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Chapter O. Background and Introduction

[Aug. 25: Simon Joyce]

This is a fast overview of graphs, signed graphs, and their equations and hyperplanes.
We begin with a few different definitions of a graph, for discursive purposes. All these

definitions are popular, but in decreasing order. (Of course, the one we use is the least
popular—and the most complicated. We can’t help it.)

Definition .1. [Simple Graph][[LABEL D:0825simplegraph]] A graph is a pair Γ = (V,E),
where V is a set and E is a subset of P2(V ), the class of unordered pairs of (distinct) elements
of V .

This definition doesn’t account for things like loops, whose endpoints coincide, or parallel
edges, which are edges with the same endpoints as each other, so we need to extend it for
our purposes.

Definition .2. [Multigraph][[LABEL D:0825multigraph]] A graph is a pair Γ = (V,E),
where V is a set and E is a multisubset of P2(V ).

However, this definition still doesn’t account for loops.
The following definition for a graph is what we will use.

Definition .3. [Graph][[LABEL D:0825graph]] A graph is a triple Γ = (V,E, I), where V
and E are sets and I is an incidence multirelation between V and E in which each edge has
incidence of total multiplicity 2.

[Insert picture(s) of graphs here for instructional purposes.]

Definition .4. [Signed Graph][[LABEL D:0825signedgraph]] A signed graph is a graph whose
edges have signs, + or −. Formally, Σ = (Γ, σ) = (V,E, I, σ), where σ : E → {+,−}.

[Insert picture(s) of signed graphs here.]

Starting at a vertex on a graph we can move along one of its incident edges to another
vertex and repeat the process from the new vertex any number of times, to move around the
graph in any way we please. To describe different ways of moving around a graph we use
the following terms:

• A path has no repeated edges or vertices.
• A trail has no repeated edges.
• A walk may have repeated edges and/or vertices.
• A circle is a closed path, that is it has no repeated vertices or edges except the initial

and the final vertex are the same.

Each edge of a graph implies an equation. The variables correspond to the vertices and
an edge with endpoints vi, vj corresponds to the equation xi = xj in R

n. The family of all
hyperplanes corresponding to all edges, H[Γ], called the hyperplane arrangement generated
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by Γ, divides up R
n into regions that have a remarkable combinatorial meaning. For a

signed graph, a positive edge +vivj has hyperplane xi = xj and a negative edge −vivj has
hyperplane xi = −xj. We’ll study the geometry of these arrangements of hyperplanes, both
to learn more about the graph and to use the graph in order to understand the hyperplane
arrangement.

All kinds of basic background information will be added during the lectures, both in the
beginning of Chapter I and when needed as the lectures progress.
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Chapter I. Graphs

[27 August 2008: Nate Reff]

In this chapter we meet graphs, to develop the understanding and the technical background
for signed graphs. Most of what we say about graphs will generalize later, to the more
advanced topics of signed graphs, gain graphs, and even biased graphs.

A. Technical Definitions

Here we meet the basic concepts and vocabulary of our version of graph theory.

A.1. Definition of a graph.
We give a formal definition in terms of incidence between vertices and edges. This is rather

heavy on notation, so we’ll tend to ignore the technical statement in practice, but it’s what
we mean even when we don’t mention it.

• An incidence multi-relation I between sets V and E is a multi-subset of V × E.
• A graph Γ = (V,E) is an ordered pair consisting of sets V and E with an incidence

multi-relation I between them such that every edge is incident to at most 2 vertices
(not necessarily distinct).

• The elements of V are called the vertices of the graph Γ.
• The elements of E are called the edges of the graph Γ.

An example:

Notice that in the figure we have edge q incident to vertex v4 twice, so 2 · (v4, q) ∈ I.
This is consistent with our definition since we do not need edges to be incident to distinct
vertices.

A.2. Types of edge.
In the most general definition, there are four kinds of edge in a graph.

• A loop is an edge with two equal endpoints. A notation we often use is e:vv. Another
is evv.
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• A link is an edge with two distinct endpoints. A notation is e:vw. Another is evw.
• A half edge is an edge with one endpoint. A notation is e:v.
• A loose edge (or free loop) is an edge with zero endpoints. A notation is e:∅.
• An ordinary edge is a link or a loop.

A.3. Valuable notation.

• Always, n := |V |.
• Sometimes, m := |E|.
• V (e) is the multiset of vertices of the edge e.
• Suppose S ⊆ E; then V (S) is the set of endpoints of edges in S.
• E∗ := { links and loops }, the set of ordinary edges.

A.4. Types of graph.
There are two essential special kinds of graph:

• A simple graph is a graph in which all edges are links and there are no parallel edges
(edges with the same endpoints).

• An ordinary graph is a graph with no half edges or loose edges; that is, all edges are
ordinary.

Most graph theorists would call these the only kinds of graph. We will need half and
loose edges later, when we generalize to signed graphs and even further; but in this chapter,
graphs will be ordinary graphs unless we indicate otherwise.

A.5. Types of subgraph.

• A subgraph of Γ is Γ′ such that V ′ ⊆ V , E ′ ⊆ E, has the same incidence multi-relation
between V and E, every endpoint of every edge in E ′ is in V ′, and each edge retains
its type.

• Notice that Γ\e = (V,E\e).
• The deletion of a vertex set, denoted by Γ\X where X ⊆ V , is the subgraph with

V (Γ\X) := V \X, and E(Γ\X) := {e ∈ E | all endpoints of e are in V \X}.
• An induced subgraph of Γ is a subgraph of the following special form: Let X ⊆ V . The

subgraph induced by X is Γ:X := (X,E:X), where E:X := {e ∈ E | ∅ 6= V (e) ⊆ X}.
Notice that an induced subgraph has no loose edges.

• A spanning subgraph is a subgraph Γ′ such that V ′ = V . (Γ′ need not have any
edgees; it just must have all the vertices.)

A.6. Contraction by an Edge.
The following cases cover the basics of contracting an edge. The graph Γ with an edge e

contracted is denoted by Γ/e.

• Case 1 : For a link e with vertices v and w, Γ/e has v and w identified to a single
vertex and e deleted. Sometimes the identified vertex will be denoted by ve.

• Case 2 : For a loop or loose edge, Γ/e = Γ\e.
• Case 3 : For a half edge e incident to vertex v, to get Γ/e we remove v and e but

keep all other edges. A link f :vw becomes a half edge f :w. A loop f :vv or a half
edge f :v becomes a loose edge f :∅. All other edges remain as they were in Γ.
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B. Basic Structures

B.1. Connection.

• A generalized path is a sequence x0x1 . . . xk where the xi’s are alternately vertices and
edges. If xi is a link or a loop with endpoints v and w then {xi−1, xi+1} = {v, w}
(note that these are multisets). If xi is a half edge e:v, it is x0 or xk so that x0x1 = ev
or xk−1xk = ve. Lastly, if xi is a loose edge the path is simply xi.

Note that a “generalized path” is not necessarily a path (see below). I introduced
it here only to explain how elements of a graph that are not necessarily vertices can
be considered connected to each other.

• Two elements of Γ, x and y (each of which may be a vertex or edge), are connected
if there exists a generalized path containing both.

A standard theorem:

Theorem B.1. [[LABEL T:0827connvert]] The relation of being the same or connected is
an equivalence relation on V ∪ E.

[NEED DEFINITION OF ”component”. See next day?]
A vertex component is a component that has a vertex. Usually we just call these the

components of the graph, because in this course we don’t want to include loose edges in the
count of components. If we ever do want to include loose edges, we need to say something
special.

• We write c(Γ) := the number of components, i.e., vertex components.

[Aug 29: Jackie Kaminski]

We start with some definitions. Recall that V (e) is the set of endpoints of the edge e.

• Walk : A sequence v0e1v1 · · · elvl where V (ei) = {vi−1, vi} and l ≥ 0. (A walk of
length zero is therefore just a vertex.)

A closed walk is a walk where l ≥ 1 and v0 = vl.
• A trail is a walk with no repeated edges.
• A closed walk is a walk where l ≥ 1 and v0 = vl.
• A path is a trail with no repeated vertex. Sometimes it is called an open path to

distinguish it from a closed path.
• A closed path is a closed trail with no repeated vertex other than that the last vertex

is the first one. Despite the name, a closed path is not a path.
• The length of a walk, trail, or path is the number of edges in it, counted as many

times as they appear in it.
• Two vertices are connected if there exists a path between them. (This is a special

case of the definition of connection of vertices and edges in the last lecture.)

Proposition B.2. [[LABEL P:0829connequiv]] The relation of being connected is an equiv-
alence relation on V .

The proof is basic graph theory and is left to the reader. It makes use of the next
proposition.
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Proposition B.3. [[LABEL P:0829walkconn]] Vertices v, w are connected by a walk ⇐⇒
they are connected by a path.

The proof is basic graph theory and is left to the reader.

Connected graphs.

• A connected component (or vertex component, or simply component) of Γ is the
subgraph induced by an equivalence class of the connectedness relation on V .

An alternate definition of a (vertex) component of Γ is as a maximal connected
subgraph that is not a loose edge.

Thus, a loose edge is not a component. This is admittedly strange. Sometimes we
might want a loose edge to be a component, so just in case, we define a topological
component to be a vertex component or a loose edge.

• We say that Γ is connected if the relation of connection on V ∪ E has exactly one
equivalence class. Equivalently, Γ is connected if it is a loose edge, or it has no loose
edges and the connection relation on V has exactly one equivalence class. That is,
Γ is connected if it has exactly one component and no loose edges, or if it is a loose
edge.

• The empty graph, ∅ := (∅, ∅) (that is, it has no vertices and no edges), is not
connected.

B.2. Degree.

Definition B.1. [[LABEL D:0829degree]] The degree or valency of a vertex, denoted by
d(v), is the number of edge ends incident with v.

To avoid getting lost in notation, we are not defining edge ends. Instead, we refer to the
reader’s intuition. Please note that a loop adds 2 to the valency and a link or half edge adds
one to the valency of each endpoint.

See Figure A. [ADD FIGURES]
Notice that the common definition of the valency of v as the number of neighbors of v is

only adequate for simple graphs.

Definition B.2. [[LABEL D:0829regular]] A k-regular graph is a graph where every vertex
has degree k.

B.3. Circles.

• A circle of Γ is a connected 2-regular subgraph of Γ which has at least one vertex, or
its edge set. Another definition (equivalent to the first) is that a circle is the graph,
or edge set, of a closed path.

For example, any loop is a circle, as is Figure B.
We require the subgraph to have a vertex in order to exclude loose edges as circles.
Please note that a closed path and the graph of a closed path are not the same

thing. A closed path has a direction as well as a beginning point. The graph of a
closed path has neither.

There is some ambiguity . Sometimes by a ‘circle’ we mean the edge set, sometimes
the graph. The context should make the meaning clear.
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B.4. Trees and their relatives.
Some basic definitions:

• A tree is a connected graph which does not contain a circle (as a subgraph).
• A forest is a graph which does not contain a circle (as a subgraph).

Or equivalently, we can define a forest as a graph whose components are all trees.
Please refer to Figure C.

• Observations:
A tree is a connected forest.
An empty graph (no vertices or edges) is a forest, but is not a tree. Recall that a

connected graph must have exactly one connected component.
• A spanning forest is a spanning subgraph of Γ which is a forest.

Observe that for any Γ = (V,E), the graph (V, ∅) is a spanning forest for Γ.
• Similarly, a spanning tree a spanning subgraph of Γ which is a tree.

Disconnected graphs do not contain any spanning trees.
• A maximal forest is a forest which is not properly contained in any other forest.

Please refer to Figure C.

As an aside, please don’t confuse maximal, which means not properly contained in any
other object (or set) of the same type, with maximum, which means having the most elements.
For forests in a graph, however, they come to the same thing.

Theorem B.4. [[LABEL T:0829maxforest]] All maximal forests in Γ have the same number
of edges, namely n − c(Γ), where n = |V |.

This theorem is elementary, yet not so easy to prove. (If you know matroid theory, notice
that it is equivalent to the fact that every basis of the graphic matroid has the same size.)

Theorem B.5. [[LABEL T:0829forest]]

(1) A graph contains a spanning tree ⇐⇒ the graph is connected.
(2) A maximal forest consists of a spanning tree of each component of Γ.

The proof is left to the reader.
Other tree-like graphs:

• A 1-tree is a tree with one extra edge (not a loose edge). (We allow half edges in this
definition.) See Figure D.

• 1-forest is a graph where every component is a 1-tree.
• A pseudo tree is a graph which is a tree or a 1-tree.
• A pseudo forest is a graph in which every component is a pseudo tree.

B.5. Other special graphs.

• A complete graph, written Kn, is a simple graph in which every pair of vertices is
adjacent.

• A bipartite graph is a graph whose vertex set has a bipartition V = V1 ∪· V2 such that
every edge has one endpoint in V1 and the other in V2. It need not be simple.

• A complete k-partite graph has vertices partitioned into k (non-empty) parts, and
for vertices v, w, if v, w are in the same part, then are no vw-edges. And if v, w are
in different parts, there is a vw edge. A complete k-partite graph with part sizes
n1, n2, . . . , nk is denoted by Kn1,n2,...,nk

.
Figure C shows a complete tripartite graph with tripartition {x1}, {v1, v2}, {w1, w2}.
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B.6. Some special vertex sets.

• A stable or independent set of vertices is W ⊆ V such that E:W = ∅.
In figure C, {x1}, {v1, v2}, {w1, w2} are five stable sets.

• A clique is a vertex set whose members are pairwise adjacent.

C. Connectedness

(defined via paths). Components. c(?) = number of (vertex) components. (?).

D. Deletion, Contraction, and Minors

D.1. Deletion.
We have already mentioned the two kinds of deletion. Deleting an edge set S simply

means changing Γ = (V,E) to Γ \ S := (V,E \ S). Deleting a vertex set X means deleting
not only the elements of X but also the edges that have an endpoint in X; this is written
Γ \ X. Both kinds of deletion are ways of taking a subgraph.

[Aug 29: Jackie Kaminski]

D.2. Contraction.
(Most notes are from an earlier class.)

• Notice that we already defined how to contract a link, loop, half edge, and loose edge.
We are now restricting ourselves to ordinary graphs again.

• Refer to Figure D for a visual representation of contraction by a single edge.
• Contraction by an edges set S ⊆ E, is denoted Γ/S = (V/S,E\S), and is equivalent

to a sequence of edge contractions by the edges in S. It can be shown that the
resulting graph is the same regardless of the order in which the edges are contracted
(provided you aren’t too pedantic about the naming of vertices in the resulting graph).
Proving this certainly takes some work but is left to the reader.

• See Figure E for an example
• For a graph Γ, let π(S) = the partition of V s.t. each part is the vertex set of a

(connected) component of (V, S). In other words V/S is π(S). Furthermore we will
let [v] denote the part of π(S) containing the vertex v.

• See Figure F
• An edge f of the contraction Γ/S is f ∈ E\S, and for V (f) = {v, w}, f in Γ/S has

endpoints [v], [w].

[3 Sept. 2008: Yash Lodha]

D.3. Minors.
A minor of Γ is defined as a contraction of a subgraph of Γ. It turns out that the order

of contracting and taking subgraphs makes no difference.

Theorem D.1. Any graph obtained from a graph Γ by a series of edge contractions and
deletions and vertex deletions is a minor of Γ.

12



We’ll prove more general theorems later, in Chapters II and III, so I omit the proof here.
The following theorem is one of the main ways in which minors are used. It characterizes

the graphs that embed in a surface in terms of forbidden minors. Each successive part is
much harder to prove. The general name for these results is “Kuratowski-type theorems”.

Theorem D.2. [[LABEL T:0903kuratowski]] Let Γ be a graph.

(1) [Kuratowski (mainly) and Wagner] Γ is planar iff Γ does not contain K5,K3,3 as
minors.

(2) [Archdeacon, Glover, and Huneke] Γ is projective planar iff Γ does not contain a list
of 35 graphs as minors.

(3) [Robertson and Seymour] Γ embeds in a surface S iff Γ does not contain any of a
finite list of graphs, which depends on S, as a minor.

E. Closure and Connected Partitions

We now remind ourselves of the definition of an abstract closure operator on E.

Definition E.1. [[LABEL D:0903absclosure]] A closure operator on E is a function P(E) →
P(E) : S 7→ S such that the following axioms hold for subsets S and T of E:

(1) S ⊆ S.
(2) S ⊆ T =⇒ S ⊆ T .

(3) S = S.

A set S ⊆ E is a closed set if S = S.

The closed sets when ordered by inclusion form a partially ordered set (poset).
The closure operator in a graph also obeys a very important fourth property, the exchange

property :

(4) Let S be a closed subset of E. If e, f /∈ S and e ∈ f ∪ S, then f ∈ e ∪ S.

We define
ΠV := { all partitions of V } and Πn := Π[n].

Partitions of a set are partially ordered by refinement; that is, π ≤ τ if each part of π is
contained in a part of τ . (Recall that a partition may not have an empty part.) We say
π ∈ ΠV is connected (in Γ) if each part B ∈ π induces a connected subgraph. Let

Π(Γ) := the set of connected partitions of V.

We define the partition of V induced by an edge set S as π(S) := π(V, S) := the partition
of V into the subsets which are the vertex sets of the connected components of S—i.e., of
(V, S). That is, the parts are the equivalence classes of the connection relation of (V, S).
Closed sets are intimately related to connected partitions.

Lemma E.1. [[LABEL L:0903closureptn]] S is closed iff it equals
⋃

B∈π E:B for some π ∈
Π(Γ).

Proof. [THERE SHOULD BE A PROOF.] �

Theorem E.2. The poset of closed sets ordered by inclusion is isomorphic to the poset Π(Γ)
of connected partitions of Γ ordered by refinement.

Proof. [THERE SHOULD BE A PROOF.] �
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[September 8: Jackie Kaminski]

E.1. Equivalent perspectives on the closure of an edge set.
Recall from Definition E.1 that an abstract closure operator on a set X is a function from

the P(X) into P(X) that is extensive, increasing, and idempotent. We now define a function
from P(E) → P(E) that we will name clos. We leave it up to the reader to verify that this
function is in fact an abstract closure operator.

Definition E.2. [[LABEL D:0908closure]] In an ordinary graph Γ, for S ⊆ E, the closure
of S is clos(S) := S ∪ {e : the endpoints of e are connected in S}.

Notice that it is redundant to list S in the definition of clos(S), since the endpoints of an
edge of S are always connected in S.

Definition E.3. [[LABEL D:0908closed]] We say S ⊆ E is closed if clos(S) = S.

Recall that S:Bi is the set of edges in S with all of their endpoints in the vertex set
Bi. (We may sometimes abuse notation and write S:Bi as shorthand for (Bi, S:Bi).) Along
these lines we write c(S:Bi) as shorthand for c(Bi, S:Bi), the number of connected (vertex)
components in the subgraph induced by vertex set Bi. In other words, induced subgraphs
only contain the inducing vertices, not all the vertices of Γ.

Proposition E.3. [[LABEL P:0908indclosure]] Let π(S) = {B1, . . . , Bk}. Then

closΓ(S) =
k⋃

i=1

closΓ:Bi
(S:Bi) =

k⋃

i=1

E:Bi.

Proof Sketch. It’s immediate that closΓ:Bi
(S:Bi) = E:Bi, and therefore

⋃k
i=1 closΓ:Bi

(S:Bi) =
⋃k

i=1 E:Bi. Notice that closΓ(S) ⊇
⋃k

i=1 E:Bi, since any edge e ∈ E:Bi has its endpoints

connected in S by the definition of π(S). Furthermore, closΓ(S) ⊆
⋃k

i=1 E:Bi since any edge
e with one endpoint in Bi and the other in Bj (i 6= j) can’t possibly have its endpoints
connected in S, since S:Bi and S:Bj are separate components of the subgraph (V, S). (This
last step should be fleshed out by the reader.) �

Proposition E.4. [[LABEL P:0908meetjoin]] For any abstract closure operator on E, the
class of closed subsets forms a lattice with meet and join defined as follows: For S, T closed
subsets of E, S ∧ T = S ∩ T and S ∨ T = clos(S ∪ T ).

So in particular, this holds for the closure operator we’ve been working with on the edge
subsets of Γ.

E.2. Edge sets induced by partitions.
Recall that Π(Γ) is the set of all connected partitions of V , i.e. for π ∈ π(Γ) and B ∈ π,

any two vertices in B are connected in Γ:B. We notice immediately that for any S ⊆ E, the
partition π(S) ∈ Π(Γ). This observation allows us to define a function π : P(E) → π(Γ) by
S 7→ π(S). We now present a definition followed by a lemma about π.

Definition E.4. [[LABEL D:0908Epi]] For any partition π of V , E(π) :=
⋃

B∈π E:B.

Notice that when π is not a connected partition many of the terms in the union will be
empty. The following lemma is only for connected partitions.
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Lemma E.5. [[LABEL L:0908clos]] For each π ∈ Π(Γ), π(E(π)) = π. Furthermore,
E(π(S)) = clos(S).

Thus, from π(S) we can’t in general recover S, but we can always recover clos(S).

Corollary E.6. [[LABEL C:0908piofclos]] π(clos(S)) = π(S).

Proof. Let π(S) = {B1, . . . , Bk}. From Proposition E.3, clos(S) =
⋃k

i=1 E:Bi. Each part in

π(clos(S)) will be the vertex set of a maximal connected component of
⋃k

i=1 E:Bi. These
are precisely the sets Bi. �

Corollary E.7. [[LABEL C:0908piEpi]] For any S ⊆ E, π(E(π(S))) = π(S).

Proof. E(π(S)) =
⋃

B∈π(S) E:B by definition, and π(E(π(S))) is π(
⋃

B∈π(S) E:B), which is

precisely π(S) since each E:B is connected. �

E.3. Lattices.
Whenever S ⊆ S ′ ⊆ E, then π(S) is a refinement of π(S ′), that is to say, each of the parts

of π(S) is contained in a part of π(S ′). Readers familiar with partitions of a set V will think
of the last statement as π(S) ≤ π(S ′); this defines a partial ordering of partitions called
the refinement ordering. It is well known that the set Π(V ) of all partitions of V with the
refinement ordering forms a lattice. It is left to the reader to check that the set of connected
partitions also forms a lattice in which the meet operation is the same as in Π(V ) and the
join operation is τ ∨ τ ′ =

∧
{π ∈ Π(Γ) : π ≥ τ, τ ′}.

When τ, τ ′ are two partitions of V such that τ ≤ τ ′ (ordered by refinement), then E(τ) ⊆
E(τ ′). Here we remind the reader that P(E), ordered by set inclusion, is also a lattice with
the intersection and union operations. These observations and the following definition leads
us to our next theorem.

Definition E.5. [[LABEL D:0908lattice]] Lat(Γ) is the class whose members are the closed
edge sets of Γ, ordered by containment.

Theorem E.8. [[LABEL T:0908LatIso]] Π(Γ) ∼= Lat(Γ). Specifically, π : Lat(Γ) → Π(Γ) is
an order isomorphism.

Proof. We already noted that S ⊆ S ′ ⊆ E =⇒ π(S) ≤ π(S ′) and that for τ, τ ′ ∈ Π(Γ),
τ ≤ τ ′ =⇒ E(τ) ⊆ E(τ ′). So all that’s left to show is that π is a bijection between the
connected (vertex) partitions of Γ and the closed (edge) subsets of Γ.

To see that π is injective, let S, S ′ be closed subsets of E, and assume π(S) = π(S ′).
By Proposition E.3, S =

⋃

B∈π(S) E:B =
⋃

B∈π(S′) E:B = S ′. To see that π is surjective,

we notice that for τ a connected partition of Γ, E(τ) is closed by Proposition E.3. This
completes our proof. �

F. Incidence and Adjacency Matrices

[3 Sept. 2008: Yash Lodha]

We now define the adjacency matrix A(Γ). This is an n × n or V × V matrix where
V (Γ) = {v1, v2, ..., vn}. Each entry ai,j = 1 if vi ∼ vj and ai,j = 0 if vi 6∼ vj. The incidence

15



matrix H(Γ) is a V × E matrix. The entry ηi,j = 0 if the edge ej is not incident with the
vertex vi and ηi,j = 1 if ej is incident with vi. The degree matrix D(Γ) is a V × V diagonal
matrix where the entry di,i is the degree of the vertex vi.

Theorem F.1. [[LABEL T:0903incidence-adjacency]] HHT = D − A.

Proof. We check the cases i 6= j and i = j separately when multipying the i-th row of H
with the j-th column of HT. The rest follows easily. �

*** Eigenvalues.

G. Orientation

[September 5: Yash Lodha]

If we have an unoriented graph Γ, we give it an orientation by giving every edge a direction.
We write ~Γ for an orientation of Γ. The orientation is not a property inherent in the graph
Γ, but a property superimposed on the graph for various purposes. In the case of directed
graphs, however, the property of being ‘directed’ is inherent in the graph.

• Cycle: In an oriented graph a cycle is a directed closed path, or equivalently a circle
that is oriented so each vertex is ‘coherent’ or ‘consistent’ (that is, the two edge
directions agree).

• Directing a circle: Give the circle as a whole a direction. (This is a completely
separate property of the circle from directions on the edges).

By ordering V , we get an acyclic orientation, if Γ has no loops. This orientation is unique.

Theorem G.1. [[LABEL T:0903acyclic]] Every acyclic orientation arises in this way, i.e.,
from a linear ordering of V .

Hence there is an equivalence in that statement above. It is important to note that some
linear orderings may yield the same acyclic orientation.

In an oriented graph there can be two special kinds of vertices.

• Sink : A vertex with only entering edges.
• Source: A vertex with only departing edges.

These definitions motivate the following lemma.

Lemma G.2. [[LABEL L:0903sourcesink]] Every acyclic orientation has a source and a
sink.

Proof. We start on an edge and walk along a path following edge directions. If we repeat a
vertex we form a cycle, which contradicts the assumption that our graph is acyclic. If we
never repeat a vertex in our path, then since |V | is finite we must end our path at a vertex
that only has entering edges. This proves the existence of a sink.

To prove the existence of a source, reverse the orientations of all edges. A sink in the
reversed graph is a source in the original orientation. Alternatively, apply the previous
argument in reverse. �
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Proof of Theorem G.1. We perform induction on |V |. If ~Γ is acyclic, then it must have a sink

s. Then by our inductive hypothesis ~Γ\s is acyclic and has an ordering v1 < v2 < · · · < vn−1

The ordering for ~Γ is v1 < v2 < · · · < vn−1 < s. �

Now we observe that a complete ordering is not necessary. [I will discuss an example
once I learn graphics in Tex.] In fact a partial ordering can suffice for providing us with a
corresponding acyclic orientation of the graph.

Theorem G.3. For each ~Γ, there exists a smallest partial ordering of V that gives the
orientation ~Γ. The linear orderings that give ~Γ are precisely the linear extensions of that
smallest partial ordering.

An important example is the complete graph.

Example G.1. [[LABEL X:0903kn]] Acyclic orientations of Kn. Every partial ordering of
V that gives Kn as its comparability graph is a chain (a total ordering). There are n! of
these, one for each permutation of V .

Corollary G.4. The acyclic orientations of Kn correspond bijectively to the permutations
of V in a natural way.

Proof. The correspondence is that a total ordering of V implies an orientation of each edge
from lower to higher.

Conversely, suppose Kn is acyclically oriented. Then there is a corresponding partial
ordering of V , but it’s a total ordering because every pair of vertices is comparable. �

Example G.2. [[LABEL X:0903compar]] Comparability graph: This is the graph of all
comparability relations in a poset. This means that the vertex set is the set of elements of the
poset, and we connect elements u, v with an edge if u, v are comparable in our poset. There’s
an extensive literature on comparability graphs. A good, readable source is Golumbic’s [PG].

An orientation that is not totally acyclic is called cyclic. But we can also have a totally
cyclic orientation, where every edge is in a cycle.

Proposition G.5. Γ has an acyclic orientation iff it has no loops. Γ has a totally cyclic
orientation iff it has no isthmus (or bridge).

An oriented graph has an incidence matrix.

Definition G.1. [[LABEL D:0903orincidence]] An oriented incidence matrix of a graph is
the incidence matrix of any orientation of that graph. An incidence matrix of an orientation
of a graph has, for each edge e, in the column denoted by e, an entry of +1 at the row of its
head vertex and an entry of −1 at the tail.

There are many different oriented incidence matrices of a graph, in fact, 2m′

where m′ is
the number of links (and half edges).

H. Equations and Inequalities from Edges

[September 8: Jackie Kaminski]
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H.1. Arrangements of hyperplanes.
Now we think of the edge set of Γ as {v1, . . . vn}, and we begin by considering only ordinary

graphs Γ. We define

hij := {x ∈ R
n | xi = xi}.

When i 6= j, hij is clearly a hyperplane (a codimension-1 linear subspace) of R
n. We will

refer to hii, which is all of R
n since it corresponds to the equation xi = xi, as the “degenerate

hyperplane”, because it will be convenient later to allow it as one of a family of hyperplanes.

Definition H.1. [[LABEL D0908hyp]] An arrangement of hyperplanes is a finite set (or
multiset) of hyperplanes in R

n.

Definition H.2. [[LABEL D0908HypGamma]] The hyperplane arrangement induced in R
n

by Γ, H[Γ], is the multiset of hyperplanes {hij | e:vivj ∈ E}. (Recall that n = |V |.)

We notice that each loop in Γ corresponds to the degenerate hyperplane. And furthermore
we note the obvious correspondence between the multiset H[Γ] and the edges of Γ. In fact
there are many equivalent points of view we can take, as we notice the following (bijective)
correspondences, that we describe on elements, but they extend naturally to their respective
sets.

• The edge e:vivj ↔ the equation xi = xj.
• xi = xj ↔ the hyperplane hij in R

n, by geometry.
• e:vivj ↔ column ce in H(Γ). Recall that H(Γ) is the incidence matrix of Γ. This

correspondence is immediate from the definition of H.
• Column ce in H(Γ) ↔ xi = xj by vector space duality.

Before looking into further correspondences, we set up a bit more terminology.

Definition H.3. [Region of A] [[LABEL D:0908region]] For an arrangement A of hyper-
planes in R

n, a region of A is a connected component of R
n\

⋃

A∈A
A. Thus, if there is a

degenerate hyperplane in A, then A has no regions.

Now we define

L(A) := {
⋂

S | S ⊆ A},

which we will later see is a lattice, and we will later have a theorem saying L(H[Γ]) ∼=
Lat(Γ) ∼= Π(Γ), where the lattice isomorphisms are all natural. This will eventually allow
us to switch between the perspectives of geometry, lattices, and graphs. Furthermore we
can think of any of the correspondences above as correspondences between subsets instead
of between individual elements.

Finally, we close with two lemmas that we will revisit later.

Lemma H.1. [[LABEL L:0908closspan]] For e ∈ clos(S), ce ∈ 〈cf : f ∈ S〉.

Lemma H.2. [[LABEL L:0908hypintersection]] For S ⊆ E,
⋂

H[S] =
⋂

H[clos(S)].

This second lemma is the vector dual of the first.

[September 10, 2008: Nate Reff]
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H.2. Graphic Hyperplane Arrangements and the Intersection Lattice.

Lemma H.3. [[LABEL L:0910lemma1a]] e ∈ clos(S) =⇒ ce ∈ 〈cf : f ∈ S〉.

Proof. Let’s draw a nice picture to see how things work.

The red lines denote edges of S ⊆ E in a graph Γ = (V,E). If e ∈ (clos(S)\S) as in
the picture, then there exists a path P ⊆ S such that there is a circle. We will show that
〈cf : f ∈ S〉. Because e ∈ (clos(S)\S) and thus e ∈ clos(S), there exists a path P = v1v2 · · · vl

connecting the two endpoints of e. Now let’s label the vertex set in such a way that we start
at v1, one endpoint of e and traverse P until we reach the other endpoint of e, vl (in our
particular example, v6). Then arbitrarily assign the remaining vertices. If we do this then
the columns of P ∪ e are the following:















1 0 0 . . . 0 1
−1 1 0 . . . 0 0

0 1 1 . . .
...

...
...

...
. . . . . .

...
...

0 0 0 . . . −1 −1
0 0 0 0 0 0
...

...
...

. . .
...

...















,

where the columns of the matrix correspond to {e1, e2, . . . , el, e} and the rows correspond to
v1, v2, . . . , vl, vl+1, . . ..

Then ce = ce2
+ ce3

+ · · · + cel
, so ce is spanned by the column vectors of edges in S. �

Lemma H.4. [[LABEL L:0910lemma1b]] ce ∈ 〈cf : f ∈ S〉 =⇒ e ∈ clos(S).

Proof. Suppose e /∈ clos(S). Then the endpoints of e belong to different components of
(V, S), simply because there is no path in S connecting the endpoints.

Now, for a working example, let’s consider the following graph Γ:
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The incidence matrix H(Γ) looks like this:





































(S1) (S2) (S3) (S4) (S5) (e) (Sc \ e)

(V1) H(S1:V1) O O O O










0
...
1
...
0










∗

(V2) O H(S2:V2) O O O










0
...
−1
...
0










∗

(V3) O O H(S3:V3) O O 0 ∗

(V4) O O O H(S4:V4) O 0 ∗

(V5) O O O O H(S5:V5) 0 ∗





































,

where the columns of the matrix are indexed by the edges of S1, S2, S3, S4, S5, e, and Sc \ e;
the rows of the matrix are indexed by the sets V1, V2, V3, V4, V5; and the column of ∗’s
stands for H(Sc \ e). The nonzero entries in column ce are, in the rows of V1, in row v, and
in the rows of V2, in row w. O is a zero matrix, and 0 is a column vector of zeros.

Now we return to the general proof. Suppose e:vw has v ∈ V1 and w ∈ V2, and that there
is a sum

∑

ei∈S αicei
= ce. The edges in a component Sj of S which doesn’t contain an

endpoint of e have to add up to zero in the sum, so they can be ignored. Thus, looking only
at the rows of V1,

∑

ei∈S1

αici +
∑

ei∈S2

αici = ce,

where for brevity we write ci for the column of ei.
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Looking only at the rows of V1, we note two facts. First, let c′i and c′e denote just the V1

rows of ci and ce. Then

(H.1) [[LABELE : 0910S1]]
∑

ei∈S1

αic
′
i =










0
...
1
...
0










.

Second, all columns in S1, restricted to the rows of V1, have entries that sum to zero, so if
we add up all the rows in Equation (H.1), the left-hand side of the equation sums to 0 and
the right-hand side sums to 1. This is a contradiction! Hence there does not exist a linear
combination which is equal to e. Therefore we can say that e ∈ clos(S). �

Lemma H.5. [[LABEL L:0910lemmaSubLemma]] For a hyperplane He ∈ H[Γ],
⋂

H[S] ⊆
He ⇐⇒ e ∈ clos(S).

Lemma H.6. [[LABEL L:0910lemma2]]
⋂

H[S] =
⋂

H[clos(S)].

Proof. Use Lemma H.5, and dualize Lemmas H.3 and H.4. �

We define a subset S ⊆ E to be dependent if there exists an e ∈ S such that e ∈ clos(S\e).

Proposition H.7. [[LABEL P:0910prop1]] S is independent ⇐⇒ S is a forest.

Proof. This is immediate from the definition of closure. �

Theorem H.8. [[LABEL T:0910thm1]] Let S ⊆ E. S is independent in Γ (so S is a forest)
⇐⇒ the columns of S in H(Γ) are linearly independent.

Proof. Immediate corollary of Lemmas H.3 and H.4. �

We define a linearly closed set of columns to be the intersection of {ce : e ∈ E} with a
subspace of F n.

Corollary H.9. [[LABEL C:0910cor1]] The closed edge sets ↔ the linearly closed sets of
columns of H(Γ).

Theorem H.10. [[LABEL T:0910thm2]] Π(Γ) ∼= Lat(Γ) ∼= {linearly closed sets of columns} ∼=
L(H[Γ]).

Proof. This follows from the relationships we’ve already seen among the various lattices and
closures. �

H.3. Regions and Orientations.
An orientation of Γ defines a positive side of each hyperplane hij ∈ H[Γ], called the positive

half-space of the hyperplane. If we orient e:vivj from vi to vj, the positive half-space is the set
{x ∈ R

n : xi < xj}. For each orientation, therefore, there is a family of positive half-spaces.

Lemma H.11. [[LABEL L:0910lemma3]] A cyclic orientation of Γ gives an empty intersec-
tion of positive half-spaces.

Proof. [MUST PROVE IT] �

Thus, any region is the intersection of positive half-spaces in a unique orientation of Γ,
which is necessarily acyclic.
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Theorem H.12. [[LABEL T:0910thm3]] The intersection of positive half-spaces of an ori-
entation of Γ is empty if the orientation is cyclic, but it is a region of H[Γ] if the orientation
is acyclic.

Proof. In the cyclic case we just use Lemma H.11. In the acyclic case the orientation corre-
sponds to a linear ordering of vertices, say v1 < v2 < . . . < vn. Then (1, 2, . . . , n) will be in
the intersection of positive half-spaces. Therefore the intersection is nonempty, and in fact
a region. �

o Graphic hyperplane arrangements, intersection lattice. o Linear dependence of columns
of the incidence matrix. o Closure, intersection lattice, and connected partitions. o Regions;
consistency of inequalities via acyclic orientation.

I. Coloring

[September 12: Simon Joyce]

Given a graph Γ, a coloration (or coloring) of Γ in k colors is a function γ : V → Λ, a
set of k colors. It doesn’t matter for the definition exactly which k-element set Λ is, but
often enough it is best to choose it to be the set [k] := {1, 2, . . . , k} of the first few positive
integers.

An edge e:vw is proper if γ(v) 6= γ(w) and a coloration is proper if every edge is proper.
For example, a graph with a loop can’t ever be properly colored. Any coloration γ of a graph
Γ has a set of proper edges and a set of improper edges. We will call the set of improper
edges I(γ). We say a graph is k-colorable if there exists a proper coloration in k colors.

Definition I.1. [[LABEL D:0912 chrom num]] For a graph Γ we define its chromatic number
to be

χ(Γ) = min{k : Γ is k-colorable}.

For instance, χ(Kn) = n and χ(K̄n) = 1 for n ≥ 1. For a forest F with at least one edge,
χ(F ) = 2. In fact, for any bipartite graph that has at least one edge, χ(Γ) = 2. At the
opposite extreme, χ(Γ) = ∞ if, and only if, Γ has a loop.

J. Chromatic Functions

[September 12: Simon Joyce]

J.1. The Chromatic Polynomial.
We now turn our interest to the number of proper colorations of a graph Γ in λ colors.

We define the quantity

χΓ(λ) := the number of proper colorings of Γ in λ colors,

where λ is a positive integer. In order to prove results about χΓ(λ) let’s define the set
PΓ = {proper colorings of Γ}.
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Lemma J.1. [[LABEL L:0912 chrom dc]]

χΓ(λ) = χΓ\e(λ) − χΓ/e(λ)

for λ ∈ Z>0.

Proof. If e is a loop the result is clear because the left-hand side equals 0 and on the right-
hand side Γ \ e = Γ/e. If e is a link, first observe that PΓ ⊆ PΓ\e. Consider the set PΓ\e \PΓ:

PΓ\e \ PΓ = {proper colorings of Γ \ e which are improper for Γ}

= {proper colorations of Γ \ e in which the endpoints of e have the same color}.

So there is a natural bijection from the set PΓ\e\PΓ to the set PΓ/e, under which ve ∈ Γ/e gets
the same color as that of both endpoints of e ∈ Γ\ e. We conclude that |PΓ\e| = |PΓ|+ |PΓ/e|
and the result follows. �

Lemma J.2. [[LABEL L:0912 chrom mult]]

χΓ1 ∪· Γ2
(λ) = χΓ1

(λ)χΓ2
(λ) where λ ∈ N.

Proof. Obvious. [IT WOULDN’T HURT TO GIVE A PROOF!] �

Theorem J.3. Given a graph Γ with no loops then χΓ(λ) is a polynomial of degree n of the
form,

χΓ(λ) = λn − a1λ
n−1 + a2λ

n−2 − . . . ± ac(Γ)λ
c(Γ)

where ai > 0 and a1 = |E|.

Proof. This is a proof by induction. [EXPLAIN HOW.] �

Proposition J.4. [[LABEL P:0912 gen chrom poly]]

χΓ(λ) =
∑

S⊆E

(−1)|S|λc(S).

Proof. This proof follows from Lemma J.1 and induction. [BETTER TO EXPLAIN HOW
IT FOLLOWS.] �

J.2. The Dichromatic Polynomial.
The dichromatic polynomial generalizes the chromatic polynomial to two variables.

Definition J.1. [[LABEL D:0912 dichrom poly]] THE DICHROMATIC POLYNOMIAL
OF A GRAPH IS DEFINED AS

QΓ(u, v) =
∑

S⊆E

uc(S)v[|S|−n+c(S)].

Notice that χΓ(λ) = (−1)nQΓ(−λ,−1).

Lemma J.5. [[LABEL L:0912 dichrom dc]] QΓ(u, v) = QΓ\e(u, v) + QΓ/e(u, v).

Proof. [HAVE WORDS. EXPLAIN WHY THE NOT-OBVIOUS STEPS WORK. THERE
WAS A LOT OF DISCUSSION OF IT, AND OF WHY IT DID OR DIDN’T APPLY TO
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A LOOP OR ISTHMUS.]

QΓ(u, v) =
∑

S⊆E

uc(S)v[|S|−n+c(S)]

=
∑

S⊆E\e

uc(S)v[|S|−n+c(S)] +
∑

e∪S⊆E

uc(e∪S)v[|e∪S|−n+c(e∪S)]

= QΓ\e(u, v) +
∑

T⊆E/e

ucΓ/e(T )v[|T |−|V (Γ/e)|+cΓ/e(T )]

= QΓ\e(u, v) + QΓ/e(u, v).

�

[17 September 2008: Peter Cohen]

[Peter] NOTE: will add in graphs soon! The source code has notes where the graphs and
diagrams will go in.

Proposition J.6 (B). [[LABEL P:0917B]] QΓ = QΓ e + QΓ/e for e not a loop.

Proof. The proof is similar to that of Proposition J.7, following. �

Proposition J.7 (BR). [[LABEL P:0917BR]] RΓ = RΓ e +RΓ/e for e not a loop or isthmus.

Proof. For disjoint Γ1 and Γ2,

RΓ =
∑

S⊆E

uc(S)−c(Γ)v|S|−n+c(S)

=
∑

S⊆E\e

uc(S)−c(Γ)v|S|−n+c(S) +
∑

e∈S⊆E

uc(S)−c(Γ)v|S|−n+c(S)

= RΓ\e + RΓ/e. �

Proposition J.8 (C). [[LABEL P:0917C]] QΓ1 ∪· Γ2
= QΓ1

QΓ2
.

The vertex amalgamation of two graphs is defined to be

Γ1 ∪v Γ2 := Γ1 ∪ Γ2,

where Γ1 and Γ2 share a vertex v and have no other vertex or edge in common. This
frequently occurs, e.g. when isthmi are contracted.

Proposition J.9 (CR). [[LABEL P:0917CR]] RΓ1 ∪· Γ2
= RΓ1∪vΓ2

= RΓ1
RΓ2

.

Proof. Consider the case of a vertex amalgamation, Γ = Γ1 ∪v Γ2. Then

RΓ =
∑

S⊆E1∪E2

uc(S)−c(Γ)v|S|−n+c(S)

=
∑

S1⊆E1

∑

S2⊆E2

uc(S1∪S2)−c(Γ1∪Γ2)v|S1|+|S2|−n1−n2−c(Γ1∪Γ2)

and noting that n = n1 + n2 − 1 and c(Γ) = c(Γ1) + c(Γ2) − 1,

= RΓ1
RΓ2

. �

24



[Sept. 15, 2008: Yash Lodha]

The dichromatic polynomial is defined as follows:

QΓ(u, v) =
∑

S⊆E

uc(S)v|S|−n+c(S).

The corank of S ⊆ E is defined as c(S) − c(Γ) and its nullity is defined as |S| − n + c(S).
Since c(S) is obviously at least as large as c(Γ), and n − c(S) = |T | ≤ |S| for a maximal
forest T ⊆ S, both the corank and nullity are nonnegative. The definitions motivate the
name of the following polynomial, called the rank generating polynomial or corank-nullity
polynomial, which is

RΓ(u, v) :=
∑

S⊆E

uc(S)−c(Γ)v|S|−n+c(S) = u−c(Γ)QΓ(u, v).

The number of spanning trees or maximal forests.

[September 12: Simon Joyce]

Given a graph Γ, we define t(Γ) to be the number of spanning trees of Γ.

Lemma J.10. [[LABEL L:0912 tree dc]] t(Γ) = t(Γ \ e) + t(Γ/e).

[WAS THERE A PROOF? Could one be based on the proof for forests given next time?
Is there a simple direct proof?]

[Sept. 15, 2008: Yash Lodha]

Let f(Γ) be the number of maximal forests of Γ and t(Γ) the number of spanning trees. To
understand the polynomials discussed above, we calculate them for the graphs ∅,K1,K2, K̄2

and compare them with the values of the functions f and t for these graphs.

Γ QΓ(u, v) RΓ(u, v) t(Γ) f(Γ)

∅ 1 1 0 1

K1 u 1 1 1

K2 u2 + u u + 1 1 1

K̄2 QK1
(u, v)2 = u2 1 0 1
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Lemma J.11. [[LABEL L:0915F]] The following equations hold for the number of maximal
forests of a graph.

f(Γ1 ∪· Γ2) = f(Γ1)f(Γ2),

f(Γ) = f(Γ \ e) + f(Γ/e)

if e is not a loop or an isthmus, and

f(∅) = 1.

Proof. The first equation follows simply from the fact that the maximal forests of Γ1 ∪· Γ2

are in bijective correspondence with pairs of maximal forests in Γ1 and Γ2. So the result
follows from the multiplication principle.

For the second result, we assume that e is a link. There are two kinds of maximal forest
of Γ, the ones that contain e and the ones that do not contain e. The ones that contain e
are in bijection with the maximal forests of Γ/e and the ones that do not contain e are in
bijection with the maximal forests of Γ \ e. This proves the second equation.

For the third equation, we need only keep in mind the empty forest! �

Theorem J.12. [[LABEL T:0915F]] f(Γ) = RΓ(0, 0).

Proof. Initially, we assume that Γ is connected. We proceed by induction on |E|. There are
three cases—not mutually exclusive.

Case I: Γ has a loop e. Then Γ = (Γ \ e) ∪v K◦
1 . So by Proposition L.7 we get RΓ =

(1 + v)RΓ\e. So

RΓ(0, 0) = 1 · RΓ\e(0, 0) = 1 · f(Γ \ e) = f(Γ)

since e is a loop.
Case II: Γ has no loop and every edge is an isthmus. Then Γ is a tree. By inspection we

can see that f(Γ) = 1 = RΓ(0, 0).
Case III: Γ has a circle C of length greater than one. Let e ∈ C. Then e is not a loop or

isthmus, therefore by Proposition L.5

RΓ(0, 0) = RΓ\e(0, 0) + RΓ/e(0, 0) = f(Γ \ e) + f(Γ/e) = f(Γ).

This proves the theorem for the case when Γ is connected.
If Γ has more than one component, we proceed by induction on the number of components

of Γ. Let Γ = Γ1 ∪· Γ2, where our theorem holds for Γ1 and Γ2 is a connected graph. Then
by Propositions L.5 and L.6 and Lemma J.11 we get our inductive step:

RΓ(0, 0) = RΓ1
(0, 0)RΓ2

(0, 0) = f(Γ1)f(Γ2) = f(Γ). �

Here are a few examples that illustrate the theorem.

R∅(0, 0) = 1 = f(∅),

RK1
(0, 0) = 1 = f(K1),

RK◦

1
(0, 0) = 1 = f(K◦

1),

RK2
(0, 0) = 1 = f(K2).
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J.3. Acyclic Orientations and Proper and Compatible Pairs.
We define AO(Γ) to be the set of acyclic orientations of Γ. In an oriented graph, the

notation ~P :
→
vw means a directed path from v to w.

Lemma J.13. [[LABEL L:0917ao-dc]] Consider an orientation ~Γ of Γ and an edge e:
→

v1v2

in ~Γ.

(1) If there exists ~P :
→

v1v2 in ~Γ \ e then the orientation is cyclic.

(2) If there does not exist ~P :
→

v1v2 in ~Γ \ e then the orientation is acyclic.

Proof. (needs simple graphs to show, will add soon)

[ARE THESE PROOF CASES RIGHT? ~P can’t be a cycle because P is not a circle. Or,
do you mean it’s a cycle in the contraction?]

Case 1: ~Γ/e is oriented as in ~Γ \ e. In this case, ~P is not a cycle. [PROOF NEEDED.]

Case 2: ~P doesn’t exist, so ~Γ/e is acyclic. [PROOF NEEDED.]
�

Let a(Γ) denote the number of acyclic orientations of Γ. There is a deletion-contraction
formula for this number.

Lemma J.14. a(Γ) = a(Γ \ e) − a(Γ/e) if e is not a loop.

[MUST DISCUSS. CAN YOU GET ADDITIONAL NOTES FROM JACKIE OR NATE
OR SIMON?]

(Notes end, need clarification)
We will denote a color set, (α, γ), by [K].
For two vertices, v1 and v2, γ(v1) ≤ γ(v2)

[19 Sept.: Simon Joyce]

Lemma J.15. [[LABEL L:0919 AO]] Given a graph Γ and e ∈ E(Γ) a link then,

AO(Γ) ∪ AO(Γ/e) ↔ AO(Γ \ e).

Proof. If α0 ∈ AO(Γ \ e) such that α0 is also acyclic orientation of Γ/e then α0 can be

extended to an acyclic orientation of Γ by adding e:
→
vw or e:

→
wv. If α0 is not an acyclic

orientation of Γ/e then only one of these is a valid extension to Γ. �

Definition J.2. [[LABEL D:0919 c pairs]] Given an graph Γ and a k-coloring γ of Γ let

pΓ(k) = # of compatible pairs with k-coloring γ.

Lemma J.16. [[LABEL L:0919 c pairs DC]] Given a graph Γ and e ∈ E(Γ) a link then,

pΓ\e(k) = pΓ(k) + pΓ/e(k).

Proof. Fix k and α0 ∈ AO(Γ\e). We will prove there exists a 1:1/2:2 correpondence between
CP(Γ) ∪ CP(Γ/e) and CP(Γ \ e).

First we assume α0 orients Γ \ e and Γ/e. This means there is no directed path from v
to w where v and w are the endpoints of e. We have γ a k-coloring of Γ that is compatible
with α0 so (α0, γ) ∈ CP(Γ \ e).
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We have either γ(v) = γ(w) or not. In the first case γ colors Γ/e and γ is compatible with

both e:
→
vw and e:

→
wv.

In the second case γ doesn’t orient Γ/e and γ is compatible with exactly one extension of
α0 since γ(v) < γ(w) or visa versa.
Now if there exists an oriented path between v and w then without loss of generality assume

γ(v) ≤ γ(w). Then α0 extends only by e:
→
vw and since γ(v) ≤ γ(w) this extension is unique.

Calling this extension α we have (α0, γ) ↔ (α, γ). �

We are now ready to prove our main result.

Theorem J.17. [[LABEL T:0919 Stanley’s]] Given a graph Γ, α ∈ AO(Γ) and γ a k-coloring
of Γ then,

(−1)nχΓ(−k) = pΓ(k).

Proof. If Γ has no links then,

(−1)nχΓ(−k) =

{

0 If Γ contains a loop.

(−1)n(−k)n otherwise.

Also

pΓ(k) =

{

0 if Γ contains a loop.

kn otherwise.

So in this case we have equality.
If Γ contains a link then we use lemma J.16, deletion-contraction of χΓ and induction. �

Going back to the idea of coloration, if we take γ to be a k-coloring of a graph Γ we
have γ : V → [k] ⊆ R, so we can think of γ ∈ [k]n ⊆ R

n. So if γi and γj are the ith and
jth coordinates of γ then γi 6= γj if ∃ eij ∈ E(Γ), i.e., γ /∈ hij = {x : xi = xj} for every
eij ∈ E(Γ), i.e., γ /∈

⋃
H[Γ]. So we can redefine a proper coloring as

γ ∈ Z
n \

⋃

H[Γ] such that γ ∈ (0, k + 1)n.

This can be restated as
γ

k + 1
∈

1

k + 1
Z

n and
γ

k + 1
∈ (0, 1)n \

⋃

H[Γ].

The number of these points is given by the open Ehrhart polynomial of ([0, 1]n,H[Γ]), E◦(k+
1).

So if we have γ : V → {0, 1, . . . , k − 1} and γ ∈ Z
n ∩ [0, k − 1]n for α ∈ AO(Γ) we have α

corresponds to a region R(α) (defined by xi < xj when ∃
→

vivj in α) of H[Γ]. Also we have

γi ≤ γj when ∃
→

vivj in α. This defines the closure R(α) of R(α) called the closed region
of α. So given γ the number of compatible pairs (α, γ) = # of closed regions of H[Γ] that
contain γ.

Definition J.3. [[LABEL D:0919 C Ehr poly]] Given a graph Γ and x ∈ R
n we define

m(x) := number of closed regions of H[Γ] that contain x.

Now we define the closed Ehrhart polynomial to be

E(k − 1) =
∑

γ∈Zn∩[0,k−1]n

m(γ).
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So we have (by some calculation) E0(t) = (−1)E(−t) for [0, 1]n and H[Γ] from Stanley’s
theorem.

[September 24, 2008: Nate Reff]

J.4. The Tutte polynomial.
The Tutte polynomial is a universal function that satisfies the relations we’ve been discov-

ering for the corank-nullity polynomial and other polynomials. Let’s review these relations.
We found:

• Deletion-Contraction Property:
QΓ = QΓ\e + QΓ/e if e is not a loop.
RΓ = RΓ\e + RΓ/e if e is not a loop or isthmus.

• Disjoint Graph Multiplicativity:
QΓ1 ∪· Γ2

= QΓ1
QΓ2

and RΓ1 ∪· Γ2
= RΓ1

RΓ2
.

• Multiplicativity:
Disjoint Graph Multiplicativity, and RΓ1∪vΓ2

= RΓ1
RΓ2

.
• Empty-Graph Unitarity:

Q∅ = 1 = R∅.
• Unitarity:

Empty-Graph Unitarity, and RK1
= 1.

• Invariance:
Γ1

∼= Γ2 =⇒ QΓ1
= QΓ2

and RΓ1
= RΓ2

.

We call a Tutte–Grothendieck invariant of graphs any function F on graphs that satisfies
all these properties. Let’s restate them precisely, in the generality of an arbitrary function
F defined on graphs:

(DC) Deletion-Contraction Identity:
F (Γ) = F (Γ\e) + F (Γ/e) if e is not a loop or isthmus.

(M) Multiplicativity:
F (Γ1 ∪· Γ2) = F (Γ1 ∪v Γ2) = F (Γ1)F (Γ2).

(U) Unitarity:
F (∅) = F (K1) = 1.

(I) Invariance:
Γ1

∼= Γ2 =⇒ F (Γ1) = F (Γ2).

Now let’s look at what it means for a function to satisfy these properties, and head toward
answering Tutte’s question of what are all such functions. First of all, in order for all the
properties to make sense, F has to have values in a commutative ring with unity. Next,
because of the mulitiplicativity property (M), F (Γ) = the product of F (blocks). Due to
the property of invariance (I), F (loop) = a value y that is the same for all loops, and also
F (isthmus) = a value x that is the same for all isthmi. Due to unitarity and multiplicativity,
F (Γ) = 1 if Γ has no edges. And lastly, there is the following special case:

Lemma J.18. [[LABEL L:0924lemma1 Loop Isthmus Lemma]] Suppose Γ has l loops and i
isthmi and no other edges. Then F (Γ) = xiyl.
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As another side comment we note that, if the codomain of F is an integral domain, then
(U) is almost superfluous; that is, it can be deduced from the other properties, except for a
small number of functions F . (This is left as a homework exercise. Hint: Derive (U) from
(M) and (I); find the exceptional cases.)

Returning to J.18, let’s look as some simple examples. Suppose we define a graph G as
in figure J.1. Let C2 denote the digon graph, which is a circle of length 2; it consists of two
vertices and two parallel edges between those vertices. Now for the calculation of F using
the deletion-contraction method (as seen in figure J.1) we get the following:

F (G) = F (G \ e) + F (G/e)

= F ((G \ e) \ a) + F ((G \ e)/a) + F ((G/e) \ a) + F ((G/e)/a)

= (x3) + F (K3) + xF (C2) + yF (C2)

= (x3) + (x2 + x + y) + x(x + y) + y(x + y)

= x3 + 2x2 + x + 2xy + y + y2.

Figure J.1. Calculation of F by the method of deletion and contraction.
[[LABEL F:0924Figure1]]

Theorem J.19. [[LABEL T:0924Theorem1 Main Theorem]] Suppose F is a Tutte–Grothendieck
invariant of graphs. Let x = F (isthmus), and let y = F (loop). Then
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(1) F (Γ) = RΓ(x − 1, y − 1), a polynomial function of x and y,
(2) the polynomial has nonnegative integral coefficients, and
(3) any evaluation of RΓ(x, y) gives a Tutte-Grothendieck invariant of graphs.

Proof. One proves the first two statements by induction on |E|, using (DC) and (M). The
third statement follows from the fact that RΓ itself is a Tutte-Grothendieck invariant. �

Corollary J.20. [[LABEL T:0924Corollary1 Main Corollary]] A Tutte–Grothendieck invari-
ant F is well defined given any choices of x = F (isthmus) and y = F (loop) and is uniquely
determined by those choices.

Proof. This is an immediate corollary of Theorem J.19. �

The Tutte polynomial.
We define the Tutte polynomial of Γ as the polynomial obtained by reducing a general

F (Γ) to x’s and y’s using the properties defining a Tutte-Grothendieck invariant of graphs.
We denote the Tutte polynomial by TΓ(x, y). Our main theorem, Theorem J.19, tells us
that TΓ(x, y) = RΓ(x − 1, y − 1). Using previous results we can now also write TΓ(1, 1) =
RΓ(0, 0) = f(Γ), and TΓ(1 − λ, 0) = RΓ(−λ,−1) = (−1)nχΓ(λ) as well as many other such
forms.

Theorem J.21. [[LABEL T:0924Theorem2]] TΓ(x, y) is a polynomial, with no constant term
if |E| > 0. The degree of x equals rk(Γ) = n− c(Γ), and the degree of y equals the nullity of
Γ, that is, |E| − n + c(Γ). Furthermore, bij = 0 if i + j > the cyclomatic number (nullity) of
Γ.

Proof. This is an immediate corollary of Theorem J.19.
[NOT SO IMMEDIATE. Needs some indication of proof.] �

Let’s take another look at the subset expansion of the corank-nullity polynomial:

(J.1) RΓ(u, v) =
∑

S

uc(S)−c(F )v|S|−n+c(F ) =
∑

k,l

aklu
kvl, [[LABELE : 0924Tutte1]]

where akl is the coefficient of ukvl, that is, the number of subsets S ⊆ E that have rank
k = c(S) − c(Γ) and nullity l = |S| − n + c(S). Write

TΓ(x, y) =
∑

i,j≥0

bijx
iyj .
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Then all bij ≥ 0; this can be proved by induction. We deduce that

RΓ(u, v) = TΓ(u + 1, v + 1)

=
∑

i,j≥0

bij(u + 1)i(v + 1)j

=
∑

i,j≥0

bij

∑

k

(
i

k

)

uk
∑

l

(
j

l

)

vl

=
∑

i,l≥0

ukvk
∑

i,j≥0

bij

(
i

k

)(
j

l

)

︸ ︷︷ ︸

coefficients of ukvk in (J.1)

=
∑

k,l

aklu
kvl.

This string of equalities shows that akl =
∑

i,j≥0 bij

(
i
k

)(
j
l

)
. This allows us to get good lower

bounds for certain graph quantities by looking at the coefficients of the Tutte polynomial.
We infer, not only that akl ≥ 0, but stronger positivity due to the fact that akl is a positive
combination of nonnegative integers bij.

Here are some significant properties of the Tutte polynomial, that we will not prove. A
graph is said to be separable if it is not 2-connected or it has a loop. A series-parallel graph
is a graph such that each block is derived from a single edge by repeatedly subdividing edges
and adding parallel edges. Assuming |E(Γ)| ≥ 2, we can say that:

• b01 = b10.
• b01 = 0 ⇐⇒ Γ is separable.
• b01 = 1 ⇐⇒ Γ is a series-parallel graph.

J.5. Coefficients of the chromatic polynomial.
Now let’s take a look at the chromatic polynomial. We define wi, called the Whitney num-

bers of the first kind of Γ, to be the coefficients of powers of λ in the chromatic polynomial:
χΓ(λ) =

∑n
i=0 wiλ

n−i. Now we can say that:

n∑

k=0

(−1)n−kwn−kλ
k = (−1)nχΓ(−λ)

= TΓ(1 + λ, 0)

= QΓ(λ,−1)

=
∑

i,j≥0

(1 + λ)i0jbij

=
∑

i

(1 + λ)ibi0

=
∑

k

λk
∑

i

(
i

k

)

bi0.

Therefore, wn−k = (−1)n−k
∑

i

(
i
k

)
bi0. The sum is nonnegative; thus we have the following

theorem.
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Theorem J.22. [[LABEL T:0924Theorem3 Alternating Sign Theorem]] The Whitney num-
bers wi alternate in sign, with w0 = 1 and (−1)iwi ≥ 0.

This tells us that the coefficients of the chromatic polynomial alternate in sign. More can
be said about the Whitney numbers with further study involving the Tutte polynomial, but
that belongs to matroid theory and would take us too far afield.

K. Line Graphs

[09/26/08: Yash Lodha]

The line graph of Γ, denoted by L(Γ), is defined as follows:

V (L(Γ)) = E(Γ),

E(L(Γ)) = {ef | e, f are adjacent in Γ}.

(Recall that edges are adjacent when they have a common vertex.) This is the simple
definition, valid for simple graphs Γ.

The definition of line graphs raises a few important questions regarding them. First of all,
which graphs are line graphs? Secondly, are there graphs that are isomorphic to their line
graphs? Thirdly, how many non isomorphic graphs can produce the same line graph? We
now provide a few examples:

(1) L(K3) ∼= K3.
(2) L(K3) ∼= K3.

According to a theorem of Whitney’s, these are the only two connected (simple) graphs that
have the same line graph.

[I then go on to describe graphically what happens with double edges and loops with
graphics.] [NEEDED!]

Let Γ be a simple graph. Let B be the unoriented incidence matrix of Γ, and let H be
the oriented matrix of Γ. Then the entry xi,j , i 6= j, of BBT is the number of ij edges for
vertices i, j ∈ V (Γ) and entry xi,i of BBT is the degree valency of the vertex i. It is clear
from this that BBT = D + A where D is the degree matrix or the diagonal V × V matrix
with degrees of vertices in its diagonal entries and A is the adjacency matrix. The entry
xi,j, i 6= j of HHT is negative of the number of vw edges, and the entry xi,i of HHT is the
degree of the vertex i.

Theorem K.1. [[LABEL T:0926rge]] If Γ is loopless and k-regular, then the largest eigen-
value of A is k, with multiplicity at least c(Γ).

The actual multiplicity is exactly c(Γ), but I won’t prove it.

Proof. Notice that HHT is a Gram matrix (which is defined as a matrix G of inner products
of vectors in R

n, i.e., where gi,j = vi · vj, the dot product of vectors vi, vj). This is positive
semidefinite, which means that it is symmetric and ∀x ∈ Y, Ax · x ≥ 0. So all eigenvalues
are greater than or equal to zero.

Let x be an eigenvector of A with eigenvalue λ. Then Ax = λx. And HHTx = kIx−Ax =
(k − λ)x. This implies that x is an eigenvector of HHT with eigenvalue k − λ.

33



To show k is an eigenvalue with multiplicity greater than or equal to c(Γ), suppose the
components have vertex sets V1 = {v1, . . . , vn1

}, V2 = {vn1+1, . . . , vn1+n2
}, . . . . So π(Γ) =

{V1, V2, . . . , Vc(Γ)}. Let xi ∈ R
n be the vector which is 0 except for being 1 on every vertex of

Vi. It is easy to see that Axi = kxi. Therefore we have at least c(Γ) independent eigenvectors,
hence k has multiplicity at least c(Γ). �

Now we look at BTB, which is an E × E matrix. In this matrix the entry xi,j is the
number of edges between the vertices vi, vj, and xi,i is the degree of vertex vi. It is clear that
BTB = A(L) + 2I, where L = L(Γ). Since HTH is positive semidefinite, the eigenvalues are
greater than or equal to zero.

Theorem K.2. [[LABEL T:0926lge]] The eigenvalues of a line graph are greater than or
equal to −2.

Proof. Let λ be an eigenvalue of A(L) with eigenvector x. Then A(L)x = λx. Now

BTBx = (A(L) + 2I)x = (λ + 2)x.

This implies that λ + 2 is an eigenvalue of BTB. So λ ≥ −2. �

L. Cycles, Cuts and their Spaces

[09/26/08: Yash Lodha]

L.1. Cycles and Cuts. A cut or cutset is the set of edges between a vertex set X ⊆ V and
its complement Xc (if this set is nonempty). We define E(X,Xc) to be the edge set with
one endpoint in C1 and the other in C2. A bond is a minimal cut.

Theorem L.1. Every cut is a disjoint union of bonds in a unique way.

Proof. Consider the vertex sets X and Xc. Let E(X,Xc) be the cutset defined above.
For e ∈ E(X,Xc), let v1 ∈ X, v2 ∈ Xc be the vertices incident on e. Then consider the
component C1 of the subgraph induced by X which contains v1 and the component C2 of
the subgraph induced by Xc which contains v2. Let E(C1, C2) be the edge set with one
endpoint in C1 and the other in C2. Now it is clear that E(C1, C2) is a bond, since C1 and
C2 are connected, removing a proper subset of E(C1, C2) will leave C1 ∪ C2 connected, and
hence not increase the number of components of our graph.

From here it follows that E(X,Xc) is the unique disjoint union of edge sets (which are
bonds) connecting a pair of components of X and Xc. �

[Sept. 15, 2008: Yash Lodha]
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Nullity and cyclomatic number.

Proposition L.2. [[LABEL P:0915cyclo]] The cyclomatic number of the subgraph (V, S)
induced by S ⊆ E is |S| − n + c(S).

Proof. For each component C of S, the cyclomatic number of C is |E(C)|− |V (C)|+1. The
cyclomatic number of S is this summed over all components, i.e.,

∑

C(|E(C)|−|V (C)|+1) =
|S| − n + c(S). �

Corollary L.3. [[LABEL C:0915nul]] The nullity of Γ equals the cyclomatic number of Γ,
which equals the number of independent circles.

To explain independence of circles we need the binary cycle space.

The binary cycle space.
Given a maximal forest T of Γ, if we add another edge e we obtain a circle. This circle is

called the fundamental circle associated with e, written CT (e). The entire set {CT (e) | e /∈ T}
is called the fundamental system of circles associated with T .

Proposition L.4. [[LABEL P:0915fundbasis]] Given T , every circle is a set sum of funda-
mental circles in a unique way.

Under set summation P(E) is a binary vector space. The binary cycle space is the subspace
spanned by all circles. It is not difficult to see, using the theorem above, that any fundamental
system of circles is a basis of the binary cycle space.

Proposition L.5. [[LABEL P:0915BR]] RΓ = RΓ\e + RΓ/e if e is not a loop or an isthmus.

We write S/e to mean the set S \ e in the graph Γ/e.

Proof. We use the facts that c(S) = c(S/e) for e ∈ S and c(S) = c(S \ e) for e /∈ S.

RΓ\e + RΓ/e =
∑

S⊆E\e

uc(S)−c(Γ\e)v|S|−n+c(S) +
∑

e∈S⊆E

uc(S)−c(Γ/e)v|S|−n+c(S)

=
∑

S⊆E|e/∈S

uc(S)−c(Γ)v|S|−n+c(S) +
∑

S⊆E|e∈S

uc(S)−c(Γ)v|S|−n+c(S)

= RΓ. �

The following propositions follow directly from the multiplication principle. [EH? I don’t
see it. Some better indication of proof is needed – or just write proofs.]

Proposition L.6. [[LABEL P:0915CR]] RΓ1 ∪· Γ2
= RΓ1

RΓ2
.

Proposition L.7. [[LABEL P:0915DR]] RΓ1∪vΓ2
= RΓ1

RΓ2
.

Circuits and Bonds. Cycles (defs. b, c, d) and cocycles..
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Chapter II. Signed Graphs

A. Technical Definitions

o Signed graph. o Walk and circle signs. o Balance. Criteria for balance. o Switching.

B. Basic structures

B.1. Signature as a homomorphism.

B.2. Balanced circles and the oddity condition.

C. Connectedness

C.1. Balanced components. b(Σ), πb(Σ).

C.2. Unbalanced blocks.

D. Measurement of Imbalance

D.1. Frustration index.

D.2. Vertex-disjoint negative circles.

D.3. Edge-disjoint negative circles.

E. Minors

Deletion and contraction by an edge or edge set.

F. Closure

Lattice of closed sets and lattice of partial signed partitions.

G. Incidence and Adjacency Matrices

H. Orientation

o Bidirected graphs. o Incidence matrix. o Cycles. Acyclic and totally cyclic orientations.

I. Equations and Inequalities from Edges

Consistency via acyclic orientation.

J. Coloring

o Proper vs. improper. o Chromatic numbers ?(?) and ?*(?).

K. Chromatic Functions

o Set of improper edges. o Chromatic polynomials: ordinary, balanced (zero-free), and
comprehensive. Deletion-contraction and multiplicativity. Subset expansion. o Acyclic
orientations: proper and compatible pairs. o Dichromatic polynomials. Deletion-contraction
and multiplicative identities. o Tutte polynomial.
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L. Line Graphs

M. Cycle and Cocycle Spaces

Circuits and Cocircuits.
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Chapter III. Gain Graphs and Biased Graphs

A. Technical Definitions

A.1. Gain Graphs. o Gain graph. o Walk and circle signs. o Balance. o Switching.

A.2. Biased Graphs. o Biased graph. o Balance. Balanced partition.

B. Minors

Deletion and contraction by an edge or edge set.

C. Closure

Lattices of closed sets and of partial partitions. The two matroids. Rank.

D. Incidence Matrices of a Gain Graph

E. Vector Representations

F. Hyperplane Representations

multiplicative and additive

G. Coloring and Chromatic Functions

G.1. Gain Graphs. o Proper vs. improper. o Chromatic polynomials. Deletion-contraction
and multiplicativity. Subset expansion. o Dichromatic polynomials. Deletion-contraction
and multiplicative identities.

G.2. Biased Graphs. o Chromatic polynomials. Deletion-contraction and multiplicativ-
ity. Subset expansion. o Dichromatic polynomials. Deletion-contraction and multiplicative
identities. o Tutte polynomial.
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Chapter IV. Geometry

A. Linear, Affine, and Projective Spaces

over a field or division ring.

B. Various Geometrical Representations

o Vectors. o Hyperplanes. Regions. o Angles. Root systems.
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matroid (that is optional), examples, and incidence and adjacency matrices (Section
8).

SGC T.Z., Signed graph coloring. Discrete Math. 39 (1982), 215–228. MR 84h:05050a.
Zbl. 487.05027.

Basic (but not necessarily elementary) concepts and properties of coloring and the
chromatic polynomial.

CISG T.Z., Chromatic invariants of signed graphs. Discrete Math. 42 (1982), 287–312.
MR 84h:05050b. Zbl. 498.05030.

Advanced theory of chromatic polynomials.
OSG T.Z., Orientation of signed graphs. European J. Combin. 12 (1991), 361–375. MR

93a:05065. Zbl. 761.05095.
Basic and advanced treatment of orientations (bidirected graphs) and their hyper-

plane geometry.
MTS T.Z., Matrices in the theory of signed simple graphs. Submitted.

Introductory survey.
GR Chris Godsil and Gordon Royle, Algebraic Graph Theory. Grad. Texts in Math., Vol.

207. Springer, New York, 2001. MR 2002f:05002. Zbl. 968.05002.
Textbook. Selected chapters including strongly regular graphs, line graphs, and

equiangular lines.
LG T.Z., Notes on line graphs. In preparation. (Incomplete; not available yet.)

NNZ Matthias Beck and T.Z., The number of nowhere-zero flows in graphs and signed
graphs. J. Combin. Theory Ser. B 96 (2006), no. 6, 901–918. MR 2007k:05084. Zbl.
1119.05105.

Nowhere-zero flows on graphs and signed graphs, treated geometrically
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C. Geometry of Signed Graphs

GRS T.Z., The geometry of root systems and signed graphs. Amer. Math. Monthly 88
(1981), 88–105. MR 82g:05012. Zbl. 466.05058.

A readable introduction to some of the connections between graph theory and
geometry.

LGRS P.J. Cameron, J.M. Goethals, J.J. Seidel, and E.E. Shult, Line graphs, root systems,
and elliptic geometry. J. Algebra 43 (1976), 305–327. MR 56 #182. Zbl. 337.05142.
Reprinted in [Seidel, pp. 208–230].

A classic research paper in the background of part of our topic. Not introductory.
Seidel J.J. Seidel, Geometry and Combinatorics: Selected Works of J.J. Seidel. D.G. Corneil

and R. Mathon, eds. Academic Press, Boston, 1991. MR 92m:01098. Zbl. 770.05001.
GR Chris Godsil and Gordon Royle, Algebraic Graph Theory. Grad. Texts in Math., Vol.

207. Springer, New York, 2001. MR 2002f:05002. Zbl. 968.05002.
Selected chapters including strongly regular graphs, line graphs, and equiangular

lines. A textbook that presents much of the material of [LGRS] with its background,
in a more accessible way.

IOP Matthias Beck and T.Z., Inside-out polytopes. Adv. Math. 205 (2006), no. 1, 134–
162. MR 2007e:52017. Zbl. 1107.52009.

Advanced geometrical treatment of proper coloring of signed graphs, in § 5.

D. Gain Graphs

BG1 T.Z., Biased graphs. I. Bias, balance, and gains. J. Combin. Theory Ser. B 47
(1989), 32–52. MR 90k:05138. Zbl. 714.05057.
§ 5: Fundamentals of gain graphs.

BG3 T.Z., Biased graphs. III. Chromatic and dichromatic invariants. J. Combin. Theory
Ser. B 64 (1995), 17–88. MR 96g:05139. Zbl. 857.05088.
§ 5: General theory of coloring gain graphs.

TFS T.Z., Totally frustrated states in the chromatic theory of gain graphs. European J.
Combin. (to appear).

Coloring permutation gain graphs.

E. Biased Graphs and Gain Graphs

BG1 T.Z., Biased graphs. I. Bias, balance, and gains. J. Combin. Theory Ser. B 47
(1989), 32–52. MR 90k:05138. Zbl. 714.05057.

Fundamentals of gain graphs and biased graphs.
BG2 T.Z., Biased graphs. II. The three matroids. J. Combin. Theory Ser. B 51 (1991),

46–72. MR 91m:05056. Zbl. 763.05096.
The closure operations that are basic to the theory, in §§ 2, 3. Important open

problems.
BG3 T.Z., Biased graphs. III. Chromatic and dichromatic invariants. J. Combin. Theory

Ser. B 64 (1995), 17–88. MR 96g:05139. Zbl. 857.05088.
Chromatic polynomial et al., with and without colorings.

BG4 T.Z., Biased graphs IV: Geometrical realizations. J. Combin. Theory Ser. B 89
(2003), no. 2, 231–297. MR 2005b:05057. Zbl. 1031.05034.
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Extensive treatment of the geometry of gain graphs. Fundamentals in §§ 2, 4.
More advanced topics throughout, especially in § 7.
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