.

For Φ/S, notice that V (Φ/S) = πb(Φ|S) by definition. So as to have a way to talk about
these vertices, let πb(Φ|S) =: {V1, . . . , Vk}, let Vb(S) := V1 ∪ · · · ∪ Vk, and let V0 denote the
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set of vertices that are in unbalanced components of Φ|S. So, {V1, . . . , Vk, V0} is a partition
of V (Φ). Φ/S has gain function ϕΦ/S(e) = ϕζS(e), or more concisely, ϕΦ/S = ϕζS |Sc .

Consider as an example Figure E.6, which depicts Φ|S. The circles represent the balanced
vertex components (including isolated vertices) and the unbalanced components are repre-
sented by the rectangle. Φ is likely a much larger graph, with many edges outside of the
Vi’s, but all the vertices of Φ are contained this depiction of Φ|S. In ΦζS , all gains within
any S:Vi (for i > 0) are 1G, and we have essentially no information about the gains outside
of the S:Vi’s. Finally, the vertices of Φ/S are V1, . . . , Vk. Figure E.7 shows Φ|(S ∪ T ), with
T edges shown in red.

Moving on to (Φ/S)/T , let ζT be a switching function on Φ/S such that all balanced
components of (Φ/S)|T have identity gains. Again there may have been many choices for
ζT , but we pick one. Now, V (Φ/S)/T ) = πb((Φ/S)|T ) =: {W1, . . . ,Wl}, and the gain

function is ϕ(Φ/S)/T = ϕζTΦ/S|(S∪T )c . The vertices of (Φ/S)/T are W1, . . . ,Wl.

Let’s consider for a moment the vertex set W0, the vertex set of the unbalanced components
of (Φ/S)|T . There are four different ways a vertex Vi of Φ/S can wind up in W0. First, in
Φ, a vertex of Vi might have been adjacent to a vertex in V0 through an edge e ∈ T (see
edge e in Figure E.7). In Φ/S, e becomes a half edge, so the component in (Φ/S)|T with
vertex Vi is unbalanced. Secondly, there might be an edge f ∈ T that is an unbalanced loop
at Vi in Φ/S, which means that in Φ there is an unbalanced circle (possibly a loop) in S ∪ f
which contains f and at least one vertex of Vi. Similarly, there might be an unbalanced
circle of two or more edges, C = gh · · · , in Φ/S whose vertices include Vi. This circle must
come from an unbalanced circle C ′ in [Φ:Vb(S)]|(S ∪C) such that g, h, . . . ∈ C ′ and at least
one vertex in Vi is on C ′, since C must arise from a circle in Φ:Vb(S) and a circle that is
the contraction of a balanced circle is balanced. Finally, Vi can be connected, via a path in
(Φ/S)|T , to any of the above.

We would like to compare this to Φ/(S∪T ), so now we consider the structure of Φ/(S∪T ).
To talk about this contracted graph we need a switching function ζ such that all the balanced
components of S ∪ T have identity gains in Φζ . (We’ll pick a particular ζ shortly, in Lemma
E.9.) We know V (Φ/(S ∪ T )) = πb(Φ|(S ∪ T )) =: {X1, . . . , Xn}, say (to have a simple
notation); let X0 denote the vertex set of the union of all unbalanced components of Φ|(S∪T );
and recall that ϕΦ/(S∪T )(e) = ϕζ(e) for e /∈ S ∪ T .

We wish to prove that the partition {X1 . . . , Xm, X0} of V (Φ) is the same as the partition
{W̄1, . . . , W̄l, V0 ∪ W̄0}, where W̄j =

⋃
Vi∈Wj

Vi (so W̄j ⊆ V (Φ)).

First we demonstrate that each W̄j with j > 0 is contained in a single Xp for some p > 0.
Any two vertices Vr and Vs in Wj are connected by a path f1f2 · · · fl of T -edges in Φ/S. The
common vertex of fh−1 and fh in Φ/S is a Vi. The second endpoint of fh−1 and the first
endpoint of fh are connected in (Φ|S):Vi. Any vertex of Vr is connected to the first vertex of
f1 in (Φ|S):Vr, and any vertex of Vs is connected to the last vertex of fl in (Φ|S):Vs. There-
fore, the vertices in W̄j are connected in Φ|(S ∪ T ). [THE FOLLOWING NEEDS TO
BE IMPROVED. POSSIBLY, A GENERAL GAIN-GRAPH CONTRACTION
LEMMA ABOUT BALANCE?] Moreover, each (S ∪ T ):W̄j is balanced, because S:W̄j

is balanced, and (Φ/S)|T is balanced. (If you don’t believe this, wait until Lemma E.9 which
proves that the gains of Φ|(S ∪ T ) \X0 can be switched to all identity gains.)

Next, we prove that V0 ∪ W̄0 is contained in X0. It is easy to see by looking at Figure
E.7 that any vertex in V0 ∪ W̄0 is in an unbalanced component of Φ|(S ∪ T ), but we have
to explain the details. That V0 ⊆ X0 is obvious. Consider a Vi that is connected to V0 in
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V1 V2 V3

V4 V5 V6

V7 Vk...

V0

Figure E.6. Φ|S. Balanced (vertex) components are represented by circles,
all the unbalanced components are represented by the rectangle, and loose
edges are omitted.

[[LABEL F:20100218: V]]

Φ|(S ∪ T ). It is part of an unbalanced component of S ∪ T , so is contained in X0. If Vi
is adjacent to V0 in Φ by a T -edge f , then in (Φ/S)|T , Vi supports f as a half edge. If Vi
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V1 V2 V3

V4 V5 V6

V7 Vk...

V0

W1

W2

W3

W0

Figure E.7. Φ|(S ∪ T ). Balanced (vertex) components are represented by
circles, all the unbalanced components are represented by the rectangle, and
edges of T shown in red.

[[LABEL F:20100218: W]]

is connected to V0 by a path ff1 · · · fl longer than one edge, whose edge incident to V0 is
f , then in (Φ/S)|T , Vi is connected to the half edge f by the path f1 · · · fl; consequently,
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Vi ∈ W0. Now, suppose Vi ∈ W0. In Φ|(S ∪ T ), one possibility is that Vi is connected to
V0; then as we just showed, Vi ⊆ X0. The other possibility is that Vi is in an unbalanced
component Φ|(S ∪ T ):X that is not connected to V0 by a path in S ∪ T . Then Φ|(S ∪ T ):X
contains an unbalanced circle C, or a half edge e. In the latter case, Vi is connected to the
half edge e in Φ/S. In the former case, switching so the gains on S are all 1G, C contracts
to a closed walk W in Φ/S whose gain is not the identity. [NEEDS MORE—a lemma
in a future day’s notes?—to prove that W contains an unbalanced circle.]

[We will show the other containment on another day.]
Let’s return to the task of showing that (Φ/S)ζT /T and Φζ/(S ∪ T ) have the same gains

on their edges, for a suitable switching function ζ : V (Φ)→ G. That will certainly suffice to
show they are switching equivalent. Our ζT (on Φ/S) corresponds to a switching function
ζ ′T on Φ, defined by ζ ′T (v) := ζT (Vi) for any Vi ∈ πb(S) and any vertex v ∈ Vi, and letting
ζ ′T (v) be arbitrary for v ∈ V0(S). Then ζ := ζ ′T is the switching function we want.

Lemma E.9. [[LABEL L:20100218 gain functions]] Φζ′T has identity gains on the balanced
components of Φ|(S ∪ T ).

Proof. First, consider e:vw ∈ S (v = w is permissible), where e is in a balanced component of
Φ|(S∪T ). Since every subset of a balanced subset is balanced, e is in a balanced component
of Φ|S, so ϕ(e) = 1G. Therefore,

ϕζ
′
T (e) = ζ ′T (v)−1ϕ(e)ζ ′T (w) = ζ ′T (v)−11Gζ

′
T (w) = 1G,

where the last equality is true because, since v and w are in the same balanced component
of Φ|S, ζ ′T (v) = ζ ′T (w).

Now consider e:vw /∈ S, where v ∈ Vi and w ∈ Vj. The calculation begins similarly but
moves into the contracted graph:

ϕζ(e) = ζ ′T (v)−1ϕ(e)ζ ′T (w) = ζT (Vi)
−1ϕΦ/S(e)ζT (Vj) = (ϕΦ/S)ζT (e).

If e ∈ T , this is 1G by the definition of ζT since e is in a balanced component of (Φ/S)|T .
Therefore ϕζ

′
T is identically 1G on the balanced components of Φ|(S ∪ T ). �

A conclusion is that we can use ϕζ
′
T to contract by S and then, without further switching,

by T . More importantly, any edges that are not in S ∪ T have the same gain in both Φ/S
and Φζ′T and consequently in (Φ/S)/T and Φζ′T /(S ∪ T ). By Proposition E.2, [(Φ/S)/T ] =
[Φζ′T /(S ∪ T )] (up to vertex labels). This observation concludes the proof of Lemma E.7.

[Proof will be finished in the next n sets of notes [i.e., the missing step]] �

2010 Feb
23:
Nathan ReffContraction2 of a biased graph.

The task now is to prove Lemma E.8, which we do by way of an explicit formula for the
contraction of a contraction.

Lemma E.10. [[LABEL E:20100223 bgccecu]] (Ω/S)/T = Ω/(S ∪ T ) up to vertex labels.

Proof. Here is an outline of the proof:

(1) Show the edge sets agree.
(2) Show the vertex components and loose edges agree.
(3) Show the balanced components agree.
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The first step is easy, but the rest are difficult, more so than with gain graphs since, as we
no longer have gains, we won’t have the considerable convenience of switching.

Let’s review some old and new definitions and notation. As usual, ‖Ω‖ = (V,E). The
vertices of Ω/S are the vertex sets of the balanced components of the restriction to (V, S);
the edges are those not in S:

πb(S) := πb(Ω|S),

V (Ω/S) := πb(Ω|S) = {V1, V2, . . . , Vk},
E(Ω/S) := E \ S.

Two handy notations, new and old (written in short, medium, and long forms, of which each
has its use):

Vb := Vb(S) := Vb(Ω|S) :=
⋃

πb(S) = V1 ∪ V2 ∪ · · · ∪ Vk,
V0 := V0(S) := V0(Ω|S) := Vb(S)c = V \ Vb(S).

We’ll also want notations for the vertex sets of (Ω/S)/T and Ω/(S ∪ T ); thus,

V (Ω/(S ∪ T )) := πb(S ∪ T ) := {X1, X2, . . . , Xm},
Xb := Vb(Ω|(S ∪ T )) :=

⋃
πb(S ∪ T ) = X1 ∪X2 ∪ · · · ∪Xm,

X0 := V0(Ω|(S ∪ T )) := Xc
b = V \Xb,

and

V ((Ω/S)/T ) := πb((Ω/S)|T ) := {W1,W2, . . . ,Wl},
Wb := Vb((Ω/S)|T ) :=

⋃
πb((Ω/S)|T ) = W1 ∪W2 ∪ · · · ∪Wl,

W0 := V0((Ω/S)|T ) := W c
b = V (Ω/S) \Wb = πb(S) \Wb.

Now, compare the definitions in the two contractions we hope to be equal. For Ω/S/T :

I. V (Ω/S/T ) = {W1,W2, . . . ,Wl}. This is a partial partition of V (Ω/S), so each Wi ⊆
V (Ω/S) ⊆ P(V ). Let’s define W̄j =

⋃{Vi | Vi ∈ Wj}.
II. E(Ω/S/T ) = E \ (S ∪ T ).

On the other hand, in Ω/(S ∪ T ):

I′. V (Ω/(S ∪ T )) = {X1, X2, . . . , Xm}.
II′. E(Ω/(S ∪ T )) = (E \ S) \ T .

We’ve proved (1) (with virtually no effort) since E(Ω/S/T ) = E(Ω/(S ∪ T ) by II and II′;
but still we need to show that the endpoints of an edge e /∈ S ∪ T correspond in the two
contractions. Let’s compare them. First,

VΩ/(S∪T )(e) = {Xh ∈ πb(S ∪ T ) | Xh 3 v for v ∈ VΩ(e)}.
(This last is the multiset—not just a set—of all Xh which contain a vertex v ∈ VΩ(e). If e is
a loop in Ω/(S ∪ T ), and if its endpoints in Ω are v which is in Xh and w which is in Xh′ ,
then VΩ/(S∪T )(e) = {Xh, Xh′}. Each V (e) in our analysis of endpoints of e must be treated
as a multiset, since e may be a loop in any or all of the graphs.) Next,

VΩ/S(e) = {Vi ∈ πb(S) | Vi 3 v for v ∈ VΩ(e)},
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so that

V(Ω/S)/T )(e) = {Wj ∈ πb(Ω/S|T ) | Vi ∈ Wj for Vi ∈ πb(S) such that Vi 3 v for v ∈ V (e)}
= {Wj ∈ πb(Ω/S|T ) | W̄j 3 v for v ∈ V (e)}.

(This last is the multiset of all Wj such that there exists v ∈ Vi ∈ Wj for v ∈ VΩ(e).) This
brings us to an important question. If W2 is balanced, then what is W̄2? Is W̄2 a vertex in
Ω/(S ∪ T )? To start with, is (S ∪ T ):W2 balanced?

For an example see Figure E.8. The edges of S are red and the edges of T are blue. We
distinguish balanced components by drawing them as circular or oval sets and unbalanced
components as rectangular sets. The component W̄2 is drawn with a dashed line to indicate
that we are unsure whether it is balanced or not.

[PROOF TO BE CONTINUED.] �

2010 Mar 2:
DRAFT
Simon Joyce

Now we have a crucial lemma about the effect of contraction on balance. We say “ver-
tex components” instead of “components” because it’s important that loose edges are not
involved in this lemma.

Lemma E.11. [[LABEL L:20100302 balanced components of contractions are contractions
of balanced components]] Given a biased graph Ω and S ⊆ E. The balanced vertex compo-
nents of Ω/S are the contractions of the balanced vertex components of Ω.

Proof. We know V (Ω/S) = πb(Ω|S). Obviously we can treat each component of Ω separately
so we may assume Ω is connected.

First assume Ω is balanced. Then S is balanced and Ω/S is balanced by definition. (In
fact Ω/S = 〈‖Ω‖/S〉.)

Now assume Ω is unbalanced but S is balanced. Then πb(S) = π(S), so ‖Ω/S‖ = ‖Ω‖/S.
A circle C = e1e2 · · · el in ‖Ω/S‖ is a contraction of a circle D = e1P1e2P2 · · · elPl in ‖Ω‖,
where each Pi is a path in S:Vi. [This may follow from a previous lemma] By definition,
C is balanced if D is balanced for some choice of the Pi paths. We want to know if this is
true for any choice of paths. Let D′ = e1P

′
1e2P

′
2 · · · elP ′l be another circle in ‖Ω‖ with paths

P ′i ∈ S:Vi. We want to show that D is balanced if and only if D′ is balanced.
First we suppose that only P1 6= P ′1. Then we’ll use induction to get the following result.

Sublemma E.12. [[LABEL L:20100302 balanced in contraction means balanced in graph]]
Given a biased graph Ω and S ⊆ E(Ω), then if a circle C in Ω/S is the contraction of a
circle D in Ω, then C is balanced if and only if D is balanced.

Proof. We give two proofs for this sublemma, by two different methods. The first proof uses
Tutte’s Path Theorem.

Theorem E.13 (Tutte’s Path Theorem [TLect]). [[LABEL T:20100302tpt]] Given an in-
separable graph Γ, a linear class L of circles, and two circles D and D′, there is a path of
circles, D = D0, D1, . . . , Dr = D′ such that Di /∈ L except possibly when i is 0 or 1.

A path of circles is a sequence of circles, D0, D1, . . . , Dr, such that each Di−1 ∪ Di is a
theta graph.

We apply Tutte’s Path theorem to the linear class

Le := {circles in Γ that contain the edge e}.
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Figure E.8. Ω together with its contractions Ω/S and Ω/(S ∪ T ).
[[LABEL F:20100223: omegacontractgraph]]

Corollary E.14. [[LABEL C:20100302 edge in path of circles]] For e an edge of an insep-
arable graph Γ, any two circles D and D′ that contain e are connected by a path of circles
D = D0, D1, . . . , Dr −D′, where each Di contains e.

Proof. [NEEDS PROOF.]
�

More generally we can apply Tutte’s path theorem to the linear class

LQ := {circles in Γ containing the path Q},
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where all the internal vertices of Q are divalent. This situation is that of Corollary E.14 with
e subdivided into a path Q.

Corollary E.15. [[LABEL 20100302 path in path of circles]] In an inseparable graph Γ,
containing a path Q whose internal vertices are divalent, any two circles D and D′ that
contain Q are connected by a sequence D = D0, D1, . . . , Dr = D′, where each Di−1 ∪Di is a
theta graph and each Di contains Q. �

Now let Q = e2P2 · · · elPle1, so that D = PQ and D′ = P ′Q. Let Γ be the block
of Q ∪ (S:V1) that contains P1 and P ′1. So we apply Corollary E.15 to D and D′ to get
a sequence D = D0, D1, . . . , Dr = D′ with each Di containing Q. Now Di ⊕ Di+1 is a
circle contained in S:Vi and are therefore balanced since Vi is a balanced vertex component.
Therefore by the theta property D0 and D1 have the same character, and D1 and D2 have
the same character and so on. It follows that D0 is balanced if and only if Dr is balanced.
The result now follows by induction.

The second method of proof is by “hacking and hewing”.14 Let P2 be the path we get
by following P ′1 past the first vertex where it first splits from P1 to the vertex where it first
intersects P1. Then follow P1 to its end. As before, P1Q ⊕ P2Q is a balanced circle; since
P1Q∪P2Q is a theta graph, P1Q and P2Q have the same character. Now let P3 be the path
we get by following P ′1 past the first vertex where it splits from P2 to the vertex where it
first intersects P2. Then follow P2 to its end. Again, P2Q and P3Q have the same character.
We continue in this manner until eventually we get Pr = P ′1 for some r. We conclude that
P1Q and P ′1Q have the same character and again the result follows by induction.

[Does more need to be said about the induction step? ANSWER: I’m not
sure what you’re proving by induction here, i.e., what’s “the result”? If you’re
trying to prove P1Q and P ′1Q have the same character, it’s done. If not, then
more should be said.]

�

It follows that if S is balanced and Ω/S is unbalanced, then Ω is unbalanced. So if Ω is
balanced then Ω/S is balanced.

Now we want to prove that if Ω is unbalanced, then Ω/S is unbalanced. We have shown
that the definition of B(Ω) is independent of the choice of how you obtain each circle in Ω/S
from a circle in Ω.

So, we assume that S is unbalanced. Let X :=
⋃{Vi | Vi is not connected to V0 in Ω}.

Ω:X is a union of components of Ω in which the corresponding part of S is balanced so these
components are covered by the cases where we assumed S was balanced.

[The proof is continued the next day.] �

2010 Mar 4:
Jackie
Kaminski
and
Amanda
Ruiz

In order to finish proving our lemma from yesterday, we need to prove that if S ⊆ E(Ω)
is balanced, Ω is connected, and Ω is unbalanced, then Ω/S is unbalanced.

Suppose C is an unbalanced circle in Ω. Then C contracts to a closed walk W in ‖Ω‖/S =
‖Ω/S‖ (see Figures E.9 and E.10). Let W = e1e2 . . . el, or written with vertices, W =
V0e1V1e2V2 . . . Vl−1elVl where Vl = V0 and the Vi are not necessarily distinct. Then in Ω,
C = e1P1e2P2 . . . Pl−1elPl where Pi is a path in S:Vi as in Figure E.9. In particular, Pi is one
of the components of C:Vi.

14Peter Cook, “Sitting on the Bench”, in the American recording of Beyond the Fringe.
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Figure E.9. C is an unbalanced circle in Ω. The Vi’s are balanced compo-
nents of Ω|S. Since we think of S as a spanning subgraph, each ei in C outside
of S is an edge.

[[LABEL F: 20100304 circle]] [The p should be capitalized. The v also (it’s hard to
tell).]
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V5= V8 = V0

V6 V V

Figure E.10. C contracts to a closed walk in ‖Ω/S‖.
[[LABEL F: 20100304 walk]]

If W is a circle, then it is unbalanced [(by some sublemma from before)], since if
CΩ/S = CΩ/S, then CΩ/S is balanced if and only if CΩ is balanced. In other words, it does
not matter which choices we make in constructing CΩ from CΩ/S.

In the case where W is not a circle, suppose we have a counterexample W ′, a walk in Ω
whose contraction is balanced in Ω/S and which has the minimum number of edges outside
of S over all such walks. Since W ′ is not a circle, it must repeat a vertex: there are i, j
such that Vi = Vj. Si = S:Vi, the component of Ω|S corresponding to Vi = Vj, is connected.
Therefore, there exists a path Q from Pi to Pj, internally disjoint from Pi ∪ Pj. [I’M NOT
FOLLOWING THIS EXACTLY. What are the hypothesis and conclusion?]

There may be several such paths Q in various balanced components Sk of S. Choose Q
to be a shortest such path. Then Q is internally disjoint from W , so C ∪Q is a theta graph.
Let C1 and C2 be the two circles in C ∪ Q that contain Q. So, in Ω we have constructed
C1 and C2 such that C1 ∪ C2 is a theta graph and C1 ⊕ C2 = C. One of C1 and C2 must
be unbalanced, and this circle contracts to a shorter walk in Ω/S than our “minimal” W .
[MORE NEEDED to finish up the argument.]
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Figure E.11. This pic seems unnecessary
[[LABEL F: 20100304 Zoom Si]]

In proving that Ω/S is unbalanced if S ⊆ E(Ω) is balanced and Ω is connected and
unbalanced, we found ourselves working mostly with walks. We could generalize Lemma ??
to walks, with a similar proof.

Lemma E.16. [[LABEL L: 20100304 hypolemma]] Suppose C is an unbalanced closed walk
in Ω. Then C contracts to a closed walk W in ‖Ω‖/S = ‖Ω/S‖ which is unbalanced.

Recall that a walk W is called balanced when its edge set is a balanced edge set.

Proof Outline. Although this follows as a corollary from Lemma E.16 it is natural to prove
it without using that lemma by assuming a counterexample that has the fewest edges in Sc.
We leave this proof as a healthy exercise for the reader. �

Our next step toward the proof of Lemma E.8 is the following lemma.

Lemma E.17. [[LABEL L: 20100304 biased contraction]] Let Ω be a biased graph and let
S, T be disjoint subsets of E(Ω). Then (Ω/S)/T = Ω/(S ∪ T )

The equals sign here means equal except for the vertex labels, which have a natural
correspondence. Readers familiar with Tutte’s approach to graph theory (see Tutte [GT])
will notice that this kind of very natural isomorphism is what he calls a vertex isomorphism,
=V .

Proof. Our first step is to prove that the vertex sets of (Ω/S)/T and Ω/(S ∪ T ) have a
natural one-to-one correspondence. Recall that V (Ω|(S ∪ T )) = πb(Ω|(S ∪ T )). Call the
parts of this partition {X1, X2, . . . , Xm} and let X0 denote the vertex set of the unbalanced
components of Ω|(S ∪ T ). For another bit of helpful notation, let Rj = (S ∪ T ):Xj. In order
to compare these to the vertices of (Ω/S)/T , we need to introduce similar notation, which
must, of course, begin with Ω/S.

Recall that V (Ω/S) = πb(Ω|S); let {V1, . . . , Vk} denote this partial partition and let
V0 denote the union of the vertex sets of the unbalanced components of Ω|S. Similarly,
V ((Ω/S)/T ) = πb((Ω/S)|T ); let {W1, . . . ,Wl} denote this partition, and let W0 denote the
union of the vertex sets of the unbalanced components of (Ω/S)|T . (See Figure E.7. This
is the same argument as for the gain-graph version of this lemma.) Every component A of
(Ω/S)|T has a vertex set which is some collection of Vi’s, and E(A) ⊆ T (in Ω/S). Now, if
A is balanced [if ?] then V (A) is a Wj for some j.
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For ease of notation let U = V (A), which is a set of vertices in Ω/S, and let Ū =
⋃
U =⋃

Vi∈U Vi, a set of vertices in Ω.

Lemma E.18. [[LABEL L:20100304 U]] Ū is connected in Ω; in fact it is connected by S∪T
edges.

Proof. Since Ū =
⋃
U =

⋃
Vi∈U Vi, for x, y ∈ Ū , if x, y ∈ Vi for some i, then there is a path

in S:Vi from x to y, since S:Vi is connected. Therefore x and y are connected by a path of
S-edges.

Now suppose x, y ∈ Ū with x ∈ Va and y ∈ Vb where a 6= b. Since x, y ∈ Ū , Va and Vb are
connected in (Ω/S)|T . Fix a minimal [shortest?] VaVb-path P in T . Let ea, eb be the first
and last edges of P , so ea, eb ∈ T . Since P is a minimal VaVb-path in (Ω/S)|T and Va 6= Vb,
then ea and eb are links in (Ω/S)|T , and consequently are links in Ω. Furthermore, exactly
one endpoint of ea is in Va (in Ω), call it va; similarly, let vb denote the unique endpoint of eb
in Vb. Finally, there is an S-path from x to va and from vb to y, in Ω. Furthermore, there is
a T -path in Ω/S from va to vb. If this T -path has length 1, we have the desired (S∪T )-path
in Ω from x to y. If the T -path is longer then its internal vertices (in Ω/S) are sets Vk, each
of which is connected by S (in Ω). Therefore, for x, y ∈ Ū with x ∈ Va, y ∈ Vb, and a 6= b, x
and y are connected by edges of S ∪ T . �

Lemma E.18 demonstrates that each Ū is contained in a single Xi for some i. So any
balanced component Wj of (Ω/S)|T is contained in some balanced component Xi of Ω/(S ∪
T ).

We would like to show the other containment, and the same result for unbalanced com-
ponents. Define W j :=

⋃
Vk∈Wj

Vk for each Wj ∈ πb((Ω/S)|T )

Lemma E.19. [[LABEL L:20100304 X]] Each Xi ∈ πb(Ω|(S ∪ T )) has the property that
Xi ⊆ W j for some j.

Proof. Let Ri denote (S ∪ T ):Xi. Ri is balanced because Xi ∈ πb(Ω|(S ∪ T )). Since
Ri ⊆ S ∪ T , Ri/(S ∩ Ri has T :X ′i as its balanced components, where by X ′i we mean
the set of vertices in Ω/S corresponding to Vi ⊆ V (Ω). T :X ′i is connected and balanced.

The fact that T ∈ X ′i is connected implies that it is contained in some Wj. If j 6= 0 we
are done. It remains to to show that the connected component of (Ω/S)|T containing T :X ′i
cannot be W0.

Suppose T ∈ X ′i ⊆ W0, because T ∈ X ′i is balanced, it must be connected to some
unbalanced circle in O = W0, counting half edges as unbalanced circles. But the only edges
in O are T edges see Figure F: 20100304 O. If there is an unbalanced circle in O ⊆ (Ω/S)|T ,
it must have come from an unbalanced circle in Ω. But, (T ∪ S):Xi = Ri is balanced by
assumption, which is a contradiction.

This concludes the proof of Lemma E.19 �

The final step to proving that the vertices of (Ω/S)/T have a canonical correspondence
with those of Ω/(S ∪ T ) is to show that the vertices in X0 correspond to W 0.

We are left to show that W0‘ =′ X0 (another class).
[MORE TO COME!] �

March 9,
2010:
Nathan Reff
UNEDITED
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Figure E.12. The component O of (Ω/S)|T . S edges are black, T edges are
red, and T :X ′i is indicated in purple.

[[LABEL F: 20100304 O]]

E.4. Minors. We know proper balanced components of Ω|(T ∪ S) correspond to those of
Ω/S/T .

Corollary E.20. [[LABEL C:030910 bpp]] Specifically: If the balanced patial partition
πb(Ω|(S ∪ T )) = {X1, . . . , Xm}, πb(Ω|S) = {V1, . . . , Vk} and πb(Ω/S|T ) = {W1, . . . ,Wl}
then l = m and each Xj =

⋃{Vi | Vi ∈ Wj}.
Explanation:
(1) A balanced component (S∪T ):Xj of Ω|(S∪T ) contracts to a component of (Ω/S|T ) =

Ω|(S ∪ T )/S which is balanced. This component is T :Wj = [(S ∪ T )/S]:Wj′ for some j. So
each Xj 7→ Wj′ for a unique j′. By suitable labeling j′ = j. So we have each Xj 7→ Wj.

(2) We want to show that any T :Wj in Ω|(S ∪ T )/S is the contraction of a balanced
component (S ∪ T ):Xj′ . Then j′ = j by (1).

From the proposition T :Wj being a balanced component of (S ∪ T )/S, must be the con-
traction of a balanced component of S ∪ T , i.e., a (S ∪ T ):Xj′ .

So we need to show an Xj gives a whole component in the contraction, and each whole
component in the contraction comes from some Xj.

Lemma E.21 (Original Goal). Ω/S/T“=”Ω/(S ∪ T )

Proof. We have a natural correspondence:

(1) (Vertices) V (Ω/S/T ) = πb((Ω/S)|T ) ↔ V (Ω/(S ∪ T )) = πb(Ω|(S ∪ T )) so the
verticies are the blocks in the balanced partial partitions.

(2) (Edges) E(Ω/S/T )↔ E(Ω/(S ∪ T ))
(3) (Incidences) I(Ω/S/T )↔ I(Ω/(S ∪ T ))

e ∈ (S ∪ T )c is incident with v ∈ V ⇐⇒ e incident with Xj such that v ∈ Xj

⇐⇒ e incident with Vi ∈ πb(Ω|S) = V (Ω/S) where v ∈ Vi
⇐⇒ e incident with Wj′ ∈ πb((Ω/S)|T ) = V (Ω/S/T )

such that Vi ∈ Wj′

We know from corollary E.20 if there exists Xj then there exists a Wj (with j = j′),
and if there exists Wj′ then there exists a Xj′ (with j = j′). Also notice in the above
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equivalences there might not exist an Xj in which case we have a loose edge. So the
vertices with Ω/(S ∪ T ) and Ω/S/T are naturally corresponding vertices.

In short, (1)–(3) give us:

‖Ω/S/T‖ = ‖Ω/(S ∪ T )‖
(4) (Balance) B(Ω/(S ∪ T )) = B((Ω/S)/T )

By (1)-(3) we have C(Ω/(S ∪ T )) = C((Ω/S)/T ). Suppose C ∈ B(Ω/S/T ) then
C = C ′/T where there exists C ′ ∈ B(Ω/S) and there exists C ′′ ∈ B(Ω) such that
C ′ = C ′′/S. Then C = C ′′/(S ∪ T ) (by “=” of C’s since C ′′ is balanced). Therefore
C ∈ B(Ω/(S∪T )). Suppose now that C ∈ B(Ω/(S∪T )). Then C = C ′′/(S∪T ) where
there exists C ′′ ∈ B(Ω). This means C ′′/S ∈ B(Ω/S) and (C ′′/S)/T ∈ B(Ω/S/T ).
Therefore B(Ω/S/T ) = B(Ω/(S ∪ T )).

�

Theorem E.22. [[LABEL T:2010309]]

(1) Every result of a sequence of deletions and contractions of edge sets has the form (Ω\S)/T
for some disjoint S, T ⊆ E.

(2) Every minor of a minor is a minor.

Proof. (1) You can delete edges first, then you will have a sequence of contractions (Ω \
S)/T1/T2/ . . . /Tk = (Ω \ S)/(T1 ∪ . . . ∪ Tk).

(2) If a vertex is deleted in a minor, say Ω1/T1 where Ω1 ⊆ Ω, then we can delete the
edges at v first (leaving it as an isolated vertex), then contract T1 and delete v. Note
that v is not affected by contracting T1 since it is isolated. Suppose we have Ω1 ⊆ Ω,
Ω1/T1, Ω2 ⊆ Ω1/T1, Ω2/T2, etc. Then we define

Ω1 := (Ω \ S1) \ Z1

where Z1 ⊆ V = V (Ω) and S1 ⊆ E is the set of all edges incident to Z1’s vertices.

Ω2 = [(Ω1/T1) \ S2] \ Z2

where Z2 ⊆ V (Ω1/T1) and S2 ⊆ E.
Etc.
Note that all Si’s and Tj’s are pairwise disjoint. Let Z̄2 = {v ∈ V | v ∈ V1i ∈

πb(Ω1/T1), V1i ∈ Z2}. Notice in the definition of Ω2 we have Z2 ⊆ V (Ω1/T1) =
πb([(Ω \ S1) \ Z1]|T1) = [πb([Ω \ S1])|T1] \ Z1 ⊆ πb([Ω \ S1]|T1) since every vertex in
Z1 forms a singleton block in πb(Ω \ S1) (the vertices of Z1 were isolated). Notice
also Z̄2 ⊆ V (Ω) \ Z1 and Ω2/T2.

Vertex deletion:
Ω
′
1 = Ω \ S1 (so Ω1 = Ω

′
1 \ Z1 )

Ω
′
2 = (Ω \ S)/T1 \ S (so Ω2 = Ω

′
2 \ Z1 \ Z2 )

Ω2/T2 = (Ω
′

2 \ Z1 \ Z2)/T2 (where Z1 and Z2 are isolated vertices in Ω
′

2)

= (Ω
′

2/T2) \ Z1 \ Z2

= ((((Ω \ S1)/T1) \ S2)/T2) \ Z1 \ Z2

= ((Ω \ (S1 ∪ S2))/(T1 ∪ T2)) \ (Z1 ∪ Z2) (where Z1 and Z2 are isolated vertices in Ω (S1 ∪ S2))
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So Ω2/T2 = ((Ω \ (S1 ∪ S2))/(T1 ∪ T2)) \ (Z1 ∪ Z2).
Let S = {edges in S1 ∪ S2 and edges in T1 that are in T1:Vi where Vi ∈ Z2}.
Let T = (T1 ∪ T2) \ S, then (Ω2/T2) \ Z2 = ((Ω \ S) \ (Z1 ∪ Z̄2))/T . Take original

vertices that became the Z2 ’s and contract.
�
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F. Balancing Sets in a Biased Graph

Biased graphs will now receive a similar balancing set treatment as was given to signed
graphs in Chapter II.

Let Ω be a biased with edge set E and S ⊆ E. If Ω\S is balanced, then we call S a total
balancing set. If b(Ω\S) > b(Ω), call S a partial balancing set. We call S a strict balancing
set if S is a partial balancing set and π(Ω\S) = π(Ω), i.e. Ω and Ω\S have the same number
of components.

Now for some observations. “Frustration index”, or “deletion index” l(Ω) = |S| where
S is a minimal total balancing set. There’s a definition by “change index” which gives the
same number as deletion index. [This is a potential prop or homework] This is a
generalization of D.9. A minimal partial balancing set is analogous to a bond in a graph or
signed graph. It’s also a copoint complement in the lattice of closed sets. The empty set
∅ is a total balancing set if and only if Ω is balanced. But ∅ is never a partial balancing
set. A minimal partial balancing set of Ω is the same as a minimal total balancing set of a
component of Ω. A minimal total balancing set of Ω is the same as the union of minimal
total balancing sets in each component of Ω. A superset of a partial balancing set is a partial
balancing set. A superset of a total balancing set is a total balancing set.

F.1. A total or partial balancing edge in a biased graph. An edge e in a biased graph
Ω is called or total (partial) balancing edge if the set {e} is a total (partial) balancing set. I
would define a balancing edge as a total balancing edge such that Ω is unbalanced, i.e. {e}
is a minimal total balancing set.

Problem F.1.

(1) Is a partial balancing edge a total balancing edge of a component?
(2) Is a strict balancing edge a total balancing edge of a component?

We call a vertex v of Ω a balancing vertex if Ω is unbalanced and Ω\v is balanced.

G. Closure and Closed Sets

[[LABEL 4.closure]]
Closure in a biased graph Ω is a function from P(E) to P(E). In Chapter II I used one

definition of closure in a graph and proved it was equivalent to a second definition. Closure
for a biased graph is very similar, but more complicated. Just for the heck of it, now I’ll
define closure by the second definition and prove it’s equivalent to the first.

We denote by E0 the set of loose edges in a biased graph Ω.
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G.1. Closure operators. [[LABEL 4.closops]]

Definition G.1. [[LABEL D:20100311 biased clos and bcl]] Given S a subset of the edges of a
biased graph Ω, we define clos(S) = S∪{e /∈ S | e is contained in a frame circuit C ⊆ S ∪ e}.
Also define bcl(S) = S ∪ {e /∈ S | e is contained in a balanced circle C ⊆ S ∪ e} ∪ E0.

This definition is based on closure in the frame matroid, where the circuits are the frame
circuits. [To be added in Chapter V.]

[The E0 may no longer be necessary in a lot of the following stuff.]

Theorem G.1. [[LABEL T:20100311 clos is clos]]

(1) clos is an abstract closure operator.

(2) clos(S) = [E:V0(S)] ∪
 ⋃
B∈πb(S)

bcl(S:B)

 ∪ E0.

Proof. For gain graphs this can be proved using switching. This is left as an exercise for the
reader. It is similar to the proof for biased graphs using more hard work.

Lemma G.2. [[LABEL L:20100311 L1]] If S is balanced, then bcl(S) = clos(S)

Proof. Proof is left as an exercise for the reader. �

Notice that if a biased graph is balanced, then biased closure is the same as regular graph
closure in the underlying graph.

Lemma G.3. [[LABEL L:20100311 L2]]

(1) S ⊆ bcl(S)
(2) If S ⊆ T , then bcl(S) ⊆ bcl(T ).
(3) There exists S such that bcl(S) ⊂ bcl(bcl(S)).

Proof. Proof of the first two parts are left as exercises for the reader.
[third part needs an example] �

Lemma G.4. [[LABEL L:20100311 L3]] If S is balanced, then bcl(S) is balanced.

Proof. The proof for gain graphs uses switching.
For biased graphs, using induction we add one edge at a time since bcl(S) ⊆ bcl(S ∪ e)

if e ∈ bcl(S)\S. We have to show S ∪ e is balanced. We know there is a balanced circle
C ⊆ S ∪ e containing e. If C ′ ⊆ S ∪ e is another circle containing e we can show that
C ′ is balanced using Tutte’s Path Theorem or directly in a similar way as in the proof of
Sublemma E.12. �

Lemma G.5. [[LABEL L:20100311 L4]] If S is balanced, then bcl(S) = bcl(bcl(S)).

Proof. In a gain graph, use switching.
In a biased graph, if there is f ∈ bcl(bcl(S))\ bcl(S) we look at a circle C ⊆ (bcl(S) ∪ f)

that contains f . There is at least one circle D containing f that is balanced. D can be
factored as a product of edges and paths so that D = fP0e1P1e2P2 · · · ekPk where each
ei ∈ bcl(S)\S and each Pi ⊆ S. If k = 0, then f ∈ bcl(S). If k > 0, use induction on k. The
details are left as a homework exercise. [This needs to be checked. Something was
not right in the notes.] �
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On a side note, the method of proof of Lemma G.5 works in the case of infinite graphs.
An interesting research question arrises if you want infinite circles. What are infinite circles
and what happens to closure in this case? [Reference Bruce Richter et al for graphs]

Lemma G.6. [[LABEL L:20100311 L5]]

closS ⊆ [E:V0(S)] ∪
 ⋃
B∈πb(S)

bcl(S:B)

 ∪ E0.

Proof. The proof is left as an exercise. Just check the frame circuits. �

Lemma G.7. [[LABEL L:20100311 L6]]

closS ⊇ [E:V0(S)] ∪
 ⋃
B∈πb(S)

bcl(S:B)

 ∪ E0.

Proof. Let e ∈
(

[E:V0(S)] ∪
[⋃

B∈πb(S) bcl(S:B)
]
∪ E0

)
\ clos(S). Clearly e /∈ E0 since then

{e} would be a frame circuit. So first suppose e ∈
[⋃

B∈πb(S) bcl(S:B)
]
\S. Then there

is B ∈ πb(S) such that e ∈ [bcl(S:B)]\S. So there is a balanced circle C ⊆ (S : B) ∪ e
containing e. But then C is a frame circuit containing e, so e ∈ clos(S).

Now suppose e ∈ [E:V0(S)]. Let S ′1, S
′
2, . . . , S

′
m be the unbalanced components of S. Let

the endpoints of e be v and w. First suppose the endpoints of e are in different components,
say v ∈ Si and w ∈ Sj. Si and Sj both contain an unbalanced circle or half edge. So in
Si there is a shortest path from v to an unbalanced circle or half edge. Similarly there is
a shortest path in Sj from w to an unbalanced circle or half edge. This union of e, the
unbalanced circles or half edges and the paths gives us a loose handcuff. Therefore e is
contained in a frame circuit.

Now suppose v and w are both contained in the same unbalanced component Si. First
suppose Si contains a half edge or unbalanced loop f with endpoint z. There is a shortest
path P1 from v to z in Si and a shortest path P2 from w to z. There will be a first vertex
x where P1 and P2 intersect. This forms a circle C containing e. If C is balanced then e is
contained in a frame circuit. If C is unbalanced then C∪P1∪f is a contrabalanced handcuff
containing e.

Now suppose Si contains no half edges or unbalanced loops. Then Si must contain an
unbalanced circle D containing at least two vertices. Let P1 be a path from v to D and P2

a path from w to C. If P1 and P2 intersect, then a similar argument to that above shows
e is contained in either a balanced circle or a contrabalanced handcuff so suppose P1 and
P2 do not intersect. Then e ∪ P1 ∪ P2 ∪D forms a theta graph. Let C1 and C2 be the two
circles in this theta graph that contain e. If either is balanced then e is contained in a frame
circuit. If not then both are unbalanced and then e is contained in a contrabalanced theta
graph and we are done. �

Lemma G.6 and Lemma G.7 prove part (2) of Theorem G.1. To finish the proof we must
show that clos is an abstract closure operator.

Lemma G.8. [[LABEL L:20100311 L7]]

πb[clos(S)] = πb(S)
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.

Proof. Obviously, E:V0 has no balanced components. If B ∈ πb(S), then bcl(S:B) is bal-
anced by Lemma G.4 and a component of clos(S) by Theorem G.1 part (2). �

Now we can finish the proof of G.1 part (1). S ⊂ clos(S) by definition. Clearly V0(clos(S)) =
V0(S). For B ∈ πb(S), clos(S):B = bcl(S:B) by part (2) of Theorem G.1. Using these facts
and Lemmas G.5 and G.8, it follows that

clos(clos(S)) = [E:V0(clos(S))] ∪
 ⋃
B∈πb(clos(S))

bcl(clos(S):B)

 ∪ E0

= [E:V0(S)] ∪
 ⋃
B∈πb(S)

bcl(bcl(S:B))

 ∪ E0

= clos(S).

Finally if S ⊆ T , then clos(S) ⊆ clos(T ) by definition and we’re done. �

There is a similar definition of closure using the lift circuits, but “frame closure” is the more
natural definition of closure for several reasons, including geometry, chromatic polynomials,
Tutte polynomials, etc., all of which will be developed in later sections.

G.2. Closed sets.

G.3. Group-labelled partial partitions.

G.4. The two matroids. Rank.

G.5. Examples.

H. Incidence Matrices of a Gain Graph

H.1. Multiplicative gains.

H.1.1. Canonical and standard form.

H.1.2. Vector representation from multiplicative gains.

H.2. Additive gains.

H.2.1. Incidence matrix.

H.2.2. Vector representation from additive gains.

I. Hyperplane Representations

I.1. Linear representation from multiplicative gains.

I.2. Affine representation from additive gains.

J. Coloring Gain Graphs

J.1. Proper vs. improper. Set of improper edges.

J.2. Chromatic polynomials.
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K. Chromatic Functions of Gain and Biased Graphs

K.1. Chromatic polynomials. Deletion-contraction and multiplicativity. Subset
expansion.

K.2. Dichromatic polynomials. Deletion-contraction and multiplicative identi-
ties.

K.3. Tutte polynomial.
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