
Graphs, Gain Graphs, and Geometry

a.k.a.
Signed Graphs and their Friends

Course notes for

Math 581: Graphs and Geometry

Fall, 2008 — Spring–Summer, 2009 — Spring, 2010

Math 581: Signed Graphs

Fall, 2014

Binghamton University (SUNY)

Version of November 23, 2014

Lectures by

Thomas Zaslavsky

Notes by

Richard Behr, Peter Cohen, Melissa Fuentes, Simon Joyce,

Jackie Kaminski, Yash Lodha, Nathan Reff, Ting Su,

and Thomas Zaslavsky

Redaction by

Thomas Zaslavsky

Copyright c© 2008–2014 Thomas Zaslavsky



Contents

Chapter II. Signed Graphs 2

A. Introduction to Signed Graphs 2
A.1. What a signed graph is 2
A.2. Examples of signed graphs 3
A.3. Degrees 3
A.4. Walk and circle signs 4
A.5. Balance 4
A.6. Switching 6
Switching and balance 7
Switching equivalence and switching isomorphism 9
B. Characterizing Signed Graphs 10
B.1. Signature as a homomorphism 10
B.2. Balanced circles and theta oddity 11
C. Connection 13
C.1. Balanced components 13
C.2. Unbalanced blocks 15
C.2.1. Menger’s theorem 15
C.2.2. Vertices and edges in unbalanced blocks 16
D. Imbalance and its Measurement 16
D.1. Ways to balance 16
D.1.1. Balancing edges 17
D.1.2. Balancing sets 18
D.2. A plethora of measures 19
D.3. Frustration index 20
D.3.1. Properties 20
D.3.2. Computational complexity 22
D.3.3. Computational methods 23
D.4. Maximum frustration 23
D.5. Disjoint negative circles 26
E. Minors of Signed Graphs 27
E.1. Contraction 27
E.1.1. Contracting a single edge. 27
E.1.2. Contracting an edge set S. 27
E.2. Minors 30
F. Closure and Closed Sets 33
F.1. Closure operator 33
Closure via frame circuits 35
F.2. Closed sets 36
F.3. Signed partial partitions 37
F.3.1. Partial partitions 37
F.3.2. Signed partial partitions 38
F.3.3. Signed partitions 39
F.4. Examples of signed graphs and closed sets 40



ii Table of Contents

G. Incidence and Adjacency Matrices 43
G.1. Incidence matrix 43
G.2. Incidence matrix and frame circuits 44
G.3. Adjacency matrix 48
H. Orientation 49
H.1. Bidirected graphs 50
H.2. Incidence matrix of a bidirected graph 51
Walks and coherence 51
I. Equations from Edges, and Signed Graphic Hyperplane Arrangements 52
I.1. Equations from edges 52
I.2. Additive representations: binary and affine 53
J. Chromatic Functions 55
J.1. Coloring a signed graph 56
J.2. Chromatic numbers 57
J.3. Chromatic polynomials 57
J.4. Counting acyclic orientations 61
The sesquijection of acyclic orientations 61
Proper and compatible pairs 71
The number of acyclic orientations 71
J.5. The dichromatic and corank-nullity polynomials 72
Dichromatic polynomials 72
Corank-nullity polynomials 74
J.6. Counting colorations 75
K. Signed Complete Graphs 76
K.1. Coloring 76
Open questions on coloring of signed complete graphs 78
K.2. Two-graphs 78
Graph switching 78
The multiplicity trick 80
K.3. Strongly regular graphs 81
The combinatorics of a detached vertex 82
The matrix of a detached vertex 83
From a strongly regular graph 83
To a strongly regular graph 83
L. Line Graphs of Signed Graphs 84
L.1. What are line graphs for? 84
L.2. Ideas for the line graph of a signed graph 85
Two previous definitions 85
The definition through bidirection 86
M. Circuits, Cocircuits, and their Spaces 87
M.1. Unsigned graphs 88
M.1.1. Cycles, cuts, circuits and bonds 88
M.1.2. Directed cycles and cuts. Indicator vectors. 88
M.2. Signed graphs 90
M.3. Indicator vector of a directed walk 91
M.4. Flows and Cycles 93



Table of Contents 1

M.4.1. Flows 93
M.5. Cuts 95
M.6. The three types of cut 97
Two kinds of balancing set 97
Cuts 97
M.7. Spaces and orthogonality 100
Flows and 1-cycles 100
M.7.1. Cuts 102
Cuts and minimal cuts 102

Readings and Bibliography 104

A. Background 104
B. Signed Graphs 105
C. Geometry of Signed Graphs 105
D. Gain Graphs 106
E. Biased Graphs and Gain Graphs 106
F. General References 106



Chapter II. Signed Graphs

Oct 6:
Jackie
Kaminski

Now at last we’ve arrived at the meat of the course.1 Our purpose is to generalize graph
theory to signed graphs. Not all of graph theory does so generalize, but an enormous amount
of it does—or should, if the effort were made. Since that has not happened yet, there is plenty
of room for a fertile imagination to create new graph theory about signed graphs.

A. Introduction to Signed Graphs

[[LABEL 2.basics]][[LABEL 2.sg]]
A signed graph is a graph with signed edges. But what, precisely, does that mean? In

fact, not every edge has a sign; it is only ordinary edges—links and loops—that do.

A.1. What a signed graph is. [[LABEL 2.sgintro]]
We give two definitions. The first is the simpler: every edge gets a sign. The cost is

that we cannot have loose or half edges; but as we shall see in the treatment of contraction
(Section E.1) that is rather too constraining, whence the second, more general definition.

Definition A.1. [[LABEL D:1006 Ord. Signed Graph]] An ordinary signed graph is a signed
ordinary graph, that is, Σ = (Γ, σ) = (V,E, σ) where Γ is an ordinary graph (its edges are
links and loops) and σ : E → {+,−} is any function.

Definition A.2. [[LABEL D:1006 Signed Graph]] For any graph Γ, which may have half or
loose edges, we define E∗ = {e : E(Γ) : e is a loop or link}. A signed graph is Σ = (Γ, σ) =
(V,E, σ) where Γ is any graph and σ is any function σ : E∗ → {+,−}.

In either case, we call σ the (edge) signature or sign function. Not surprisingly, we refer
to {+,−} as the sign group. One may instead use the additive group Z+

2 = F+
2 = {0, 1} as

the sign group, or the group of signed units {+1,−1}. We prefer the strictly multiplicative
point of view implied by {+,−} for reasons that will become clear when we discuss equations
(Section I); a hint appears when we define the sign of a walk.

A subgraph Γ′ = (V ′, E ′) of Γ is naturally signed by the signature σ′ = σ|E′ . An edge
subset S ⊆ E makes the natural signed spanning subgraph (V, S, σ|S).

Definition A.3. [[LABEL D:1006 Isomorphism]] Signed graphs Σ1 and Σ2 are isomorphic
if there is a graph isomorphism between Σ1 and Σ2 that preserves edge signs.

Many people write +1 and−1 instead of + and−. This is harmless as long as we remember
the symbols are not numbers to be added. (I will eat these words when it comes to defining
the adjacency matrix.)

To some signed graph theorists (in particular, Slilaty), loose edges are positive, and half
edges are negative. This is not a convention I will use.

For general culture, I point out that it is well known that graph theory has been invented
independently by many people. Signed graph theory was also independently invented by
multiple people for multiple purposes.

A curious sidelight is that, in knot theory, there is a similar-looking assignment of labels
{+1,−1} to edges. This is not a signed graph in our sense because the “signs” +1 and −1

1For benefit of vegetarians: the term “meat” is intended in its early sense of ‘substantial food’, not ‘flesh’.
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are interchangeable, so they do not form a group. The sign group {+,−} is present implicitly
through the action of swapping or not swapping the edge labels.

A.2. Examples of signed graphs. [[LABEL 2.examples]]

Oct 22:
Jackie
Kaminski

The restriction of Σ to an edge set S is Σ|S := (V, S, σ|S).
Several different signed graphs can be constructed from an ordinary graph Γ.

Example A.1. [[LABEL X:1022all+]] +Γ = (Γ,+), where all edges are positive. We call it
the all-positive Γ.

Example A.2. [[LABEL X:1022all-]] −Γ = (Γ,−), where all edges are negative. Unsurpris-
ingly, we call it the all-negative Γ.

Example A.3. [[LABEL X:1022homogeneous]] If Σ is all positive or all negative we call it
homogeneous. Otherwise it is heterogeneous.2

Example A.4. [[LABEL X:1022pmG]] ±Γ = (+Γ) ∪ (−Γ), where we differentiate the
positive and negative edges, i.e., e ∈ Γ 7→ +e,−e ∈ ±Γ. Thus, V (±Γ) = V (Γ) and
E(±Γ) = +(E(Γ))∪· − (E(Γ)). We call this the signed expansion of Γ. Loops and especially
half edges can be problematic here, so we generally would assume Γ is a link graph.

Example A.5. [[LABEL X:1022full]] Σ is full if every vertex supports a half edge or a
negative loop. In other words, referring ahead to Section A.5, every vertex supports an
unbalanced edge. This is not the same as having every vertex supporting a negative edge.
Note that the terms positive and balanced, or negative and unbalanced, are equivalent for
circles, but not for edges.

Example A.6. [[LABEL X:1022filled]] Σ◦ is Σ with a negative loop adjoined to every vertex
that doesn’t have a negative loop or half edge. Σ• is Σ with a negative loop or half edge
adjoined to every vertex that doesn’t have one.

We can also define +Γ◦, −Γ◦, and ±Γ◦. We think of doing the +, −, or ± before adding
the negative loops, so that the final result has one negative loop at each vertex, not a positive
loop or two loops.

10 Nov.
2014:
T.Z.

Example A.7. [[LABEL X:1022signedKn]] If ∆ is a simple graph, K∆ is the signed complete
graph with vertex set V (∆) and negative edge set E−(K∆) := E(∆).

A.3. Degrees. [[LABEL 2.degrees]]

2 Nov. 2014:
T.Z.

A vertex of Σ has several different degrees.

Definition A.4. [[LABEL D:20141102degrees]] Let’s define the various signed degrees of a
vertex of Σ. The degree d(v) is the degree in |Σ|. The positive degree d+(v) and the negative
degree d−(v) are the degrees in, respectively, the positive and negative subgraphs, Σ+ and
Σ−. In all these degrees a loop counts twice and a half edge once—but a half edge, so far,
has not entered into any of the signed degrees. Let the half-edge degree be d1/2(v) := the
number of half edges incident with v. Then the net degree of v is

d±(vi) := d+(v)− d−(v) + d1/2(v).

A loose edge, of course, appears nowhere in the degrees.

2These impressive and also useful names are due to my late friend Dr. B.D. Acharya.
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A.4. Walk and circle signs. [[LABEL 2.walksigns]]

Oct 6:
Jackie
Kaminski

The signs of walks and (especially) circles are fundamental in the subject of signed graphs.

Definition A.5. [[LABEL D:1006 Walk Sign]] For a walk W = e1e2 · · · el, the sign of W is

σ(W ) := σ(e1)σ(e2) · · ·σ(el).

We call a walk positive or negative according to its sign; in particular each circle is positive
or negative.

(Contrastingly, a walk is all-positive if it is homogeneously positive, all-negative if homo-
geneously negative.)

Note that this definition does not depend on the edge set of the walk, but on precisely
how often each edge appears in the walk. As a circle is simply a closed walk, we can define
the sign of a circle similarly; but since each edge of the circle appears exactly once, the sign
of a circle (as a walk) is also its sign as an edge set.

Definition A.6. [[LABEL D:1006 Set Positive Circles]] In a signed graph Σ,

B(Σ) := {positive circles of Σ}.
The complementary subset in C(|Σ|) is Bc(Σ) := {negative circles of Σ}.
A.5. Balance. [[LABEL 2.balance]]

We are now ready to define the key concept of signed graph theory (as I interpret it):
balance.

Definition A.7. [[LABEL D:1006 Balanced Graph]] We say Σ is balanced if it has no half
edges and every circle is positive. A subgraph is balanced if it is a balanced signed graph.
An edge set S is balanced if the restriction Σ|S is balanced.

The negation of balance is imbalance. We say Σ is unbalanced if it is not balanced. But
the truly opposite concept is being entirely unbalanced.

Definition A.8. [[LABEL D:1107 contrabalance]]A signed graph is contrabalanced if it
contains no loose edges or balanced circles.

Exercise A.1. [[LABEL Ex:1107 contrabalance]] Which signed graphs are contrabalanced?
Prove the following characterization. A cactus is a connected graph in which every nontrivial
block is a circle or an isthmus. If every component of a graph is a cactus, we call it a cactus
forest.

Proposition A.1. [[LABEL P:1107 contrabalance]] A signed ordinary graph is contrabal-
anced if and only if it is a cactus forest in which every circle is negative.

A hint is that a graph is a cactus forest if and only if it contains no theta subgraph. (Prove
that as part of your solution.)

Two types of signed graph, which will be essential as subgraphs, are the two varieties of
circuit.

Definition A.9. [[LABEL Df:1022fcircuit]] A frame circuit is a signed graph, or an edge
set, that is either a positive circle, or a pair of negative circles that have in common just
one vertex (a contrabalanced tight handcuff ), or a pair of vertex-disjoint negative circles
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together with a minimal connecting path (a contrabalanced loose handcuff ). Throughout
this definition, a half edge may substitute for any negative circle.

Minimality of the connecting path means that it must intersect each circle in one vertex,
which is an endpoint of the path; but the path need not have minimum length.

Definition A.10. [[LABEL Df:1022lcircuit]] A lift circuit is a signed graph, or an edge
set, that is either a positive circle, or a pair of negative circles that have in common just
one vertex (a contrabalanced tight bracelet), or a pair of vertex-disjoint negative circles (a
contrabalanced loose bracelet). In this definition, a half edge may substitute for any negative
circle.

Note that the presence of loose edges has no effect on balance.
We now state Harary’s Balance Theorem (known in psychology as the “Structure Theo-

rem”).

Definition A.11. [[LABEL D:1006 bipartition]] A bipartition of a set X is an unordered pair
{X1, X2} of complementary subsets, that is, subsets such that X1∪X2 = X and X1∩X2 = ∅.
X1 or X2 could be empty.

A bipartition isn’t simply a partition into two parts, since in a partition the parts are not
allowed to be empty.

Theorem A.2 (Balance Theorem (Harary 1953a)). [[LABEL T:1006 Harary]] Σ is balanced
⇐⇒ there is a bipartition V = V1∪· V2 such that every negative edge has one endpoint in V1

and the other in V2 and every positive edge has both endpoints in V1 or both in V2, and Σ
has no half edges.

We call a bipartition as in the Balance Theorem a Harary bipartition of Σ. That is, a
Harary bipartition is a bipartition of V into {X,Xc} such that every positive edge is within
X or within Xc, and every negative edge has one endpoint in each. Notice that we are
ignoring half edges in this definition; thus, the statement of Harary’s theorem is that Σ is
balanced iff it has a Harary bipartition and it has no half edges. (Although, in fact, Harary’s
signed graphs had no half edges!)

The original proof is somewhat long. We’ll have a shorter but more sophisticated proof
soon (Section A.6). For now we make a few observations about balance. First, in a balanced
graph (or balanced subgraph) all loops must be positive. Second is a lemma that can be
useful in many proofs.

Lemma A.3. [[LABEL L:1006 balanced blocks]] Σ is balanced if and only if every block of
Σ is balanced.

Recall that a graph is inseparable if every pair of edges is in a common circle. (Some
people define a graph to be 2-connected if does not contain any cutpoints, where a cutpoint
is a vertex whose deletion leaves more connected components than there were before. The
two definitions disagree on whether or not a loop is its own connected component. The
lemma is true in either case, but we shall prove it with the first definition.)

Proof. The forward direction is trivial, since Σ’s being balanced means every circle in Σ is
balanced, so any circles in a particular block are certainly balanced. Also, there can be no
half edges.
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For the reverse direction, assume every block of Σ is balanced. That rules out half edges.
Let C be a circle in Σ. Each circle is contained within a single block, so C is balanced since
it is a circle in a balanced subgraph. Therefore Σ is balanced. �

Finally, here is Harary’s second theorem about balance.

Theorem A.4 (Path Balance (Harary 1953a)). [[LABEL T:1006pathbalance]] A signed link
graph is balanced if and only if every path with the same endpoints has the same sign.

This proof, also shorter than the original proof, will also be postponed to Section A.6. The
astute reader will have noticed the similarity to conservative vector fields, σ corresponding
to the vector field and ζ to a potential function (on which, more later).

A.6. Switching. [[LABEL 2.switching]]
I will now introduce one of the most useful and powerful techniques in signed graph theory.

Definition A.12. A function ζ : V → {+,−} is called a switching function, or sometimes
a selector. The switched signature is σζ(e) := ζ(v)σ(e)ζ(w), where e:vw, and the switched
signed graph is Σζ := (Γ, σζ).

Looking at examples we notice that switching a single vertex doesn’t change the sign (or
equivalently balance) of any circle. We formalize this with a proposition, in preparation for
the Switching Theorem.

Proposition A.5. [[LABEL P:1006 Switching Circles]] Switching leaves the signs of all
circles unchanged.

Proof. Let ζ be a switching function and C = v0e0v1e1v2 · · · vn−1en−1v0 be a circle. (So ei
has endpoints ei and ei+1 with the indices understood modulo n.) Now

σζ(C) =
(
ζ(v0)σ(e0)ζ(v1)

)(
ζ(v1)σ(e1)ζ(v2)

)
. . .
(
ζ(vn−1)σ(en−1)ζ(v0)

)
.

Since for each vi ∈ V (C), ζ(vi) appears twice in the product above, and ζ(vi) · ζ(vi) = +,
the product above reduces to σζ(C) = σ(e0)σ(e1) · · ·σ(en−1) = σ(C). �

In particular, switching never changes the sign of a loop.
For circles, the terms ‘balanced’ and ‘positive’ are equivalent, as are the terms ‘unbalanced’

and ‘negative’, although this certainly isn’t the case for arbitrary edge sets.
An alternative (and equivalent) point of view on switching is that switching Σ by ζ means

negating every edge with one endpoint in ζ−1(+) and the other in ζ−1(−). (This is immediate
from the definition.) We call this switching the vertex set ζ−1(−), or equivalently ζ−1(+).

Definition A.13. [[LABEL D:1006 vertex set switching]] For X ⊆ V , the signed graph ΣX

is the result of negating every edge with one endpoint in X and the other not in X; that
is, every edge of the cut (X,Xc). We call this operation switching X and we say ΣX is Σ
switched by X.

Vertex switching means switching a single vertex v, i.e., switching {v}. We write Σv for
Σ switched by v.

Note that set switching is simply a change in perspective, from the switching function
ζ : V (Σ) → {+,−} to the vertex set X = ζ−1(−), or conversely from X to ζX which is −
on X and + on all other vertices. We will use whichever notation is more convenient.

Notice also that switching by X is equivalent to switching by Xc, and similarly Σζ = Σ−ζ

for any switching function ζ. Any switching is the product of vertex switchings (in any
order). Specifically, ΣX =

(
· · ·
((

Σv1
)v2
)
· · ·
)vn

where X = {v1, v2, . . . , vn}
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Switching and balance.

Theorem A.6 (Switching Theorem). [[LABEL T:1006 Switching]]

(1) Switching leaves B unchanged, i.e., B(Σζ) = B(Σ).
(2) If |Σ1| = |Σ2| and B(Σ1) = B(Σ2), then there exists a switching function ζ such that

Σ2 = Σζ
1.

Proof. We notice that (1) follows immediately from Proposition A.5, since switching doesn’t
create or destroy any circles, and it doesn’t change the sign of any circles.

For part (2), notice that Σ1 and Σ2 have the same vertices and edges (since |Σ1| = |Σ2|);
we will write Γ := |Σ1| = |Σ2|. Since switchings of different components are independent,
we may assume Σ1 is connected. Now pick a spanning tree T in the underlying graph, and
list the vertices in such a way that vi is always adjacent to a vertex in {v0, . . . , vi−1} (this is
a fairly standard exercise in basic graph theory, and the list is not usually unique). Let ti
denote the unique tree edge connecting vi to {v0, . . . , vi−1}.

We take a brief pause to recall that every circle in Γ is the set sum (symmetric difference)
of the fundamental circles of the non-tree edges of C. Precisely, C =

⊕
e∈C\T CT (e). (This

is Proposition ??.)
We now define (recursively) a series of switching functions, ζi for 0 ≤ i < n, where ζ0 ≡ +

and

ζi(vj) =


ζi−1(vj) if j < i,

σ
ζi−1

1 (ti) · σ2(ti) if j = i,

+ if j > i.

(Here σk is the signature of Σk and σ
ζi−1

1 denotes the signature of Σ
ζi−1

1 .) Notice that for each

of the edges in T , t1, . . . , tn−1, σ2(tk) = σζi1 (tk) for i ≥ k, so in particular, σ2(tk) = σ
ζn−1

1 (tk)
for all tk tree edges.

We now consider a non-tree edge f ∈ C \ T . Since B(Σ1) = B(Σ2), we conclude that

σ1(CT (f)) = σ2(CT (f)), and by Proposition A.5, σ
ζn−1

1 (CT (f)) = σ2(CT (f)), since ζn−1 is a

switching function. Finally, we notice that by construction σ
ζn−1

1 and σ2 agree on each edge
in CT (f) except f , and on the product (the entire fundamental circle), they must agree on

f . Therefore, σ
ζn−1

1 and σ2 agree on every edge in Γ. Hence, ζn−1 is the desired switching
function. �

This theorem can be regarded as the natural generalization of the standard characteriza-
tion of bipartite graphs.

Corollary A.7. [[LABEL C:1006 bipartite]] An ordinary graph Γ is bipartite ⇐⇒ it has
no odd circles.

Proof. All circles in Γ are even ⇐⇒ all circles in −Γ are positive ⇐⇒ (by definition of
balance) −Γ is balanced ⇐⇒ (by Theorem A.6) V = X1∪· X2 so that all negative edges
(that is, all edges) have one endpoint in X1 and the other in X2 ⇐⇒ Γ is bipartite. �

(Next time we will work on a proof that when T is a maximal forest, Σ can be switched
to be any desired value on the edges of T , which is accidently included in the proof of Thm
A.6.)

Oct 8:
Simon Joyce

One thing to observe is that for a walk W from v to w in a signed graph Σ we have
σζ(W ) = ζ(v)σ(W )ζ(w). In particular, the sign of a closed walk is fixed under switching.
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Lemma A.8. [[LABEL L:1008 tree signs]] Given a signed graph Σ and a maximal forest T
of Σ, there exists a switched graph Σζ such that Σζ has any desired signs on T . Furthermore,
ζ is unique up to negation on each component.

Figure A.1. F:1008 We want σζ(ei) = τ(ei).

Proof. We can treat each component of Σ separately so we’ll assume Σ is connected. Then
T is a spanning tree. Let τ : E(T )→ {+,−} be the desired edge sign function. Pick a root
vertex r in V (Σ). Then

τ(e1) = σζ(e1) = ζ(v1)σ(e1)ζ(r),

so
ζ(v1) = τ(e1)σ(e1)−1ζ(r)−1 = τ(e1)σ(e1)ζ(r).

For v ∈ V (Σ), let Prv be the unique path in T between r and v. Thus, Prv = re1v1e2v2 . . . elv.
Then σ(Prv) = σ(e1)σ(e2) · · · σ(el). We want to show σζ(ei) = τ(ei). We know σζ(ei) =
ζ(vi−1)σ(ei)ζ(vi), so we have

σζ(Prv) = [ζ(r)σ(e1)ζ(v1)][ζ(v1)σ(e1)ζ(v2)] · · · [ζ(vl−1σ(el)ζ(v)]

= ζ(r)σ(Prv)ζ(v).

Therefore we must have ζ(r)σ(Prv)ζ(v) = τ(Prv), so ζ(v) = τ(Prv)σ(Prv)ζ(r). Choosing ζ(r)
to be + or −, the rest of ζ is completely determined. Switching by ζ,

σζ(ei) = ζ(vi−1)σ(ei)ζ(vi)

= τ(Prvi−1
)σ(Prvi−1

)ζ(r)σ(ei)τ(Prvi)σ(Prvi)ζ(r)

= σ(ei)τ(ei)σ(ei)

= τ(ei). �

The following immediate corollary is a very useful result.

Proposition A.9. [[LABEL C:1008 balanced positive]] If Σ is a balanced signed graph, then
there is a switching function ζ such that all ordinary edges of Σζ are positive.

Proof. Since Σ is balanced it has no half edges. Let T be a maximal forest of Σ. By the
previous result there is a switching function ζ such that all the edges of T are positive.
Consider an edge e not in T . Either e is a loose edge, it is a balanced loop, or it is a link. If e
is a loose edge then it has no sign. If it is a balanced loop it is positive before and also after
switching. If e is a link, its sign in Σζ equals the sign in Σ of its fundamental circle, which is
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+. Therefore, σζ(e) = +; consequently, switching by ζ does in fact make all ordinary edges
positive. �

In particular, this result tells us that for any balanced component Σ:B of a signed graph,
there exists a switching function such that all the edges of Σ:B are positive. More broadly,

Corollary A.10. [[LABEL C:1008 balanced positive subgraph]] If S is a balanced edge set
in Σ, then there is a switching function such that all ordinary edges of S are positive. �

Switching equivalence and switching isomorphism.
Now we examine the relationships between signed graphs that are induced by switching.

Definition A.14. [[LABEL D:1008 switch class]] We say two signed graphs Σ1 and Σ2 are

switching equivalent if |Σ1| = |Σ2| and there is a switching function ζ such that Σζ
1 = Σ2.

Switching equivalence is an equivalence relation; we call an equivalence class a switching
class of signed graphs.

A related concept is that of switching isomorphism, which means that Σ1 is isomorphic to
some switching of Σ2. We call an equivalence class a switching isomorphism class. (In the
literature, the terms “switching equivalence” and “switching class” often refer to switching
isomorphism; one has to pay close attention.)

[THE FOLLOWING REPEATS A THEOREM FROM THE PREVIOUS DAY:]

Theorem A.11. [[LABEL T:1008 switch equiv]] Given two signed graphs Σ1 and Σ2, if
|Σ1| = |Σ2| and B(Σ1) = B(Σ2) then Σ1 and Σ2 are switching equivalent.

Proof. Let T be a maximum forest of |Σ1|. First we take ζ1, a switching of Σ1 and ζ2, a

switching of Σ2 such that Σζ1
1 and Σζ2

2 are all positive on T . We want to show Σζ1
1 = Σζ2

2 .

Take an edge e:vw in the graph. If e ∈ T , then σζ11 (e) = σζ22 (e) = +. If e /∈ T , then
there is a unique path Tvw joining v and w in T . Let C = Tvw ∪ e. So C is a circle. Since
B(Σ1) = B(Σ2), we know σ1(C) = σ2(C). Furthermore, since the sign of a closed walk is
fixed under switching we have,

σζ11 (C) = σ1(C) and σζ22 (C) = σ2(C).

Therefore,
σζ11 (C) = σζ22 (C).

In particular we have,

σζ11 (C) = σζ11 (Tvw)σζ11 (e) = σζ11 (e) and σζ22 (C) = σζ22 (Tvw)σζ22 (e) = σζ22 (e)

Therefore e has the same sign in both Σζ1
1 and Σζ2

2 , ie Σζ1
1 = Σζ2

2 . �

This theorem means two signatures of a graph Γ are switching equivalent if and only if
they have the same circle signs. With this result we can efficiently prove Harary’s original
theorem. [THIS PROOF BELONGS IN THE PREVIOUS DAY’S NOTES.]

Proof of Harary’s Balance Theorem A.2. Suppose Σ has the stated form. Then Σ is obvi-
ously balanced; but we also note that ΣV2 is all positive, hence balanced, hence Σ is balanced
by Proposition A.5.

Conversely, suppose Σ is balanced. Switching by a suitable vertex set X so a maximal
forest F is all positive (which is possible by Theorem A.11), every other edge must be positive
because its fundamental circle C(e) is positive and all edges in C(e) other than e are in F .
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Calling this all-positive graph Σ1, Σ = ΣX
1 has every edge within X or Xc positive and every

edge between X and Xc negative. �

Proof of Harary’s Path Balance Theorem A.4. Suppose first that Σ is balanced. Switch by
ζ so it is all positive. Every path is now positive! Since the sign of a uv-path P in Σζ is
ζ(u)σ(P )ζ(v) = +, in Σ the sign of P is ζ(u)ζ(v), independent of the particular path.

Conversely suppose that for each pair u, v ∈ V the sign of every path P from u to v is
the same, say σ̄(u, v). Choose a vertex r ∈ V and define ζ(v) := σ̄(r, v). Then in Σζ every
path is positive; in particular, every link is positive. Since Σ switches to all positive, it is
balanced. �

Oct. 8
supplement:
T.Z.

Exercise A.2. [[LABEL X:1008supp swKn]]

(a) Find all the switching isomorphism classes for signed Kn’s, n = 3, 4, 5. Find their
frustration indices and all their minimal members.

(b) What is the number of negative triangles in each switching isomorphism class? Make a
histogram of these numbers by switching isomorphism class. Do you notice any patterns?
Are there any generalizations?

(c) How many switching equivalence classes are there in each switching isomorphism class?
What is the significance of that number?

Oct 13:
Nate Reff

B. Characterizing Signed Graphs

[[LABEL 2.characterization]][[LABEL 2.basic]]
The next question is: Which circle sign patterns are possible for a signed graph? We give

two kinds of answer: one algebraic and one combinatorial.

B.1. Signature as a homomorphism. [[LABEL 2.shomomorphism]]
A function f : V1 → V2, where V1 and V2 are binary vector spaces, is a homomorphism

if and only if it is additive (we can ignore the scalar multiplication axioms because for
F2 they are satisfied automatically). So any function σ : E → F2 gives a unique extension
σ : P(E)→ F2 that is a vector space homomorphism by the identification σ(S) =

∑
e∈S σ(e).

Oct 15
(draft):
Peter Cohen
and T.Z.

In this discussion we take signs as elements of the field F2 = {0, 1} and we write Z1 as
short notation for the binary cycle space Z1(Γ;F2).

Theorem B.1 (Signature as a linear functional). [[LABEL T:1015signhomomorphism]]
Given any function σ̄ : C→ F2, the following properties are equivalent:

(1) σ̄ = σ|C for some signature σ : E → F2 (extended to Z1 by linearity).
(2) σ̄ is the restriction to C of a homomorphism τ : Z1 → F2.
(3) σ̄−1(0) = C ∩ U for some subspace U of Z1, with codimension 0 or 1.

Proof. We prove a chain of implications:
1-2) If we let τ = σ : P (E)→ F2, where P (E) is essentially a subspace with the form FE2 ,

then σ is restricted to a homomorphism, so 1) implies 2).
2-3) Given τ , we can set σ̄ = τ |C. In this case, U = Ker τ , so σ̄−1(0) = C ∩ Ker τ . Since

Ker τ is a subspace of Z1, 2) implies 3).
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3-2) τ : Z1 → F2 can be defined by τ−1(0) = U , or we could define τ : Z1 → Z1/U ∈ F2,
in which case U = Ker τ , so therefore σ̄ = τ |C, and 3) implies 2).

2-1) Given that σ̄ = τ |C, we define σ′ : P (E)→ F2 to be any function with the condition
σ′(C) = σ̄(C). Given this σ′, we obtain the desired σ : E → F2, since σ′ is defined on P (E).

�

? Oct 2014:
Richard
Behr

[PLEASE WRITE UP the presentation I gave on Tuesday 21 about the differ-
ent levels of sign functions: σ, σ′, σ̄ = σ̄; and why σ′ (defined on Z1) is determined
by σ̄ (defined on C).]

A signature σ : E → F2 extends linearly to a functional σ1 : F2E → F2, since E is a
basis for F2E. Conversely, a functional σ1 : F2E → F2 determines its values on E, so we
get a signature σ : E → F2. As the correspondence between σ and σ1 is bijective, we’ll now
assume any function on E is automatically extended to F2 and we’ll use the same name for
both functions.

Given σ, we obtain a functional σ′ : Z1 → F2 by restriction, since Z1 ⊆ F2E (recall that
Z1 is the kernel of the boundary mapping ∂ : F2E → F2V ). However, given a mapping
σ′ : Z1 → F2, we can extend it back to a function σ : F2E → F2, but this extension will not
be unique in general.

We can define a third type of signature, a function σ̄ : C→ F2. This function determines
a function σ′ : Z1 → F2, since Z1 = 〈C(Γ)〉 (by Theorem ??). We will see a function of this
form in the characterization of positive circles below.

Oct 15
(draft):
Peter Cohen
and T.Z.

B.2. Balanced circles and theta oddity. [[LABEL 2.oddity]]
Now we give a combinatorial condition characterizing the class of balanced circles of a

signed graph. For a subclass B of all circles of a graph, theta additivity or theta oddity
(called “circle additivity” in Zaslavsky (1981b)), is the property that every theta subgraph
contains 1 or 3 members of B.

Theorem B.2 (Characterization of Positive Circles). [[LABEL T:1015poscircles]] Let B be
any subclass of C(Γ). Then B is the class of positive circles of some signature of Γ if and
only if it has an odd number of circles in every theta subgraph.

We need a lemma about expressing circles as theta sums, that will let us use induction in
proving the theorem. A theta sum is a representation of a circle C as the set sum C1 ⊕ C2

of two other circles such that C1 ∪ C2 is a theta graph whose third circle is C. Given T , a
maximal forest in Γ, define ν(C) := |E(C) \ E(T )|.
Lemma B.3. [[LABEL L:1015thetasum]] Each circle is either a fundamental circle with
respect to T , or a theta sum C1 ⊕θ C2 of two circles with smaller values of ν.

2014 Oct
22:
Richard
Behr

Proof. The smallest possible value of ν(C) is 1; in this case C is a fundamental circle by
definition. Now suppose that ν(C) ≥ 2, and choose two of the edges of C that are not in T ,
and call them f and g. Thus, C \ f \ g is disconnected and consists of two disjoint paths
P1 and P2 (if f and g are adjacent, one of the paths will be a single vertex). Since all the
vertices of P1 and P2 lie in T (it is spanning), there must be some path P3 contained in T
that connects a vertex of P1 to a vertex of P2. Thus, P3 is a chord of C, and C ∪ P3 is a
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theta graph C1⊕θ C2, where C1 contains f and C2 contains g. Therefore, ν(C1) < ν(C) and
ν(C2) < ν(C). �

Oct 15
(draft):
Peter Cohen
and T.Z.

Proof of the theorem. A theta graph is made up of three internally disjoint paths, all with
the same endpoints, which we will call P1, P2, P3. We denote by Cij the circle made by the
two paths Pi and Pj.

First suppose we have a signature σ. The signs of the circles can be found by multiplying
the signs of the paths:

σ(C12) = σ(P1)σ(P2),

σ(C23) = σ(P2)σ(P3),

σ(C13) = σ(P1)σ(P3).

Therefore,

σ(C12)σ(C23)σ(C13) = σ(P1)σ(P2)σ(P2)σ(P3)σ(P1)σ(P3)

= σ(P1)σ(P1)σ(P2)σ(P2)σ(P3)σ(P3)

= +.

The number of negative circles is even, so theta oddity is satisfied.
Now suppose a class B is given that satisfies theta oddity. Let σ̄ : C → F2 be the

characteristic function of Bc, that is, σ̄(C) equals 1 if C is not in B, 0 if it is in B.
[THIS IS 1Bc (in C). CHANGE NOTATION?]
(In this part of the proof it is best to regard signs as values in F2.) Theta oddity means that if
C1∪C2 is a theta graph and the third circle in it is C = C1⊕C2, then σ̄(C) = σ̄(C1)+ σ̄(C2);
i.e., theta oddity is literally additivity.

Choose a maximal forest T . We use the fundamental circles to define σ, namely,

σ(e) :=

{
0 if e ∈ E(T ),

σ̄(CT (e)) if e /∈ E(T ).

Thus, for a non-forest edge e, σ(e) = 0 if CT (e) ∈ B and 1 otherwise. Our task is to prove
that B(σ) = B, which means that σ(C) = σ̄(C) for every circle. We employ induction on
the number of non-forest edges in C.

Case 1: C is a fundamental circle. Since C = CT (e), by reversing the definition we find
that

σ(C) :=
∑
f∈C

σ(f) = σ(e) = σ̄(C).

Case 2: C is not a fundamental circle. Then ν(C) ≥ 2, so by Lemma B.3, C = C1 ⊕ C2,
a theta sum in which ν(C1), ν(C2) < ν(C). By theta additivity and induction on ν,

σ̄(C) = σ̄(C1) + σ̄(C2) =
∑
f∈C1

σ(f) +
∑
f∈C2

σ(f)

=
∑

f∈C1⊕C2

σ(f) =
∑
f∈C

σ(f) = σ(C).

This establishes that B(σ) = B, as we wished. �
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2014 Oct
22:
Richard
Behr

In the preceding proof, we obtained an extension of σ̄ to F2E; however, this extension
(usually) is not unique. Recall that Z1 = 〈δ1v : v ∈ V 〉⊥ = (B1)⊥ = 〈E(v, V \ v) : v ∈ V 〉⊥,
where δ is the coboundary mapping. (The first equals sign is more an identification than an
actual equality.)
Furthermore, Z1 ∩ B1 = {0}. [WRONG! Counterex.: C4 where E is both a cycle
and a cut.]
It follows that F2E = Z1 ⊕ B1. Thus, the extensions of the function σ′ defined on Z1 are
determined by B1 = 〈1E(v,V \v)〉.

We can combinatorialize this algebraic presentation by using switching. Choose ζ : V →
{+,−} and switch to σζ ; equivalently, choose X = ζ−1(−) ⊆ V , and switch X; that is,
negate the edges of E(X,Xc).3 This preserves the set of positive circles (Theorem A.6).
Observe that switching is essentially the same thing as negating a cut; that is, switching σ
by X is the same as taking σ+ 1E(X,Xc). But every nonzero element of the binary cut space
B1 is a cut (Section ??), so taking σ + 1E(X,Xc) is the same as taking σ + b for some b ∈ B1.
Thus, any extension of σ′ to F2E is a switching of the chosen extension σ, and vice versa.
So, if we have σ′ defined on Z1, not only does it extend to σ on F2E, but also all extensions
constitute the coset σ+B1 of B1 in F2E. [NEED THE FOLLOWING?] In other words,

if D = ~E(X,Xc), then 1D = D = 1E(X,Xc), and σ + 1D = σX .

Oct 13:
Nate Reff

C. Connection

[[LABEL 2.connection]]

C.1. Balanced components. [[LABEL 2.balcomp]]
Suppose we have a signed graph Σ = (V,E, σ) with some subset S ⊆ E. Recall that a path

in Σ, P = e1e2 . . . ek (not containing any half edges), has a sign σ(P ) = σ(e1)σ(e2) . . . σ(ek).
A circle whose sign is + is said to be positive or balanced. We say that S is balanced if
it contains no half edges and every circle is balanced. Recall that we denote by c(S) =
c(V, S) = c(Σ |S) the total number of components (that is, node components). We will
denote by b(S) = b(V, S) = b(Σ|S) the number of balanced components. Recall that

π(S) = {vertex sets of components of S}.
[THIS IS DUPLICATIVE. Partitions and partial partitions are treated else-
where.]
We also write

πb(S) = {vertex sets of balanced components of S}
= {X ∈ π(S) | S:X is balanced}.

This may be called the balanced partial partition of V induced by S. Then c(S) = |π(S)|
and b(S) = |πb(S)|.

Let’s take a moment to review partitions of a set. A partition of V is a class {B1, B2, . . . , Bk}
of disjoint, nonempty sets Bi such that B1 ∪ B2 ∪ . . . ∪ Bk = V . A partial partition of V
is a partition of a subset of V ; its support supp(π) :=

⋃
π is that subset. (One should not

3I say the same thing three ways to emphasise the equivalence of the ways. Each has its uses, as we will
see.
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overlook the unique partition of the empty set: it is the empty partition, ∅, and it is a
partial partition of V .) We denote the class of partitions and partial partitions by ΠV and

Π†V , respectively. So as an immediate observation we have π(S) ∈ ΠV and πb(S) ∈ Π†V .
Also one should note that Π†n

∼= Πn+1. This is because a partial partition π is in bijec-
tive correspondence with the partition π ∪ {{0, 1, . . . , n} \ supp(π)} of {0, 1, . . . , n}. (The
block {0, 1, . . . , n} \ supp(π) is called the “zero block” of π, by those who like to have it.
This isomorphism does not give us a new kind of lattice, but instead a new structure to be
studied.)

Now we turn our attention to the natural isomorphism P(E) ∼= FE2 . The latter is a binary
vector space (a structure that is equivalent to an abelian group of index 2). We will denote
by ⊕ the binary vector addition operator. We denote by C = C(Γ) the class of circles in
Γ. Suppose we have three circles C,C1, C2 ∈ C, we say C is the theta sum of C1 and C2 if
C = C1 ⊕ C2 and C1 ∪ C2 is a theta graph.

We know from [someplace in CHAPTER I] that, given a maximal forest T of an
unsigned ordinary graph, the fundamental system of circles with respect to T , {CT (e) | e /∈
T}, is a basis for the cycle space Z1(Γ;F2) and that C =

⊕
e∈C\E(T ) CT (e). In fact we can

rearrange the sum to in terms of sums in theta graphs.

Lemma C.1. [[LABEL L:1013lemma1]] C can be obtained from {CT (e) | e ∈ E(C) \E(T )}
by theta sums.

Proof. For convenience in the proof we define QC := E(C) \E(T ). Now we do induction on
|QC |. For the base case, if |QC | = 1, then C = CT (e) where {e} = QC . For the induction
step, where |QC | > 1, we give two proofs by two different methods.

First Proof (by a direct argument).
Since |QC | > 1, C \ QC is a disconnected graph. This means that T contains a path

connecting two vertices in different components of C \QC . Now suppose P is a minimal such
path. Then P is internally disjoint from C, by minimality. Therefore, P is chordal path of
C, so P ∪ C is a theta graph, and C = C1 ⊕ C2 where C1 and C2 are the circles in P ∪ C
that contain P . Hence, the P we wanted exists.

Second Proof (to illustrate the use of bridges).
We split C into two circles C1 and C2 such that C = theta sum of C1 and C2 (We will

prove that this is possible after the induction is completed.) and QC = QC1 ∪· QC2 . Since
|QC1|, |QC1 | < |QC |, by the induction hypothesis {CT (e) | e ∈ QC1} generates C1 by theta
sums, and {CT (e) | e ∈ QC2} generates C2 by theta sums. Therefore the disjoint union
QC1 ∪· QC2 = QC generates the entirety of C by theta sums. This completes the induction
argument, so now we turn back to prove the existence of the theta sum.

Suppose that C is drawn as in figure C.1.
We say P is a chordal path of C if P is a path which connects two vertices in C but is

internally disjoint from C. Equivalently, C ∪ P is a theta graph.
In the context of this proof we want to find such a P ⊆ T . Notice that all the nontree

edges of C1 are in C1, all nontree edges of C2 are in C2, and all nontree edges of C is the
disjoint union on nontree edges in C1 and nontree edges of C2, so QC = QC1 ∪· QC2 . In figure
C.1 P is a bridge of C, as is the red subgraph seen in figure C.1. Every vertex of C is in T ,
so every edge of C that is not an edge of T is a bridge of T . So T \E(C) splits into bridges
of C and isolated vertices that are not bridges. There is at least one bridge that contains
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P

C

C1

C2

Figure C.1. F:1013Figure1

C

Figure C.2. F:1013Figure2

vertices of two components of T ∩ C = C \QC , which is disconnected since |QC | > 1. This
completes the bridge proof. �

Oct 20:
Yash LodhaC.2. Unbalanced blocks. [[LABEL 2.blocks]]

C.2.1. Menger’s theorem.
We take a moment to call to mind Menger’s theorem. A block of Γ is a maximal inseparable

subgraph, which means that every pair of edges in the subgraph is in a common circle of the
subgraph. A block graph is a graph that is a block of itself, or in other words, inseparable.

Theorem C.2 (Menger’s theorem). [[LABEL T:1020menger]] In a 2-connected graph Γ,
given any two vertex sets X, Y (not necessarily disjoint) such that |X|, |Y | ≥ 2, there exist
two disjoint XY -paths.



16 Chapter II: Signed Graphs

Corollary C.3 (Usual Menger’s theorem). [[LABEL C:1020mengervv]] For a 2-connected
graph Γ and any two non-adjacent vertices x and y, there exist two internally disjoint xy-
paths.

Corollary C.4 (Another form of Menger’s theorem). [[LABEL C:1020mengersv]] For a
2-connected graph Γ, any set X of at least two vertices, and any vertex z, there exist two
internally disjoint Xy-paths whose endpoints in X are distinct.

We use Menger’s theorem (in whichever form) mainly for k = 2. The following Harary-type
vertex and edge theorems show the method.

C.2.2. Vertices and edges in unbalanced blocks.
In an unbalanced block there are no vertices or edges that don’t participate in the imbal-

ance. This is implied by Harary’s second theorem and its edge version.

Theorem C.5 (Vertex Theorem (Harary 1955a)). [[LABEL T:1020unbalblockvertex]] Let
Σ be an unbalanced signed block with more than one edge. Then every vertex belongs to a
negative circle.

Proof. Let D be a negative circle. If v is in D we’re done. Otherwise, by Menger’s theorem
there are two paths from v to D, disjoint except that both start at v. Call them P1:vw1 and
P2:vw2, and let P be the combined path from w1 to w2. Also, let Q and R be the two paths
into which w1 and w2 divide D. Then D ∪ P is a theta graph. As D is negative, one of the
two circles P ∪Q and P ∪R must be negative. �

This is not Harary’s proof. As is commonly true, the original proof was much longer.
A stronger result is the edge version. I don’t know why Harary didn’t think of it, but

probably because his attention was focussed on the vertices, which represented the persons
in a social group to which the theory of signed graphs was intended to apply. The edges
themselves were not interesting in that context.

Theorem C.6 (Edge Theorem). [[LABEL T:1020unbalblockedge]] In an unbalanced block
with more than one edge, every edge is in a negative circle.

There is a short proof of the Edge Theorem, similar to that of the Vertex Theorem but
slightly harder due to having two nontrivial cases. The proof is a good homework problem.

Oct 22:
Jackie
Kaminski D. Imbalance and its Measurement

[[LABEL 2.imbalance]]
We know what it means for a graph to be balanced, as well as unbalanced, but we could

certainly have more information about unbalanced graphs. For example some unbalanced
graphs might be ‘almost’ balanced, with a single unbalanced circle, and others might be
‘more unbalanced’.

D.1. Ways to balance. [[LABEL 2.balancing]]
We now introduce several definitions that help us us talk about the degree of imbalance

of unbalanced graphs.

Definition D.1. [[LABEL D:1022 Bal Vertex]] A balancing vertex in a connected signed
graph Σ is a vertex such that Σ/v is balanced, but Σ is not.
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If Σ has a balancing vertex v, then every negative circle in Σ passes through v. Any graph
with a balancing vertex does not contain two vertex-disjoint circles.

Similarly, we define a balancing edge and a balancing edge set. But as these are compli-
cated enough to have two definitions, they get separate lengthy treatment.

D.1.1. Balancing edges. [[LABEL 2.baledge]]

Dec 5b:
Peter Cohen
and Thomas
Zaslavsky

A special kind of edge, actually (though not obviously) the nearest signed-graphic analog
of an isthmus, is an edge whose deletion increases balance—in a certain precise sense.

Definition D.2. [[LABEL D:1205baledge]] A partial balancing edge of Σ is an edge e such
that b(Σ \ e) > b(Σ).

There are three types of partial balancing edge.

Proposition D.1. [[LABEL P:1205baledge]] An edge e is a partial balancing edge of Σ
⇐⇒ it is one of the following three types:

(1) An isthmus between two components of Σ\e, of which at least one is balanced. [[LABEL
P:1205baledge isthmus]]

(2) A negative loop or half edge in an otherwise balanced component of Σ. [[LABEL
P:1205baledge loop]]

(3) A link e:vw added to a component of Σ \ e that is balanced, e having sign opposite to
that of a vw-path in Σ \ e. [[LABEL P:1205baledge link]]

[This can give an alternative proof of the circuit-closure rank property in
Chapter IV, maybe. The idea: It implies that closure preserves rank. I think
it’s different from my usual proof. Anyway, it might be good in the course notes
as a second proof. (If it is a second proof and not merely duplicating what I
already have.)]

The proof is a good homework problem. The three cases can be further analyzed. In
Case 1, deleting e creates either one balanced component where previously there was an
unbalanced component, or two balanced components where there was only one before. In
Cases 2 and 3, e is all that prevents the component from being balanced. In Case 3, the
vw-path can be any one that does not use e since balance of the component without e implies
every such path has the same sign (Theorem ??). An example of this case is a negative link
(not an isthmus) in an otherwise all-positive component of Σ.

For another characterization of a partial balancing edge see Proposition F.7.
Call two edges series equivalent if they belong to the same set of circles and they are not

isthmi or half or loose edges. An equivalence class is a series class of edges.

Proposition D.2. [[LABEL P:1205baledgeseries]] In a connected signed graph Σ, the set of
partial balancing edges that are not isthmi is empty or a series class.

Note that any isthmus might be a partial balancing edge, regardless of what else; it only
depends on whether one shore of the isthmus is balanced.

Proof. [NEEDS PROOF] [Is it possible that no such case arises? If each is a
p.b.e., then only one can exist? I feel uneasy about this prop. – TZ]

�
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One could make a different definition. A total balancing edge is an edge whose deletion
makes an unbalanced signed graph balanced. One might think that, if Σ is connected, a total
balancing edge and a partial balancing edge are the same thing; but that isn’t so. However,
it is true that:

Proposition D.3. [[LABEL P:1205stronglybaledge]] If Σ is connected, a total balancing
edge is an edge of type (2) or (3) in Proposition D.1.

This is a two-way result: all total balancing edges are of those types, and any edge of those
types is a total balancing edge. The proof is another good exercise for the mental muscles.

D.1.2. Balancing sets. [[LABEL 2.balset]]

Oct 22:
Jackie
Kaminski

With a balancing edge set we find two essentially different concepts.

Definition D.3. [[LABEL D:1022 Bal Set]] An edge set is a total balancing set of Σ if its
deletion leaves a balanced graph.

An edge set S is a partial balancing set of Σ if its deletion increases the number of balanced
components; that is, if b(Σ\S) > b(Σ). A strict balancing set is a partial balancing set whose
deletion does not increase the number of connected components; that is, it makes one or more
existing unbalanced components balanced without breaking any of them apart.

A total balancing set of minimum size has l(Σ) edges, by the definition of frustration
index.

If Σ is balanced, the empty set is a total balancing set but, obviously, not a partial
balancing set. A bond is a minimal partial balancing set but (obviously) not a minimal total
balancing set.

A total balancing set makes Σ balanced, while a partial balancing set may not make it
balanced but does make it, in a sense, more balanced than it was before. Both kinds of
balancing set have to be considered because they serve different purposes. As we shall see,
total balancing sets are related to frustration, while partial and strict balancing sets are
inovlved with cuts and matroids. We are especially interested in minimal balancing sets,
and then there is a simple relationship between the two kinds.

Lemma D.4. [[LABEL L:1022mintbs]] A total balancing set of Σ consists of a total balancing
set of each connected component. An edge set is a minimal total balancing set if and only if
it consists of a minimal total balancing set of each unbalanced component.

Proof. Let S ⊆ E and for each component Σi, let Si := S ∩ Ei. Then Σ \ S is balanced if
and only if every Σi \ Si is balanced. That proves the first part and makes the second part
obvious. �

Lemma D.5. [[LABEL L:1022minsbs]] A minimal strict balancing set is a minimal partial
balancing set.

Proof. By Lemma D.4 we may assume Σ is connected. Let B be a minimal strict balancing
set. Then Σ \ B is connected so b(Σ \ B) = 1. By minimality, adding back any edge e ∈ B
makes the graph unbalanced (since it cannot change the number of components), hence
b((Σ \B)∪ e) = 0; in other words, B \ e is not a partial balancing set. Thus, B is a minimal
partial balancing set. �
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The structure of a minimal partial balancing set that is not strict can be rather compli-
cated. It will be developed in our treatment of cuts in Section ??.

A total, or partial, balancing edge is a total, or partial, balancing set of size 1 (more
correctly, the balancing set is {e} if e is the balancing edge). A strict balancing edge is also a
total balancing set of size 1, provided that Σ is connected (and unbalanced); this is the edge
described in Proposition D.1(3). The reader familiar with matroid theory will notice that a
partial balancing edge corresponds to a matroid coloop. (See Proposition F.7 for more about
this.) [THAT WILL REQUIRE EXPLANATION ADDED NEAR THE PROP.
NAMELY, A BALANCING EDGE OF Σ is a balancing edge of E \ e.]

D.2. A plethora of measures. [[LABEL 2.plethoraimbalance]]
We now present a list of eight possible measures (generated in class, some by me and some

by the students) that one might use to measure the imbalance of a signed graph. This list
is in no way meant to be exhaustive. We will follow this this with a discussion of which
ones are actually used in certain situations. We would also like to point out that any of the
following measurements may be normalized by dividing through by an appropriate quantity.

(1) The minimum number of vertices whose deletion makes Σ balanced. This is the
vertex elimination number (or “vertex deletion number”), denoted by l0(Σ) [[LABEL
R:1022vdeletion]]

(2) The minimum number of edges whose deletion makes Σ balanced. This is the frus-
tration index, which we denote by l(Σ). (Former or alternative names: line index of
balance—whence the letter l; deletion index.) [[LABEL R:1022frustration]]

(3) The minimum number of edges whose negation makes Σ balanced. This is the nega-
tion index. [[LABEL R:1022negation]]

(4) The maximum number of vertex-disjoint negative circles. [[LABEL R:1022vdnegcircles]]
(5) The maximum number of edge-disjoint negative circles. [[LABEL R:1022ednegcircles]]
(6) The number of negative circles in Σ. Or, the normalized version, which is the pro-

portion of all circles that are negative. [[LABEL R:1022negcirc]]
(7) The minimum number of negative fundamental circles with respect to a maximal

forest. (It is not the same for every maximal forest; see below.) [[LABEL R:1022
NFC]]

(8) The minimum number of circles whose successive deletion leaves a balanced graph.
[[LABEL R:1022circdeletion]]

The first two have (relatively) standard names. The ones that seem to me to be worth
studying are the vertex elimination number (1), the frustration index (2), and the two
numbers of disjoint negative circles, (4) and (5).

The frustration index (2) shows up in small-group psychology (usually under Harary’s
name “line index of balance”), which is where it originated (Abelson and Rosenberg (1958a))
and in physics, especially in spin glass theory (Toulouse (1977a)). Finding the frustration
index is NP-hard, because it contains the maximum cut problem, one of the standard NP-
complete problems (cf. Akiyama, Avis, Chvátal, and Era )1981a), p. 229); see Corollary
D.12. (For a quick explanation of NP, see Section D.3.2.)

The vertex elimination number (1) is NP-hard even when restricted to signed complete
graphs—that is, deciding whether it is ≤ k is NP-complete (due to Akiyama, Avis, Chvatál,
and Era (1981a), p. 232). Evaluating it is also NP-hard, even when restricted to negated
line graphs of signed graphs; see Section L. [Give precise reference to theorem that
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l0(−Λ(Σ) = l(−Σ)) in line graphs section. Proof: Deleting the edge set S in Σ
is the same as deleting the vertex set S in Λ(Σ). Λ(Σ) is antibalanced iff Σ is
[EXPLAIN: CITE LG section], so −Λ(Σ) is balanced iff −Σ is. Thus, −Λ(Σ) \ S
is balanced iff −Σ \ S is balanced.]

Although I don’t believe (6) actually has a use at present (despite some early consideration
in the psychology literature), Tomescu (1976a) and Popescu and Tomescu (1996a et al.) found
interesting things to say about it for signed complete graphs.

By the way, the normalized measure in (6) seems to me more meaningful than the un-
normalized one because it is comparable between different graphs with different number of
circles (or of circles with fixed length). Either measure is equally good if we have a fixed
underlying graph—such as Kn.

Example D.1. [[LABEL X:1022negfundcircles]] The value of (7) may in fact differ with the
choice of spanning forest T . To see this consider −K4 with T1 as three edges incident to a
single vertex. Then each of the edges in K4 \T1 has a negative fundamental circle. But if we
take T2 to be a path of length 3, then two edges in −K4 \ T1 have fundamental circles that
are triangles and hence negative, but the third edge has a quadrilateral as its fundamental
circle, which is positive.

The next lemma tells us that minimal total balancing sets are minimal negative edge sets.

Lemma D.6. [[LABEL L:1022minbalset]] If S is a minimal total balancing set of Σ, then
Σ can be switched so that S is its set of negative edges.

Contrariwise, the negative edge set of a switching Σζ is a total balancing set. It is minimal
such if and only if it is minimal among negative edge sets E−(Σζ) of switchings.

Proof. For the first part, Σ\S has the same number of connected components as Σ; otherwise
S would not be minimal since one could add to it an edge connecting two of its components
that are in the same component of Σ. Take T a maximal forest in Σ\S; it is also a maximal
forest of Σ. By Lemma A.8 we can switch Σ so T is all positive. Then every edge not in S is
positive, because its fundamental circle is positive since Σ \ S is balanced. Every edge in S
has to be negative, because if e ∈ S were positive, S \ e would be a smaller total balancing
set. Thus, S is the negative edge set of the switched Σ.

I leave the proof of the second part to the reader. �

Proposition D.7. [[LABEL L:1022 2and4]] The imbalance measure in (7) is not less than
the frustration index, and is equal to it for some choice of maximal forest.

Proof. The number of negative fundamental circles with respect to a maximal forest T equals
the number of negative edges when T is switched to be all positive. This number is not less
than l(Σ).

To prove (7) can be equal to l(Σ), take S to be a minimum total balancing set. Then
by Lemma D.6 there is a switching in which E− = S. By the proof of that lemma, Σ \ S
contains a maximal forest of Σ, call it T . (7) for this choice of T equals the frustration
index. �

D.3. Frustration index. [[LABEL 2.frustrationindex]]

D.3.1. Properties. [[LABEL 2.frustrationindexproperties]]
It seems that frustration index is far the most important measure of imbalance. Here are

some of its properties. The first one is an essential property, first stated (in their unique
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matrix language) by Abelson and Rosenberg (1958a) and then (in more ordinary matrix
language) by S. Mitra (1962a). I don’t remember who gave the first explicit proof.

Lemma D.8. [[LABEL L:1022frustrationindex]] There is a switching of Σ in which the
number of negative edges equals the frustration index, but no switching has fewer negative
edges.

Proof. This is an immediate consequence of Lemma D.6. The frustration index is, by defi-
nition, the size of a minimum total balancing set. Let S be such an edge set and switch Σ
so S = E−. Then |E−| = l(Σ).

On the other hand, any set E− in a switching of Σ is a total balancing set for Σ, so it
cannot be smaller than l(Σ). �

The first part of the next theorem is due to Harary. The second part is the preceding
lemma.

Theorem D.9. [[LABEL T:1022 Harary]] For a signed graph Σ, the frustration index l(Σ)
= the negation index of Σ = minζ |E−(Σζ)|, the minimum number of negative edges in any
switching.

Proof. Suppose negating R ⊆ E makes Σ balanced. Then every circle in Σ \ R is positive,
so Σ \ R is balanced. On the other hand, if S is a minimal total balancing set, switch so it
is the negative edge set. Then negating S makes the switched graph balanced. Therefore,
negating S makes Σ balanced. That proves the first equation.

For the second, Lemma D.8 states that l(Σ) equals the minimum number of negative edges
in a switched Σ. �

Lemma D.10. [[LABEL L:1022frustrateddegree]] If Σ is a signed link graph such that
l(Σ) = |E−|, then d−(v) ≤ 1

2
d(v) at every vertex.

Proof. Suppose d−(v) > 1
2
d(v), or equivalently d−(v) > d+(v). Then by switching v we

reduce the number of negative edges at v while not changing the signs of the other edges.
Thus, to minimize |E−(Σζ) we have at least to switch so every vertex has negative degree
no larger than its positive degree. �

The problem of frustration index includes the well known max-cut problem for graphs.

Corollary D.11. [[LABEL P:1022 negative frustration]] For a graph Γ, the frustration index
of −Γ is given by

l(−Γ) = |E(Γ)| −max
X
|E(X,Xc)|,

the complement of the maximum cut size in Γ.

Proof. Recall that a cut E(X,Xc) consists of the edges with one endpoint in each set of a
bipartition {X,Xc} of V . Let E(X,Xc) be a cut of Γ. The cut edges of an all-negative graph
will form an all-negative bipartite graph, where all circles are of even length and therefore
positive. So the remaining edges (the edges of E(Γ) \ the cut) are a set whose deletion
balances −Γ.

Certainly, maxX⊆V |E(X,Xc)| will minimize the size of E(Γ) \ a cut.
Lastly, since every balanced subgraph of an all-negative graph must be bipartite, every

total balancing set is the complement of a bipartite subgraph. This completes the proof. �
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D.3.2. Computational complexity. [[LABEL 2.frustrationindexcomplexity]]

2014 Oct
31:
T.Z.

Corollary D.11 tells us something important about the computational difficulty of the frus-
tration index. To understand this one has to know the current classification of computational
complexity.

A decision problem is a question of the following form, where P is a fixed property:
“Given an input object I, does it have property P?” For instance, the input might be an
ordinary graph together with a number k and the property might be that the maximum
cut size is at most k. The answer could be “Yes” or “No”. This problem is called the
maximum cut problem, “max-cut” for short, and written MAXCUT. (It’s conventional to
write computational problems in capitals.)

Given a decision problem, we want to know whether a “Yes” answer can be found quickly
or not. “Quickly” is somewhat arbitrarily defined as “in time polynomial in the length of the
input”. For a graph, the length of the input may be a constant times |V |+ |E| (depending
on the input format). Note that our question, “Is the max cut size in Γ at most k?”, is
asymmetric; we are only asking for a positive answer. If we wanted a negative answer, we
would ask the opposite question, “Is the max cut size in Γ greater than k?” It’s possible
that one question can be answered quickly and the other cannot.

There are two systems for computing an answer. If straightforward computation, consid-
ering every possible input and every possible sequence of trials (in MAXCUT that means we
may have to test every set X ⊆ V because it’s possible that the only), will always give us
the “Yes” answer in polynomial time, the problem belongs to the class P of Polynomial-time
decision problems. (MAXCUT does not belong to P because we might have to test 2n−1 sets
X before finding the one whose cut size is ≤ k.) If straightforward computation, considering
every possible input and only the shortest possible sequence of trials (in MAXCUT that
means we happen to test first an X whose cut is indeed no bigger than k, so we immediately
get the answer “Yes”), gives the answer “Yes”, then we say the problem belongs to NP, the
class of Nondeterministically Polynomial-time decision problems. (The name comes from an
equivalent way of modelling the process: we assume we have unlimited parallel processing so
we can test every sequence of trials simultaneously.) Every problem in P is also in NP, but
not conversely—maybe! In fact, probably everyone believes P 6= NP but no one has been
able to prove it.

There are decision problems that are not in NP. I will not be concerned with them. There
are problems that are in NP and have maximal difficulty, meaning that if we can solve such a
problem in a certain time T (l), depending on the input length l, then we can solve every NP
problem in time that is a polynomial in T (l). Such problems are NP-complete. MAXCUT
is one of the best-known NP-complete problems. (If you can prove MAXCUT is, or is not,
solvable in polynomial time, you have solved the P vs. NP question and you win a Clay
Foundation Millennium Prize.)

One more explanation. A problem that is not a decision problem, such as “What is the
maximum cut size in Γ”, may be solvable in polynomial time. For instance, the diameter
of a graph can be computed in polynomial time. The analog of an NP decision problem for
computing a number (instead of making a decision) is the NP-hard problem.

Now we can state the complexity consequence of Corollary D.11.

Corollary D.12. [[LABEL C:1022 NP]] The frustration index of signed graphs is an NP-
hard problem. The question “Is l(Σ) ≤ k?” is NP-complete.
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Proof. The maximum-cut problem is already NP-hard, and MAXCUT is NP-complete. (See
any book on algorithmic complexity. The classic is Garey and Johnson [GJ].) �

In other words, don’t expect to find frustration index in polynomial time (but if you do,
you have proved P = NP!).

D.3.3. Computational methods. [[LABEL 2.frustrationindexcomputations]]

2014 Nov
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On the other hand, if you are interested in a particular class of signed graphs, it is con-
ceivable that frustration index can be computed “quickly”. (In this section we assume the
underlying graphs are simple.) Such is the case for signed planar and toroidal graphs (see
Katai and Iwai (1978a)) and Barahona (1981a, 1982a)), including the square lattice graphs
of interest in physics (see Bieche, Maynard, Rammal, and Uhry (1980a)). However, it is not
the case for signed 3-dimensional lattice graphs (according to Barahona (1982a)) or signed
bipartite graphs (see ?? (??)); frustration index limited to either class is still NP-complete.
I don’t know, and I think no one knows, whether it can be computed in general in time
much less than Cn22n−1, which is how long it takes to test every possible switching for the
number of negative edges. (C is a constant. The n2 is the time it takes to check the sign
of every edge of Kn—neglecting the constant of 1/2.) This time is exponential in n and is
considered—rightly in this case—slow.

Problem D.1. [[LABEL Pr:1022]] Improve the general upper bound in terms of n on the
time required to compute l(Σ) for an arbitrary signed simple graph. (To repeat, I do not
know the current best bound.)

Here is a brief account of the algorithm of Barahona and Katai–Iwai for finding l(Σ) when
the underlying graph |Σ| is planar. First, embed |Σ| in the plane; this is called a plane
graph. A plane graph has regions and each region has a boundary walk, whose sign product
is assigned to the region. That gives the dual graph |Σ|∗, whose vertices are the regions of
|Σ| and whose edges join the regions on opposite sides of each edge of |Σ|, a vertex signature.
We now find a matching of negative vertices in the dual graph, where the matching consists
of paths between matched vertices, such that the total length of all paths is a minimum. (In
that case, no two matching paths can have a common edge.) The edges of Σ that correspond
to matching path edges in the dual graph form a minimum negation set; thus, the number
of such edges is l(Σ). Summarizing:

Theorem D.13 (Katai–Iwai, Barahona). [[LABEL T:1022planar]] The frustration index of
a signed planar graph Σ equals the minimum number of edges in a set of matching paths
between negative vertices in the dual graph |Σ|∗.

It is interesting that the publication of Katai–Iwai, which preceded Barahona’s by three
years, was in a psychology journal, where its mathematics was exceptionally high-powered.
Barahona published in a physics journal, where the mathematics was not especially high-
powered but was of an unusual kind. It may not be a coincidence that Barahona’s presen-
tation is much simpler, shorter, and more easily read.

D.4. Maximum frustration. [[LABEL 2.maxfrustration]]

2014 Oct
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Computing the maximum frustration index of any signature of a given graph should be
no less difficult than finding the frustration index of a particular signed graph, although I
don’t know of any proof about this. Nevertheless, there are some theorems.
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Definition D.4. [[LABEL D:1022 max frust]]lmax(Γ) := maxσ:E→{+,−} l(Γ, σ), the maximum
frustration index over all signatures.

This number lmax was introduced by Akiyama, Avis, Chvátal, and Era (1981a). Computing
it leads us to an often-rediscovered theorem of Petersdorf.

Theorem D.14 (Petersdorf (1966a)). [[LABEL T:1022 Petersdorf]] For the complete graph,

lmax(Kn) = l(−Kn) =

⌊
(n− 1)2

4

⌋
.

The signatures whose frustration index achieves the maximum are precisely those in the
switching class of −Kn.

In other words, antibalance uniquely maximizes the frustration index.

Proof. We have three things to prove: the exact value of l(−Kn), that the maximum frus-
tration index is achieved by −Kn, and that no other signature, up to switching, achieves the
same frustration index.

Part 1. To see that l(−Kn) = b (n−1)2

4
c, we observe that by Proposition D.11, l(−Kn) =

|E(Kn)| − |max cut of Kn|. An edge cut is just the set of edges with one endpoint in each
part of a bipartition of V . In Kn, such a set is a complete bipartite graph Ki,n−i, which
has i(n − i) edges. Therefore, l(−Kn) = max0≤i≤n i(n − i). Since i(n − i) is an increasing
function of i for i < n

2
and decreasing for i > n

2
, maxi=0,1,...,n i(n − i) = bn

2
c(n − bn

2
c). If n

is even this is n
2
· n

2
= n2

4
. If n is odd it is n−1

2
· n+1

2
= n2−1

4
. Both cases can be expressed as

dn2−1
4
e. The frustration index is therefore

⌊(
n
2

)
− n2−1

4

⌋
= b (n−1)2

4
c. This gives the value of

l(−Kn), which takes care of the first part of the proof.
Part 2. By definition, lmax(Kn) = maxσ:E→{+,−} l(Kn, σ), which equals the maximum

negation index of any (Kn, σ) by Theorem D.9. We assume from now on that (Kn, σ) is
already switched so the number of negative edges equals its frustration index. By Lemma
D.10 every vertex has negative degree ≤ b(n− 1)/2c. Thus, the number of negative edges is
at most 1

2
nb(n− 1)/2c.

If n is even this is 1
4
n(n− 2) = b (n−1)2

4
c, so −Kn does have maximum frustration.

If n is odd, it is b1
4
n(n− 1)c, which is larger than l(−Kn). We must look deeper. Suppose

there are two positively adjacent vertices, v and w, both with negative degree 1
2
(n− 1). The

total number of negative edges from {v, w} to V \ {v, w} is n − 1. The total number of
edges between {v, w} and V \ {v, w} is 2(n− 2). Therefore, by switching {v, w} we reduce
the number of negative edges. [PICTURE HERE.] That contradicts the hypothesis that
|E−| equals the frustration index; we conclude that no two vertices with negative degree
1
2
(n−1) can be positively adjacent. This implies that, if d−(v) = 1

2
(n−1) for some vertex v,

then all other vertices with the same degree are neighbors of v. Thus, there cannot be more
than 1

2
(n+ 1) vertices with degree 1

2
(n− 1). The remaining 1

2
(n− 1) vertices have degree at

most 1
2
(n− 3). Adding up these degrees, there are no more than n+1

2
n−1

2
+ n−1

2
n−3

2
= (n−1)2

4

negative edges, the exact value of l(−Kn). Consequently, −Kn has maximum frustration in
the odd case.

Part 3. We ask whether there is more than one switching class that has maximum frus-
tration.

In the odd case we get the largest frustration when (Kn, σ) has 1
2
(n + 1) vertices with

d−(v) = 1
2
(n− 1). None of these vertices can be positively adjacent; thus, they form a clique
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of order 1
2
(n+ 1) in the negative subgraph. Each vertex has 1

2
(n−1) neighbors in the clique,

so it cannot be negatively adjacent to any other vertex. Thus, the most negative edges arise
when the remaining 1

2
(n−1) vertices also form a negative clique. This is precisely −Kn with

a maximum cut switched to positive. Thus, the only signature on Kn that has maximum
frustration is the all-negative one.

In the even case the negative subgraph Σ− must be n
2
-regular for maximum frustration.

The solution is similar to that for odd n but slightly more complicated. Instead of showing
that two vertices of maximum negative degree must be negative neighbors, we prove that no
three vertices can be positively adjacent and deduce that no two positively adjacent vertices
can have a common negative neighbor.

Suppose first that u, v, w are positively adjacent. Then all their 3(n
2
−1) negative neighbors

are in V \ {u, v, w}. That leaves 3(n
2
− 2) positive edges between {u, v, w} and V \ {u, v, w},

so switching {u, v, w} reduces the number of negative edges, contradicting the hypothesis on
σ. Therefore, no three vertices can be positively adjacent.

Now suppose v, w are positively adjacent. Their negative neighborhoods combined, N−(v)∪
N−(w), constitute at most 2(n

2
− 1) = |V \ {v, w}| vertices. By the preceding para-

graph there cannot be a vertex that is positively adjacent to both v and w. Consequently,
N−(v) ∪ N−(w) = V \ {v, w}, from which we deduce that N−(v) ∩ N−(w) = ∅. We have
proved that, if two vertices are negative non-neighbors, their neighborhoods are disjoint.
Restating that, if two vertices have a common negative neighbor, they must be negatively
adjacent. Hence, Σ− is a union of disjoint cliques, each of degree 1

2
n − 1, thus of order 1

2
n.

So Σ− = Kn/2∪· Kn/2 and (Kn, σ) is a switching of −Kn. That concludes the last part of
the proof. �

For completeness’ sake we mention that l(any signed forest) = 0, since it has no circles,
and therefore lmax(any forest) = 0. We just did lmax(Kn) above.

A next logical graph to consider is Kr,s; but this is considerably more of a problem than
Kn. With Kn, the ‘obvious’ signing −Kn yields the maximum frustration index. However,
with Kr,s there is no ‘obvious’ signature to yield a high frustration index, since the all-
negative signature has frustration index 0 and there is no clear substitute. In view of the
relatively obscurity of signed graphs within graph theory, it may be surprising that the value
of lmax(Kr,s) has been the subject of several papers. The reason is that it is the ‘rectangular’
generalization of the Gale–Berlekamp switching game, which has been a challenging problem
for the last oh-so-many years (see, i.a., Brown and Spencer (1971a) and Solé and Zaslavsky
(1994a)).

The Gale–Berlekamp switching game is played on Kr,r, or rather, on an r×r board with a
light bulb in each square and a switch for each row and column. Initially, some of the lights
are on and some are off. A switch will reverse all the bulbs in its row or column. The goal is
to keep switching so as to minimize the number of lit bulbs. The problem is to find the exact
upper bound on that number. Transforming the board into a signed Kr,r by making edge
viwj negative when the bulb in row i and column j is lit, we have the problem of evaluating
lmax(Kr,r).

It follows from coding theory that frustration index of a randomly signed Kr,s (for variable
r and s) is NP-hard; this leads one to expect that lmax(Kr,s) is also NP-hard—although I
don’t know of a proof. Nevertheless, we do know how to solve one general case, that in which
s = k2r−1, from Garry Bowlin’s recent doctoral thesis (2009a). In a signed graph, let v(N)
denote a vertex whose negative neighborhood is N .
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Theorem D.15. [[LABEL T:1022 bowlin]] For the complete bipartite graph Kr,k2r−1 with
left set [r], where r, k > 0, the signature with largest frustration index is the one that has k
right vertices v(N) for each N ⊆ [r] such that |N | < r/2 and also (if r is even) for each
N ⊆ [r] such that |N | = r/2 and 1 ∈ N .

Bowlin (2009a) also shows that there are a systematic construction of reasonably tight
bounds for all s, given a fixed value of r; however, he does not prove the exact maximum
frustration.

Despite its ineffectiveness on bipartite graphs, the all-negative signature (that is, antibal-
ance) is tempting. I propose the following problem, about whose solution I have no clue:

Problem D.2. [[LABEL Pr:1022 maxfr]] Find necessary, sufficient, or necessary and suffi-
cient conditions on a graph Γ for l(−Γ) to equal the maximum frustration lmax(Γ).

I close this topic with the statement of Akiyama et al.’s general theorem about maximum
frustration, which I will not prove. (The first inequality is the nontrivial part.)

Theorem D.16 (Akiyama, Avis, Chvátal, and Era (1981a)). [[LABEL T:1022maxfrust]]
For an ordinary graph Γ with m := |E|, m/2−√mn ≤ lmax(Γ) ≤ m/2.

And to conclude, here is a suggestion for an example that may provide a new exact value.
(I don’t know of any published value.)

Conjecture D.3. [[LABEL Cj:1022 Krst...]] The maximum frustration of the complete
multipartite graph Kn1,n2,...,nk where k ≥ 3 is l(−Kn1,n2,...,nk).

The conjecture is not complete, however.

Problem D.4. [[LABEL Pr:1022 Krst...]] Evaluate l(−Kn1,n2,...,nk), assuming k ≥ 3.

D.5. Disjoint negative circles. [[LABEL 2.disnegcircles]]
We now turn our attention to imbalance measure (4) and consider when the maximum

number of vertex-disjoint negative circles is 1. The reader familiar with matroid theory will
be interested to know that for a 2-connected signed graph, having no two vertex-disjoint
negative circles is equivalent to having a binary frame matroid. I state a theorem, first
proposed by Lovasz with an incomplete proof, that was finally established by Slilaty.

Theorem D.17 (Slilaty (2007a)). [[LABEL T:1022 Slilaty]] Σ has no vertex-disjoint nega-
tive circles if and only if one or more of the following is true:

(1) Σ is balanced,
(2) Σ has a balancing vertex,
(3) Σ embeds in the projective plane, or
(4) Σ is one of a few exceptional cases.

The proof of this remarkable theorem, as well as a formal definition of a signed graph
embedding (technically, “orientation embedding”—see especially Zaslavsky (1992a)), are
beyond the scope of this course. But I note that the backward direction of the proof is easier
than the forward direction, and that in a signed graph embedding, a circle is negative if and
only if it is orientation reversing in the embedding.

24 Oct
2008:
Simon Joyce
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E. Minors of Signed Graphs

[[LABEL 2.minors]]
For a signed graph as for a graph, a minor is any result of a sequence of contractions and

deletions of edge sets and deletions of vertices. So before we can discuss minors we must
define contraction.

But first let us dispose of deletion. We mentioned in Section A.1 that any subgraph of Σ
is naturally signed by inheritance from Σ. That takes care of deletion, since deleting edges
or vertices from Σ amounts to taking a subgraph.

E.1. Contraction. [[LABEL 2.contraction]]
Contraction of edges in a signed graph is substantially more complex than in ordinary

graphs. Thus, we develop the notion of contraction in two stages: first we contract a single
edge, then an arbitrary set of edges.

E.1.1. Contracting a single edge.
If e is a positive link we delete e and identify its endpoints, which is how we normally

contract a link in an unsigned graph. If e is a negative link we take a switching ζ of Σ such
that e is a positive link in Σζ . Now we contract e in the usual way. We must check that this
operation is in some sense well defined.

Lemma E.1. [[LABEL L:1024 link contraction equivalence]] In a signed graph Σ any two
contractions of a link e are switching equivalent. The contraction of a link in a switching
class is a well defined switching class.

Proof. If e is a positive link the result is immediate so let’s assume e is a negative link. Let
ζ1 and ζ2 be any two switching functions of Σ such that e is a positive link in both Σζ1 and
Σζ2 . We want to show Σζ1/e and Σζ2/e are switching equivalent. Since |Σζ1/e| = |Σζ2/e| by
theorem A.6 it will suffice to show B(Σζ1/e) = B(Σζ2/e).

Let C be a circle in Σ. Since switching does not change the sign of the circle, C has the
same sign in both Σζ1 and Σζ2 . If e is not an edge of C, then contracting e won’t affect
the sign of C in Σζ1/e or Σζ2/e. If e is an edge of C, since the sign of e is positive in Σζ1

and Σζ2 contracting it won’t affect the sign of C in Σζ1/e or Σζ2/e either. It follows that
B(Σζ1/e) = B(Σζ1/e). �

When we contract a positive loop or a loose edge e we just delete e.
If e is a negative loop or half edge and v is the vertex of e, we cut out v (as if with scissors)

and delete e. This operation may produce several half and loose edges, as can be seen in
Figure E.1. Since we are deleting e and v, V (Σ/e) = V (Σ) \ {v}, and E(Σ/e) = E(Σ) \ {e}.
Also for any edge f 6= e we have VΣ/e(f) = VΣ(f) \ {v}. So if f is a link with endpoints v
and w it becomes a half edge at w in the contraction. If f is a loop at v, f becomes a loose
edge in the contraction. (This is one of two reasons why we have half and loose edges.)

E.1.2. Contracting an edge set S.
Contraction of an arbitrary edge set S of a signed graph Σ will also be more complicated

than contraction for ordinary, unsigned graphs. The process differs for the balanced and
unbalanced components of S. The edge set and vertex set of Σ/S will be as follows:

E(Σ/S) := E(Σ \ S),

V (Σ/S) := {vertex sets of balanced components of (V, S) = Σ|S}
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= πb(S).

To contract we first apply a switching function ζ so the balanced components of S are all
positive. Lemma A.8 guarantees we can do this. Once we have switched, we contract each
balanced component of S in the usual way.

To contract the unbalanced components of S we cut them out and delete all the edges and
vertices of each unbalanced component in a similar process to how we contracted a negative
loop or half edge. This may create some half edges or loose edges. If an edge e /∈ S is a link
and has a single endpoint in an unbalanced component of S, then it becomes a half edge in
the contraction. If both endpoints of e are in unbalanced components of S, or if e is a half
edge with it’s endpoint in an unbalanced component of S, then e becomes a loose edge in
the contraction.

The signature σΣ/S is the sign function induced by Σζ . Then any edge that is a link or
loop in Σ/S keeps its (switched) sign. Any half or loose edges have no sign.

To summarise, once we have found such a switching ζ, we have,

Σ/S =
(
V (Σ/S), E(Σ/S), σΣ/S

)
.

Notice that contraction of an unsigned graph Γ behaves exactly like contraction of +Γ as
we have defined it here.

An example of how the process of contraction works is presented in Figure E.2. Here
Σ = ±K5 and S is the set of red edges. Since |E(S)| = 4 we have |E(±K5/S)| = 16. Notice
that πb(S) = {v3, v4} and this will correspond to the only vertex in the contraction. To
contract we switch the vertex v3 and then contract the edge −e34. +e34 is now a negative
loop. Now we cut out the unbalanced component, i.e., we reduce the vertices v1, v2, and v5

and delete the remaining edges of S. All the edges with an endpoint at the new contracted
vertex become half edges and all the edges with all endpoints in the unbalanced component
become loose edges.

As with contraction of a single edge, we must show this process is in some sense well
defined. That is the content of the next result.

Lemma E.2. [[LABEL L:1024 contraction equivalence]]

Figure E.1. Cutting out v leaves half and loose edges.
[[LABEL F:1024Figure1]]
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(a) Given Σ a signed graph and S ⊆ E(Σ), all contractions Σ/S (by different choices
of switching Σ) are switching equivalent. Any switching of one contraction Σ/S is
another contraction and any contraction Σζ/S of a switching of Σ is a contraction of
Σ.

(b) If |Σ1| = |Σ2|, S ⊆ E is balanced in both Σ1 and Σ2, and Σ1/S and Σ2/S are
switching equivalent, then Σ1 and Σ2 are switching equivalent.

Part (a) tells us that a contraction of a signed graph is not really a signed graph; it is a
switching class. It also tells us that contraction really applies to switching classes more than
to individual signed graphs. We can summarize this in a formula:

[Σ]/S = [Σ/S].

Proof. By theorem A.6, since |Σζ/S| is the same for any switching function, if we can show
B(Σζ/S) does not depend on the switching function ζ, our result will follow. When we
contract by S we contract each component of S separately so it will suffice to show the
result holds when we contract a single balanced component or unbalanced component.

First assume S is composed of a single balanced component. To contract S we must apply
a switching function so that all the edges of S are positive. Again, such switching fuctions
exist by Proposition A.9. Let ζ1 and ζ2 be two such switching functions. Let x be the vertex
corresponding to S in Σζ1/S and let C ∈ B(Σζ1/S).

If x 6∈ V (C), then C ∈ B(Σ). Since switching does not change the sign of circles it follows
that C ∈ B(Σζ2/S).

Now suppose x ∈ V (C). Consider the path P ∈ Σζ1 induced by the edges of C. P is
positive since C is balanced. If P is closed, then C ∈ B(Σ) and so C ∈ B(Σζ2/S). Otherwise
P has distinct endpoints v, w ∈ V (S) and E(P ) ∩ S = ∅. Since all the edges of S in Σζ1

and Σζ2 are positive, there is a positive path Q in S with endpoints v and w in both Σζ1

and Σζ2 . Therefore the circle P ∪Q ∈ B(Σζ1). It follows that P ∪Q ∈ B(Σζ2) and since the
edges in Q are all positive we get that C ∈ B(Σζ2/S).

A similar argument shows that if C ∈ B(Σζ2/S), then C ∈ B(Σζ1/S), so B(Σζ2/S) =
B(Σζ2/S).

Figure E.2. A contraction of ±K5.
[[LABEL F:1024Figure2]]
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Now assume S is composed of a single unbalanced component. Let C ∈ B(Σζ1/S). Since
no vertex of C can be in S we have that C ∈ B(Σ), and therefore C ∈ B(Σζ2/S). It follows
that B(Σζ1/S) = B(Σζ2/S).

If ζ is a switching function of Σ/S, then we can define a pullback ζ̂ that is a switching

function of Σ by ζ̂(v) := ζ(Vi) for v ∈ Vi ∈ πb(S) and letting ζ̂|V0(S) be arbitrary. Then

Σζ̂/S = (Σ/S)ζ , i.e., (Σ/S)ζ is another contraction of Σ. That Σζ/S is a contraction of Σ
where ζ is a switching function is immediate.

For part (b) of the Theorem, since Σ1/S and Σ2/S are switching equivalent, Σ2/S is a

contraction of Σ1 by part (a). So there is a switching function ζ1 such that Σζ1
1 /C = Σ2/C.

Note all the edges of S are positive in Σζ1
1 so that we can contract S. Now Σ2/C is obtained

from Σ2 by applying a switching function ζ2 to Σ2 that made all the edges in S positive and
then contracting S. This means that the edge signs of Σζ2

2 are the same as the edge signs of

Σζ1
1 and therefore Σ1 and Σ2 are switching equivalent. �

[Proof needs to be checked]

Part (b) of lemma E.2 fails if S is unbalanced. An example of this is shown in Figure E.3.

Figure E.3. Part (b) of Lemma E.2 fails for unbalanced S.
[[LABEL F:1024Figure3]]

Exercise E.1. [[LABEL Ex:1024conn-contraction]] Suppose Σ is connected. Show that Σ/S
is connected if S is balanced, but not necessarily if S is unbalanced.

Compare with Exercise I.??.

Exercise E.2. [[LABEL Ex:1024unbal-contraction]] Suppose Σ is unbalanced and con-
nected. Prove that Σ/S is unbalanced if and only if it has at least one vertex.

E.2. Minors. [[LABEL 2.minors.minors]]
A minor of a signed graph can, by definition, be constructed—amongst other ways—as

follows. First, delete all edges that are supposed to be deleted. Now all vertices to be deleted
become isolated; delete those vertices. Finally, contract all edges that are supposed to be
contracted. In short, a minor of a signed graph is a contraction of a subgraph. This is only
one of the many choices of the order in which to carry out the deletions and contractions
that result in a particular minor. We must prove that all choices give the same result.

Theorem E.3. [[LABEL T:1024 minors are minors]]

(a) Every minor of a signed graph is obtainable as a contraction of a subgraph, and also as
a subgraph of a contraction.
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(b) All minors of Σ that result from deleting an edge set S and a vertex set X and contracting
an edge set T disjoint from S are switching equivalent to (Σ \ S \X)/T and to (Σ/T ) \
S \ X̄, where X̄ is the image of X in the contraction.

Proof of (b). Combine (a) with Lemma E.2. �

Oct 27:
Nate ReffProof of (a). We have to prove three things: that a subgraph of a subgraph is a subgraph,

which is obvious; that a subgraph of a contraction is a contraction of a subgraph; and that
(E.1)
(Σ/S)/T = Σ/(S∪T ) when S, T ⊆ E with S∩T = ∅.[[LABEL E:sg contraction contraction]]

(Equality here, as in any repeated contraction of a graph, means identity of edge sets along
with a bijection of the vertex sets such that the same edge is incident to corresponding
vertices in the two graphs.)

To prove Equation (E.1), remember that V (Σ/S) = πb(V, S) and, similarly, that

V (Σ/(S ∪ T )) = πb(V, S ∪ T ) ∈ Π•V ,

V ((Σ/S)/T )) = πb(V/S, T ) ∈ Π•V/S .

Therefore V (Σ/(S ∪ T )) and V ((Σ/S)/T )) cannot really be equal. If we want equality we
have to allow vertex bijection but the identity correspondence for the edge sets.

We write V0(Σ) = {vertices of unbalanced components}, and Vb(Σ) = {vertices of balanced components}.
So we have

⋃
πb(S) = Vb(S).

S1 S2 S3 S4 Si V0(S)

T T T

Figure E.4. If we throw in T what happens to the unbalanced and balanced components?
[[LABEL F:1027Figure1]]

Let πb(S) = {B1, B2, . . . , Bk}, where Bj = V (Sj) as seen in Figure E.4. Suppose that
every balanced component S:Bi of S is positive. Looking at the components Ci of S ∪ T
with Ti := E(T ∩Ci) (the edge set of T ∩Ci). Any of these Ci that contains an unbalanced
component of S is unbalanced. In Σ/S, Ci becomes loose edges and at least one half edge
⇐⇒ Ti had an edge with an endpoint outside V0(S) ⇐⇒ N(Ci) ⊆ V0(S).

Table E.1 shows how T affects the components of Σ \ T and (Σ \ T )/S. There are four
cases to examine. Notice that there is a natural bijection between C and C ′ in Case III. �

If we zoom in our attention to the specific situations we can discuss them a little more
clearly with visual aid.

In Figure E.5 we can see that anything connected to an unbalanced component will make
an unbalanced component of T trivially.

If we have the situation in Figure E.6, a negative T edge in a balanced component makes
the set unbalanced. This is because in the contraction of S this negative edge makes a
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The effect of T
on Bi ⊆ V (Σ) on Bi ∈ V (Σ/S)

Case I Connects Bi to V0(S) so Bi ⊆
V0(S ∪ T ).

T makes a half edge at Bi, so Bi ∈
V0(Σ/S;T ).

Case II T edges are within V0(S). T is a loose edge.
Case III T edges connect up one or

more Bi into an unbalanced
component of S∪T . Also Bi ⊆
V0(S ∪ T ).

T forms an unbalanced component of
T in Σ/S. Also these Bi ∈ V0(Σ/S;T ).

Case III T connects one or more Bi

into a balanced component C
of S ∪ T , making C a vertex
of Σ/(S ∪ T ). Then C ⊆ V ,
with C =

⋃
Bi ∈ πb(S), so

C ∈ V (Σ/(S ∪ T ))

T connects one or more vertices of Σ/S
into a balanced component of C ′ of
T in Σ/S. Then C ′ is a vertex of
(Σ/S)/T . Then C ′ ⊆ V/S, with C ′ =
{Bi | Bi ∈ πb(S) and Bi ⊆ C}, so
C ′ ∈ V ((Σ/S)/T )), where C ′ = {Bi ∈
πb(S) | Bi ⊆ C in Σ}

Table E.1. The effect of T on balanced components in Σ and Σ/S.

[[LABEL Tb:1027T]]

Si V0(S)

T

Figure E.5.

Si Sj

T

+

+

-

-

Figure E.6.

negative circle in Σ/S with S, and hence unbalanced in S ∪ T . A positive T edge preserves
that Sj is balanced.

Lemma E.4. [[LABEL L:1027Lemma2]] Let S be balenced in Σ and T ⊆ E\S. Then S ∪ T
is balanced in Σ ⇐⇒ T is balanced in Σ/S.

Suppose we have the situation in Figure E.7. If the loop (T circle) is negative then it
gives an unbalanced component in the contraction. One should note that switching does not
change the sign of a circle. Also, contracting a proper subset of circle edges does not change
the sign of the circle.
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Si Sj

T circle

Figure E.7.

F. Closure and Closed Sets

[[LABEL 2.closure]]

Oct 29:
Peter Cohen
and Thomas
Zaslavsky

Closure in a signed graph, while fundamentally similar to that in a graph (very similar,
according to Proposition F.3), is certainly more complicated.

F.1. Closure operator. [[LABEL 2.closure.operator]]
The best way to define the closure of an edge set in Σ is in two steps. First we define an

operator on balanced sets, then we use it to define the closure of any edge set. Notice that
our definition of closure in a signed graph generalizes the characterization of graph closure
in Theorem ?? rather than the definition of graph closure. There is a generalization of the
latter definition (see Theorem F.6), and it is important, but it is not as simple.

Definition F.1. [[LABEL D:1029closures]] The balance-closure of T ⊆ E is

bcl(T ) := T ∪ {e ∈ T c : ∃ a positive circle C ⊆ T ∪ e such that e ∈ C} ∪ E0(Σ),

where E0(Σ) is the set of loose edges in Σ. (The name is not “balanced closure”; bcl(T )
need not be balanced—but see Lemma F.2.)

The closure of an edge set S ⊆ E is

clos(S) := (E:V0(S)) ∪
k⋃
i=1

bcl(Si) ∪ E0(Σ),

where S1, . . . , Sk are the balanced components of S and V0(S) is the vertex set of the union
of all unbalanced components of S, that is, V0(S) = V \ (B1 ∪ · · · ∪Bk). We can restate this
directly in terms of πb(S) (since Si = S:Bi for Bi ∈ πb(S)) as

clos(S) := (E:V0(S)) ∪
⋃

B∈πb(S)

bcl(S:Bi) ∪ E0(Σ),

which has the advantage of not implying that k is finite. In the definitions of the closure,
the union with ∪E0(Σ) is only necessary in case k = 0, i.e., πb(S) = ∅.

Lemma F.1. [[LABEL L:1029bclpositive]] If T ⊆ E+(Σ), then bcl(T ) = closΣ+(T ), the
graph closure of T in the positive subgraph of Σ.

Proof. First suppose Σ = +Γ, all positive. Then, comparing the definition of bcl in Σ with
the second definition of closΓ in Definition ??, we see they are the same.

A positive circle contained in T ∪e has sign σ(e); thus only a positive edge can be in bclT .
That means bclΣ T = bcl+Σ+ T = closΣ+ T . �

Lemma F.2. [[LABEL L:1029bclbalance]] If T is balanced, then bcl(T ) is also balanced,
and furthermore bcl(bclT ) = bcl(T ) = clos(T ).



34 Chapter II: Signed Graphs

Proof. The main step is to assume by switching Σ that T is all positive. Then we apply
Lemma F.1. Since bclT is again all positive, it is balanced, and that means it was balanced
before switching. Furthermore, as bclT is all positive, bcl(bclT ) = closΣ+(closΣ+ T ) =
closΣ+ T = bclT by idempotency of graph closure.

The equation of bclT and closT is obvious from the definition of closure. �

Note that we have not said balance-closure is an abstract closure operator. In fact, it is
not. It is increasing and isotonic but it is not idempotent. (Exercise: Find a counterexample.
It must be unbalanced, of course.)

It’s easy to see that balance-closure is a direct generalization of graph closure, as we state
formally in the next result (an obvious corollary of Lemma F.1).

Proposition F.3. [[LABEL P:1029ordinaryclosure]] If Γ is an ordinary graph, then clos+Γ(S) =
bcl+Γ(S) = closΓ(S).

An interesting observation is that the union of the balance-closures of subsets with no
common vertices is the same as the balance-closure of the union of the subsets. That is,

k⋃
i=1

bcl(Si) = bcl
( k⋃
i=1

Si
)

if the vertex sets V (Si) are pairwise disjoint. The sets Si themselves need not be balanced.
The reason for this is that balance-closure acts within the components of an edge set. We
can formalize this as the first statement in the next lemma.

Lemma F.4. [[LABEL L:1029balptn]] For an edge set S, whether balanced or not, π(bclS) =
π(S) and πb(closS) = πb(bclS) = πb(S).

Proof. Set π(S) = {B1, . . . , Bk, C1, . . . , Cl}, where S:Bi is balanced while S:Cj is unbalanced.
All the sets bcl(S:Bi) in the definition of bclS are balanced (by Lemma F.2) and con-

nected; each set bcl(S:Cj) is connected and unbalanced (because it contains the unbalanced
component S:Cj of S); and these are the components of bclS. Thus, the partition due to
bclS is the same as that due to S, and the same is true for the balanced partial partition.

Each E:Cj is unbalanced, because it contains S:Cj. Thus, every component of E:V0(S) is
unbalanced, so the balanced components of clos(S) are the bcl(S:Bi). Therefore, πb(closS) =
πb(S). �

Proposition F.5. [[LABEL P:1029closureclosure]] The operator clos on subsets of E(Σ) is
an abstract closure operator.

Proof. The definition makes clear that S ⊆ closS and that closS ⊆ closT when S ⊆ T .
What remains to be proved is that clos(clos(S)) = clos(S).

As before, let πb(S) = {B1, . . . , Bk}, so S:Bi is balanced. Then πb(closS) = πb(S) so
also V0(closS) = V0(S). Thus,

clos(closS) = (E:V0(closS)) ∪
k⋃
i=1

bcl((closS):Bi)

= (E:V0(S)) ∪
k⋃
i=1

bcl((bclS):Bi)
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= (E:V0(S)) ∪
k⋃
i=1

bcl(S:Bi)

= closS. �

Oct 29:
T. Za-
slavsky

Closure via frame circuits.
We have defined closure in terms of induced edge sets and balanced circles (through the

balance-closure); but we also want a definition in terms of circuits, analogous to that of
closure in an ordinary graph.

Theorem F.6. [[LABEL T:1029cctclosure]]For S ⊆ E and e /∈ S, e ∈ closS iff there is a
frame circuit C such that e ∈ C ⊆ S ∪ e.
Proof. We treat a half edge as if it were a negative loop, since they are equivalent in what
concerns either closure or circuits.

[The proof needs figures for the cases.]

Necessity. We want to prove that if e ∈ closS, then a circuit C exists. There are three
cases depending on where the endpoints of e are located.

Case 0. A trivial case is where e is a loose edge. Then e ∈ closS and C = {e}.
Case 1. Suppose e has its endpoints within one component, S ′. Then there is a circle C ′

in S ′∪e that contains e. If S ′ is balanced, then e ∈ bclS ′ so there exists a positive C ′, which
is the circuit C. In general, if C ′ is positive it is our circuit C. (This includes the case of a
positive loop e, where C = {e}.)

Let us assume, therefore, that S ′ is unbalanced and C ′ is negative. In S ′ there is a
negative circle C1. If e is an unbalanced edge at v, there is a path P in S ′ from v to C1; then
C = C1∪P ∪e is the circuit we want. If e is a balanced edge, it is a link e:vw contained in the
negative circle C ′. There are three subcases, depending on how many points of intersection
C ′ has with C1. If there are no such points, take a minimal path P connecting C ′ to C1 and
let C = C1 ∪ P ∪ C ′. If there is just one such point, C = C1 ∪ C ′. If there are two or more
such points, take P to be a maximal path in C ′ that contains e and is internally disjoint
from C1. Then P ∪C1 is a theta graph in which C1 is negative; hence one of the two circles
containing P is positive, and this is the circuit C.

Case 2. Suppose e has endpoints in two different components, S ′ and S ′′. For e to be in
the closure, it must be in E:V0. Hence, S ′ and S ′′ are unbalanced. Each of them contains
a negative circle, C ′ and C ′′ respectively, and there is a connecting path P in S ∪ e which
contains e. Then C ′ ∪ P ∪ C ′′ is the desired circuit.

Sufficiency. Assuming a circuit C exists, we want to prove that e ∈ closS. Again there
are three cases, this time depending on C and its relationship with e.

Case 0. C is balanced. Then e ∈ bclS ⊆ closS.
Case 1. C is unbalanced and e is not in the connecting path. Let C1, C2 be the two negative

circles and P the connecting path of C, and assume e ∈ C1. Since C \ e is connected, it
lies in one component S ′ of S. Thus, C2 ⊆ S ′, whence S ′ is unbalanced. It follows that
e ∈ E:V0 ⊆ closS.

Case 2. C is unbalanced and e is in the connecting path. With notation as in Case 1, now
C \ e has two components, one containing C1 and the other containing C2. The components
of S that contain C1 and C2 are unbalanced. (There may be one such component or two,
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depending on whether C1 and C2 are connected by a path in S.) Therefore, e has both
endpoints in V0, so again, e ∈ E:V0 ⊆ closS. �

Dec 8:
Yash Lodha

With closure in terms of frame circuits we can offer another characterization of a partial
balancing edge.

Proposition F.7 (Balancing Edge Properties). [[LABEL P:1208BE]] In a signed graph Σ
let S be an edge set and e an edge not in S. The following relationships between e and S are
equivalent:

(i) e ∈ clos(S).
(ii) There is a frame circuit C such that e ∈ C ⊆ S ∪ e.

(iii) b(S ∪ e) = b(S).
(iv) e is not a partial balancing edge of S ∪ e.

Proof. Parts (iii) and (iv) are equivalent by the definition of a partial balancing edge. The
equivalence of (i) and (ii) is Theorem F.6. What we need to prove is the equivalence of (ii)
and (iii). We treat a half edge as a negative loop.

Case 1. V (e) ⊆ V (S1) where S1 is a component of S. If S1 is unbalanced, it has a negative
circle Ci and there is a path in S1 joining the endpoints of e.

[figures go here]
Therefore if S1 is unbalanced, C exists as in (ii).(This will be clear from the images) Also

b(S∪e) = b(S). If S1 is balanced, then either every circle e ∈ C ⊆ S1∪e is negative or every
such circle is positive. This is because we can switch so that all edges in S1 are positive and
so the resulting sign of e is the sign of all the circles e ∈ C ⊆ S1∪e. Therefore b(S∪e) = b(S)
⇐⇒ e is positive after switching ⇐⇒ there exists a frame circuit e ∈ C ⊆ S1 ∪ e which
will be a positive circle.

Case 2. e is an isthmus of S ∪ e, joining components S1 and S2.
[diagram]
If S1 and S2 are unbalanced, then e is in a circuit handcuff of S1 ∪ S2 ∪ e, and also

b(S ∪ e) = b(S) because S1 ∪ S2 ∪ e is unbalanced.
[diagram]
Suppose S2 is unbalanced.
[diagram]
Then e is not in a frame circuit [I have to check the cases], and b(S ∪ e) = b(S) − 1

(since S1 is unbalanced implies that one balanced and one unbalanced component, S2 and
S1 become one unbalanced component S1 ∪ S2 ∪ e.)

Case 3. e is a half edge. Treat this as a negative loop, which is Case 1.
Case 4. e is a loose edge. Then b(S) = b(S ∪ e) abd e ∈ {e} which is a circuit.
Hence the proposition is proved. �

Oct 29:
Peter Cohen
and Thomas
Zaslavsky

F.2. Closed sets. [[LABEL 2.closure.closed]]
Now we look at the closed sets themselves. The first fact is that they form a lattice.

Definition F.2. [[LABEL D:1029lattices]] The lattice of closed sets of Σ is

Lat Σ := {S ⊆ E | S is closed}.
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The semilattice of closed, balanced sets is

Latb Σ := {S ⊆ E | S is closed and balanced}.
(Be careful! By closed, balanced edge sets, we mean edge sets that are both closed and

balanced. This is completely different from sets that are balance-closed, which need not even
be balanced.)

We haven’t yet proved that Lat Σ is a lattice.

Proposition F.8. [[LABEL P:1029lattices]] Lat Σ is a lattice with S ∧ T = S ∩ T , and
S ∨ T = clos(S ∪ T ).

Latb Σ is a meet semilattice with S ∧ T = S ∩ T . It is an order ideal in Lat Σ (that is,
every subflat of a flat in Latb Σ is also in Latb Σ).

Lat Σ is ranked by the rank function rk(S) = n− b(S).

Proof. �

In Lat Σ there is one maximal closed set: E. Its rank is n − b(Σ). All maximal closed,
balanced sets have rank n−c(Σ). These facts are proved in Section ??; they are true because,
in the matrix, each vertex allows one potential dimension, while each balanced component
will have a row dependence relation, reducing the rank by 1. [This should be proved
somewhere and cross-referenced to where it’s proved. – TZ]

Oct 31:
Yash Lodha

F.3. Signed partial partitions. [[LABEL 2.sppartitions]]
Now we come to a new way of looking at the closed sets of a signed graph: it’s the signed-

graph version of partitions of the vertex set. Two refinements are required: we need partial
partitions, and we need signed blocks.

F.3.1. Partial partitions.
A partial partition is a partition of any subset of X. Partitions are found all over combi-

natorics and other mathematics but partial partitions are unjustly rare. We shall have much
to say about them.

Definition F.3. [[LABEL Df:1031ppartition]] A partial partition of a set V is defined as
π = {B1, B2, . . . , Bk} where Bi ⊆ V , each Bi and Bj are pairwise disjoint, and each Bi 6= ∅.
The Bi’s are called the blocks or sometimes parts of π. The support supp π is the union of
the blocks. The set of all partial partitions of V is written Π†V . Note that ∅ is a partial
partition of V—the unique one with no blocks.

A partition of V is therefore a partial partition with the additional condition that [n] =⋃k
i=1Bi. The refinement ordering of the set ΠV of partitions (see Section ??) clearly agrees

with the refinement ordering of partial partitions.
The set of partial partitions of [n] is denoted by Π†n. It is partially ordered in the following

way: For two partial partitions π and τ , we define π ≤ τ if each block of τ is a union of
blocks of π. We say π refines τ—though the support of π need not be contained in that of
τ . The refinement ordering makes Π†n a poset. This poset is a geometric lattice. In fact:

Proposition F.9. [[LABEL P:1031ppartition]] Π†n
∼= Πn+1.
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Proof. A partial partition π = {B1, B2, . . . , Bk} naturally corresponds to

π′ := {B1, B2, . . . , Bk, B0}, where B0 := [n+ 1] \
k⋃
i=1

Bi .

It is easy to see that this correspondence is order preserving and bijective, hence a poset
isomorphism. �

The minimum element of Π†n is 0̂n := {{i} : i ∈ [n]}. Its maximum element is the empty
partial partition ∅.

F.3.2. Signed partial partitions.
Suppose we have a set B and a sign function τ : B → {+,−}. The pair (B, τ) is a signed

set. Two signed sets (B, τ1) and (B, τ2) are equivalent if there is a sign ε ∈ {+,−} such that
ετ1 = τ2. We write the equivalence class of (B, τ) with square brackets: [B, τ ]. (In a way,
an equivalence class is a kind of switching class but defined on vertices rather than edges.)

Definition F.4. [[LABEL Df:1031sppartition]] A signed partial partition of V is a set θ =
{[Bi, τi]}ki=1, where π(θ) := {Bi}ki=1 is a partial partition of V , called the underlying partial
partition, and τi is a function Bi → {+,−}.

The support of θ is supp(θ) := supp(π(θ)) =
⋃k
i=1Bi. The set of all signed partial

partitions of V is denoted by Π†V ({+,−}), or for short, Π†V (±).
Signed partial partitions are partially ordered in the following way: θ ≤ θ′ if π(θ) ≤ π(θ′)

and, whenever Bi ⊆ B′j, we have τi = ετj|Bi for some sign ε.

The poset of signed partial partitions of V is denoted by Π†V ({+,−}), or for short, Π†V (±).
In particular, the set of signed partial partitions of [n] is written Π†n(±). It is a poset, in
fact a geometric lattice (as we shall see later); it is the Dowling lattice of the sign group as
originally defined by Dowling (1973b).

(Some people think of a signed partial partition as a sort of partially signed partition
{[B1, τ1], . . . , [Bk, τk], B0}, where {B1, . . . , Bk, B0} partitions [n]∪{0}, having a special “zero
block” B0 3 0 that is not signed. I find this artificial, since the “zero block” is completely
different from all other blocks. However, it may have its uses.)

We define a function Θb : Lat(Σ)→ Π†V (±), which will be an order preserving injection.
A potential function for T ⊆ E(Σ) is a function ρ : V → {+,−} such that

σ(evw) = ρ(v)−1ρ(w) for every edge in T .

(One can equivalently define ρ as a switching function that makes T all positive; but that
is not a definition which generalizes to gain graphs; see Chapter III.) If Σ is connected ρ is
unique up to negation. If Bi ∈ πb(S) is the vertex set of a balanced component of (V, S)
then ρ is what we want for τi. So Θb(S) sends S to {Bi, τi} where Bi are the balanced
components of Σ|S and τi = ρ(S:Bi).

Note that we can actually define Θb : P(E)→ Π†v(±), but it will not be an injection.
Now define

Π†(Σ) := {Θb(S) | S ⊆ E},
which is a subposet of Π†V (±).

Theorem F.10. [[LABEL T:1031lattices]] Θb : Lat(Σ)→ Π†(Σ) is a poset isomorphism.

Lemma F.11. [[LABEL L:1031ppartition]] Θb(S) = Θb(clos(S)).
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Proof. The partition π(Θb(S)) is unchanged by taking the closure: π(Θb(S)) = π(Θb(clos(S)))
since πb(S) = πb(clos(S)) by a previous lemma. [(will put in the name)] The potential
function depends on a spanning tree of S:Bi which is still a spanning tree in the closure. So
it is clear that Θb(S) = Θb(clos(S)). Hence the lemma is proved. �

Proof of Theorem F.10. The theorem follows easily from the lemma. �

Example F.1. [[LABEL X:1031dowling]] Π†(±K◦n) ∼= Π†v(±).

Proof. We proved that Π†(±K◦n) ∼= Lat(±K◦n). So it will suffice to prove that Lat(±K◦n) ∼=
Π†v(±).

To prove this we need to look at the flats of Lat(±K◦n). These flats look like (E:X) ∪
A where X ⊆ V (±Kn) and A is a balanced, balance-closed set of E:Xc. Clearly, the
components of the balanced closed set give us a partial partition of the vertex set V (Σ) and
the signs of each block of this partial partition are exactly the signs that make the balanced,
balanced closed set positive. This construction/map gives us an element of the signed partial
partition lattice of the vertex set of Σ. This mapping is precisely the function Θb defined
above.

We will first show that it is order preserving. Let A,B be two flats of ±K◦n such that

A ≤ B. Let P1, P2 be the elements of Π†V (±) be the image of A,B respectively in our map
defined above. That π(P1) ≤ π(P2) is obvious from the fact that A ≤ B because π(A), π(B)
are the underlying partial partitions of the vertex set of Σ with blocks as the vertex sets of
the balanced components of A:V and B:V . Given block Ci of π(P1) which is contained in
a block Dj of π(P2), it is clear that the edge set E(B: supp(Dj)) contains E(A: supp(Ci))
so the signs associated with the vertices supp(Dj) must be switching equivalent to the signs
associated with supp(Dj) restricted to supp(Ci). Therefore our map is order preserving.

We now show that our map is an injection. For any two different flats A,B we first present
the case where the components of A:V and B:V are different in which case it is obvious that
the partial partitions associated with these flats will have different supports. In case of
these support being the same we observe that the edge sets of a balanced component of
A:V and one of B:V having the same vertex set have different edge sets, giving us different
switching sets for the same vertex sets because had these switching sets been the same,
because of balanced closure these flats would be the same. [THAT SENTENCE NEEDS
REWRITING. IT’S IMPENETRABLE.] So we get different signed partial partitions
in the image.

Our map is surjective because the method used to obtain a signed partial partition is
reversible. We show an example of such a reverse map. Given a signed partial partition
[Ai, τi], for the vertices a, b ∈ Ai if the signs of a, b are the same, we connect them with a
positive edge, and if the signs are opposite them we connect them with a negative edge. And
if the sign on a is positive, we add the positive loop at a, and a negative loop if the sign is
negative. This way we can obtain the closed set associated with our signed partial partition.

Hence the bijection is established. �

2014 Nov
16:
T.Z.

F.3.3. Signed partitions.
Some partial partitions of V are partitions; they form the sublattice ΠV ⊆ Π†V . Some

signed partial partitions are likewise partitions; they form a meet subsemilattice,

ΠV ({±}) := {θ ∈ Π†V ({±}) : supp θ = V }.
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There is a corresponding subsemilattice of Π†(Σ); it is

Π(Σ) := {θ ∈ Π†(Σ) : supp θ = V (Σ)}.
Recall from [WHERE? WRITE THAT BIT.] that Latb Σ is the set of balanced closed
sets.

Theorem F.12. [[LABEL T:1103sgd ptns]] The natural bijection Lat Σ ↔ Π†(Σ) restricts
to a bijection Latb Σ↔ Π(Σ).

Proof. [NEEDS PROOF]
�

Therefore we may refer to Π(Σ) as the lattice of signed partitions of Σ.
[ADD the fact (if true) that it’s a lattice iff Σ is balanced or exceptions—as an

exercise.]

Nov 3:
Jackie
Kaminski

F.4. Examples of signed graphs and closed sets. [[LABEL 2.closure.examples]]
We have now built up definitions and some machinery about closed sets, balanced edge

sets, and closed, balanced edge sets. It will be good to know what these sets are for certain
graphs and types of graphs. This information is presented as both a reference and a tool to
help the reader build up his or her intuition.

Throughout, Γ = (V,E) is an ordinary graph without loops. We recall that Γ◦ = (V,E◦)
is the unsigned graph with a loop at every vertex, in contrast to +Γ◦ which is a signed graph
with a negative loop at each vertex. For B ⊆ V , by KB we mean the complete graph on the
vertex set B.

Remember that an edge set is balanced if it has no negative circles or half edges (Definition
??), that the balance-closure of S is

bcl(S) := S ∪ {e 6∈ S : ∃ C ∈ B(Σ) with e ∈ C ⊆ S ∪ e} ∪ {all loose edges of Σ},
and the closure of S is

clos(S) := (E:V0(S)) ∪
k⋃
i=1

bcl(Si),

where V0 is the vertex set of the union of the unbalanced components of S and S1, . . . , Sk
are the balanced components of S. (See Section F.1).

Example F.2. [[LABEL X:clos-pmKnfull]] ±K◦n (the complete signed graph [not to be
confused with a signed complete graph]).

• Balanced edge sets : Any switching of a positive edge set of Kn. We note that this is a
little imprecise; what we mean is to take any switching of any edge set in +Kn. Then
for an edge e in this switching if e is positive, take the edge +e ∈ ±K◦n, otherwise
take −e ∈ ±K◦n.
• Closed, balanced sets : Take π ∈ Πn, take E(π) :=

⋃
B∈π E(KB), and assign signs in a

balanced way (as above). Notice that Eπ, as the union of pairwise disjoint complete
graphs, is a closed set in Kn.
• Closed sets : To create a closed set S, take any W ⊆ V and a partition π of V \W

and let S := E(±K◦W )∪⋃B∈π(KB, σB), where (KB, σB) denotes the complete graph
on vertex set B with a balanced signature σB.
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Example F.3. [[LABEL X:clos-pmGfull]] ±Γ◦ (the full signed expansion of a graph).

• Balanced edge sets : Any switching of an edge set in +Γ, with the same technical
clarification as in the ±K◦n case.
• Closed, balanced sets: A closed edge set in Γ, signed in a balanced way (i.e., take a

closed edge set S ⊆ E, and take any switching of +S).
• Closed sets : To create a closed set S, take W ⊆ V , and take S∗ to be any closed set

in Γ \W . Sign S∗ in a balanced way. Then S := E(±[Γ:W ]◦) ∪ S∗ is a closed set.

Example F.4. [[LABEL X:clos-full]] Σ◦ (the filled version of a signed graph Σ).
This generalizes the previous examples.

• Balanced edge sets : The balanced edge sets of Σ◦ are precisely the balanced sets in
Σ.
• Closed, balanced sets : The closed, balanced edge sets of Σ◦ are precisely the closed,

balanced sets in Σ.
• Closed sets : For any W ⊆ V , take E(Σ◦:W )∪ a balanced closed set in Σ \W . (This

construction is obvious from the definition of closed sets. A closed set has two parts,
an unbalanced part which is the subgraph induced by some vertex set, and a balanced
part, in the complementary vertex set. Neither of these parts needs to be connected;
also, either one may be void.)

Example F.5. [[LABEL X:clos-pmkn]] ±Kn (the complete signed link graph).
This is just slightly more complicated than ±K◦n.

• Balanced edge sets : The same as in ±K◦n. (Any switching of a positive edge set of
Kn.)
• Closed, balanced sets : The same as in ±K◦n. (Take π ∈ Πn, take E(π), and assign

signs in a balanced way. In other words, it’s the union of pairwise disjoint, balanced
complete graphs on subsets of V .)
• Closed sets : Similar to ±K◦n. To create a closed set S, take any W ⊆ V and take a

partition π of V \W and let S := E(±KW )∪⋃B∈π(KB, σB), where |W | 6= 1 in order
to avoid duplication in the construction. (When W is a singleton we get a closed
set but it is the same as that obtained through replacing W by ∅ and adding the
singleton set W to π.)

Example F.6. [[LABEL X:clos-pmG]] ±Γ (the signed expansion of a graph).
This is similar to ±Γ◦, but again, a bit more complicated because there are no loops to

identify vertices.

• Balanced edge sets : Any switching of an edge set in +Γ, with the standard technical
clarification.
• Closed, balanced sets : Take a closed edge set in Γ and sign it in a balanced way (i.e.,

take a closed edge set S ⊆ Γ, and choose any switching of +S).
• Closed sets : To create a closed set S, take W to be any subset of V such that W is

not stable (that is, E:W 6= ∅). Take S∗ to be a subset of E(Γ \W ) and sign S∗ in
a balanced way. Then S = E(±Γ:W ) ∪ S∗ is a closed set.

Example F.7. [[LABEL X:clos-all+]] +Γ (an all-positive graph).

• Balanced edge sets : Any edge set of Γ.
• Closed, balanced sets : Any closed edge set of the unsigned graph Γ.
• Closed sets : The same as the closed, balanced sets.
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Example F.8. [[LABEL X:clos-all+full]]

+Γ◦ (a full all-positive graph).

• Balanced edge sets : Any edge set in Γ.
• Closed, balanced sets : Any closed set in Γ.
• Closed sets : This is similar to Σ◦. For any W ⊆ V , take (E◦:W ) ∪ a closed set of

Γ \W . The set W is identifiable as the set of vertices at which there are unbalanced
edges, so any different choice of W results in a different closed set.

There is another technique that will work here. We could consider the unsigned
graph join, Γ∨K1 (Γ plus one new vertex adjacent to every vertex of Γ), then look at
the various sets in Γ∨K1 (keeping in mind that being closed has a different definition
for Γ ∨K1), and then pull back the results to +Γ◦.

Example F.9. [[LABEL X:clos-all-]] −Γ (an all-negative graph).

• Balanced edge sets : The bipartite edge sets, which are exactly the edge sets where
every circle has even length.
• Closed, balanced sets : Take a connected partition π ∈ Π(Γ), and in each block B ∈ π,

take a maximal cut. Taking any cutset in B will still produce a closed, balanced set;
however, taking only maximal cuts has the nice property that for π ∈ Π(Γ), and S a
set consisting of a maximal cut in each block of π, then π(S) = π.
• Closed sets : Each closed set has the form S = E(−Γ:W ) ∪ a closed, balanced set in
−(Γ \W ), where W ⊆ V is such that Γ:W has no bipartite components. Notice that
if we took a vertex subset W such that Γ:W had a bipartite component, we would
still get a closed set but in more than one way, since the same set is generated by a
smaller vertex subset, namely, the one obtained by removing from W the vertices of
bipartite components of Γ:W .

Example F.10. [[LABEL X:all-Kn]] −Kn (the all-negative, or antibalanced, complete
graph).

This is simpler than −Γ, because any cut in Kn is a complete bipartite graph.

• Balanced edge sets : The bipartite edge sets.
• Closed, balanced sets : The union of pairwise-disjoint complete bipartite subgraphs in
V .
• Closed sets : Take an induced edge set E:W together with disjoint complete bipartite

graphs in V \W . We should require |W | 6= 1, 2 in order that each closed set arise
uniquely, for if |W | = 2 then E:W is a complete bipartite subgraph, and if |W | = 1
then E:W = ∅; in either case we can restructure S to have empty W .

Example F.11. [[LABEL X:clos-all-full]] −Γ◦ (a full all-negative graph).

• Balanced edge sets : The bipartite edge sets (same as −Γ).
• Closed, balanced sets : As in −Γ, take a connected partition π ∈ Π(Γ), and in each

block of B ∈ π, take a maximal cut.
• Closed sets : Somewhat as for −Γ, take any W ⊆ V , then let S = (E◦:W ) ∪ a

closed, balanced set in −(Γ\W ). We need not restrict W ; each different choice of W
gives a different closed set since W is identifiable as the set of vertices that support
unbalanced edges of S.

Example F.12. [[LABEL X:clos-all-Kn]] −K◦n (the full all-negative complete graph).
This is even simpler than −Γ◦.
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• Balanced edge sets : The bipartite edge sets.
• Closed, balanced sets : Take a partition π ∈ ΠV , and in each block B ∈ π, take a

maximal cut, i.e., the edges of a spanning complete bipartite graph.
• Closed sets : As with −Γ◦, take any W ⊆ V ; then each closed set has the form
S = (E◦:W ) ∪ a disjoint union of complete bipartite graphs on subsets of V \W .

There, wasn’t that fun!

Nov 3:
Jackie
Kaminski

G. Incidence and Adjacency Matrices

[[LABEL 2.matrices]]
A signed graph, like a graph, has incidence and adjacency matrices that describe the

graph.

G.1. Incidence matrix. [[LABEL 2.incidencematrix]]
We now introduce the incidence matrix of a signed graph. Unlike with an unsigned graph,

there is only one kind of incidence matrix, the oriented one. As with an unsigned graph, the
incidence matrix comes in a family, differing in arbitrary sign choices for the columns.

Definition G.1. [[LABEL D:1103 Incidence Matrix]] An incidence matrix of a signed graph
Σ is a V × E matrix H(Σ) = (ηve)v,e (read ‘Eta’) whose column indexed by e is shown in
Figure G.1, with a zero column for a loose edge. Thus a link has two nonzero elements in

v

w



0
...
0
±1
0
...
0

∓σ(e)
0
...
0


a link e:vw

v



0
...
0

±1∓ σ(e)
0
...
...
0



a loop e:vv

v



0
...
0
±1
0
...
...
0



a half edge e:v

Figure G.1. The columns of the incidence matrix that correspond to each
kind of edge.

[[LABEL F:1103column]]

its column, each of which is ±1 and which are the same for a negative link and the same for
a positive link (we can state this as the requirement that σ(e)ηve + ηwe = 0); positive loops
and loose edges have columns of all zeros; the column of a half edge at v is zero except for
±1 in the row of v; and for a negative loop, the column is all zero except for ±2 in the v
row.
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Although we say “the” incidence matrix, it is not unique due to the free choice of one sign
in each non-zero column.

The incidence matrix is a good descriptor of a graph, but not perfect because it cannot
distinguish between positive loops and loose edges, and it doesn’t say where loops are located
on the graph.

Signed-graphic incidence matrices let us explain the existence of the two kinds of incidence
matrix, oriented and unoriented, of a graph. The oriented incidence matrix H(Γ) is just
H(+Γ). The unoriented incidence matrix B(Γ) is the incidence matrix H(−Γ) with non-
negative entries.

Nov 5:
Nate Reff

Another way to define an incidence matrix H(Σ) = (ηve)V×E is by giving a formula for the
(v, e) entry, as follows:

ηve =


0 if v and e are not incident,

±1 if v and e are incident once, so that if e:vw is a link then ηveηwe = −σ(e),

0 if e is a positive loop at v,

±2 if e is a negative loop at v.

The columns are still defined only up to negation. The reason for that will be explained when
we come to orientation, and specifically to incidence matrices of bidirected graphs (Section
H.2).

G.2. Incidence matrix and frame circuits. [[LABEL 2.incidencecoldep]]
The relation between the incidence matrix and the closure operation is through one of the

fundamental structures in a signed graph, the frame circuit.

Definition G.2. [[LABEL Df:1105framecircuit]] A frame circuit of Σ is a positive circle, a
loose edge, or a pair of negative circles C1 and C2 which meet in at most one vertex (and no
edges) together with a minimal connecting path P if C1 and C2 are vertex disjoint. (When
there is a common vertex, we consider it to be a minimal connecting path of length 0.)

The characteristic of a field F is denoted by char F. We write xe := the column of e in
H(Σ) and bi for the ith unit coordinate vector of Fn. When S ⊆ E, we denote by H(Σ)|S
the matrix consisting of the columns of S from H(Σ) and by xS the set of those columns
considered as vectors in Fn.

Theorem G.1. [[LABEL T:1105Theorem1]] Let S be an edge set in Σ and consider the
corresponding columns in H(Σ) over a field F.

(1) When char F 6= 2, the columns corresponding to S are linearly dependent ⇐⇒ S
contains a frame circuit.

(2) When char F = 2, the columns corresponding to S are linearly dependent ⇐⇒ S
contains a circle, a loose edge, or a path joining two half edges.

From a matroid perspective, this means the frame circuits are the circuits of a matroid on
a ground set E, and the incidence matrix represents the matroid. This is the frame matroid4

of Σ, which we will study in Chapter IV.

4Originally and sometimes still called the signed-graphic matroid [SG].
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Proof of Sufficiency. For (1) it suffices to prove that a frame circuit is dependent. For (2) it
suffices to prove that a circle or loose edge, or the path together with the two half edges, is
dependent.

Case I: The frame circuit is a loose edge e. Then xe = 0, which is linearly dependent.
Case II: The frame circuit is a positive loop e incident with vi. Then xe = 0, which is

dependent.
If e is negative, xe = ±2bi, which is independent if char F 6= 2. If e is a half edge,

xe = ±bi, which is always independent.
Case III: The frame circuit is a circle C = v0e1v1e2v2 . . . elvl, where v0 = vl, with l ≥ 2.

Switch so C is all positive with the possible exception of e1, whose sign is σ(C). The incidence
submatrix corresponding to C is

e1 e2 e3 e4 · · · el−1 el
v1 −1 +1 0 0 · · · 0 0
v2 0 −1 +1 0 · · · 0 0
v3 0 0 −1 +1 · · · 0 0
...

...
...

...
...

. . .
...

...
vl−1 0 0 0 0 · · · −1 +1
vl σ(C) 0 0 0 · · · 0 −1
0 0 0 0 0 · · · 0 0
...

...
...

...
...

. . .
...

...
0 0 0 0 0 · · · 0 0


(where we interpret the sign σ(C) as a number, ±1). The sum of all columns is (σ(C)−1)bl.
Hence the vectors are linearly dependent if C is positive. They generate 2bl if C is negative,
whence they are linearly independent iff char F 6= 2. (For independence one proves that the
vectors generate all unit basis vectors b1, . . . ,bl if they generate any one; that follows from
connectedness of Sj.)

Case IV: The frame circuit is a handcuff. If there are l vertices, there are l + 1 edges in
dimension l.

In characteristic 2, this covers the case of two half edges with a connecting path of length
l − 1. �

Proof of Necessity. It suffices to prove, for (1), that an edge set that does not contain a
frame circuit is independent, and for (2), that an edge set that does not contain a circle is
independent. We may consider each component separately since the different components
act within disjoint sets of coordinates.

Assume that S is connected and not empty and contains no frame circuit. Then it is a
tree (of order at least 2) or a 1-tree. In either case it has a univalent vertex or it is a negative
circle. A negative circle is independent by the argument at Sufficiency, Case III, so we may
assume S has a vertex v of degree 1. In the incidence matrix of S the row of v has a single 1,
that in xe where e is the edge at v. The column of e is consequently linearly independent of
all other columns of H(Σ|S). We may strip e out of S, leaving a smaller example of the same
kind (a tree or 1-tree) whose state of independence is the same as that of S. Continuing in
the same manner we arrive at either a negative circle, which is independent in characteristic
other than 2, or a half edge or a link, also independent. It follows that S itself is independent.
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The proof for characteristic 2 is similar but we have only a tree or a 1-tree that contains
a half edge. Alternatively, the incidence matrix is identical to the binary incidence matrix
of an unsigned graph so we can appeal to [WHAT IS THE EXACT RESULT?] �

Nov 5:
Nate Reff

Extending the conclusion of Sufficiency Case III, if we have a closed walk W = e1e2 . . . el
from vk to vk, then a suitable linear combination of vectors xe1 ,xe2 , . . . ,xel equals (σ(W )−
1)bk. The precise formula is that

l−1∑
i=0

σ(elel−1 . . . el−i)xel−1
= (σ(W )− 1)bk =

{
0 if σ(W ) = +,

−2bk if σ(W ) = −.

Corollary G.2. [[LABEL C:1105Corollary2]] Assume W is a closed walk which has an edge
that appears just once.

(1) The vectors of W are linearly dependent if σ(W ) = + or char F = 2.
(2) The vectors of W generate 2bk if σ(W ) = −1.

[This needs explanation/proof!]

Nov 7
(draft):
Simon Joyce
& T.Z.

Lemma G.3. [[LABEL L:1107 negcircle]] For a negative circle C, xC is independent in
characteristics other than 2, dependent in characteristic 2.

Proof. We proved this incidentally when we demonstrated in the proof of Theorem G.1(1)
that a positive circle is dependent. �

Recall that we treat half edges as negative loops in this discussion. For instance, “two
negative circles” means one or both circles may be half edges instead.

Lemma G.4. [[LABEL L:1107 Frame Circuits]] S contains a frame circuit if and only if it
contains a balanced circle or it has two negative circles in the same component.

Proof. If S contains a frame circuit, that circuit is a balanced circle or contains two connected
negative circles.

On the other hand, suppose S contains no positive circle. Then it is a contrabalanced
cactus forest (by Exercise ??), which contains an unbalanced frame circuit if and only if it
has a component cactus with at least two negative circles. �

A 1-tree is a tree with one extra edge on the same vertices; the extra edge is a half edge
or forms a circle.
[MOVE this defn. TO BASICS in Ch. 1. Bal. or unbal. 1-tree in Ch. 2 basics?
or maybe better here.]

Theorem G.5. [[LABEL T:1107 dep rk]]Given a signed graph Σ and S ⊆ E(Σ). Over a
field of characteristic other than 2:

(1) xS is linearly dependent if and only if S contains a frame circuit.
(2) xS is linearly independent if and only if each component of S is a tree or a contrabalanced

1-tree.
(3) The rank of H(Σ|S) is n − b(S). In particular, H(Σ) has rank n − b(Σ) and nullity
|E| − n + b(Σ). The nullity of its transpose H(Σ)T is b(Σ). [[LABEL C:1107 matrix
rank]]
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Proof. Part (1) is Theorem G.1(1).
Part (2) follows from part (1) and Lemma G.4.
As for part (3), the largest possible independent subset of xS, by part (2), consists of a

spanning tree in each balanced component and a contrabalanced 1-tree in each unbalanced
component. The size of such a set is n− b(S). It follows that dim〈xS〉 = n− b(S). This gives
the dimension of the column space of H(Σ|S) and consequently the rank of that matrix. �

We infer the ranks of the oriented and unoriented incidence matrices of an ordinary graph
Γ, which are, respectively, rk H(+Γ) = n− c(Γ) and rk H(−Γ) = n− cbip(Γ), cbip(Γ) denoting
the number of bipartite components. Thus we have established the truth of Theorem I.??.

Theorem G.6. [[LABEL T:1107 span clos]] Given a signed graph Σ and S ⊆ E(Σ), over a
field F of characteristic other than 2 the following properties hold:

(1) clos(S) = {e ∈ E : xe ∈ 〈xS〉}; that is, xclosS = xE ∩ 〈xS〉.
(2) S is a closed edge set if and only if xS is the intersection of xE with a flat of Fn.

Proof. I will give a graph-theoretic proof based on the definition of signed-graph closure,
without using Theorem G.1. That theorem is essentially a linear-algebra and matroid prop-
erty and not intrinsically graphical.

Let πb(S) = {V1, V2, . . . , Vk} and V0 := V0(S), and switch so the balanced components
Si := S:Vi of S are all positive.

Proof of Part (1). We begin with a lemma. Define Z := {x ∈ RV :
∑n

1 xi = 0} and

V̂i := {x ∈ RV : xw = 0 if w /∈ Vi}. The subspaces 〈xSi〉 are independent subspaces, in that

〈xSi〉 ⊆ V̂i. Now we prove that

(G.1) xE∩〈xS〉 = (xE∩〈xS0〉)∪(xE∩〈xS1〉)∪· · ·∪(xE∩〈xSk〉).[[LABEL E:1107 span clos]]

Notice that 〈xSi〉 ⊆ Z.
Suppose f has endpoints u ∈ Vi and w ∈ Vj with i < j (so, Sj is all positive). Thus,
〈xSj〉 ⊆ Z. Now, the support of xf is {u,w} with one vertex in Vj; the restriction of xf to

V̂j is the signed unit basis vector ±bw. The only way S can generate the vector xf whose
support meets Vj is for Sj to span its restriction to Vj, ±bw. However, ±bw /∈ Z; therefore,
±bw /∈ 〈xSj〉 and xf cannot be spanned by S.

Similarly, if f is a negative or half edge in E:Vj, then xf /∈ Z so xSj cannot span xf . But

the only way to generate xf from xS is for it to be spanned by xSj ⊆ V̂j.
If f :uw is a positive edge in E:Vj, there is a uw-path in Sj, say u = u0, e1, u1, . . . , el, ul = w.

Taking xei = bui−bui−1
, the sum of these vectors is bw−bu, which is xf . Thus, xf ∈ 〈xSj〉.

The subspace 〈xS0〉 equals all of V̂0. To see that, note that because each component of S0

is unbalanced it contains a spanning unbalanced 1-tree. The 1-tree is independent (Theorem
G.5(2)) and has as many edges as vertices. The union of all the 1-trees of components of S0

consequently has cardinality equal to that of V0; it follows that the vectors of the union of
1-trees form a basis for V̂0. Therefore, 〈xS0〉 contains xf for every edge f whose endpoints
are in V0.

In he course of this proof we showed that the edges for which xf ∈ 〈xS〉 are precisely those
in the closure of f . That establishes Part (1).

Proof of Part (2). Here is a chain of equivalences:

S is closed ⇐⇒ S = closS ⇐⇒ (by part (1)) xS = xE ∩ 〈xS〉.



48 Chapter II: Signed Graphs

The last property is equivalent to saying that xS = xE∩A for some flat A. To prove this, note
that 〈xS〉 is one possible flat A if any such flat exists, since xS ⊆ xE ∩ 〈xS〉 ⊆ xE ∩ A = xS
by the assumption that an A exists. Thus,

S = E:V0 ∪ E+:V1 ∪ · · · ∪ E+:Vk ⇐⇒ xS = xE ∩ 〈xS〉
and the proof is complete. �

Exercise G.1. [[LABEL Ex:1107 span clos]] Prove Theorem G.6 using the characterization
of closure in Theorem F.6. (That proof would be a matroid-style proof. The one I presented
is essentially graphical.)

There are two other important corollaries, which a reader who is not involved with matroids
may ignore. Let us define LatM , for an n×m matrix M , to be the family of subspaces of
Rn that are generated by columns of M ; for instance, the smallest such space is the zero
space, generated by the empty set of columns, and the column space Col(M)is the largest
such space. It’s well known that Lat(M) is a geometric lattice (in fact, that’s where the
name comes from).

Theorem G.7. [[LABEL C:1107 matroid rank]]In a signed graph Σ, the closure operator is
a matroid closure, rk is a matroid rank function, and Lat Σ is a geometric lattice with rank
function n − b(S), isomorphic to Lat H(Σ). Furthermore, Π†(Σ) is a geometric lattice with
rank function rk(θ) = n− |π(θ)|.
Proof. The key is to prove that Lat Σ and Lat H(Σ) are isomorphic. The specific isomorphism
is that S ∈ Lat Σ 7→ 〈xS〉 = 〈xe : e ∈ S〉 ∈ Lat H(Σ).

[NEEDS MORE PROOF.]
�

Corollary G.8. [[LABEL C:1107 cor of cor]] The set Π†n(±) of signed partial partions of
[n] is a geometric lattice.

Proof. We know from the definitions that Π†n(±) = Π†(±K◦n), so we apply Theorem G.7. �

2014 Nov
17:
T.Z.

G.3. Adjacency matrix. [[LABEL 2.adjacencymatrix]]
The adjacency matrix of a signed graph Σ tells which vertices are adjacent (including to

themselves). It is the matrix A(Σ) = (aij)n×n in which

aij = (number of positive vivj edges)− (number of negative vivj edges)

when i 6= j and

aii = 2(number of positive loops)− 2(number of negative loops) at vi.

In terms of the positive and negative subgraphs there is the simple expression

A(Σ) = A(Σ+)− A(Σ−).

Cancellation makes it hard to recover a signed graph from its adjacency matrix. I’ll call Σ
reduced if it has no parallel edges of opposite sign—that includes no parallel loops of opposite
sign. If it does have any such parallel pairs, reducing Σ is the operation of deleting them;
that is, we delete negative digons until none remain, and we delete pairs of a positive and
negative loop at the same vertex until none of those remain. The resulting signed graph is
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obviously reduced. Clearly, all we can recover from A(Σ) is the reduced form of Σ.
[MOVE DEFN TO EXAMPLES OF S.G., earlier.]

Powers of A count walks of given length, as with unsigned graphs, but with cancellation
of oppositely signed walks exactly as oppositely signed edges cancel in A.

Theorem G.9. [[LABEL T:Apowers]] In Σ define wεl (v, w) to be the number of walks of
length l with endpoints v and w whose sign is ε. For each l ≥ 0, the (i, j) element of A(Σ)l

equals w+
l (vi, vj)− w−l (vi, vj).

The proof is an easy but pleasant exercise in induction that I leave to the reader.
Recall that the degree matrix of the underlying graph, D(|Σ|), is the diagonal matrix with

dii = d|Σ|(vi), where a loop counts twice in the degree. (Explanations: A loop e:vivi makes vi
adjacent to itself twice, once from each end of e. A half edge does not create an adjacency.)

Nov 10:
T.Z. &
Peter Cohen

Theorem G.10. [[LABEL T:1110amatrix]] The adjacency matrix of a signed graph satisfies
A(Σ) = D(|Σ|)− H(Σ)H(Σ)T.

Proof. Since HHT is the matrix of dot products of the rows of H, we compute those products.
For rows i and j where i 6= j, the product is the sum of +1 for each negative edge eij and
−1 for each positive edge eij. That gives the value of aij for i 6= j.

In the product of row i with itself we get 4 for each negative loop, 1 for each half edge,
1 for each link, and 0 for each positive loop incident with vi. Subtracting from the degree
matrix leaves −2 for each negative edge, +2 for each positive edge, and 0 for a half edge. �

Corollary G.11. [[LABEL C:1110aregular]] If |Σ| is k-regular then all eigenvalues of A(Σ)
are ≤ k. The multiplicity of k as an eigenvalue is b(Σ).

Proof. First, some matrix theory. A Gram matrix G is the matrix of inner products of a set
of vectors. Rephrasing the definition in matrix terms, G = MTM for some matrix M ; that
is, G is the matrix of inner products of the columns of M . If M is real, the Gram matrix
G is real and symmetric, so it has only real eigenvalues, and it has n such eigenvalues (with
multiplicity). Furthermore, G is positive semidefinite so it has no negative eigenvalues. The
rank of G = the rank of M by matrix theory, so the nullity of G, which is the multiplicity
of 0 as an eigenvalue of G, equals the nullity of MT.

Now, D − A = HHT is a Gram matrix (with MT = H). By its positive semidefiniteness,
all eigenvalues of D − A are non-negative. The multiplicity of 0 as an eigenvalue of D − A
is nul HT. By Theorem G.5(3), this is b(Σ).

We check what that means for A, remembering that D = kI. If λ is an eigenvalue of A
with eigenvector x, then Ax = λx, so (D − A)x = (kI − A)x = (k − λ)x. By the positive
semidefiniteness of D−A = HHT, k−λ ≥ 0 for every eigenvalue λ and the eigenvalue λ = k,
corresponding to the eigenvalue 0 of D − A, has multiplicity nul HT = b(Σ). �

Nov 10
(draft):
Peter CohenH. Orientation

[[LABEL 2.orientation]]
An oriented signed graph is a bidirected graph; thus, we begin by explaining bidirection.
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H.1. Bidirected graphs. [[LABEL 2.bidirected]]
Bidirected graphs were introduced by Jack Edmonds (1965a??) to treat matching theory.

Our use for them is entirely different.

Definition H.1. [[LABEL D:1110bidirected]] An edge with an independent direction at each
end is called a bidirected edge. A bidirected graph is a graph with an independent direction
on each of the ends of each edge; that is, where every edge is bidirected.

Loose edges are bidirected by having no directions, as they have no ends. Half edges are
bidirected by having one direction, as they have only one end. A loop has two ends that
have the same endpoint, so a loop, like a link, is bidirected by getting two directions.

We may think of the directions pictorially as arrows or algebraically as signs. To denote
the signs, we will introduce new notation, τ(v, e), which is the sign of the end of edge ek at
vertex vi. The definition of τ in terms of directions is:

τ(v, e) =


+, if e enters v,

−, if e leaves v,

0, if e and v are not incident.

(We often write τve for τ(v, e); and when the edges and vertices are numbered, τik for τviek .)
A direction into a vertex is positive, while a direction out of a vertex is negative. The edge
itself is positive if it is balanced; both directions are the same (going from one vertex to the
other, so one is positive and the other is negative). A negative edge has either two negative
or two positive ends. [THIS NEEDS TO BE COORDINATED WITH THE NEXT
DAY’S EXPLANATION OF H(B).]

Example H.1. [[LABEL X:1110small]] [Is this really an example? What is the exam-
ple? What is it for?] For our oriented graph, the matrix H(Γ) will have, as an example,
for the column of edge ek: 

0
−1
0

+1
0

 .

where the −1 indicates the edge leaves that vertex, and a +1 indicates that the edge enters
that vertex. In this example, the edge is a positive edge (in a 5-vertex graph). A positive
loop will have a column like 

0
0
0
0
0

 .

So the matrix H(Γ) cannot distinguish between a positive loop and a loose edge. A negative
loop will have ±2 in one entry of its column while the other entries are zero.

Definition H.2. [[LABEL Df:1110sgbidir]] The signed graph associated with a bidirected
graph B is Σ(B) := (|B|, σB) where |B| is the underlying graph of B and σB(e) := −τveτwe
for a link or loop e:vw. If Σ is the signed graph associated with B, we say that B is an
orientation of Σ.
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Nov 12:
Yash LodhaH.2. Incidence matrix of a bidirected graph. [[LABEL 2.orientation.incid]]

We now define the incidence matrix H(B) = (ηik) of the bidirected graph B = (Γ, τ),
where Γ is the underlying graph.

For an edge ek incident to the vertex vi, τik = + if the direction/orientation at the vertex
vi end is directed towards the vertex vi and τik = − if the direction/orientation is directed
away from the vertex. The column of a link e = vivj has i-th entry τik and j-th entry τjk,
and the remaining entries are zero. For a loop vivi the i-th entry equals τik + τ ′ik where each
τ ′ik is the same as τik except for the other end of the loop. For a loose edge all the entries in
the corresponding column are zero.

More formally, ηik =
∑

ε τε, summed over all edge ends ε of ek incident with vi.
Notice that an incidence matrix of a bidirected graph B is an incidence matrix of its signed

graph Σ(B). Conversely, an incidence matrix of Σ is the incidence matrix of an orientation
of Σ.

A source is a vertex where every edge end departs, ie every ηik ≤ 0 for all edges ek. A
sink is a vertex where every edge end enters, i.e. every ηik ≥ 0 for all edges ek.

A cycle in a bidirected graph is an oriented frame circuit with no source or sink. This
means that every vertex of degree two in the circuit must have consistent orientation, i.e.
the direction/orientation of both edge ends incident to the vertex agree. So a positive circuit
has exactly two orientations with no source or sink, and they are opposite. A negative circle
must have an orientation with sources or sinks.

Definition H.3. [[LABEL D:1112cyclicacyclic]] We say an oriented signed graph ~Σ is acyclic
if it has no cycles, cyclic if it has a cycle, and totally cyclic if each edge is in a cycle.

Recall that Σ(B) has edge signs σ(e:vw) = −τveτwe.
Walks and coherence.

In a walk W = v0e1v1e2 · · · vl−1elvl, the two edge ends (vi, ei) and (vi, ei+1) incident to ver-
tex vi (when 0 < i < l) may have either of two interrelations: they may be coherent or con-
sistent (both terms are used), which means that one of their arrows points into the common
vertex and the other points out (in terms of the bidirection function, τ(vi, ei)τ(vi, ei+1) = −),
or they may be incoherent or inconsistent, which means both arrows point into the vertex
or both point out (that is, τ(ei−1)τ(ei) = +).

Lemma H.1. [[LABEL L:1112coherentwalk]] Let W = v0e1v1 · · · elvl be a walk in which
each vertex vi for 0 < i < l is consistently oriented in W . Then (−1)lτ0lτll = σ(W ).

If W is a closed walk, so v0 = vl, then it is positive if it is consistent at vl = v0, and
negative if it is inconsistent.

Proof. Take the product of the signs of all oriented edge ends ε in W and compute it in two
ways. ∏

ε

τε =
l∏

i=1

(τi−1,i, τii) =
l∏

i=1

−σ(ei) = (−1)lσ(W ).

Also, ∏
ε

τε = τ01(τ11τ12)(τ22τ23)...(τ(l−1),(l−1)τ(l−1),l)τll.
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Therefore, (−1)lσ(W ) = (−1)l−1τ01τll =⇒ σ(W ) = −τ01τll. �

Corollary H.2. [[LABEL C:1112coherentclosedwalk]] A closed walk W , in which (as above)
each vertex vi for 0 < i < l is consistently oriented, is consistent at vl if and only if σ(W ) =
+.

An application of the corollary is that a positive circle can be oriented consistently and
a negative circle can be oriented consistently except for one inconsistent vertex, which is a
source or a sink.

[WE NEED DIAGRAMS for all these explanations.]
In a frame circuit with no source or sink, every divalent vertex must be coherent. Therefore

we can orient a positive circle cyclically (i.e., to have no source or sink) in only two ways;
once we have oriented one edge, every other edge orientation is determined by coherence.
Corollary H.2 ensures that it is possible to make every vertex coherent.

A contrabalanced handcuff C likewise has only two cyclic orientations. Each negative
circle, Ci = C1 or C2 must be coherent except at the vertex vi that lies on the connecting
path P . (If the two negative circles share a vertex, we consider that vertex to be the
connecting path.) Since v1 is incoherent, hence a source or sink, in C1, the orientation of the
end (v1, e1P ) of the connecting-path edge e1P is determined by the requirement that v1 not
be a source or sink in the handcuff. (An edge e1 ∈ C1 at v1 is thus coherent with e1P .) The
orientations of all edges of P are then determined by coherence in P , and the orientation of
(v2, e2P ) determines that of each edge e2 ∈ C2 at v2 and hence everywhere. (If P has length
0 so v2 = v1, the orientations of the ends (v1, e1P ) determine those of the ends (v1, e2P ).)
Summarizing this discussion, we have a proposition:

Proposition H.3. [[LABEL P:1112cycliccircuit]] A frame circuit has exactly two cyclic
orientations, which are negatives of each other.

Nov 12:
Yash Lodha

I. Equations from Edges, and Signed Graphic Hyperplane Arrangements

[[LABEL 2.equations]]

I.1. Equations from edges. [[LABEL 2.edgeequations]]
An equation from an edge is dual to its column vector xe from H(Σ). Let x = (x1, ..., xn).

So the equation from an edge e will be xe · x = 0.
For a positive edge xe · x = xi − xj or xj − xi. So we get xi = xj.
For a positive loop this says xi = xi, which gives us the “degenerate hyperplane”, Rn.
For a signed edge xi = σ(e)xj because from x · xe = 0 we get ±(bi − σ(e)bj) = 0. So for

a negative edge we get xi = −xj.
For a half edge we get xi = 0.
For a loose edge we get 0 = 0, which gives us the degenerate hyperplane.

So each edge e = eij gives us a hyperplane he = h
σ(e)
ij where hεij = {x | xi = εxj}. For a

half edge ei,, hei = {x | xi = 0}, which is a coordinate hyperplane, and for a loose edge e∅,
he∅ = Rn, the degenerate hyperplane.

So we get a signed graphic hyperplane arrangement H[Σ], and the intersection lattice of
this arrangement, ordered by reverse inclusion, is the poset obtained from the set of flats.
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Formally:

L(H[Σ]) = {A ⊆ Rn | A =
⋂
S for S ⊆ H[Σ]} = {

⋂
e∈S

he | S ⊆ E}.

Theorem I.1. [[LABEL T:1112latticeisom]] L(H[Σ]) ∼= Lat(Σ) by the correspondence A 7→
{e | he ⊇ A}.
Proof. By vector-space duality,

L(H[Σ]) ∼= {flats in Rn generated by subsets of the columns of H(Σ)},
which is isomorphic to Lat(Σ) by Theorem G.7. The exact formula is a matter of tracing
the correspondences. �

11/14:
Kaminski

[MISSING NOTES]

Nov 17a
(draft):
Simon Joyce

I.2. Additive representations: binary and affine. [[LABEL 2.additiverep]]
For this section we will be working over F2, whose additive group is isomorphic to the

sign group {+,−}. For a signed graph Σ we can describe the graph in matrix from using
H(|Σ|), the unoriented incidence matrix and an extra row containing the signs of the edges.
A 0 in this extra row denotes a positive edge and a 1 denotes a negative edge. The is how
the augmented incidence matrix is defined.

Definition I.1. [[LABEL D:1117 AGIM]] The augmented graphic incidence matrix of a
signed graph Σ is M(Σ), defined as follows:

M(Σ) =



e1 e2 · · · em
s1 s2 · · · sm

v1
...
vn

H(|Σ|)


x0

x1
...
xn

[This still doesn’t look right but it’s better.]
where the si in row 0 belong to {0, 1} = F2. This matrix is an F2-matrix (so 1 = −1 in
H(|Σ|)).

A loose edge or a positive loop is represented by an all zero column. A negative loop or a
half edge is represented by a column with a one in the x0 row and zeros in all other rows.
We denote a column vector of this form by b0.

We have seen that the minimally dependent edge sets in the signed incidence matrix are
the frame circuits. For the augmented incidence matrix we call the minimally dependent
edge sets lift circuits. The posible lift circuits are shown in Figure I.1. We treat half edges
like negative circles so that a pair of half edges would also be a lift circuit for example.

Definition I.2. [[LABEL D:1117 lift circuits]] In a signed graph Σ, a lift circuit is a positive
circle, a contrabalanced tight handcuff, or contrabalanced loose bracelets (i.e., two vertex-
disjoint negative circles).
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+ − − − −

Balanced Circle Tight Handcuff Loose Bracelets

Figure I.1. The different kinds of lift circuits.
[[LABEL F:1117liftcircuits]]

Theorem I.2. [[LABEL T:1117 lift circuits]] A set of columns of M(Σ) is linearly dependent
if and only if the corresponding edge set contains a lift circuit.

Proof. To prove this we’ll need a few lemmas.

Lemma I.3. [[LABEL L:1117 lemma1]] The columns of M(Σ) corresponding to S ⊆ E
generate b0 if and only if S is unbalanced.

Proof. If S is balanced, switch so that all the edges of S are positive. Then for all edges
e ∈ S, their corresponding columns in M all have 0 in the x0 row. Therefore b0 cannot be
generated.

Now assume S contains an unbalanced circle C. Let ze be the column vector in M
corresponding to the edge e. Denote the sign of e in F2 by ze0 and let z′e be the column vector

corresponding to e in H(|Σ|), so that ze =

(
ze0
z′e

)
. In H(|Σ|) over F2 we have

∑
e∈C z′e = 0.

[This should have been proved in chapter one but I can’t find a reference] Since
C is unbalanced, in M we get∑

e∈C

ze =

(∑
ze0∑
z′e

)
=

(
σ(C)

0

)
= b0.

A half edge is unbalanced set on its own and corresponds to a b0 column in M so the
Lemma is also true in the case where S contains a half edge. �

[Is the next lemma actually needed for the proof?]

Lemma I.4. [[LABEL L:1117 lemma2]] Row 0 of M is a linear combination of the other
rows if and only if Σ is balanced.

Proof. We want to prove that

rk[M ] = rk[H(|Σ|)] ⇐⇒ Σ is balanced ⇐⇒ b0 /∈ Col(M) ⇐⇒ rk[M |b0] = rk[M ] + 1.

Equivalently, we can show that

rk[M ] = rk[H(Σ)] + 1 ⇐⇒ rk[M |b0] = rk[M ].

By adding b0 to all the negative edges in M we get that rk[M |bfb0] = rk[H(Σ)] + 1 and by
Lemma I.3 rk[M |b0] = rk[M ] if and only if Σ is unbalanced. The result follows. �

Now it’s clear that if an edge set S contains a lift circuit, then the corresponding columns
in M are linearly dependent. Conversely, if S is linearly dependent, let T be a minimally
dependent subset of S. If no subset of T sums to b0, then T forms a positive circle since the
edges must form a circle to be minimally dependent in H(|Σ|) [reference?] and there must
be an even number of 1’s in the x0 row. Otherwise there must be a bipartition T1 and T2 of
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T such that
∑

e∈T1
= b0 and

∑
e∈T2

= b0 since T is minimally dependent. By Lemma I.3
T1 and T2 are the edge sets of unbalanced circles. If V (T1) ∩ V (T2) ≥ 2, then T will contain
a theta graph. So T will contain a positive circle by Theorem B.2, but this contradicts the
minimal dependence of T . Therefore T1 and T2 form a tight handcuff or loose bracelets. �

[the next part needs fleshing out. We should discuss the content.]
For a signed graph Σ, denote by A[Σ] the affinographic hyperplane arrangement of Σ over

F2. This is the arrangement whose hyperplanes are given by the correspondence

e : vw ←→


σ(e)

0
1
0
1
0

 ←→ equation xj − xi = σ(e)x0 in Fn+1
2

←→ linear hyperplane h̄
σ(e)
ij in Fn+1

2

←→ affine hyperplane h
σ(e)
ij in An(F2).

v1 v2

e

f

Figure I.2.

[[LABEL F:1117hyparr]] For example, in Fn2 the edge e in Figure I.2 corresponds to the
hyperplane where x1 − x2 = 0 and f corresponds to the hyperplane where x1 − x2 = 1.

Definition I.3. [[LABEL D:1117 intersection sublattice]] For a signed graph Σ, define the
intersection sublattice, L(A[Σ]), to be

L(A[Σ]) = {⋂ S | S ⊆ A[Σ],
⋂
S 6= ∅}.

Theorem I.5. [[LABEL T:1117 to prove later]]

L(A[Σ]) ∼= Latb Σ.

This will be proved in Chapter III because the proof is the same in the greater generality
of gain graphs.

Nov 17b
(draft):
Simon JoyceJ. Chromatic Functions

[[LABEL 2.chromatic]]
[THIS IS DUPLICATED IN THE NEXT DAY’S NOTES.]

Definition J.1. [[LABEL D:coloration]] Given a signed graph Σ with vertex set V , a k-
coloration is a mapping γ : V → Λ∗k or γ : V → Λk. Here the color sets are Λ∗k =
{±1,±2, . . . ,±k} and Λk = Λ∗k ∪ {0}. Colorations of the former type are called zero free.

We call an edge e : vw in Σ proper (with respect to γ) if γ(v) 6= 0 and γ(w) 6= σ(e)γ(v).
It is improper if γ(w) = σ(e)γ(v). We also consider loose edges to be improper. A half edge
e:v is improper if and only if γ(v) = 0.



56 Chapter II: Signed Graphs

The definition implies that a negative loop e:vv is proper when γ(v) 6= −γ(v), i.e., 2γ(v) 6=
0. That is equivalent to having color 0 at v when working over characteristic other than 2;
in characteristic 2 a negative loop, like a positive loop, can never be proper, which is correct
because in characteristic 2 + and − are the same.

Nov 19:
Nate Reff

As with unsigned graphs, I call any function that depends on coloring or that satisfies the
algebraic laws of the chromatic polynomial (or the dichromatic polynomial) a chromatic (or
dichromatic) function.

J.1. Coloring a signed graph. [[LABEL 2.coloring]]
Suppose that Σ = (V,E, σ) is a signed graph.

Definition J.2. [[LABEL D:1119coloration]] A k-coloration is a a mapping γ : V → Λk,
where the color set is

Λk := {±1,±2, . . . ,±k} ∪ {0}.
A coloration is zero free if it does not use the color 0 (that is, 0 /∈ Im(γ)); the zero-free color
set is

Λ∗k := Λk \ {0} = {±1,±2, . . . ,±k}.
[DUPLICATION.]
Just as in ordinary unsigned graph coloring, with respect to a particular coloration there

are two kinds of edges, proper and improper. An edge e:vw is proper if γ(w) 6= σ(e)γ(v),
or improper if γ(w) = σ(e)γ(v). A half edge e:v is proper if γ(v) 6= 0. A loose edge is
always improper. A proper coloration is a coloration with no improper edges. The chromatic
number of Σ is

χ(Σ) := min{k : ∃ a proper k-coloration},
and the zero-free chromatic number is

χ∗(Σ) := min{k : ∃ a zero-free proper k-coloration}.
If there does not exist a proper coloration (or, equivalently, zero-free coloration) at all, then
χ(Σ) =∞ (or, χ∗(Σ) =∞).

v1 v2

v3

e1

e2

e3e4

e5

-1 0

1

2 -1

1

Figure J.1. Signed graph Σ, a proper 1-coloration of Σ, a proper zero-free
2-coloration of Σ.

[[LABEL 1119image1]]

Consider the example of a signed graph Σ in Figure J.1. There clearly does not exist a
proper 0-coloration. There is, however, a proper 1-coloration as seen in Figure J.1, and so
χ(Σ) = 1. If we try to find zero-free colorations, it is easy to see that there is no proper
zero-free 1-coloration due to the +K3 subgraph present, but there is a proper zero-free 2-
coloration as seen also in Figure J.1. Therefore χ∗(Σ) = 2.
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J.2. Chromatic numbers. [[LABEL 2.chromaticnumber]]
Recall that we write Σ• for the signed graph obtained from Σ by adding a negative loop

or half edge at every vertex. One can see that, under our definition of proper coloration,
χ(Σ• ) = χ∗(Σ).

Let’s make a few observations. First,

(J.1) [[LABEL E:1119chromaticnumberineq]]χ(Σ) ≤ χ∗(Σ) ≤ χ(Σ) + 1.

Furthermore, the lower value obtains if and only if Σ is full, since only then is the color 0
ruled out.

Next, take a look at an all-positive graph:

χ(+Γ) =

⌈
χ(Γ)− 1

2

⌉
and χ∗(+Γ) =

⌈
χ(Γ)

2

⌉
.

Looking at these two equations we can see that if χ(Γ) is even, then χ(+Γ) = χ∗(+Γ). It is
possible that χ∗(+Γ) > χ(+Γ), but Equation (J.1) leaves little room for difference between
the two chromatic numbers.

Coloring the complete signed graph ±K•n , we can only have zero-free proper colorations
due to the negative loop or half edge at each vertex. To ensure a coloration is proper, each
vertex must get a different absolute value of color. Thus see that

χ∗(±K•n ) = χ(±K•n ) = χ(K•n ) = χ(Kn) = n,

χ(±Kn) = χ(Kn)− 1 = n− 1, and χ(±Γ) = χ(Γ)− 1.

A general rule is that, if you switch Σ by ζ, you also switch colorations: γ switches to γζ

defined by

γζ(v) := ζ(v)γ(v).

Lemma J.1. [[LABEL L:1119Lemma1]] e is proper in Σ colored by γ ⇐⇒ it is proper in
Σζ colored by γζ.

Proof. First suppose e:vw is a link. Then e is proper in Σ ⇐⇒ γ(w) 6= σ(e)γ(v) ⇐⇒
ζ(v)ζ(v)ζ(w)γ(w) 6= ζ(v)ζ(v)ζ(w)σ(e)γ(v) ⇐⇒ ζ(w)γ(w) 6= ζ(v)σ(e)ζ(w)ζ(v)γ(v) ⇐⇒
γζ(w) 6= σζ(e)γζ(v) ⇐⇒ e is proper in Σζ with γζ .

Now suppose e:v is a half edge, or e:vv is a negative loop. Then e is proper in Σ ⇐⇒
γ(v) 6= 0 ⇐⇒ ζ(v)γ(v) 6= 0 ⇐⇒ γζ(v) 6= 0 ⇐⇒ e is proper in Σζ with γζ . �

Proposition J.2. [[LABEL P:1119Prop1]] Switching does not change chromatic numbers.
That is, χ(Σ) = χ(Σζ) and χ∗(Σ) = χ∗(Σζ) for all switching functions ζ.

Proof. Use switching of colors and Lemma J.1. �

J.3. Chromatic polynomials. [[LABEL 2.chromaticpoly]]
The archetypical chromatic functions of signed graphs are the counting functions for the

two types of proper coloration.

Definition J.3. [[LABEL D:1119chromaticpolys]] Let k be any non-negative integer. We
define

χΣ(2k + 1) := the number of proper k-colorations and
χ∗Σ(2k) := the number of zero-free proper k-colorations.
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Obviously, the two functions of k are non-decreasing. Evidently, χ(Σ) is the smallest non-
negative integer k for which χΣ(2k + 1) is not zero, and χ∗(Σ) is the smallest non-negative
integer k for which χ∗Σ(2k) is non-zero.

Notice that χ∗Σ(2k) = χΣ• (2k + 1), which reduces χ∗Σ to χΣ• . The functions χΣ and χ∗Σ
will turn out to be polynomials, but just as with ordinary graph coloring, this is not a trivial
fact.

Theorem J.3. [[LABEL T:1119Theorem1]] The chromatic functions χΣ(2k+1) and χ∗Σ(2k)
have the following properties:

Unitarity:
χ∅(2k + 1) = 1 = χ∗∅(2k) for all k ≥ 0.

Multiplicativity:

χΣ1∪· Σ2
(2k + 1) = χΣ1(2k + 1)χΣ2(2k + 1)

and
χ∗Σ1∪· Σ2

(2k) = χ∗Σ1
(2k)χ∗Σ2

(2k).

Invariance: Suppose Σ1
∼= Σ2; then

χΣ1(2k + 1) = χΣ2(2k + 1) and χ∗Σ1
(2k) = χ∗Σ2

(2k).

Switching Invariance: For every switching function ζ,

χΣ(2k + 1) = χΣζ(2k + 1) and χ∗Σ(2k) = χ∗Σζ(2k).

Deletion-Contraction:

χΣ(2k + 1) = χΣ\e(2k + 1)− χΣ/e(2k + 1)

if e is not a half-edge or a negative loop, and

χ∗Σ(2k) = χ∗Σ\e(2k)− χ∗Σ/e(2k).

Figure J.2.
[[LABEL 1119image2]]

Proof. Unitarity holds true by general agreement about functions with domain ∅ (the empty
function). Nullity and invariance are obvious. To prove switching invariance we use Lemma
J.1.

The hard part is to prove the deletion-contraction property.
To prove χΣ(2k+ 1) = χΣ\e(2k+ 1)− χΣ/e(2k+ 1), we start by coloring Σ \ e properly in

k colors. If γ(v) 6= γ(w), then Σ is properly colored (and otherwise if γ(v) = γ(w) Σ is not
colored properly). We can contract γ to γ/e : V (Σ/e)→ Λk such that γ/e(ve) = γ(v)γ(w).
To prove that γ/e is a proper coloration of Γ/e. An improper edge in Σ/e must be incident
with ve. If it is a link veu, then it was a link vu or wu, therefore it is proper. If ve is a loop
veve, then it was a loop vv or ww or link vw, therefore it is proper since the endpoint colors
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are the same in Σ and Σ/e. If ve is a half edge f : ve, then it was f : v or f : w in Σ, therefore
it it proper since the endpoint colors are the same in Σ and Σ/e. If ve is a loose edge, then
it was a loose edge in Σ. Conversely, every proper coloration of Σ/e pulls back to a proper
coloration of Σ \ e where γ(v) = γ(w). So the number of proper colorations of Σ \ e equals
the sum of the number of proper colorations of Σ and Σ/e. Therefore our formula follows.

[MISSING: proof for χ∗.] �

Nov 21
(draft):
Peter Cohen
and Thomas
Zaslavsky

In signed graph coloring the color 0 is special because it has no sign. Some colorations will
include the 0 color, while other colorations, which we will call “zero-free”, do not use the color
0. The number of zero-free proper k-colorations of Σ is denoted by χ∗Σ(2k) or χb

Σ(2k); the
function χ∗Σ(λ) is called the zero-free chromatic polynomial or balanced chromatic polynomial
of Σ. That it is a polynomial follows from (The reason for the second name will appear in
Theorem ?? with amplified explanation in Chapter III [gains chapter].)

Definition J.4. [[LABEL T:1121full]] A graph is full if every vertex supports at least one
unbalanced edge. The notation Σ• denotes a signed graph Σ with an unbalanced edge
adjoined to every vertex that did not already support one.
[THIS APPEARS EARLIER.]

Theorem J.4. [[LABEL T:1121dczero-free]] The number of zero-free proper colorations of
a signed graph satisfied the deletion-contraction law

χ∗Σ(λ) = χ∗Σ\e(λ)− χ∗Σ/e(λ).

[DOES THIS DUPLICATE A PREVIOUS THEOREM?]

[picture with v, e, sigma e, etc]

Proof. In the case of Σ\e, vertex v has color 6= 0 ⇐⇒ it is a proper coloration of Σ. Vertex
v has color = 0 ⇐⇒ it has a proper coloring of Σ 6= Σ \ e.
[FIX THIS PROOF.] �

[THIS IS PART OF THE PROOF?]
The zero-free polynomial of Σ is close to the ordinary chromatic polynomial of the full form
of Σ. The relationship is that

χ∗Σ• (2k) = χΣ• (2k + 1) = χΣ• \e(2k + 1)− χΣ• /e(2k + 1).

Lemma J.5. [[LABEL T:1121fullcontract]] Any contraction Σ• /e is full.

Observe that, if Σ itself contains no unbalanced edges, then Σ• \ e is full ⇐⇒ e is a
balanced edge. Therefore, if e is a balanced edge,

χ∗Σ(2k) = χ(Σ\e)• (2k + 1)− χ(Σ/e)• (2k + 1)

= χ∗Σ\e(2k)− χ∗Σ/e(2k)

Theorem J.6 (Polynomiality). [[LABEL T:1121chromatic polyonmialit]] The chromatic

and zero-free chromatic functions χ
[∗]
Σ (λ) are polynomial functions of λ = 2k + 1 (if gen-

eral) or 2k (if zero-free), monic, of degree n, of the form χΣ(λ) = λn − a, λn−1 + · · · +
(−1)n−b(Σ)ab(Σ)λ

b(Σ) or χ∗Σ(λ) = λn − a∗, λn−1 + · · · + (−1)n−b(Σ)a∗b(Σ)λ
b(Σ) where all ai or

a∗i > 0.
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It should be noted that a1 is the number of edges in Σ, and a∗1 is the number of links in
Σ, if Σ is simply signed in the sense that there do not exist any parallel links with the same
sign and no vertex has two (or more) unbalanced edges.

Proposition J.7 (Subset Expansion). [[LABEL T:1121chromaticsubset]] The chromatic
polynomials have the subset expansions

χΣ(λ) =
∑
S⊆E

(−1)|S|λb(S) and χ∗Σ(λ) =
∑
S⊆E

balanced

(−1)|S|λb(S).

Definition J.5. [[LABEL T:1121unbalcount]] The number of unbalanced components of a
graph (or subgraph) is u(Σ). This equals the number of components minus the number of
balanced components; u(Σ) = c(Σ)− b(Σ).
[MOVE TO EARLIER; mention here.]

We can write the ordinary and zero-free chromatic polynomials of a signed graph in terms
of u(S) as

χΣ(λ) =
∑
S⊆E

(−1)|S|λb(S)1u(S) and χ∗Σ(λ) =
∑
S⊆E

(−1)|S|λb(S)0u(S).

This formulation shows there is a comprehensive polynomial to incorporate both. Define the
total chromatic polynomial as

χΣ(λ, z) :=
∑
S⊆E

(−1)|S|λb(S)zu(S).

When z = 1 we have the chromatic polynomial and when z = 0 we have the zero-free
chromatic polynomial.

Proof. [ from del/con, let e be any balanced edge]∑
S⊆E

(−1)|S|λb(S) =
∑
S⊆E\e

(−1)|S|λb(S) +
∑
S⊆E/e

(−1)|S|λb(S).

In the zero-free case, where e is not an unbalanced edge,∑
S⊆E

(−1)|S|λb(S) = χ∗(Σ\e)λ+
∑
T⊆E\e

(−1)|S|+1λb(T∪e).

[we had a previous lemma that said S is balanced in sigma, iff S-R is balanced
in Sigma/R, need to cite it]

Therefore,∑
T⊆E\e

(−1)|T |λbΣ/e(T ) =
∑
T⊆E\e

(−1)|T |+1λbΣ/e(T ) =
∑
T⊆E\e

(−1)|T |+1λbΣ(T∪e)

as we needed.
The components of T ∪ e don’t become disconnected when we contract a balanced edge,

therefore the number of balanced components of T is the same as the number of balanced
components of T ∪ e; that is bΣ/e(T ) = bΣ(T ∪ e).

Suppose that Σ has only unbalanced edges. Then Σ only contains half edges and negative
loops so it has one component per vertex. In other words, c(Σ) = |V |. All vertices in Σ
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are either k1 or (k1 + e), an unbalanced edge. The (k1 + e) edges are full, by definition. So
therefore, the coloration is the sum of the coloration of the k1’s and the (k1 + e)’s;

χ
[∗]
Σ (λ) = χ

[∗]
k1

(λ)n−i + χ
[∗]
k•1

(λ)i = λn−i + (λi if 0-free, (λ− 1)i if all colorations).

Being disconnected, the sum of the coloration is the same as the product of the sums;∑
S⊆E

(−1)|S|λb(V,S) =
n∏
i=1

∑
Si⊆Ei

(−1)|Si|λb(Vi,Si). �

Nov 24:
Jackie
KaminskiJ.4. Counting acyclic orientations. [[LABEL 2.acycliccount]]

We now take up the generalization to signed graphs of Stanley’s theorem, Theorem ??
interpreting the chromatic polynomial at negative arguments.

The sesquijection of acyclic orientations.
The key to everything is the generalization of the sesquijection, or 1:1/2:2 correspondence,

of acyclic orientations of a graph (Lemmas ?? and ??) to a sesquijection between acyclic
orientations of Σ and those of Σ \ e and Σ/e.

Definition J.6. Two walks,

W = v0, e1, v1 . . . vl−1elvl and W ′ = v′0, e
′
1, v
′
1 . . . v

′
l′−1e

′
l′v
′
l′ ,

are internally disjoint if each internal vertex of one walk, W or W ′, is not in the other,
respectively W ′ or W . That is, no vj = any v′j except that v0, vl may be v′0, v

′
l′ .

Recall that AO(Σ) is the set of all acyclic orientations of Σ.

Lemma J.8. [[LABEL L:1124aonumber]] |AO(Σ)| = |AO(Σ \ e)|+ |AO(Σ/e)| for e not a
positive loop or loose edge. [corrected].

Proof. [This is as much of the proof as we did Monday]
Let α be an acyclic orientation of Σ\e with e not a positive loop or loose edge. This means

e is a link or half edge or negative circle. If e is a link, we assume we have used switching so
e is positive. We would like to show that there is a 1:1/2:2 correspondence (a sesquijection)
between AO(Σ) and AO(Σ\e)∪AO(Σ/e). We will show that the 0, 1, or 2 acyclic extensions
of α to Σ are in sesquijective correspondence to α as an element of AO(Σ \ e) and possibly
AO(Σ/e).

As we consider adding e back to Σ \ e, there are two possible orientations for it, e: ~vw and
e: ~wv, and each of these orientations may or may not contain a cycle. This gives us four types
of situation, which really reduce to three:

• Type II: both orientations of e produce acyclic orientations of Σ,
• Type I: adding e: ~vw produces an acyclic orientation of Σ, but adding e: ~wv produces

a cyclic orientation of Σ,
• Also Type I: adding e: ~vw produces a cyclic orientation of Σ, but adding e: ~wv produces

an acyclic orientation of Σ,
• Type O: both orientations of e produce cyclic orientations of Σ,
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where the middle two cases can be treated identically.
Since α (and α extended to include e in Σ and α “restricted” to Σ/e) are the only orien-

tations in question, we will drop the cumbersome arrows in the notations ~Σ,
−−→
Σ/e, etc.

Type II: Both orientations of e produce acyclic orientations of Σ.
In other words α extends to two acyclic orientation of Σ. Since α is an acyclic orientation

of Σ \ e, we simply want to show that α applied to Σ/e is also acyclic. Then we will have a
2:2 correspondence between the two acyclic orientations extending α in AO(Σ) and the two
acyclic orientations of Σ\ e and Σ/e implied by α. We will look at two subcases: when e is a
link (which we assume is positive by switching), and when e is a negative loop or half edge.

Subcase A: e is a positive link.
First we note that since e is positive link any consistently oriented walk W containing e

will still be consistently oriented in Σ/e. Now, for a proof by contradiction, suppose that
Σ/e contains an oriented cycle. Since Σ \ e is acyclic, this cycle must contain the vertex ve,
let W = vee1v2 · · · vk−1ekve be a closed walk around the oriented cycle in Σ/e beginning at
ve.

5 Now consider the closed walks in Σ. Notice that if e1 and ek are both incident to v or
both incident to w in Σ, then the closed oriented walk W is an oriented circle in Σ\ e, which
contradicts our assumption that α ∈ AO(Σ \ e). So one of e1 and ek is incident to v and the
other to w, by choice of notation, we choose e1 incident to v and ek incident to w.

Now we consider two coherent closed walks in Σ that contain e in opposite orientations,
namely,

W1 = w, e: ~vw, v, e1, v2, . . . , vk−1, ek, v

and

W2 = w, e: ~wv, v, e1, v2, . . . , vk−1, ek, w.

Since W was a walk around a consistently oriented circle [MORE?]
If W in Σ/e was oriented so e1 left ve and ek−1 entered ve then W2 is consistently oriented

in Σ. Furthermore, since σ(e) = + (by assumption), the circle(s) (and paths) of W2 are
still circles(s) (and paths) in W2 ∪ e: ~wv with the same sign(s). Therefore W2 ∪ e: ~wv is a
cycle in Σ, and since it was oriented we have an oriented cycle in Σ, which is contrary to
the assumptions of Subcase A. Furthermore, if we don’t have W ∈ Σ/e oriented so e1 left
ve and ek−1 entered ve then W ∈ Σ/e was oriented so e1 enters ve and ek−1 leaves ve (since
W is consistently oriented in Σ/e these are the only two options). In this case we have an
identical argument with W1 ∪ e: ~vw, and we reach the same contradiction.

Therefore Σ/e does not contain an oriented cycle, and in particular α ”restricted” to Σ/e
is acyclic. Therefore we have the two acyclic extensions of α to Σ in 2:2 correspondence with
the two acyclic orientations α of Σ \ e and the ”restricted” α on Σ/e.

Subcase 2: e is a negative loop or half edge. To simplify this proof we will assume that e
is actually a half edge with vertex v.

This subcase is similar to the first. For proof by contradiction we assume that α ∈
AO(Σ \ e) extends to two acyclic orientations of Σ, namely α ∪ e: ~vw and α ∪ e: ~wv, but that
α “extended” to Σ/e contains an oriented cycle.

5If the circuit is a handcuff circuit, then this walk will simply repeat the circuit path.
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We note that this cycle must use a half edge f created by contracting e, in other words,
f was a v, v1 link in Σ.6 If this isn’t the case it is immediate that we have an oriented cycle
in Σ. Now we note that f is itself an unbalanced circle, so the oriented cycle containing f
in Σ/e must be of the negative handcuff type. So there exists a circuit path P beginning
at v leading to another unbalanced circle C where P ∪ C∪ the half edge f is consistently
oriented in Σ/e. Now we notice that since f was a v, v1 link C ∪ P ∪ fΣ ∪ e is a cycle in
Σ. Furthermore, this cycle is consistently oriented for C ∪ P∪ the half of f at v1, than no
matter which way f is oriented at v, one of the orientations of e is consistent with f at v,
meaning we have an oriented cycle in Σ, which contradicts our assumption.

Therefore Σ/e does not contain an oriented cycle, and in particular α ”restricted” to Σ/e
is acyclic. Therefore we have the two acyclic extensions of α to Σ in 2:2 correspondence with
the two acyclic orientations α of Σ \ e and of α on Σ/e.

Thus we have proved our 2:2 correspondence for Type II.

[ THE PROOF IS IN CASES.
WHERE TO FIND THE CORRECT PROOFS OF THE CASES (guide for who
writes what):
Case I. e is a positive loop or loose edge. (Trivial; see 11/24 or 11/26.) Case II.
e is a link (+ by switching). Case III. e is a half edge or negative loop.
Case II has 3 types. We have an acyclic orientation α of Σ \ e. Type Two. α ∪ e
is acyclic in both orientations of e. Type One. Only in one orientation. Type
Zero. Not in any orientation.
I think Types Two, One were dealt with on 11/26 with some supplementation
on 12/1.
Type Zero was treated on 11/26 and 12/1. It has three cases. Case 1. P is a
path. (Done 11/26.) Case 2. P is a handcuff with e in the connecting path.
Case 3. Same with e in one of the circles. These were treated on 12/1. ]

[The following should all be redone by 11/26 and 12/1 people, and is provided
here just in case it helps:]

Type I: Adding e: ~vw produces an acyclic orientation of Σ, but adding e: ~wv produces a cyclic
orientation of Σ.

Let P be a closed walk in Σ \ e s.t. P ∪ e: ~wv is a an oriented circuit in Σ. This implies
that P is oriented consistently (within P ) from v to w. We would like to show that α is
acyclic when extended to Σ, but not acyclic on Σ/e (for either orientation of e), thus giving
a 1:1 correspondence.

We now look at 3 subcases,

• Subcase A: P ∪ e is a positive circle
• Subcase B: P ∪ e is a negative handcuff, with e in the circuit path of the circuit
• Subcase C: P ∪ e is a negative handcuff, with e in a negative circle of the circuit

6Note that f could not have been a negative loop or half edge at v. If it were a half edge or negative loop,
then f together with one of the orientations of e would yield an oriented cycle in Σ. And if f was a positive
loop then f (with any orientation) is an oriented cycle in Σ.
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Subcase A: We consider α extended to σ/e (with either orientation of e). Note that
since e is a positive link by assumption, this contraction makes sense. Furthermore, the
contraction doesn’t alter the sign of the circle P ∪ e, by Lemma E.4 (For S balanced in Σ
and T ⊆ E \ S . Then S ∪ T is balanced in Σ ⇐⇒ T is balanced in Σ/S.) P is balanced
(positive) in Σ/e. Furthermore, since the contraction didn’t affect the internal vertices of P ,
the edges of the circle P is oriented coherently at all vertices except ev. And since the path
P in Σ \ e was oriented from v to w, the circle P is oriented coherently in Σ/e. Therefore
Σ/e is cyclic.

Since α extended to Σ is acyclic for exactly one orientation of e by assumption, we have
a one to one correspondence between AO(Σ \ e) and AO(Σ), which is in fact one to one
between AO(Σ \ e) and AO(Σ) ∪ AO(Σ/e) for Case 2 C.

For the other subcases, we need a sublemma.

Lemma J.9. [[LABEL L:1124 SubLemma]] For e a positive link, and P ∪ e a coherently

oriented walk in ~Σ, then P is a coherently oriented walk in ~Σ/e.

proof of sublemma. On Wed? �

Subcases B & C: (If the SubLemma is true we can treat A, B, C together, otherwise we
need to do work here on wednesday)

This concludes Type I.

Type O: The acyclic orientation of Σ \ e extends only to cyclic orientations of Σ.
We wish to show that this is impossible, that there are no acyclic orientations of Σ \ e

with Σ ∪ e: ~vw and Σ ∪ e: ~wv cyclic orientations of Σ. We will do so by contradiction.
[THIS ENTIRE PROOF (OF CASE 3) IS SUPERSEDED.]
Let P : ~wv and Q: ~vw be oriented walks in Σ \ e (oriented by α of course) s.t. P ∪ e: ~vw is a

coherently oriented cycle, and similarly Q∪e: ~wv is a coherently oriented cycle. Furthermore,
the concatenation PQ is a coherently oriented closed walk. Now we wish to show that there
is subwalk of PQ that is a coherently oriented cycle. To this end, we look 2 cases,

• Subcase A: P,Q are internally disjoint
• Subcase B: P,Q are not internally disjoint

Subcase A: Then we have several subsubcases. (Note that we have omitted the cases
where the rolls of P and Q are simply reversed.) In each of these cases we will find a circuit
in Σ \ e, giving us a contradiction.

• P ∪ e is a positive circle Q ∪ e is a positive circle
• P ∪ e is a handcuff with e in one of the negative circles and Q ∪ e is a positive circle
• P ∪ e is a handcuff with e in one of the negative circles and Q∪ e is a handcuff with
e in one of the negative circles
• P ∪ e is a handcuff with e in one of the negative circles and Q∪ e is a handcuff with
e in the circuit path
• P ∪ e is a handcuff with e in the circuit path Q ∪ e is any circuit

[This all needs pictures and a few words about why the orientations are still
coherent.]
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Subcase B: By choice of notation, Q meets P internally at some vertex u. So u is a
vertex in Q and an internal vertex in P .

Note that this includes the possibility that u = v or u = w, since v (or w) could be internal
to P , and v (and w) are vertices in Q.

[This is where things got really messy in class. I haven’t straightened them
out yet. [They probably can’t be salvaged without re-doing. – TZ]]

�

Nov 26
(draft):
Simon Joyce

Lemma J.10. [[LABEL L:1126 Lemma1]] Given a link or unbalanced edge e and an orien-
tation β of a signed graph Σ such that Σ\e is acyclic. Then β is acyclic if and only if β/e
is acyclic.

Proof. Necessity is the subject of J.11. Sufficiency is the subject of J.12. We prove the
contrapositive in both cases. [Double check that I have used the correct logical
statements]

Lemma J.11. [[LABEL L:1126 Lemma1A]] Given a link or an unbalanced edge e contained
in a cycle C in Σ, then C/e is a cycle in Σ/e.

Proof. We may assume Σ = C since this is the only part of the graph we care about.
The cases where e is a link, which we may assume is positive by switching are shown in

Figure J.4. It is clear in all cases that C/e is a cycle.

e

e

e

e

−
−

−−

e

e

− −

− −

+

+

I II III

Figure J.3.

[[LABEL F:1126link]]
The cases where e is a half edge are shown in Figure J.4. The case where e is a negative

loop has exactly the same result. Since e is an unbalanced edge it must be part of a handcuff.
In case I there is a non-empty path leading from e to the other negative circle or unbalanced
edge in the hand cuff and clearly C/e is also a cycle. In case II e is incident to a vertex in
a negative circle. Here again we see C/e results in a cycle. In case III C is made up of two
unbalanced edges and the contraction gives a loose edge which is a cycle.
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−

−

e −e
f1

f2

f2

f1

e
f

f

I II III

f

f

Figure J.4.

[[LABEL F:1126ube]]
�

Lemma J.12. [[LABEL L:1126 Lemma1B]] For e a link or unbalanced edge of Σ, if β is
acyclic in Σ\e and cyclic in Σ/e, then β is cyclic in Σ, or β with the orientation of e reversed
is cyclic in Σ (or both).

Proof. Since Σ\e is acyclic, if Σ contains a cycle it must be of the form e ∪ E(C) where C
is a cycle in Σ/e.

Suppose e is a link which we assume is positive by switching. C ∪ e forms a a circle or
a handcuff such that all edges in C are oriented consistently in β. The orientation of C
determines a unique orientation of e that is consistent C such that C ∪ e forms a cycle in Σ.

Now suppose e is an unbalanced edge. Now C ∪ e must form a handcuff with e as one of
it’s unbalanced ends. Suppose C ∪ e forms a loose handcuff. Assume the edge adjacent to
e is positive by switching. Then the orientation of C determines a unique orientation of e
such that C ∪ e forms a cycle in Σ.

Now suppose C ∪ e forms a tight handcuff and C is not an unbalanced edge in Σ. If we
assume all the edges of C that are not adjacent to e in Σ are positive by switching, then one
of the edges adjacent to e is positive and one is negative. Since C is consistently oriented
this will uniquely determine the orientation of e such that C ∪ e forms a cycle in Σ.

If C is an unbalanced edge in Σ, then C is a loose edge in Σ/e, so it has no orientation.
Then either orientation of C ∪ e forms a cycle as long as C is oriented consistently with e.

�

This completes the proof of J.10.
�

Now suppose both orientations of e give a cyclic orientation of Σ. J.12 shows that Σ/e is
also cyclic. To get our 2:2 correspondence in the is case we must show that Σ\e must also
be cyclic in this case.

Lemma J.13. [[LABEL L:1126 Lemma2A]] If α is an orientation of Σ\e such that α∪ →e
and α∪ ←e are cyclic on Σ, then α is cyclic on Σ\e
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Proof. Let v and w be the endpoints of e. Let P and Q be the edge sets in Σ\e such that
P ∪ e:vw and Q ∪ e:wv form cycles in Σ. First we assume P ∪ e is a positive circle [This is
case 1 in the next days notes]. The means we can consider P as a consistently oriented
path from w to v since P ∪ e:vw is a cycle.

First suppose the vertices of P and Q don’t intersect except at v and w, then Q∪P forms
a cycle since P is consistently oriented from w to v. The three possible cases are shown in
Figure J.4. In case I, Q ∪ e:wv forms is a consistently oriented positive circle. In cases II
and III, Q ∪ e:wv forms a consistently oriented handcuff where e is in the connecting path
in case II and in one of the negative circles in case III.

v w

P

e:vw

e:wv
v w

P

e:vw

e:wv
v w

P

e:vw

e:wv

Q
− −

−

Q

Q

I II III

Figure J.5.

[[LABEL F:1126Fig1]]
Now suppose the vertices of P and Q do intersect at a vertex other than v and w. Notice

the first edge of Q incident with v (or w) cannot be in P since it’s orientation is opposite
to the edge in P incident with v (or w). Starting at v, follow the edges of Q so that the
orientation of the edges is always pointing away from v. Stop at the first vertex x where Q
intersects P or when you return to a vertex of Q. If Q intersects with P at x then these
edges form a consistently oriented path from v to x. But there will also be a subpath of
P that is consistently oriented from x to v. Therefore α contains a consistently oriented
positive circle. If you hit a vertex of Q before you intersect with P then go to w and follow
the edges of Q so that the orientation of the edges is always toward w. This time you must
hit a vertex x of P before a vertex of Q since otherwise P and Q would not intersect and
we’d be back in the previous case. These edges of Q form a path consistently oriented from
x to w. But there is a subpath of P consistently oriented from w to x. Therefore α again
contains a consistently oriented positive circle.

This proof is continued the next day.
�

Dec 1:
Nate Reff

A coherent balloon consists of a negative circle (or half edge) C and a path P of any length
(possibly zero) that is disjoint from C except at one end v, oriented so that C ∪ P has no
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source or sink except one. This vertex is called the tip of the balloon. It is easy to see that
an oriented negative circle (or half edge) cannot be coherent at every vertex; thus, if it is
coherent at the largest number of vertices, there is a unique incoherent vertex. This must
be the vertex common to P and C; we call it the jointure of the coherent balloon. (When P
has length 0, we define it to be P = v and the tip is v.) Since C is negative and is coherent
everywhere but at v, it cannot be coherent at the v; thus, the orientation of C determines
that of P and the tip is the only source or sink. The oriented signed graph seen in Figure
J.6 is an example.

Figure J.6.
[[LABEL F:1201image1]]

Lemma J.14. [[LABEL L:1201Lemma1ImprovedLemma4]] Suppose we have a coherently
oriented balloon with tip w. Extend coherently from w until you meet the (extended) balloon.
Then the extended balloon will contain a cycle.

(a) (b)

Figure J.7.
[[LABEL F:1201image2]]

Proof. Let v be the jointure of the balloon. When the extension of P hits the extended
balloon, the configuration looks like one of the two types seen in Figure J.7. (If the hit
point is v, we are in the second type.) Each type contains a cycle, as we explain next. The
arguments are based on the description in Lemma ?? of a closed walk that is coherent at
every internal vertex.

In diagram (a), let x be the point at which the extended path meets the balloon. Follow
the circle from x in the direction that makes v coherent; then when we arrive back at v we
have a coherent, hence positive, circle, which makes a balanced cycle.

In diagram (b), when we hit the extended path, say at y, we either form a positive circle,
which is coherent because it is coherent by definition at every vertex other than y, or a
negative circle, which means the entire figure is a handcuff and an unbalanced cycle. �
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Proof of Sesquijection Lemma, continued. Suppose that α is an orientation of Σ \ e. We are
trying to prove that if α∪~e and α∪←−e are both cyclic, then α is cyclic (ie ”type zero”REF???
does not exist from our previous discussion). We are basically assuming that we have a link
e : vw. More specifically we assume e : vw is a positive link, P ∪ (e : ~vw) is a cycle, and
Q ∪ (e :←−wv) is a cycle.

Case 1: P is a path. (We already did this case.)
Case 2: P is a handcuff and e is in its connecting path. We may also assume that Q is not

a path, since that was taken care of in Case 1. Look at Figure J.8. By Qw we mean the part

cw

cv

w

v

Qw

Qv

Figure J.8.
[[LABEL F:1201image3]]

of Q we can get to by backtracking coherently along Q from w. If Qw hits Pw, then lemma
J.14 tells us that it is a cycle in Σ \ e (since we are extending coherently and we must hit
somewhere). By Qv we mean to forward track coherently along Q from v. Then the result
is similar.

This means that Q must be one of the shapes seen in Figure J.9.
If Qw does not hit Pw, then Pw ∪Qw is a cycle.

Case 3: P is a handcuff and e is in one of its circles. We may also assume Q has the
same type, or we would be in Case 1 or 2. Looking at Figure J.10, we call the red path Pw,
and the blue path Qw. If we backtrack along Qw and do not hit P then we will close up and
will be back in Lemma J.14. So this is similar to Case 2.

The essential part of Cases 2 and 3 is that Pw and Qw are two balloons that meet coherently
at their tips.
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(a) (b)

Qw

Qw

Figure J.9.
[[LABEL F:1201image4]]

Qw
Pw

w

v

Figure J.10.
[[LABEL F:1201image5]]

Corollary J.15. [[LABEL C:1201CorollaryToCaseII]] The union of two coherent balloons,
not necessarily internally disjoint, that are joined coherently at their tips, contains a cycle.

Case III: Suppose e is an unbalanced edge at v, there exists a cycle P ∪ ~e in α ∪ ~e, and
there exists a cycle Q ∪←−e in α ∪←−e (See Figure J.11).

P Q

S\e

v

Figure J.11.
[[LABEL F:1201image6]]
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Possible pairs (γ, α):
Proper Compatible

(a) Extroverted γ(w) + γ(v) > 0 γ(w) + γ(v) ≥ 0
(b) Positive γ(v) < γ(w) (This includes

a positive loop v = w)
γ(v) ≤ γ(w)

(c) Introverted γ(v) + γ(w) < 0 (For a neg-
ative loop 2γ(v) < 0

γ(v) ≤ γ(w)

(d) Introverted half edge γ(v) < 0 γ(v) ≤ 0
(e) Extroverted half edge γ(v) > 0 γ(v) ≥ 0

[[LABEL Tb:1201pair types]]

Therefore, P and Q are balloons and meet coherently. Apply Corollary J.15. Thus Σ \ e
has a cycle at v.

This concludes the proof of the Sesquijection Lemma. �

Proper and compatible pairs.
Recall that a coloration of Σ is a mapping γ : V → Λk where Λk := {0,±1,±2, . . . ,±k}.

A zero-free coloration of Σ is a mapping γ∗ : V → Λ∗k where Λ∗k := {±1,±2, . . . ,±k}.
A pair (γ, α) where γ is a coloration and α is an acyclic orientation, can be of any of the

types in Figure J.12 defined in the following table.

w

v

e

w

v

e

w

v

e

v

e

v

e

(a) (b) (c) (d) (e)

Figure J.12. An edge e which is (a) extraverted, (b) positive, (c) introverted,
(d) an introverted half edge, (e) an extraverted half edge.

[[LABEL F:1201image7]]

Note: If α exists then there are no loose edges or positive loops.
Let x(e) := column of e in H(Σ, α). We are saying that x(e)·γ > 0 (proper), and x(e)·γ ≥ 0

(compatible).

The number of acyclic orientations.
Stanley’s theorem on the number of acyclic orientations of a graph (Theorem ??) extends

to signed graphs. The original theorem is the special case of an all-positive signature. For
a fixed k ≥ 0, we write a(Σ) := the number of acyclic orientations, a2(Σ) for the number of
compatible pairs, and a∗2(Σ) for the number in which the coloration is zero free. Let’s make
three important observations:

(1) Given an acyclic orientation α and a coloration γ, an edge e is proper if and only if
x(e) · γ > 0 and it is compatible with γ if and only if x(e) · γ ≥ 0. [DEFINE x(e)
before this statement. Give a proof?—a lemma?—cite Table J.4?]

(2) A proper pair (γ, α) is determined by γ. Therefore the number of proper pairs is equal
to the number of proper k-colorations (or zero-free k-colorations), which is equal to
χΣ(2k + 1) (or χ∗Σ(2k)).
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(3) If we have an improper compatible pair (γ, α), then γ is improper. In other words,
if there exists an e such that x(e) · γ = 0, then γ is improper. If such an e does not
exist, then γ is proper.

Theorem J.16. [[LABEL T:1201Theorem1StanleyType]] Let k be a non-negative inte-
ger. In a signed graph Σ, the number of compatible pairs of an acyclic orientation and
a k-coloration is (−1)nχΣ(−(2k + 1)). The number of compatible pairs with a zero-free
k-coloration is (−1)nχ∗Σ(−2k).

Proof. We proceed by induction on the number of links. For zero links we have a2(Σ) =∏
v a2(Σ:v) and χΣ(λ) =

∏
v χΣ:v(λ). If there exists a link e:vw then to prove a2(Σ) =

a2(Σ \ e) + a2(Σ/e) (and for the zero-free case a∗2(Σ) = a∗2(Σ \ e) + a∗2(Σ/e)), we may assume
e is positive by switching and then deletion and contraction of χΣ and χ∗Σ give us the result.

Let (γ, α) be a compatible pair in Σ \ e.
Case 1: e is proper in γ. Then α extends uniquely to Σ and we get a compatible pair (γ, αΣ).
Also, γ does not color Σ/e because γ(v) 6= γ(w). Therefore we have a bijection of compatible
pairs. In other words one pair in Σ corresponds to one pair in each Σ \ e and Σ/e.
Case 2: e is improper in γ. Therefore γ(v) = γ(w) and γ colors Σ/e. If we add e to α, we
have

AO(Σ)
sesquijection←→ AO(Σ \ e) ∪ AO(Σ/e),

where the left-hand side is thought of as the number of extensions and the right-hand side
is thought of as α applied to Σ \ e and also to Σ/e.

Since we have a sesquijection this gives us the correct numbers for the compatible pairs
with k-colorations. Notice that if γ is zero-free then γ/e is zero-free and vice versa, so the
proof is the same. Therefore the theorem is proved. �

12/3:
Kaminski

[MISSING NOTES]

Dec 5
(draft):
Peter Cohen
and Thomas
Zaslavsky

J.5. The dichromatic and corank-nullity polynomials. [[LABEL 2.dichromatic]]
The algebraic form of the chromatic polynomials, i.e., the subset expansion in Theorem

J.7, allows us to generalize greatly. The dichromatic polynomials of a signed graph, like
that of a graph, are two-variable generalizations of the chromatic polynomials that have
combinatorial properties of their own. A modification, the corank-nullity polynomials, have
slightly but significantly different properties.

Dichromatic polynomials.
We begin with the algebraic definitions of three dichromatic polynomials.

Definition J.7. [[LABEL D:1205dichromatic]] The (ordinary) dichromatic polynomial of a
signed graph Σ is

QΣ(u, v) :=
∑
S⊆E

un−b(S)v|S|−n+b(S).

The balanced dichromatic polynomial is

Q∗Σ(u, v) :=
∑
S⊆E

balanced

un−b(S)v|S|−n+b(S).
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The total dichromatic polynomial is

QΣ(u, v, z) :=
∑
S⊆E

un−b(S)v|S|−n+b(S)zc(S)−b(S).

The definitions are concocted so that QΣ(u, v) = QΣ(u, v, 1) and Q∗Σ(u, v) = QΣ(u, v, 0).
The purpose of the total dichromatic polynomial is to give a common expression to the
ordinary and balanced polynomials, but I do not know of any interpretation of it for values
of z other than 1 and 0.

The definitions show that, for an ordinary graph, Q+Γ(u, v) = Q∗+Γ = QΓ(u, v). That is,
we are generalizing the dichromatic polynomial of a graph. That, of course, is the point.

The chromatic polynomials can be expressed as χ
[∗]
Σ (λ) = (−1)nQ

[∗]
Σ (−λ,−1). That follows

from the algebraic forms of the chromatic polynomials (Theorem J.7).

Theorem J.17 (Theorem Q). [[LABEL T:1205Qdc]] Let e be an edge in the signed graph
Σ. If e is neither a balanced loop nor a loose edge, then

QΣ(u, v, z) = QΣ\e(u, v, z) +QΣ/e(u, v, z) if e is a link,

QΣ(u, v) = QΣ\e(u, v) +QΣ/e(u, v),

Q∗Σ(u, v) = Q∗Σ\e(u, v) +Q∗Σ/e(u, v) if e is a link.

If e is a balanced loop or a loose edge, then

QΣ = QΣ\e + vQΣ/e.

Proof. Clearly, if the first formula holds for three variables, it will hold for any specialization
of those three variables. Setting z to 0, the formula will simplify to

Q∗Σ(u, v) = QΣ(u, v, 0) = QΣ\e(u, v, 0) +QΣ/e(u, v, 0) = Q∗Σ\e(u, v) +Q∗Σ/e(u, v),

with a similar argument for Q(u, v), so the second and third parts of the theorem are valid
for any link, contingent of course on the first part.

For the remaining proof, let’s write uΣ(S) := c(S)− b(S), for short; this is the number of
unbalanced components of Σ|S. The definition gives
(J.2)

[[LABEL E:1205Qsimp]]QΣ(u, v, z) =
∑
S⊆E

ubΣ(S)v|S|−n+b(S)zuΣ(S) = v−n
∑
S

(uv)bΣ(S)v|S|zuΣ(S)

(a very handy simplification in many computations) and, for Σ \ e with this simplification,

QΣ\e(u, v, z) = v−n
∑
S⊆E\e

(uv)bΣ\e(S)v|S|zuΣ\e(S) = v−n
∑
S⊆E\e

(uv)bΣ(S)v|S|zuΣ(S).

By subtraction,

(J.3) [[LABEL E:1205Qdiff]]QΣ(u, v, z)−QΣ\e(u, v, z) = v−n
∑

S⊆E:e∈S

(uv)bΣ(S)v|S|zuΣ(S).

This is valid for any edge e.
Now there are three cases. The edge e may be a link, or it may be unbalanced (a negative

loop or a half edge), or it may be a positive loop or a loose edge.
The easiest case first. Suppose e is a positive loop or a loose edge. What distinguishes

such an edge is that then Σ/e = Σ \ e, as we saw in Section E.1. Also, it’s easy to see that
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b(T ∪ e) = b(T ), u(T ∪ e) = u(T ), and |T ∪ e| = |T | + 1 for any set T ⊆ E \ e. Applying
these facts in Equation (J.3), we have

QΣ(u, v, z)−QΣ\e(u, v, z) = v−n
∑

S⊆E:e∈S

(uv)bΣ(S)v|S|zuΣ(S)

= v−n
∑
T⊆E\e

(uv)bΣ(T )v|T |+1zuΣ(T )

= v · v−n
∑
T⊆E\e

(uv)bΣ\e(T )v|T |zuΣ\e(T )

= vQΣ\e(u, v, z) = vQΣ/e(u, v, z).

Therefore, QΣ = QΣ\e + vQΣ/e if e is a balanced loop or a loose edge.
If e is any other kind of edge, then Σ/e has one vertex less than either Σ or Σ \ e. The

next step in the proof is to write out the simplified definition (J.2) for Σ/e; it is

QΣ/e(u, v, z) = v−(n−1)
∑
T⊆E\e

(uv)bΣ/e(T )v|T |zuΣ/e(T ).

If e is a link, we can rewrite this as

QΣ/e(u, v, z) = v−n
∑
T⊆E\e

(uv)bΣ(T∪e)v|T∪e|zuΣ(T∪e)

because bΣ/e(T ) = bΣ(T ∪ e) by Lemma ?? [CAN’T FIND IT ANYWHERE!] and
cΣ/e(T ) = cΣ(T ∪ e) by Lemma I.?? [CAN’T FIND IT ANYWHERE!], and of course
|T ∪ e| = |T | + 1. This is the same as QΣ − QΣ/e, so we have the familiar equation QΣ =
QΣ\e +QΣ/e.

But suppose e is a negative loop or a half edge? Then we cannot predict the number
of components of the contraction. However, the rest is as before: bΣ/e(T ) = bΣ(T ∪ e) (by
Lemma ?? [FIND IT!]) and |T ∪ e| = |T |+ 1. Thus, if we set z = 1 to eliminate the effect
of c(T ), we get a valid identity,

QΣ/e(u, v) = v−n
∑
T⊆E\e

(uv)bΣ(T∪e)v|T∪e|.

This is the case z = 1 of the expression in (J.3); so we have the desired reduction formula
for Q(u, v).

Another way to eliminate the effect of c(T ) is to set z = 0, which means we are talking
about Q∗. Sad to say, this doesn’t help. Because Q∗ restricts the sum to balanced edge sets,
we can no longer compare the sum in Q∗Σ/e, which is over balanced sets T ⊆ E(Σ/e), to the

sum in Q∗Σ − Q∗Σ\e, which is over balanced sets S ⊆ E(Σ) that contain e. But no such sets
exist! That is why we are satisfied to prove the reduction formula for Q∗ only when e is a
link. �

Corank-nullity polynomials. [[LABEL 2.crn]]
The corank-nullity polynomial is most easily defined in terms of the dichromatic polyno-

mial, by the following formulas. There are two important corank-nullity polynomials, which
can be combined into one by the addition of a third variable—exactly as with the dichromatic
polynomials.
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Definition J.8. [[LABEL D:1205crn]] The corank-nullity polynomial (or rank generating
polynomial) of a signed graph is

RΣ(u, v) := u−b(Σ)QΣ(u, v).

The balanced corank-nullity polynomial is

R∗Σ(u, v, z) := u−b(Σ)Q∗Σ(u, v).

The total corank-nullity polynomial is

RΣ(u, v, z) := u−b(Σ)QΣ(u, v, z).

Thus, RΣ(u, v) = RΣ(u, v, 1) and R∗Σ(u, v) = R∗Σ(u, v, 0).

Dec 8:
Yash Lodha

[VERIFY THE STATEMENT of this result:]

Theorem J.18 (Theorem R). [[LABEL T:1208R]] The corank-nullity polynomials of a
signed graph have the following properties:

(1) RΣ(u, v, z) = RΣ\e(u, v, z) +RΣ/e(u, v, z) if e is a link and not a balancing edge of Σ.
(2) RΣ(u, v) = RΣ\e(u, v) +RΣ/e(u, v) if e is not a balancing edge and not a positive loop

or loose edge.
(3) R∗Σ(u, v) = RΣ\e(u, v) +RΣ/e(u, v) if e is a link but not a balancing edge.

Proof. Use “Theorem Q” (Theorem J.17) and Proposition F.7.
[We need details here! WHAT IS THE PROP?]

�

Theorem J.19 (Theorem QRM). [[LABEL T:1208QRM]] QΣ(u, v, z) and RΣ(u, v, z) satisfy
the following identities.

(M) Multiplicativity:
QΣ1∪· Σ2

= QΣ1QΣ2 ,
RΣ1∪· Σ2

= RΣ1RΣ2 ,
QΣ1∪vΣ2 = QΣ1QΣ2 .

(U) Unitarity:
QK1 = u, RK1 = 1, Q∅ = R∅ = 1,
QK◦1

= u+ z = RK◦1
.

(I) Invariance:
Σ1
∼= Σ2 =⇒ QΣ1 = QΣ2 and RΣ2 = RΣ2 .

(BE) If e is a balancing edge of Σ1 which is not an isthmus, then
QΣ = (u+ 1)QΣ\e,
RΣ = (u+ 1)RΣ\e.

Proof. The proofs are an exercise. One should consult Section I.?? for guidance. �

J.6. Counting colorations. [[LABEL 2.allcolorations]]
Recall that I(γ) := set of improper edges of γ. Define

XΣ(k, w) :=
∑

γ:V→Λk

w|I(γ)|,

which is the generating function of all k-colorations by the number of improper edges, and

X∗Σ(k, w) :=
∑

γ:V→Λ∗k

w|I(γ)|,
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which is the generating function of all zero-free k-colorations.

Theorem J.20. [[LABEL T:1208allcolorations]]

X
[∗]
Σ (k, w) = (−1)b(Σ)(w − 1)nQ

[∗]
Σ (
−λ
w − 1

, w − 1)

where λ = 2k+1 if all colors are allowed and 2k if 0-free. (λ = size of the color set ,Λk or Λ∗k.)

Lemma J.21 (Lemma A). [[LABEL L:1208A]] For a coloration γ, I(γ) is closed, and it is
balanced if γ is 0-free.

Proof. Exercise. �

Lemma J.22 (Lemma B). [[LABEL L:1208B]] γ|V0(I(γ)) ≡ 0.

Proof. Recall V0(S) = { Vertices of unbalanced components } = V \ ⋃ πb(S). Look at an
unbalanced component of I(γ). It contains a negative circle or a half edge. A negative
circle of improper edges [diagramcomes here] generates an equation 2γi = 0. (From
[1− σ(C)]γi = 0.)

Therefore γ(vi) = 0 if vi ∈ V0(I(γ)). Hence proved. �

This means that V0(I(γ)) together with γ|V \V0(I(γ)) completely determine γ.

12/10:
Joyce

[MISSING NOTES]

Dec 12:
Nate Reff

K. Signed Complete Graphs

[[LABEL 2.complete]]
Signed complete graphs Σ = (Kn, σ) have especially nice properties due, in part, to

the existence of adjacencies between all vertices, and in further part, to the fact that the
adjacency matrix is zero only on its diagonal. We can regard a signed Kn as determined by
its negative subgraph Σ−. From this point of view we like to write it as Σ = KΓ where Γ is
a simple graph of order n; this signed graph is −Γ∪+Γc; that is, Σ− = Γ and Σ+ = Γc, the
complementary graph. Then KΓc = −KΓ.

The trivial examples are +Kn = K(V,∅) = KKc
n

and −Kn = KKn . The nontrivial examples
are those in which ∅ ⊂ E(Γ) ⊂ E(Kn), so they have edges of both signs.

K.1. Coloring. [[LABEL 2.complete.coloring]]
How does this relate to signed graph coloring? Let’s look at a zero-free coloration γ. What

makes it proper? Looking at Figure K.1 we see that γ−1(±i) must be properly colored for
each i. This leads to two observations. The first is that KΓ:γ−1(±i) has to be antibalanced.
Here recall Harary’s Balance Theorem A.2: Σ is balanced iff the negative edges are a cut.
Thus, Σ is antibalanced iff the positive edges are a cut. The second is that there are 2 ways
to put vertex signs on γ−1(±i), because it induces a connected subgraph of KΓ.

These observations suggest a three-step coloring procedure.

(1) Choose a partition of V into antibalanced sets B1, . . . , Bl (in other words, KΓ:Bi is
antibalanced; equivalently, Γc:Bi is complete bipartite).

(2) Assign + and − to the two halves of each Bi (there are 2l ways to do this because
each Bi induces a connected subgraph).
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Figure K.1. Assigning signs to the vertices of γ−1(±i) in a signed Kn. The
diagram shows the case in which there are 6 vertices colored ±i. The positive
edges (in red) are complete bipartite.[NATE, NOTE: Figure uses too
much white space!]

[[LABEL 1212image1]]

(3) Assign l distinct labels from [k] to the Bi’s (there are (k)l = l!
(
k
l

)
ways to do this).

Suppose we have a definite signed graph Σ. Let’s define a partition of V to be antibalanced
if every part induces an antibalanced signed graph. Our coloring procedure leads to the
following description of the chromatic polynomial of a signed Kn, or indeed (by the same
proof) of any signed graph that is complete in the sense that each pair of vertices is joined
by one or more edges.

Theorem K.1. [[LABEL T:1212antibalanced chromatic]] If Σ is a signed graph in which
all vertices are adjacent, then χ∗Σ(λ) =

∑
π 2|π|(k)|π|, where λ = 2k and the sum is taken over

all antibalanced partitions of V .

This means the zero-free chromatic polynomial encodes the number of partitions into
antibalanced sets.

Corollary K.2. [[LABEL C:1212minantiptn]] For any signed graph Σ in which all vertices
are adjacent, χ∗(Σ) = the minimum size of a partition of V into antibalanced sets.

A clique is a vertex set that induces a complete subgraph. In the next corollary we
include ∅ as a clique, i.e., K0 as a complete subgraph, since one part of a bipartition may
be empty. The corollary gives a structural interpretation, in terms of Γ or its complement,
of the zero-free chromatic number of KΓ.

Corollary K.3. [[LABEL C:1212mincliquepairptn]] χ∗(KΓ) = the minimum size of a par-
tition of V into induced complete bipartite subgraphs of Γc, which also = the minimum size
of a partition into pairs of nonadjacent cliques in Γ.

We can apply this to get a (less satisfactory) interpretation of the chromatic number.

Corollary K.4. [[LABEL C:1212Corollary4]] χ(KΓ) = minv∈V χ
∗(KΓ\v).

Proof. You can use the color 0 only once since all vertices are adjacent. �
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Open questions on coloring of signed complete graphs.

(1) What is maxΓ χ
∗(KΓ), over all graphs Γ of order n? Tom thinks +Kn should maximize

with χ∗(+Kn) = dn
2
e, and −Kn should minimize. Also, χ∗(−Kn) = 1 since they can

all be the same color.
(2) Similarly, what is maxΓ χ(KΓ), over all graphs Γ of order n?
(3) Are the graphs that achieve the maxima unique (up to switching)?

I wrote a short paper, Zaslavsky (1984a), on chromatic number that looked at the very
easiest questions of this kind. There is certainly much more to be accomplished by anyone
who is interested.

K.2. Two-graphs. [[LABEL 2.twographs]]
A two-graph is a set of triples chosen from V , in other words T ⊆ P(3)(V ), such that every

quadruple from V contains an even number of triples of T. T is regular if every pair vivj is
in the same number of triples of T.

Observe that Tc is a two-graph if T is, and moreover that Tc is regular if T is.
A signed complete graph KΓ generates a two-graph T(KΓ) by the rule:

T(KΓ) := { vertex sets of negative triangles }
= { triples of vertices that support an odd number of edges in Γ }.

Lemma K.5. [[LABEL L:1212swclasstg]] The class T(KΓ) is a two-graph, and the whole
switching class [KΓ] generates the same two-graph.

Proof. A nice elementary exercise for the reader. �

Theorem K.6. [[LABEL T:1212tggraph]] Every two-graph is a T(KΓ) for some graph Γ,
which is unique up to switching.

Proof. We construct Γ from T as follows: (1) Choose any vertex v. (2) Define all v-edges
to be positive. (3) Define the edge uw to be − (negative) if vuw ∈ T and + (positive) if
not. Then check that this definition is consistent, i.e., that T = T(KΓ). [THIS IS WHAT
YOU SHOULD DO in the write-up!]

To prove uniqueness notice that you can switch any graph so everything agrees on a
spanning tree. [NATE: EXPLAIN HOW THIS PROVES UNIQUENESS.] �

Graph switching.
Switching originated in the work of J.J. Seidel, who studied equiangular lines, which are

sets of lines that all make the same angle with each other. (See van Lint and Seidel (1966a)
in [JJS].) We’ll see in Chapter III [GEOMETRY] that equiangular lines are cryptomorphic
[sic] to signed complete graphs. Seidel described switching in terms of the graph Γ, not signed
graphs; consequently I call switching a graph Seidel switching, or simply graph switching.
This switching means taking Γ and reversing the adjacencies between X ⊆ V and Xc, for
some vertex set X ⊆ V . From the definitions it is plain to see that switching KΓ corresponds
to (graph-) switching Γ; specifically, that (KΓ)X = KΓX . (This is how I came to the notion
of switching a signed graph.)

The Seidel adjacency matrix of Γ is what we are calling A(KΓ). Seidel introduced this
matrix early (cf. Seidel (1968a) in [JJS]), strictly in terms of the graph Γ; he called it
the (0,−1,+1)-adjacency matrix of Γ. It turned out to be a powerful tool because of its
eigenvalue theory (cf. Seidel (1976a) in [JJS]). From the perspective of this matrix, switching
either Γ or KΓ corresponds to conjugating A(KΓ) by a diagonal ±1-matrix.
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Lemma K.7. [[LABEL L:1212Lemma5]] Switching does not change the eigenvalues of A(KΓ).

Proof. Similar matrices have the same eigenvalues. �

We write A(T) := any A(KΓ) such that KΓ ↔ T. Thus, A(T) is well defined only up
to conjugation by a diagonal ±1-matrix, but that is sufficient to make its spectrum (its
eigenvalues and their multiplicities) well defined.

Lemma K.8. [[LABEL L:1212tga]] Any adjacency matrix A of a two-graph T satisfies

(K.1) [[LABEL E:1212tga]]A2 = (n− 1)I + (n− 2)A− 2(σijtij)ij,

where tij := the number of triples on vivj.

Notice that this is, properly, a statement about signed complete graphs that is invariant
under switching. That is why we can formulate it in terms of a two-graph, which corresponds
to a switching class of signed Kn’s.

Proof. Note that the incidence numbers tij satisfy 0 ≤ tij ≤ n− 2. We write σij := σ(vivj).
On the diagonal, (A2)ii = n − 1, since A has n − 1 ±1’s in each row and 0’s along the

diagonal. This accounts for the diagonal elements of all the matrices in Equation (K.1) Thus,
we only have to examine an off-diagonal element (i, j) where i 6= j.

In A2, the entry is (A2)ij =
∑n

k=1 aijajk =
∑

k 6=i,j σikσjk.
Suppose σij = +. Then vivjvk is a triple in T ⇐⇒ aikajk = −1. So, tij = the number

of triples on vivj that are in T = the number of negative paths vivkvj. Since n − 2 − tij=
the number of triples on vivj that are not in T = the number of positive paths vivkvj,
(A2)ij = (n− 2− tij)− tij = n− 2− 2tij.

Suppose on the contrary that σij = −. Then vivjvk is a triple in T ⇐⇒ aikajk = +1
⇐⇒ σ(vivkvj) = +. So tij = the number of positive paths vivkvj. Meanwhile, n− 2− tij =
the number of negative paths vivkvj. Therefore, (A2)ij = tij− (n−2− tij) = −(n−2−2tij).

We conclude that (A2)ij = σij(n− 2− 2tij) off the diagonal. With our calculation of the
diagonal, we have proved Equation (K.1). �

Proposition K.9. [[LABEL P:1212rtga]] Any adjacency matrix A of a regular two-graph
with t triples on each pair of vertices satisfies

(K.2) [[LABEL E:1212rtga]]A2 = (n− 1)I + (n− 2− 2t)A.

Conversely, if some adjacency matrix of a two-graph T satisfies a quadratic equation, then
it satisfies (K.2) and T is regular with t triples on each vertex pair.

Proof. The first part is direct from Lemma K.8. The second part follows from comparing
the presumed quadratic equation A2 = βI + αA with (K.1). We deduce from the diagonal
that β = n−1 and from the off-diagonal that σij(n−2−2tij) = aijα. But we also know that
aij = σij 6= 0, hence every tij = 1

2
(n − 2 − α), a constant. Hence, T is regular. Comparing

with (K.2), this constant is t. �

Theorem K.10. [[LABEL T:1212Theorem8]] For n ≥ 3, T is regular ⇐⇒ A(T) has at
most 2 eigenvalues. Moreover, A(T) cannot have only one eigenvalue.

Proof. We write A := A(T). Now, T is regular ⇐⇒ A satisfies a quadratic equation,
specifically Equation (K.2) ⇐⇒ A has at most two eigenvalues (by matrix theory).

For A to have just one eigenvalue, it must have a linear annihilating polynomial, that is,
A− αI = O. This is impossible since A is non-zero off the diagonal and n > 1. �
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The multiplicity trick.
There is a standard but clever and effective trick used in the analysis of integral symmetric

matrices, especially the adjacency matrices of graphs, which uses basic facts about the eigen-
value multiplicities. We’ll apply this trick to signed complete graphs with two eigenvalues,
a.k.a. regular two-graphs. (Again, my account is based on papers by Seidel in [JJS]; see
especially Seidel (1976a).) Let the eigenvalues be ρ1 and ρ2 with multiplicities µ1 and µ2.

By Proposition K.9, A2 − (n− 2− 2t)A− (n− 1)I = O is an annihilating polynomial of
A. It is the minimal polynomial since A cannot have only one distinct eigenvalue. Hence,
the eigenvalues are the two zeros of ρ2 − (n− 2− 2t)ρ− (n− 1) = 0. Specifically,

ρ1, ρ2 =
n− 2− 2t±

√
(n− 2− 2t)2 + 4(n− 1)

2
=
α±
√

∆

2
,

where for simplicity I write

∆ := (n− 2− 2t)2 + 4(n− 1) = (n− 2t)2 + 8t

for the discriminant and α := n − 2 − 2t. Because (n − 2 − 2t)2 ≥ 0 and (since n ≥ 3)
4(n − 1) > 0, the discriminant is positive. Therefore the eigenvalues are real (and distinct,
as we knew already).

The multiplicity trick depends on three basic facts:

(1) The multiplicities are whole numbers.
(2) µ1 + µ2 = n.
(3) µ1ρ1 + µ2ρ2 = tr(A) = 0.

In the simplified notation property (3) becomes

µ1
α +
√

∆

2
+ µ2

α−
√

∆

2
= 0.

Thus, the multiplicities are

µ1, µ2 =
n

2

(
1∓ n− 2− 2t√

(n− 2t)2 + 8t

)
=

n

2
√

∆
(
√

∆∓ α).

Case 1: ∆ is not a square. Then the eigenvalues are irrational. We can separate their
rational and irrational parts to deduce that

µ1
α

2
+ µ2

α

2
= 0

and

µ1

√
∆

2
− µ2

√
∆

2
= 0.

The first equation tells us that α = 0 and the second tells us that µ1 = µ2. Therefore the
eigenvalues are ±

√
∆/2 = ±

√
n− 1, each with multiplicity n/2, and t = n

2
− 1. Evidently,

n− 1 must be odd and not a perfect square.

Case 2: ∆ is a square. Then the eigenvalues are rational; by Eisenstein’s theorem of
number theory, since they are rational zeroes of a monic, integral polynomial, they are
integers.

Let ∆ = q2, where q ∈ Z. Because q2 = (n− 2t)2 + 8t, q ≡ n (mod 2). Write q = n− 2r,
so q2 = (q + 2r)2 − 4t(q + 2r − 2− t). Solve for q:

(K.3) [[LABEL E:1212q]]q(t− r) = r2 − 2rt+ 2t+ t2 = (t− r)2 + 2t.
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We conclude that either t = r or

q = t− r +
2t

t− r .

If t = r then (K.3) implies 2t = 0, so in this case t = r = 0. That corresponds to a trivial
case: the all-positive complete graph, or Γ with no edges. Let’s rule out the trivial cases;
we’ll look for properties of interesting regular two-graphs with rational eigenvalues. That
means t 6= r and 0 < t < n− 2.

If t 6= r, let s = t− r. Then q = s+ 2 + 2r/s and s|2r. Directly in terms of r and s,

t = r + s,

q = s+ 2 +
2r

s
,

n = s+ 2 + 2r +
2r

s
.

The eigenvalues are

ρ1, ρ2 =
α± q

2
=

1

2

[
2r − s2

s
±
(
s+ 2 +

2r

s

)]
=


1 +

2r

s
,

−(s+ 1)

(the upper value is ρ1, the lower is ρ2) and the multiplicities are

µ1, µ2 =
n

2q
(q ± α) =

n

2

q ∓ (n− 2t− 2)

q
=


(s+ 1)

(
1 +

2rs

s2 + 2(r + s)

)
,

1 +
2r

s
+

2r(s+ 2r)

s2 + 2(r + s)
.

We can therefore express n and t (the parameters of T) and the eigenvalues and their multi-
plicities in terms of r and s, and the problem is to find which values of r and s are numerically
feasible. After that, the real problem is to find examples of regular two-graphs with feasible
parameters, or to show none exist (which is sometimes the case due to more sophisticated
reasons). That takes us into group theory and design theory, and I stop here—save for a
not-so-short digression on strongly regular graphs.

2008 Dec
12:
Zaslavsky

K.3. Strongly regular graphs. [[LABEL 2.twographs.srg]]
Let’s take a little digression into strongly regular graphs. A simple graph Γ is called

strongly regular if it is regular—every vertex has degree k—and there are constants λ and
µ such that each pair of adjacent vertices has exactly λ common neighbors and each pair
of nonadjacent vertices has exactly µ common neighbors. We say Γ is an SRG(n, k, λ, µ),
n denoting the number of vertices; the four numbers are the parameters. Strongly regular
graphs are used, for instance, to represent finite simple groups, which puts them in combina-
torial design theory. Seidel discovered remarkable connections between regular two-graphs
and strongly regular graphs through the eigenvalues of the Seidel adjacency matrix of Γ, i.e.,
A(KΓ). I will give some of the flavor of his ideas here.

First, we’ll take the easy way to find a strongly regular graph in a regular two-graph.
Then we’ll glance at the matrix method. In each case we start with a two-graph T of order
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n, which has the form T(KΓ) for various switching-equivalent graphs Γ. Choosing the right
Γ is part of the method.

The combinatorics of a detached vertex.
Assume T = T(KΓ) is regular with t triples on each pair of vertices. We can pick any

vertex u and switch as necessary so it is isolated in Γζ . (This determines ζ uniquely.) Write
Γ′ := Γζ \ u = (V ′, E ′). Then we can draw a few conclusions, summarized as:

Proposition K.11. [[LABEL P:1212srg n-1]] If T is a regular two-graph on V , then t ≥ n/3,
t ≡ n (mod 2), and for each u ∈ V , switching so u is isolated in Γζ, then Γζ \u is a strongly
regular graph SRG(n− 1, t, t− 1

2
(n− t), 1

2
t).

Conversely, if u is isolated in Γ and Γ \ u is a strongly regular graph SRG(n − 1, t, t −
1
2
(n− t), 1

2
t), then T(KΓ) is a regular two-graph.

Proof. We just count carefully. First, Γ′ is a t-regular graph, because each edge vw ∈ E ′

makes a triple uvw ∈ T while each non-edge vw makes a triple uvw /∈ T.
Consider an adjacent pair vw ∈ E ′. Let aαβ be the number of vertices in Γ′ \ {v, w} that

are adjacent to v iff α = 1 and to w iff β = 1. Thus, a11 + a10 + a01 + a00 = n − 3. Also,
a11 + a00 = t − 1, because the triples xvw that are in T, besides uvw, are those for which
x ∈ V ′\{v, w} is adjacent to both v and w or to neither. Finally, a11 +a10 = d′(v)−1 = t−1
(because one neighbor of v is w) and similarly a11 + a01 = t − 1. These four equations can
be solved; one finds that a11 = 1

2
(3t−n). Thus, a11 is independent of the particular vw, and

we have that part of strong regularity which says λ exists and equals t− 1
2
(n− t).

Since a11 counts something it can’t be negative, hence 3t−n ≥ 0. Indeed, if T is nontrivial,
then 3t− n > 0.

Now consider a nonadjacent pair vw ∈ E ′. This time the necessary equations are a10 +
a01 = t, because the triples xvw that are in T are those for which x ∈ V ′ \ {v, w} is adjacent
to exactly one of v and w, and a11 + a10 = d′(v) = t and similarly a11 + a01 = t. The solution
is that a11 = t/2, independently of the pair vw, and we have that part of strong regularity
which says µ exists and equals t/2. �

Example K.1. [[LABEL X:1212pentagon]] Seidel’s favorite example for illustrating the
ideas of two-graphs was what he called “the pentagon”. It is the two-graph T obtained from
Γ = K1∪· C5, in other words, the pentagon (naturally) with an extra isolated vertex. It’s
clear from Proposition K.11 that T is regular with n = 6 and t = 2. The adjacency matrix
is

A =


0 1 1 1 1 1
1 0 −1 1 1 −1
1 −1 0 −1 1 1
1 1 −1 0 −1 1
1 1 1 −1 0 −1
1 −1 1 1 −1 0

 .

The eigenvalues and multiplicities are

ρ = ±
√

5, µ1 = µ2 = 3.

Since the eigenvalues are irrational they are negatives of each other and their multiplicities
are equal; we’re in Case 1 of the multiplicity trick.
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The matrix of a detached vertex.
Since u is isolated in Γ, its row and column in A := A(KΓ) are all 1 off the diagonal. Thus,

writing A′ := A(KΓ′) and j for the all-ones vector of order n− 1,

A =

(
0 jT

j A′

)
.

Let’s put this into the nonzero terms of Equation (K.2):

A2 − (n− 2− 2t)A− (n− 1)I =

0 0T

0 J + (A′)2 − (n− 2− 2t)A′ − (n− 1)I

 ,

because jjT = J , the all-ones square matrix of order n− 1. The two-graph is regular if and
only if this is zero, in other words, if and only if

(A′)2 = (n− 2− 2t)A′ + (n− 2)I − (J − I).

The diagonal part of this equation is satisfied automatically because A′ has n− 2 nonzeros,
all ±1, in each row and column. The interesting part is therefore off the diagonal. One can
analyze the off-diagonals to prove Γ′ is strongly regular; the best way is to write down the
equation satisfied by the Seidel matrix of a strongly regular graph; but I will omit this as we
already tested Γ′ for strong regularity by combinatorics.

From a strongly regular graph.
The two-graph T(KΓ) associated with a strongly regular graph may happen to be regular

itself.

Proposition K.12. [[LABEL P:1212srgtg]] If Γ is a strongly regular graph with parameters
(n, t, λ, µ), then T(KΓ) is regular if and only if λ + µ = 2k − 1

2
n. Then n is even, k ≥ 1

4
n,

and t = 2(k − µ).

Proof. Like the proof of Proposition K.11, this is simply a matter of counting up edges and
triangles. Define aαβ for Γ just as for Γ′ in the proof of Proposition K.11.

Consider first adjacent v, w. The number of common neighbors is a11 = λ. The number of
neighbors of v not neighbors of w is a10 = k− 1− λ since the total number of neighbors is k
and w is one of them. Similarly, a01 = k−1−λ. This leaves a00 = (n−2)−λ−2(k−1−λ) =
n− 2k + λ. The number of triples on vivj is then tij = a11 + a00 = n− 2k + 2λ.

Now suppose v, w are nonadjacent. The number of common neighbors is a11 = µ. v has
a10 = k − µ neighbors that are not adjacent to w, and of course a01 = k − µ also. Then
tijj = a10 + 101 = 2k − 2µ.

For T(KΓ) to be regular, tij must be a constant, regardless of whether v and w are adjacent
or not. Thus, we have a regular two-graph iff n− 2k + 2λ = 2k − 2µ, or 2(λ+ µ) = 4k − n,
which is therefore a non-negative integer. �

To a strongly regular graph.
The natural next question is the converse: whether, when T(KΓ) is a regular two-graph,

Γ can be switched to become strongly regular. Not always!
Part of the reason comes from applying Proposition K.11 in reverse, which shows that t

would have to be even. Another obstacle might be that it’s impossible to switch Γ to be
regular; an example is the “pentagon” two-graph of Example K.1 (Exercise!).
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One can deduce a lot from the eigenvalues and multiplicities. Assume we have a regular
two-graph T(KΓ) where Γ is strongly regular, and let A := A(T(KΓ)). The eigenvalue of A
associated with eigenvector j is ρ0 = n − 1 − 2k, and all other eigenvectors are orthogonal
to j (by matrix theory). The combinatorial definition of strong regularity implies that

A(Γ)2 = kI + λA(Γ) + µA(Γc),

where A(Γ) is the standard (0, 1)-adjacency matrix. As A(Γc) = J − I − A(Γ), we have

A(Γ)2 = (λ− µ)A(Γ) + (k − µ)I + µJ.

One can easily calculate that the two-graph’s adjacency matrix is A = J − I− 2A(Γ). Thus,
A satisfies the somewhat quadratic equation
(K.4)
[[LABEL E:1212srgquadratic]]A2−2[λ−µ+1]A− [2(λ+µ)+1−4k]I = [n−4k+2(λ+µ)]J.

I say “somewhat” because the J term on the right makes (K.4) not a polynomial in A. We
use Equation (K.4) in two ways. Postmultiplying by the eigenvector j we get a quadratic
equation in the eigenvalue ρ0; since we already know ρ0, this gives a quadratic equation
in n, k, λ, µ which constrains those parameters. Any other eigenvector x, corresponding to
an eigenvalue ρ, is orthogonal to j, whence Jx = 0. Thus, postmultiplying by x gives a
quadratic equation in ρ,

ρ2 − 2[λ− µ+ 1]ρ− [2(λ+ µ) + 1− 4k] = 0.

The two roots, ρ1 and ρ2, and their multiplicities can be treated with the multiplicity trick
to extract even more information about the parameters. I will skip further discussion and
only mention a conclusion, along with the elementary facts we noticed:

Proposition K.13. [[LABEL P:1212tgsrg]] Suppose T(KΓ) is a regular two-graph with
eigenvalues ρ0 (associated with j), ρ1, and ρ2, and that Γ is strongly regular with param-
eters (n, k, λ, µ). Then ρ0 = n − 1 − 2k; t is even; and either µ = λ + 1, or else ρ1 and ρ2

are odd integers.

All this, once again, is based on Seidel in (1976a) and other papers reprinted in [JJS].

2009 Jan
29:
Jackie
Kaminski

L. Line Graphs of Signed Graphs

[[LABEL 2.lg]]
Now we come to one of the more exciting topics: the line graph of a signed graph, and

how it extends the notion of a line graph in ways that are important even beyond signed
graphs themselves.

L.1. What are line graphs for? [[LABEL 2.lg.review]]
We begin by reviewing the definition and properties of the line graph of an unsigned graph.

For an ordinary link graph Γ, the line graph is L(Γ) = (V (L), E(L)), where V (L) = E(Γ)
and E(L) is the set of adjacencies of edges in Γ. Figure L.1 shows a graph Γ and its line
graph L(Γ).

When Γ is a simple graph, E(L) can be described as {ef : e, f are adjacent in Γ}. However
the edges of a line graph of a multigraph can’t be described any more concisely than as the
adjacencies of edges in Γ. We do point the readers attention to Figure L.2 which illustrates
that if e, f are two parallel edges in Γ, then they are adjacent twice, which is reflected in
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Figure L.1. A simple graph Γ, and Γ with its line graph L(Γ) superimposed
in heavy lines.

[[LABEL F:0129 Line Graph]]

L(Γ) as the two edges between vertices e, f . Loops make things very messy, which is why
we are restricting our attention to link graphs.

Figure L.2. A graph Γ with parallel edges, and Γ with its line graph L(Γ)
in heavy lines.

[[LABEL F:0129 Line Graph Parallel]]

As further motivation for the line graph of a signed graph, we back up and recall that
B(Γ)TB(Γ) = 2I + A(L), where B(Γ) is the unoriented incidence matrix of Γ and A(L) is
the adjacency matrix of the line graph. Furthermore, we recall the corollary, Theorem ??,
that all eigenvalues of a line graph are greater than or equal to −2.

We can’t interpret H(Σ)TH(Σ) (where H(Σ) is the oriented incidence matrix of Σ) for line
graphs, we need signed graphs.

L.2. Ideas for the line graph of a signed graph. [[LABEL 2.lg.defs]]
It is time to look at possibilities for defining the line graph of a signed graph. Let Σ be a

simply signed link graph. Recall that being simply signed means that there are no parallel
edges with the same sign. We definitely want our line graph Λ(Σ) to satisfy |Λ(Σ)| = L(|Σ|),
in other words, we want our line graph to have the same underlying graph as the line graph
of |Σ|. Presuming that we want Λ(Σ) to be a signed graph, we need to decide how to sign
the edges of Λ(Σ). Let’s review two ideas that have been tried.

Two previous definitions.
One natural idea would be that for e′ ∈ E(Λ), with endpoints e, f ∈ V (Λ), σΛ(e′) =

σΣ(e) ·σΣ(f). However, once we notice that every cycle in Λ is balanced (since every vertex e
of the cycle, e ∈ V (L), e contributes σΣ(e) ·σΣ(e) to the cycle sign), we see that this method
is trivial: it only gives us line graphs that are balanced, i.e., switching equivalent to +L(|Σ|),
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which means we’ve lost all the sign information from Σ. We must look for a better idea.
(Nevertheless, this line graph has been written about by some people.)

Another signature function for Λ(Σ) was proposed by Behzad and Chartrand. For an edge
ef between e, f , σBC(ef) is − when both σΣ(e) and σΣ(f) are both −, and + otherwise.
There is literature based on this definition, but as far as I know it has no useful properties.
(It doesn’t allow us to recover the signs in Σ from the line graph, nor does it preserve the
signs of circles, nor does it have eigenvalue properties, etc.)

The definition through bidirection.
The fact is that eigenvalue properties are the main properties that make line graphs

interesting (to us, at least, and to many graph theorists). For unsigned graphs we know that
BTB = 2I + A(L), and we know that H(Σ)H(Σ)T = ∆(|Σ|) + A(Σ).

So let’s consider H(Σ)TH(Σ). Recall from Section G.2?? that the oriented incidence matrix
of a signed graph is H(Σ) = (ηve)V×E, where

ηve =


0 if v and e are not incident,

±1 if v and e are incident once, so that if e:vw is a link then ηveηwe = −σ(e),

0 if e is a positive loop at v,

±2 if e is a negative loop at v.

So H(Σ)TH(Σ) is an E×E matrix, and we notice that row e of H(Σ)T dot itself is +2, since
we are only considering link graphs. The dot product will look like 02 + · · · + 02 + (±1)2 +
02 + · · · + 02 + (±1)2 + 02 + · · · + 02 = 2. For the off-diagonal entries of H(Σ)TH(Σ), row
e (of HT) dot column f (of H, which is also row f of HT) gives 0 if e, f are nonadjacent
edge (since they will have no vertices in common, there are no positions where both have
nonzero entries). If e, f are adjacent, nonparallel links, then the e, j entry of H(Σ)TH(Σ) is
±1, depending on how e, f were signed in H(Σ).

To speak more precisely, for this discussion we should be looking at ~Σ = (Σ, τ), not just Σ.
And we have shown that HT(Σ, τ)H(Σ, τ) = 2I ± A(Λ) (for some still unknown convention
on signing Λ). And since reversing the orientation of an edge corresponds to switching vertex
e in the line graph. So, in some sense we really care about defining Λ(Σ, τ) for a switching
class of signed graphs, and moreover, since writing the matrix A(Λ) necessitates choosing a
bidirection for Σ, that’s what we should really be looking at. So rather than try to define
the line graph of a signed graph, we will define the line graph of a bidirected graph, noting
that we can always read signs from a bidirected graph, and if we ever feel compelled to
ignore some of the information in our line graph, we have that ability. In summary the basic
object on which to take notes is a bidirected graph B7 (not to be confused with B(Γ), the
unoriented incidence matrix of Γ). And reorienting B corresponds to switching Λ(B).

So now we look at possibilities for how to create the (bidirected) line graph from a bidi-

rected graph ~Σ. Consider Figure L.3. For a half edge e:v in ~Σ (where e is the edge and v
is the vertex) we have two choices for how to orient the half edge at vertex e in The line
graph. Option 1 looks better the way we’ve drawn it, but we notice that while the half edge
e:v in ~Σ was oriented into the vertex, the corresponding half edge in Λ is oriented out of the
vertex. Option 2 is just the opposite. It looks like we’re switching the arrows to be backward,
however, the half edge that was oriented into the vertex in ~Σ is still oriented into the vertex

7Note that a bidirection of the unsigned graph Γ does in fact have a sign on each edge, so it is an orientation

of a signing of Γ, Σ = (Γ, σ), and when it is convenient we can refer to B as ~Σ.
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in Λ (although the vertex is now e in Λ). Since the matroid theory works out better with
Option 2, Option 2 is the right way to create a bidirected line graph from a bidirected graph.
Lastly we notice that if we begin with an all negative, all extraverted graph, the line graph
(taken with option 1) is all negative, but all introverted, unlike ~Σ. However, the line graph
taken with Option 2 will be an all negative, all extraverted graph, which is the same kind of
object as we started with; and this seems preferable.

Figure L.3. Creating a bidirected line graph from a bidirected graph.
[[LABEL F:0129 Line Graph 2]]

Notice that L(|~Σ|) = |Λ(~Σ)|, as desired. So, we know how to create the line graph of a
bidirected graph: first we create the line graph of the underlying graph, then we bidirect the
edges as above. More formally:

Definition L.1. [[LABEL D:0129 BiDir Line Graph Defn]] The line graph of a bidirected

graph ~Σ is Λ(~Σ), whose underlying graph is |Λ| = L(|Σ|) and whose bidirection is τΛ(e, ef) =
τ~Σ(v, e) (where v is the common vertex of e and f).

Notice that we can determine the sign of an edge between vertices e, f of Λ(~Σ). The
formula is

σΛ(ef) = −τΛ(ε, e)τΛ(ε′, f) = −τΛ(ε)τΛ(ε′).

where ε′ is the end of f at v in Γ (v is between e, f in Γ).
We want to point out also that Option 1 and Option 2 give the same signed graph but the

orientations of the edge ends are exactly opposite: τOption 1 = −τOption 1. In fact, switching
~Σ doesn’t change the signs of the line graph, i.e., it gives the same the signed line graph
Σ(Λ(~Σ)). Therefore, the switching class of the bidirected graph ~Σ gives us a signed line
graph. On the other hand, the line graph of a signed graph is a switching class of bidirected
graphs. Combining these two observations, we can say the line graph of a switching class
[Σ] of signed graphs is a switching class [Λ(Σ)] of signed graphs.

2/3:
Lodha

[MISSING NOTES]

2009 Feb 5:
Nate Reff

M. Circuits, Cocircuits, and their Spaces

[[LABEL 2.cyclescircuitsspaces]]
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M.1. Unsigned graphs. [[LABEL 2.]]

M.1.1. Cycles, cuts, circuits and bonds. [[LABEL 2.]]
Suppose we have an ordinary graph Γ = (V,E). A circuit will be what a circle was in

our previous discussions. If {X,Xc} is a partition of the vertex set V, then the set of edges,
denoted E(X,Xc), which have one end in X and the other in Xc will be called a cut. A
bond is a minimal cut. Recall that every cut is a disjoint union of bonds [[??]].

A binary (over F2) set sum of circuits is a symmetric difference of circuits. A binary cycle
space := { set sum of circuits } = Z1(Γ;F2) ⊆ FE2 or P(E). For the nonbinary case (over
a field K with char K 6= 2, or K = Z) we need to work with indicator vectors, which are
defined on orientations (in the binary case this disappears).

M.1.2. Directed cycles and cuts. Indicator vectors. [[LABEL 2.]]
Suppose we have a circle C = e1e2 · · · el−1ele1 in Γ. The characteristic vector, or charac-

teristic function, is defined as:

1C(e) =

{
1 if e ∈ C,
0 if e 6∈ C.

Equipped with 1C + 1D = 1C⊕D mod 2, where C ⊕D means the set sum of C and D. Note
that in characteristic 2 this relation also holds.

Suppose now that we have a fixed orientation of Γ. Let’s denote this by ~Γ = (Γ, τ) where
τ is a bidirection (orient each edge end). With reference to this orientation we define the
indicator vector, or indicator function, of C:

IC(e) =


1 if e ∈ C and ~e agrees with a chosen direction of C,

−1 if e ∈ C and ~e disagrees with a chosen direction of C,

0 if e 6∈ C,
where ~e means the directed edge e. So IC and −IC are the only two indicator vectors of C.
We write ~C for a directed C and I ~C for its indicator vector. (We think of a function and a
vector as the same thing except for the point of view.)

Observe that C is a cycle (that is, cyclically oriented) if and only if IC ≥ 0 or IC ≤ 0.
This is because the edges have to all agree or all disagree with C.

It is important to notice the circle orientation is independent of edge orientations. Note:
we can direct any walk, including a path and a circle. Therefore we can have an indicator
vector of a path or a circle or a trail (or a walk, where you add up multiple appearances).

Consider the theta graph in figure M.1. If ~C1 and ~C2 disagree on ~C1 ∩ ~C2 and ~C3 agrees
with ~C1, ~C2 on the common path then I ~C1

+ I ~C2
= I ~C3

.

Proof. If all paths Pij are directed from v1 toward v2 then

I ~C1
= IP13 − IP12 ,

I ~C2
= IP12 − IP23 ,

I ~C3
= IP13 − IP23 .

This is the proof since we can choose path directions as we like. (We need the minus sign so
we can represent signed graphs later on. They cannot be described modulo 2.) �
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P13
P12

P23C1 C2

C3

v1

v2

Figure M.1.
[[LABEL 0205image1]]

The cycle space over K is the subspace of KE generated by all indicator vectors of circuits
(circles). We write Z1(Γ; K) for the cycle space over K.

X X
c

D
e1
e2
e3
e4

Figure M.2.
[[LABEL 0205image2]]

A directed cut ~D is the cut D = E(X,Xc) with a direction specified from X to Xc or vice
versa. In other words it is directed out of X or into X. See figure M.2. Therefore

1D(e) =

{
1 if e ∈ D,
0 if e 6∈ D.

and also

I ~D(e) =


1 if e ∈ ~D and ~e agrees with ~D,

−1 if e ∈ ~D and ~e disagrees with ~D,

0 if e 6∈ ~D.

For example, look at figure M.2. Here we have I ~D(e1) = 1 = I ~D(e2) and I ~D(e3) = −1 =
I ~D(e4).

Note that this requires a fixed orientation of Γ. Therefore we have the following relation:

I−−−−→
D⊕D′ = I ~D ± I ~D′ , where the ± depends on how ~D, ~D′ and

−−−−→
D ⊕D′ are directed. Remember
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that ~D ⊕ ~D′ is a cut, otherwise it is ∅. So this is similar to the theta graph property. The
signs present make it possible to work outside of characteristic 2.

The cut space over K is B1(Γ; K) := 〈ID : D is a cut〉, the span in KE of all indicator
vectors of cuts.

M.2. Signed graphs. [[LABEL 2.]]
The theory of cycle and cut spaces of signed graphs is largely due to the recent paper by

Chen and Wang [CW].
Here the circuits are what are properly called frame circuits. (Lift circuits will be men-

tioned and later will be suppressed.) The three kinds of circuit look like the following: A

+
P

C1 C2
(a) (b)

Figure M.3. (a) Positive circle, or Type I circuit, (b) Handcuffs, or Types
II and III circuits.

[[LABEL 0205image3]]

tight handcuff or Type II circuit is a handcuff where the circuit path (connecting path) P
has length zero. A loose handcuff or type III circuit is a handcuff whose circuit path P has
length greater than zero.

A direction of a circuit is a cyclic orientation (that is, an orientation that has no sources
or sinks). This means that we cannot just give a circle an arbitrary orientation as before.
Recall that if we do not want sources or sinks then the orientation must be coherent. A
divalent vertex is necessarily coherent to avoid being a source or a sink. Therefore orienting
one edge forces the rest of the edges present to be oriented in a specific fashion. This means
that there exists exactly two different cyclic orientations (directions) of a positive circle. The
same will be true for a handcuff, and therefore for all three circuit types.

Indicator vector of C

A circuit walk is a minimal closed walk around C.
Given a fixed orientation of ~Σ, a directed circuit ~C and for each appearance of e in a

circuit walk around C:

I ~C(e) =


1 if e ∈ ~C and ~e agrees with ~C,

−1 if e ∈ ~C and ~e disagrees with ~C,

0 if e 6∈ ~C.

RESTATE:

I ~C(e) =


±1 if e ∈ ~C and e is not in a connecting path ~C,

±2 if e ∈ ~C and e is in a connecting path ~C,

0 if e 6∈ ~C.



Section M.3 91

2009 Feb 10
(draft):
Simon Joyce

Take a walk W = v0e1v1e2 · · · elvl in a signed graph Σ. The direction of W gives us an
orientation of the edges in W such that each vi is coherent in W . Call this oriented walk ~W .

Figure M.4. F:0210 The two kinds of coherent edges you could have at vi ∈ ~W .

If ~Σ = (Σ, τ) is a bidirected graph, then each edge ~ei ∈ ~W is oriented the same or opposite

to the corresponding edge in ~Σ, so for each ei we get a + or - depending on whether the
orientations of ~Σ and ~W agree or not.

Figure M.5. F:0210 Edge signs of ~W for ~Σ.

τ~Σ = τ orients Σ where τ is a bidirection. We can think of τ as a map where τ :
{edge ends} → {+,−}. τ~Σ orients edge ends in W , where τ~Σ(vi, ej) depends on i and j
where j = i or j = i+ 1. Note that τ ~W = −τ←

W
.

M.3. Indicator vector of a directed walk.
For a directed frame circuit ~C we define the indicator vector:

I ~C(e) =


0 if e /∈ C,
±1 for a loose edge or an edge in a circle of C,

±2 for a half edge or a link in the connecting path of a handcuff.

[these need to be checked and possibly more added.]

Definition M.1. [[LABEL D:0210 indicator vector]] Given ~Σ a bidirected graph and ~W

and a directed walk ~W in ~Σ, define the indicator vector, I ~W to be a map I ~W : E → Z such
that

I ~W (e) =
∑

ei=e∈W

τ ~W (vi, ei)τ~Σ(vi, ei).

For an abelian group A an A-flow is an oriented function E → A that is conservative at
every vertex. [this sentence needs some attention.] (We’re working over a unital com-
mutative ring K such that 2 6= 0, and possibly we need 2 to be invertible.) [REMEMBER
TO revise this when we figure out what we really need.]

[the caption may need attention]
Ridiculous research questions.

(a) Can there be a matroid on E(Σ) whose circuits are the C3’s, the positive circles (including
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Figure M.6. F:0210 Indicator vectors on the graph ~Σ.

Figure M.7. F:0210 Indicator vectors on frame circuits.

loose edges), the ±1 edges in each C0, C1 and C2 (I don’t think so).
(b) Roughly speaking, if not then C3’s should possibly have ±1’s.
(c) Does this help decide between ±1’s on C3 and ±2’s on C3.

Hopeful conjecture: We basically get G(|Σ|). If ±1’s on C3 we get G(|Σ|+ v0) where v0 is
incident to every half edge, but this might need a half edge to be true.
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2009 Feb
12:
Jackie
Kaminski

M.4. Flows and Cycles. [[LABEL 2.cyclespaces]]

M.4.1. Flows. [[LABEL 2.flows]]
We begin with the definition of a flow. Throughout this section, we will assume Σ is an

oriented signed graph, that is, a bidirected graph. R is a commutative ring.

Definition M.2. [[LABEL D:0212 flow]] An R-flow on Σ (also known as a 1-cycle over R)

is a function f : ~E → R such that at every vertex v,

∂f(v) :=
∑

ε:v(ε)=v

f(e(ε)) · τ~Σ(ε) = 0,

where the sum is over edge ends ε of |Σ|, v(ε) denotes the vertex of the edge end ε, and e(ε)
denotes the edge containing the edge end ε. The cycle space or flow space of Σ over R is the
set of all R-valued flows (or 1-cycles), denoted by Z1(Σ;R).

The condition that ∂f(v) = 0 is often stated colloquially as ‘the flow is conserved at vertex
v’, and a flow is called conservative if it is conserved at every vertex. The notation Z1 is
chosen to be consistent with that of algebraic topology and homological algebra.

Although we need an orientation on Σ to talk about flows, mostly it’s just as a reference
point.

Proposition M.1. [[LABEL P:0212 Z]] Z1(Σ;R) = the null space Nul(H(Σ)) over R.

Proof. We can think of f : ~E → R as an |E| × 1 column vector ~f with entries in R. (This is
similar to how any function from a finite set of size n can be thought of as an n-tuple.) Now
~f ∈ Nul H(Σ) if and only if H(Σ)~f = ~0, by definition of the null space. Now H(Σ)~f = ~0 if

and only if each row of H(Σ) · ~f is 0, which it is if and only if for each row v of H(Σ),∑
e∈E

ηv,e · f(e) = 0, ⇐⇒
∑
e∈E

( ∑
ε:

e(ε)=e & v(ε)=v

τ~Σ(ε)
)
· f(e) = 0.

Combining into a single summation over all edge ends incident with v, we see that the above
is true if and only if ∑

ε:v(e)=v

f(e(ε)) · τ~Σ(ε) = 0,

which is of course the definition of ∂f(v) = 0 for all v.

Therefore ~f ∈ Nul(H(Σ) if and only if f is an R-flow. �

Since negating a row doesn’t alter the null space of H(Σ), switching a vertex (in both the
graph and the flow) doesn’t alter a flow. Furthermore, if we negate a column of H(Σ), and
then negate the corresponding edge in f , we haven’t altered anything about the flow. So in
some sense we’re considering switching classes yet again. And more importantly we can see
that in some ways we really are only using the bidirection in Σ to know whether f(e) is a
or −a (for a ∈ R), so it will be nice if we can set things up to have the same orientation on
the flow as on Σ.

Further, orthogonality is unaltered by negating the flow value on an edge as well as by
negating a column of H(Σ). So if the information we are really interested in is orthogonality,
switching doesn’t matter at all.
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[These two paragraphs should be a general remark about the effect of reorien-
tation and switching on the various spaces.]

Definition M.3. [[LABEL D:0212 circuit space]] The circuit space of Σ, Z(Σ;R), is the
span over R of the indicator vectors of circuits.

It is clear that Z(Σ;R) ⊆ Z1(Σ;R), but although there is sometimes equality, they may
disagree, for instance when R = Z.

We now return to the argument of what value we want the indicator vectors to have on
circuits of the form of two half edges with a connecting path between.

Figure M.8. A circuit in ~Σ, with orientations omitted.
[[LABEL F:0212 Circuit with Half Edges]]

We have our definitions for IC(e) in circuits as given in ??, but it’s unclear what value we
would like the indicator vector to have on the edges of the connecting path of the circuit of
this type. Arguments can be made for either ±1’s or for ±2’s, where the ± is determined—it
simply depends on whether the given orientation of Σ agrees or disagrees with the chosen
directed circuit walk.

The arguments in favor of having ±2’s is that this is consistent with a circuit path for
circuits consisting of two negative circles connected by a circuit path. Additionally, it make
it clear that for circuits consisting of one half edge and one negative circle with a circuit
path, there is no ambiguity or confusion about what values IC(e) should have.

As an argument for ±1’s, we notice that when we look at the circuit structure of Σ a
signed graph (no restrictions, half edges and loose edges allowed), we could get the same
information from looking at Σ+v0 under the following construction, V (Σ+v0) = V (Σ)+v0,
and E(Σ + v0) = {e|e is a link or loop in Σ} ∪ {e−:vv0|e is a half edge in Σ incident to v} ∪
{e+:v0v0|e is a loose edge in Σ}∪{e−:v0v0}. Colloquially, keep all links and loops of Σ, then
add a new vertex, v0 with a negative loop. Then replace every half edge (at vertex v), with
a negative edge from v to v0. Finally, Replace every loose edge with a positive loop at v0.

When Σ = +Γ, readers familiar with matroid theory will notice that the matroid for Σ+v0

(as defined above) is isomorphic to the matroid for Σ. Therefore, finally meandering around
to our point, we notice that circuits of the form in Figure M.8 turn into positive circles, and
the indicator vector of an edge in a positive circle has value ±1.

This leads us to the proposition (the justification of which has already been given).

Proposition M.2. [[LABEL P:0212 matroid stuff]] For Σ a signed graph, with |Σ| = Γ,
Σ ∼= ((Γ± + v0) ∪ e:v0)/{e:v0}.

In matrix terms, this says H(+Γ) = H(Γ±+v0), and in matroid terms G(+Γ) = G(Γ±+v0).
We recall that G(+Γ) means the frame matroid of +Γ, and we notice that G((Γ± + v0) ∪

e:v0) = G(+Γ) ⊕ h0 coloop. Finally, we close this section with the comment that in graph
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theory (meaning unsigned graph theory) Z and Z1 are the same, since H(Γ) is a totally
unimodular matrix.

M.5. Cuts. [[LABEL 2.cuts]]
Before we even state the definition of a cut in a signed graph, we want to clearly point

out that a cut in Σ is not always a cut in |Σ|—and vice versa.

Definition M.4. [[LABEL D:0212 cut]] A cut in a signed graph is a nonempty set U of the
form U = E(X,Xc) ∪ UX where X ⊆ V , and UX is a minimal total balancing set of Σ:X.

Figure M.9. A Cut is Σ
[[LABEL F:0212 cut]]

In Figure M.9, we see the edges of a cut indicated. The rectangle represents Σ:Xc, the
oval represents Σ:X. The edges between the two is E(X,Xc) and are part of the cut U .
The other edges in Σ:X represent a minimal balancing set (edges whose removal makes Σ:X
balanced), these are they UX edges, and they are also part of the cut U .

Although the (unsigned) graph cuts E(X,Xc) and E(Xc, X) are identical (both are the
same edge set), in a signed-graph cut, reversing the roles of X and Xc almost always changes
the cut, because it changes which set we need to balance, and consequently where the edges
in UX are taken from.

Definition M.5. [[LABEL D:0212 bond]] A bond is a minimal cut.

Bonds are, in a vector space sense, dual to circuits, although this relationship is very
difficult to express in graph terms. Although for the purpose of justification we point out an
example in (unsigned) graph theory. A minimal cut (bond) in a planar graph, is a circuit in
the planar dual graph. And, although we are not getting into details here, the subset of the
vector space FE spanned by the circuits of Γ is dual to the vector subspace spanned by the
bonds (which is the same subspace spanned by the cuts).

We now define a directed cut in a signed graph. It is an admittedly messy definition.
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Definition M.6. [[LABEL D:0212 directed cut]] If E:X \ UX is all positive, direct U as
follows. Orient each edge of U so that its ends in X satisfy τ(ε) = +1 (orient the ends
into the vertex), or so that for all ends of edges in U that are incident with a vertex in
X, τ(ε) = −1 (orient all edge ends out of the vertices in X). (These two conventions are
completely opposite to each other.)

If E:X \UX is not all positive, then switch so that E:X \UX is all positive. This is always
possible since every balanced graph is switching equivalent to an all positive graph. Now
direct the edges of U as above.

Finally, switch back to the original signature function on Σ, using the same switching as
above. Then U is a directed (signed) cut.

Notice that, if ζ is a switching function that makes E:X \ UX all positive, then −ζ also
does so. Thus, we have a choice of two switching functions, one the negative of the other. If
we apply −ζ with the convention that ends in U are oriented into X, then we get the same
directed cut as if we had applied ζ with the opposite convention on orientation. Thus, we
only need to define a directed cut with the first convention; the opposite alternative exists
of necessity.

Figure M.10. A directed cut in Σ; notice that (Σ:X) \ UX is balanced
[[LABEL F:0212 directed cut]]

Figure M.10 shows a directed cut, where (Σ:X) \ UX is balanced. Here we have chosen
the convention of directing our cut edges into X, but the exact oposite direction is also a
directed cut. We notice that since we assume (Σ:X) \ UX is balanced, and that UX is a
minimal balancing set, all UX edges are negative. Thus the consequence of directing all
edges into X is consistent with the edge signs. For the E(X,Xc) edges, regardless of their
sign, we direct the ends incident to X into X, then the other end of each edge is directed
consistently with its sign.

Finally, we end this section by introducing the indicator vector of a directed cut.
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Definition M.7. [[LABEL D:0212 cut indicator]] Let ~U be a directed cut, and τ~U(ε) be the

direction of ε in ~U (for ε an edge end in U), finally assume ~U is directed into X. Furthermore,
assume that the direction of an edge e ∈ Σ agrees with the direction of e in the cut. Then

I~U(e) =
∑

ε:e(ε)=e,
v(ε)∈X

τ~U(ε).

Since we have assumed that the directions of the edges in Σ agree with their directions in
~U ,

I~U(e) =


0 if e 6∈ U,
1 if e ∈ E(X,Xc),
1 if e ∈ UX is a half edge,
2 if e ∈ UX is a link or loop

If there is an edge whose orientation in Σ disagrees with its orientation in ~U , we just have
a negative value for the indicator vector. On a similar note, if we reverse the orientation of
every edge in a cut, we simply negate I~U(e).

2009 Feb
19:
Nate ReffM.6. The three types of cut.

Two kinds of balancing set.
Recall from Definition D.3 that a partial balancing set S is a set such that b(Σ\S) > b(Σ).

A total balancing set S is a set such that Σ \ S is balanced.
Notice that if S is a total balancing set then it is not necessary that S be a partial balancing

set. Consider the set S = ∅ where Σ is balanced; then Σ\S is balanced but b(Σ\∅) = b(Σ),
hence S is not a partial balancing set. Further, a partial balacing set is not necessarily a
total balancing set because you only are increasing the number of balanced components in
the deletion and Σ might not be balanced.

Cuts.
There are two kinds of minimal total balancing set S, distinguished by how they change

the components of Σ:

(i) c(Σ \ S) = c(Σ),

(ii) c(Σ \ S) > c(Σ).

Type (i) does not separate components after deletion, but Type (ii) increases the number of
components after deletion.

Recall that a cut in a signed graph is a nonempty set U of the form U = E(X,Xc) ∪ UX
where X ⊆ V , and UX is a minimal total balancing set of Σ:X. Also remember that a bond
is a minimal cut. See Figure M.11 for an illustration of the general form of a cut.

Here is an easy but important lemma.

Lemma M.3. [[LABEL L:0219components]] π
(
(Σ:X) \ UX

)
= π(Σ:X), or equivalently,

c
(
(Σ:X) \ UX

)
= c(Σ:X).

Proof. [I can add a short proof, or you can.] �
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Xc X

Ux

Figure M.11. A typical cut in Σ
[[LABEL F:0219image1]]

U=E(X,X )c

Figure M.12. A cut of Type I in Σ.
[[LABEL F:0219image2]]

It’s necessary to distinguish three kinds of cut, depending on which of E(X,Xc) or UX
may happen to be empty. Chen and Wang call them “Types I, II, and III”.

Type I: A graph cut. In other words, UX = ∅. See Figure M.12.
Type II: A cut that is a strict balancing set. In other words, E(X,Xc) = ∅. This means

that Σ:Xc is a union of components of Σ, and Σ:X is a union of components of Σ. See Figure
M.13.

Xc X

Ux

Figure M.13. A cut of Type II in Σ.
[[LABEL F:0219image3]]

Xc X

X'

Figure M.14. Type I, not a bond.
[[LABEL F:0219image4]]
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Xc X

X'

Figure M.15. Type I, not a bond.
[[LABEL F:0219image5]]

Xc X
X'

U in here

Figure M.16. Type II.
[[LABEL F:0219image6]]

Xc XX'

U in here

Figure M.17. Type II.
[[LABEL F:0219image7]]

In Figures M.14, M.15, M.16 and M.17 we have the two cut types which are not a bond. If
we instead choose X ′ to be our set X then the result would be a bond. [This needs more
explanation. How did we come up with these figures? What are the significant
points about the figures? What is the reason for these statements about them?]

Lemma M.4. [[LABEL L:0219bondII]] In a type II cut, if U is a bond then we can choose
X to be the vertex set of one component of Σ.

Proof. Choose the vertex set of the union of the vertices of the UX ’s in the components of
X. �
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Sublemma M.5. [[LABEL L:0219sublemma1]] If Σ has a cut U and a component Σ′, then
U ∩ E ′ is empty or a cut of Σ′.

Lemma M.6. [[LABEL L:0219cutcomponent]] A bond of Σ is a bond of a component, and
a cut is the disjoint union of cuts of one or more components.

This lemma will allow us to work component by component.
Type III: A mixed cut, where UX 6= ∅, E(X,Xc) 6= ∅, and (of necessity) X,Xc 6= ∅.

Lemma M.7. [[LABEL L:0219cut]] If Σ is balanced then a cut is the same as a graph cut
and a bond is the same as a graph bond.

Proof. The balancing set has to be empty, UX = ∅. �

If Σ is unbalanced then we have one of the three types of cuts as described above. What
is a bond, then? A bond is either:

(1) A minimal partial balancing set of Σ, which is not a graph cut.
(2) A graph bond of |Σ|, E(X,Xc) such that Σ:X is balanced but Σ:Xc is not.
(3) A graph bond that creates no balanced components, with E:X connected, b(Σ:Xc) =

0, together with a minimal total balancing set of Σ:X.

[INSERT PICTURE]
Suppose U is a bond. If one component Σ:X1 of Σ:X is balanced then E(X1, X

c
1) =

U1 ⊆ U . Therefore, no component of Σ:X is balanced. If Σ:X is not connected then
E(X1, X

c
1) = E(X1, X

c) because E(X1, X2) = ∅.

Lemma M.8. [[LABEL L:0219balset]] [DOES the assumption apply to all three
parts?]

(1) If Σ is connected and unbalanced, then a a total partial balancing set is a partial
balancing set.

(2) A minimal total balancing set is not a graph cut.
(3) A minimal partial balancing set is either a graph cut or a total balancing set.

2009 Feb
24:
Yash Lodha

M.7. Spaces and orthogonality.
In the following treatment of edge spaces and subspaces, K is a field or Z or an integral

domain.
The edge space is KE = {f : E → K}. The edge space, its members, and its subspaces

are always defined with respect to an arbitrary fixed orientation ~Σ of Σ. I will omit the
orientation from the notation, but don’t forget about it!

The vertex space is KV .

Flows and 1-cycles.

Definition M.8. [[LABEL Df:0224conserv]] A function in the edge space of Σ is conservative
at v ∈ V if ∑

ε:v(ε)=v

f(e(ε))τΣ(ε) = 0.

Here ε denotes an incidence; v(ε) is its vertex and e(ε) is its edge. It is conservative if it
is conservative at every vertex. We call f a flow, or a 1-cycle, if it is conservative at every
vertex.
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The 1-boundary operator ∂ : KE → KV is defined by

(∂f)(v) :=
∑

ε:v(ε)=v

f(e(ε))τΣ(ε).

Thus, f is a flow iff it lies in the kernel of the boundary operator. (We rarely if ever use
other boundary operators, so I will normally omit the “1”.)

The cycle space, or flow space, is the set of all flows:

Z1(Σ; K) := {f ∈ KE : ∂f = 0}.
Lemma M.9. [[LABEL L:0224boundarymap]] For an edge function f regarded as a column
vector, ∂f = H(Σ)f .

That is, H is the matrix of ∂ with respect to the canonical bases of KE and KV .

Proof. ?? �

Proposition M.10. [[LABEL P:0224]] Z1(Σ; K) = Nul H(Σ).

Proof. By Lemma M.9, an edge function f is conservative iff f ∈ Nul H(Σ). �

The circuit space Z(Σ; K) is the subspace of the edge space KE generated by indicator
vectors IC of directed circuits.

Lemma M.11. [[LABEL L:0224]] Z ⊆ Z1.

Proof. We defined the indicator vector so it is conservative at every vertex, thus ∂IC = 0. �

That lemma is valid over a commutative, unital ring K, because it only requires that there
be a multiplicative identity. The theorem, however, is not as general.

Theorem M.12. [[LABEL T:0224zz1]] Over a field K, Z = Z1.

Proof. We want to show that the null space, Nul H(Σ), is generated by circuit indicator
vectors.

Recall that the minimal dependent sets of columns are the sets corresponding to frame
circuits. (Provided the characteristic of K is not 2. For characteristic equal to 2 everything
is in |Σ|; the incidence matrix is H(|Σ|), the minimal dependent sets correspond to circles,
and so forth. We treated this in Section I.??.)

Therefore, if we take a maximal circuit-free set B of columns in H, every other column is
generated by those columns via indicator vectors of circuits. To be specific, for each edge
e /∈ B, let C(e) be the unique circuit contained in B ∪ e. (The existence of this circuit is
guaranteed by matroid theory. I will leave that step aside.) The column of e, xe, is generated
by using IC(e) to form a linear combination of the columns from C(e). In the indicator vector,
IC(e)(e) = αe, which is ±1 or ±2. IC(e)(f) = ±1 or ± 2 if f ∈ B ∪ e, 0 if f /∈ B ∪ e. We use
the equation

αexe +
∑
f∈B

IC(e)(f)xf = ~0.

We can solve for xe by dividing by αe.
Write B := {e1, e2, . . . , em. Let’s rearrange the incidence matrix into a convenient form

[(Diagram missing here)]. In the edge space:

IC1 is such that IC1(e1) 6= 0, IC1(e2) = 0, . . . ,
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IC2 is such that IC2(e2) 6= 0, IC2(e1) = 0, . . . ,

IC3 is such that IC3(e3) 6= 0, IC3(e1) = 0, . . . ,

· · ·
ICm is such that ICm(em) 6= 0, ICm(e1) = 0, . . . .

These vectors are linearly independent and they span Nul H(Σ). Therefore, Nul H(Σ) ⊇
Z(Σ; K). �

M.7.1. Cuts.
Next, let’s look at the signed analogs of cuts. We need the dual of the boundary operator.

The 0-coboundary operator δ : KV → KE, which takes a vertex vector g ∈ KV to an edge
vector δ(g) ∈ KE, is defined by

δ(g)(e) =


g(w)− g(v) if v >> w,

g(w) + g(v) if v <> w,

−g(w)− g(v) if v >< w,

−g(w) + g(v) if v << w.

(The <> etc. show the orientation of edge e:vw at the endpoints.) [They are to be
replaced by diagrams.]

Definition M.9. [[LABEL Df:0224B1]] B1(Σ; K) := {δg : g ∈ KV }. Thus δ(g) = H(Σ)Tg,
so B1 is the row space of H(Σ).

The cut space is B(Σ; K) = the span (over K) of indicator vectors of cuts.

Notice that I{u} = δ(g) if we define, for a half edge e:v,

I{u}(e) :=

{
±1 when u = v,

0 when u 6= v,

and we treat I{u} as the vector (in KE) of its values on the edges.

Lemma M.13. [[LABEL L:0224BinB1]] B ⊆ B1.

Proof. [PROOF?] �

Theorem M.14. [[LABEL T:0224B1]] B = B1 over a field K.

Proof. Exercise. Possibly a dimension argument. [PROOF?] �

Theorem M.15. [[LABEL T:0224]] Z1 and B1 are orthogonal complements in the edge
space over a field.

Proof. The row and null spaces of a matrix are orthogonal complements. B1 = Row H,
Z1 = Nul H. �

Cuts and minimal cuts.
Now here are some contrasting facts.
For graph cuts: The set sum of graph cuts is a graph cut (or ∅). For signed graph cuts:

that is false.
For graphs: Every cut is a disjoint union of bonds. For signed graphs: Not even a set sum

of bonds.
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For signed graphs: A directed bond is a minimal directed cut, but a minimal directed cut
need not be a bond.

[Now comes an example graph with a table of cuts, bonds etc.)]

Theorem M.16 (Chen and Wang [CW]). [[LABEL T:0224dicutunion]] In a signed graph,
every directed cut is a disjoint union of minimal directed cuts.

I refer to Chen and Wang’s important paper for the proof. We just don’t have time for it!
(Alas.)
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