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Notes for 18 Jan. 2017 – Amelia Mattern.

1. Fundamentals

Everything is finite unless otherwise stated. (That excludes the obvious, like Z and R.)
Infinite graph theory is a topic in itself that is way outside our scope.)

Definition 1. A graph Γ is a pair (V,E) in which: V and E are disjoint sets. An element of
V is called a vertex ; an element of E is called an edge. Each edge has a multiset of endpoints,
V (e) ⊆ V , consisting of no more than 2 vertices.

A link is an edge with 2 distinct endpoints; if its endpoints are v and w, it may be written
e:vw. A loop is an edge with 2 coincident endpoints; if its endpoints are v, it may be written
e:vv. A half edge is an edge with 1 endpoint; it may be written e:v.

In Γ = (V,E), E∗ denotes the set of loops and links.

Definition 2. A circle is a connected graph of order greater than 0 with degree (valency)
2 at every vertex. A loose edge is not a connected component.1 Note that a loop e:vv has
degree 2, due to its two ends.

Definition 3. A signed graph, Σ = (Γ, σ) = (V,E, σ), is a graph Γ with a sign function, or
signature, σ : E∗ → {+,−}.

We may use any of several notations for the sign group: {+,−}, {+1,−1}, Z2, or F2. The
important thing is that each one is a group of order 2.
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Figure 1.1. The four kinds of edge and various vertices. Solid lines are
positive edges (c, e, f, h, i), dashed lines are negative edges (g, j), except that
half edges (d, k) and loose edges (b), which have no sign, are solid. The isolated
vertex v has degree 0; z has degree 5 since the loop has two ends at z. The
xy edges are three parallel edges (they have the same endpoints) but only two
multiple edges (i, h; “multiple” edges have the same sign). The positive circles
are {c}, {e, f, h}, {e, f, i}, {h, i}. The negative circles are {j}, {e, f, g}, {g, h},
{g, i}.

1More precisely we could define vertex components and edge components. A loose edge is not a vertex
component; an isolated vertex is not an edge component. In these notes we never use edge components; all
components are vertex components.
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Definition 4. Switching a vertex z means negating the sign of each link incident to z.
Switching a set X of vertices means negating the sign of every link with one endpoint in X
and the other in Xc := V \X. The switched graph is ΣX = (Γ, σX).

An equivalent definition of switching uses a switching function ζ : V → {+,−}. We define
the switched graph to be Σζ := (Γ, σζ) where σζ(e) = ζ(u)σ(e)ζ(v) for an edge e:uv. The
two definitions are equivalent because Σζ = ΣX where X = ζ−1(−).

The importance of switching is, in part, that it does not change the signs of circles (The-
orem 2). In particular, loops do not change sign when incident to a switched vertex since
we negate at both ends of the loop. For the full force of switching, see Theorem 2.

Definition 5. For a signed graph Σ = (Γ, σ):

|Σ| denotes the underlying graph Γ.
B(Σ) denotes the set of positive circles.
Σ1 ∼ Σ2 means Σ1 can be switched to Σ2; we say Σ1 is switching equivalent
to Σ2.

Switching equivalence is an equivalence relation. This follows from the fact that (ΣX)Y =
ΣX⊕Y , where ⊕ denotes the symmetric difference of sets. The equivalence class of Σ under
switching is denoted by [Σ] and is called the switching class of Σ.

Lemma 1. Let F be a maximal forest in Σ. Then Σ can be switched to have any desired
signs on F . The resulting signs on |Σ| are then uniquely determined.

Proof. We may assume Σ is connected; then F is a spanning tree. Choose a root vertex
r and for each vertex v let Frv denoted the unique path in F between r and v. Define
ζ(v) := σ(Frv). Then F is all positive in ΣX . Let σF denote the desired signature of F and
define ξ(v) := σF (Frv). Then (Σζ)ξ has the desired signs on F and is switching equivalent
to Σ.

The signs are uniquely determined because an edge not in F , e:uv, has sign ξ(u)ζ(u) ·
σ(e) · ζ(v)ξ(v) after switching. �

Theorem 2. Let Σ1 and Σ2 have the same underlying graph. Then Σ1 ∼ Σ2 if and only if
B(Σ1) = B(Σ2).

Proof. Choose a maximal forest F in the underlying graph.
Suppose Σ2 = Σζ

1 for some switching function ζ. Consider a circle C : v0e1v1e2 · · · vl−1elvl,
where l ≥ 1 and v0 = vl. Then

σ2(C) = σ2(e1)σ2(e2) · · ·σ2(el)

= [ζ(v0)σ1(e1)ζ(v1)][ζ(v1)σ1(e2)ζ(v2)] · · · [ζ(vl−1)σ1(el)ζ(vl)]

= ζ(v0) · σ1(e1)σ1(e2) · · ·σ1(el) · ζ(vl)

because ζ(v)2 = + for every vertex

= σ1(C)

for the same reason.
Suppose B(Σ1) = B(Σ2). Switch Σ2 by X so that it has the same signs as Σ1 on F ; by

the previous part, that does not change the circle signs. Consider an edge e:uv not in F and
the unique circle Ce ⊆ F ∪ {e}. Then σ1(e)σ1(Fuv) = σ1(C) = σ2(C) = σX2 (e)σX2 (Fuv) =
σX2 (e)σ1(Fuv), from which we conclude that σ1(e) = σX2 (e). Thus, Σ1 = ΣX

2 . �
4



Corollary 3. A signed graph is balanced if and only if it switches to an all-positive signed
graph without half edges.

Continuing to introduce fundamental notions of signed graphs:

Definition 6. Two signed graphs Σ1 and Σ2 are isomorphic, written Σ1
∼= Σ2, if there is a

sign-preserving graph isomorphism |Σ1| ∼= |Σ2|.
Two signed graphs Σ1 and Σ2 are switching isomorphic, written Σ1 ' Σ2, if there is a

switching Σ′1 of Σ1 such that Σ′1
∼= Σ2.

Definition 7. Σ is balanced if every circle is positive and Σ has no half edges. Σ is called
unbalanced or (esp. in physics) frustrated if it is not balanced.

Definition 8. The frustration index l(Σ) is min{#S | S ⊆ E and Σ \ S is balanced}.
The vertex analog is the frustration number l0(Σ), defined as min{#T | T ⊆ V and Σ \

T is balanced}

Notes for 20 Jan. 2017 – Josh Carey.

We begin with some essential definitions from graph theory, just to settle the terminology.2

Walk:: A sequence of vertices and edges: v0e1v1 . . . elvl such that V (ei) is the multiset
{vi−1, vi} and l ≥ 0.

Trail:: A walk with no repeated edges.
Closed and Open:: A walk or trail is closed when v0 = vl and open when v0 6= vl.
Path:: A trail with no repeated vertices.
Closed Path:: A closed trail where v0 = v1 is the only repeated vertex. (Note that a

closed path is not a path!)

The sign of a walk W = e1e2 · · · el is the product of its edge signs, counting edges by the
number of times they appear in W ; in a formula,

σ(W ) =
l∏

i=1

σ(ei).

The signs of walks, especially closed walks, and most especially closed paths, are very im-
portant!

Now, here is the first theorem of signed graph theory. (Literally.)

Theorem 4 (Harary’s Balance Theorem [6]). Let Σ be a signed graph. Then the following
are equivalent:

(o) Σ is balanced.
(i) Every circle of Σ is positive.

(ii) V has a bipartition, V = X t Y , such that every edge within X or Y is + and every
edge between X and Y is −.

(iii) For every pair of vertices, v and w, every vw-path has the same sign.

2It’s graph theory. Up to observational error, no two graph theorists use the same terminology and
notation.
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The bipartition described in (ii) above is called a Harary Bipartition.3 As an extreme case,
if Σ = +Γ (i.e., all edges are +), then the Harary Bipartition is {V,∅}.

We now begin to prove Harary’s Balance Theorem:

Proof.(ii) ⇒ (i) and (ii) ⇒ (iii) are easy.
For (iii) ⇒ (i), let C be a circle and v, w ∈ V (C). There are two paths, P and Q, joining

v, w in C. By (iii), they have the same sign, σ(C) = σ(P ∪Q) = σ(P ) · σ(Q) = +.
Before we continue our proof, we must introduce the concept of switching. Let Σ be a

signed graph and X ⊆ V . By switching X we mean changing Σ to ΣX = (|Σ|, σX) where

σX(e:vw) =

{
σ(e:vw), if v and w are both in X or both in Xc,

−σ(e:vw), if one of v, w is in X and the other is in Xc.
.

Note that (ΣX)Y = ΣX⊕Y .
There is another way to view switching. A switching function, is a function ζ : V →
{+,−}. We can switch Σ by ζ to get a new signature: Σζ = (|Σ|, σζ) where σζ(e:vw) :=
ζ(v)σ(e)ζ(w).

To prove the two kinds of switching are equivalent, define

ζX(w) =

{
− if w ∈ X,
+ if w 6∈ X,

then ΣX = ΣζX . Conversely, given ζ, let X = ζ−1(−).

Proposition 5. Let Σ be a signed graph, C a circle in Σ and P a vw-path in Σ. Let ζ, ξ be
switching functions for Σ. Then:

(i) (Σζ)ξ = Σζξ.
(ii) σζ(C) = σ(C).

(iii) σζ(P ) = ζ(v)σ(P )ζ(w).

Therefore, switching doesn’t change properties (i) or (iii).
We now continue our proof of Harary’s Bipartition Theorem by proving (i) ⇒ (ii).

Proof. Without loss of generality, assume Σ is connected. Pick a spanning tree T and a root
vertex r ∈ V (T ). For each vertex v ∈ V , there exists a unique path Trv from r to v in T .
Define ζ(v) = σ(Trv). Switch to Σζ . Now all edges in T become +. If e 6∈ T then there exists
a unique Ce ⊆ T ∪ e. Then + = σ(Ce) = σζ(e)σζ(Ce \ e) = σζ(e). Therefore, σζ(e) = + and
Σζ is all +.

Let V1 = ζ−1(+) and V2 = ζ−1(−). We claim this is a Harary Bipartition, so we are
done. �

We will begin next time by proving that this is indeed a Harary Bipartition.

3Named by me in honor of Harary.
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Notes for 23 Jan. 2017 – Chris Eppolito.

We wish to finish the proof of the following theorem:

Theorem 6 (Harary’s Balance Theorem [6]). For a signed graph Σ without half edges, the
following are equivalent:

(o) Σ is balanced.
(i) Every circle of Σ is positive.

(ii) There is a Harary bipartition of Σ.
(iii) For each pair u, v of vertices, every uv-path has the same sign as every other.

All that remains from the previous lecture is a proof that (i) =⇒ (ii).

Proof that (i) =⇒ (ii). We may assume Σ has connected underlying graph |Σ| = (V,E). Let
T be a spanning tree of |Σ| with root vertex r. For each vertex v of Σ, let Trv denote the
path in T connecting r to v. By Lemma 1 there is a switching function ζ : V → {+,−} such
that Σζ is positive on T . Now let e ∈ E \T and consider the fundamental circle Ce ⊆ T ∪{e}
of e with respect to T . By assumption (i),

+ = σ(Ce) = σζ(Ce) =
∏
a∈Ce

σζ(a)

=
( ∏
t∈T∩Ce

σζ(t)
)( ∏

a∈Ce\T

σζ(a)
)

=
( ∏
t∈T∩Ce

+
)
σζ(e) = σζ(e).

In particular, Σζ has all positive edges. Now consider the bipartition V = ζ−1(+) t ζ−1(−).
Suppose e:uv has u 6= v, and note that + = σζ(e) = ζ(u)σ(e)ζ(v) gives σ(e) = ζ(u)ζ(v). If
σ(e) = +, then this identity gives ζ(u) = ζ(v); in particular u and v belong to the same part
of our bipartition. If σ(e) = −, then the identity gives ζ(u) = −ζ(v); thus u and v belong to
different parts of our bipartition. Hence ζ−1(+) t ζ−1(−) is a Harary bipartition of V . �

2. Characterization

What sets of circles can be the negative circle class of a signed graph? The answer is
simple. The proof is not so simple, mainly because I want to show how to use linear algebra
to prove an interesting theorem of signed graph theory.

We fix the following notations.

Definition 9. Let Γ be a graph and let Σ = (|Σ|, σ) be a signed graph. Then

C (Γ) := {C ≤ Γ | C is a circle in Γ} ,
B(Σ) := {C ∈ C (|Σ|) | σ(C) = +} .

Our next theorem is closely tied to the aptly named theta graphs. A graph is a theta graph
when it is a subdivision of the graph depicted below (three links with the same endpoints):

• •
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We often express a theta graph as the union of two of its three distinct circles.

Lemma 7. Every signed theta graph has an even number of negative circles.

Proof. Every theta graph Γ can be expressed as a union of three distinct paths sharing
only endpoints. In particular Γ = P1 ∪ P2 ∪ P3, and there are precisely three distinct
circles of Γ, namely Cπ(1) = Pπ(2) ∪ Pπ(3) for cyclic permutations π of {1, 2, 3}; moreover,
σ(Cπ(1)) = σ(Pπ(2))σ(Pπ(3)), and one easily checks that for all triples t ∈ {+,−}3 the pairwise
products of the entries of t must yield evenly many −’s. The result follows. �

For a theta graph Γ = C1 ∪ C2 ∪ C3 we have C1 ⊕ C2 ⊕ C3 = ∅, where ⊕ denotes the
symmetric difference of sets. This is proved by decomposing Γ into its three paths as in the
preceding proof.

Definition 10. Let Γ be a graph. A subset L ⊆ C (Γ) is a linear class when for any
C,D ∈ L , if C ∪D is a theta graph then C ⊕D ∈ L .

The following theorem concerning linear classes of circles is quite powerful.

Theorem 8 (Tutte’s Path Theorem). Let Γ be a connected, inseparable graph with a linear
class of circles L ⊆ C (Γ). For all A,B ∈ C (Γ) there is a sequence

A = C0, C1, C2, . . . , Cl = B

such that Ci /∈ L for all i ∈ [l] and Ci−1 ∪ Ci is a theta graph in Γ for all i ∈ [l].

Proof. Omitted. [TZ: Give a reference.] �

This theorem admits a nice interpretation when viewed in the following manner. Let Γ be
a graph and define a new graph Θ = Θ(Γ) by defining its vertices and edges as follows:

V (Θ) = C (Γ),

E(Θ) = {{C,D} | C ∪D is a theta graph in Γ} .

The theorem asserts that if Γ is connected and inseparable,4 then for every linear class of
circles L ⊆ C (Γ) in Γ and all A,B ∈ V (Θ) there is an AB-path in Θ avoiding L internally.

Definition 11. Let Γ be a graph. A subset B ⊆ C (Γ) is theta additive in Γ when in every
theta subgraph C1 ∪ C2 ∪ C3 of Γ, evenly many of C1, C2, C3 are in Bc.

We shall use the above theorem to obtain the following result on signed graphs.

Theorem 9. Let Γ be a graph with B ⊆ C (Γ). There is a signature σ of Γ for which
B(Γ, σ) = B precisely when B is theta additive.

The proof will rest on some algebra over the field F2. We make the following observations.

Definition 12. For a set E with S ⊆ E, the characteristic function of S in E is denoted by
1S.

Lemma 10. Let E be a set. The power set P(E) with symmetric difference as addition
and the obvious F2-action forms a vector space isomorphic to the function space FE2 .

Proof. The desired correspondence is S ↔ 1S. What remains is a straightforward check. �

4This is equivalent to the statement that the cycle matroid of Γ is connected.
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Let Γ be a graph. Given a signing σ : E(Γ)→ {+,−} of Γ, one extends σ to a mapping

σ : C (Γ)→ {+,−} : C 7→
∏
e∈C

σ(e)

It then follows that the mapping given below will be important:

1Bc(σ) : FC (Γ)
2 → F2 : C 7→

{
1 if σ(C) = −,
0 otherwise.

Notes for 25 Jan. 2017 – Micah Loverro.

Given a set of circles B ⊆ C (Γ), we are proving:
1. If there is a signature σ such that B = B(σ), then B is theta additive, i.e., every theta

subgraph has an even number of circles in B.
2. If B is theta additive, then there is σ such that B = B(σ).

Part 1 is easy, and we were in the process of proving 2.

We have 1B : C (Γ)→ F2.
The binary cycle space is Z := Z1(Γ;F2) := 〈C (Γ)〉 ≤ FE2 .
If 1B extends to a homomorphism σ : Z → F2 then by basic linear algebra, σ extends to

a homomorphism of the larger vector space (P(E),⊕) ∼= FE2 → F2.
The restriction of such a σ to E gives a sign function σ : E → {+,−} under the obvious

identification F2
∼= {+,−} as groups. Then it follows that B(Γ;σ) = B.

Let us now attempt to extend 1B to σ : Z → F2 such that σ is a well-defined homomor-
phism.

In fact, well-definedness alone will imply we have a homomorphism. To see this, suppose
A =

∑k
i=1Ai and B =

∑l
j=1 Bj are sums of circles. Then A⊕ B =

∑k
i=1Ai ⊕

∑l
j=1Bj is a

sum of circles. So, σ(A⊕B) is defined as
∑k

i=1 σ(Ai) +
∑l

j=1 σ(Bj) = σ(A) + σ(B).
To see σ is well-defined, suppose A1 ⊕ · · · ⊕ Ak = B1 ⊕ · · · ⊕ Bl. Then we want to

show σ(A1 ⊕ · · · ⊕ Ak) = σ(B1 ⊕ · · · ⊕ Bl). Equivalently, we want to show that whenever
C1 ⊕ · · · ⊕ Cm = ∅ in Z, we have

∑m
i=1 σ(Ci) = 0.

(This proof is incomplete and will be fixed in the next day’s notes).
Suppose we have a chain of circles C0, C1, . . . , Cr such that every Ci−1∪Ci is a theta graph.

Then Di := Ci−1 ⊕ Ci is a circle. Thus 1B(Ci−1) + 1B(Ci) = 1B(Di).
We define a linear class of circles as a set B ⊆ C (Γ) that is theta additive.
We will make uses of the following theorem due to Tutte:

Theorem 11. Let Γ be inseparable. If B is a linear class of circles, and C,C ′ ∈ B then
there is a path of circles C = C0, . . . , Cr = C ′ such that each C1, . . . , Cr−1 is not in B and
Ci−1 ∪ Ci is a theta graph for all i = 1, . . . , r.

9



Notes for 27 Jan. 2017 – Amelia Mattern.

Definition 13. Given a graph Γ. A class B of circles is additive if, whenever C,C1 . . . , Ck ∈
C , such that C = C1 ⊕ . . .⊕ Ck, then:

If an even number of C1, . . . , Ck are not elements of B, then C ∈ B.
If an odd number of C1, . . . , Ck are not elements of B, then C 6∈ B.

Equivalently, B is additive if B = C ∩ S , where S is a linear subspace of 〈C 〉 of
codimension at most 1.

Also equivalently, if C = Ck+1 and C1 ⊕ . . . Ck+1 = ∅, then B is additive if an even
number of Ci’s are not in B.

An Explanation of S :
First note that S = 〈B〉. So we have 〈C 〉 = 〈B〉 ∪ 〈B + C0〉 where C0 is any element of
〈C 〉\〈B〉. Therefore, if C1, . . . , Cm 6∈ 〈C 〉\〈B〉, then C1⊕ . . .⊕Cm = (C1⊕C0)⊕ . . .⊕(Cm⊕
C0) + (sum of m C0’s). Note that (sum of m C0’s) = ∅ if m is even and = C0 if m is odd.
So C1 ⊕ . . .⊕ Cm ∈ 〈B〉 if m is even, and C1 ⊕ . . .⊕ Cm 6∈ 〈B〉 if m is odd.

Lemma 12. Given a signed graph Σ = (Γ, σ),B ⊆ C is additive if and only if it satisfies
the theta graph condition.

Note that C = C1 ⊕ C2 does not imply that C ∪ C1 ∪ C2 is a theta graph.

Proof. (⇒) Suppose B is additive. Then for any theta subgraph of Γ with circles C1, C2, C3,
we have C1 ⊕ C2 ⊕ C3 = ∅. Thus by additivity, an even number of Ci’s are not in B. Thus
B satisfies the theta graph condition.

(⇐) Assume Γ is inseparable, C1 ⊕ . . . ⊕ Cn = ∅, and an odd number of Ci are not
in B. By choice of notation assume C1 6∈ B. Assume Γ has the fewest possible edges for
the previous properties to occur. Let e ∈ C1, then e is in at least two Ci’s. By choice of
notation let e ∈ C1 ∩ C2. By Tutte’s path theorem C1 and C2 are joined by a “path” of
circles, C1 = C ′0, C

′
1, . . . , C

′
l = C2 where C ′1, . . . , C

′
l−1 6∈ B, C ′i−1 ∪ C ′i is a theta graph, and

e 6∈ C ′i for 0 < i < l. Let Di = C ′i ⊕ C ′i−1. Then e 6∈ Di for 1 < i < l and e ∈ D1 ∩Dl. Also,
D2 ⊕ . . .⊕Dl−1 = C ′1 ⊕ C ′l−1 ⊆ Γ \ {e}. Therefore, an even number of Di’s and C ′1, C

′
l−1 are

in B. Also,

C1 ⊕ C2 = C ′0 ⊕ C ′l = D1 ⊕Dl ⊕ (D2 ⊕ . . .⊕Dl−1).

This implies C1⊕C2 = (D1⊕C ′1)⊕(Dl⊕C ′l−1), which means (C1⊕D1⊕C ′1)⊕(C2⊕Dl⊕Cl−1) =
∅. By theta additivity, σ̄(C1) + σ̄(D1) + σ̄(C ′1) = 0 and σ̄(C2) + σ̄(Dl) + σ̄(C ′l−1) = 0. By
additivity in Γ \ {e},

σ̄(C ′1) + σ̄(C ′l−1) +
l−1∑
i=2

σ̄(Di) = 0.

So σ̄(C1) + σ̄(C2) =
∑l

i=1 σ̄(Di) = 0 since Di ∈ B. Then since σ̄(C1) = 1, σ̄(C2) = 1. Thus
C2 6∈ B.

Suppose C1, . . . , C2k contain e and C2k+1, . . . , Cl do not contain e. We showed C1 6∈ B
implies C2 6∈ B and C1 ⊕ C2 = D1 ⊕ . . . Dl with e 6∈ Di and Di ∈ B. Similarly, if
k > 1, C3 ⊕ C4 = D34

1 ⊕ . . .⊕D34
l34
.
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Note: This proof is incomplete, and has a few things incorrect. The correct/completed
proof will be done next time. �

Notes for 30 Jan. 2017 – Ted Ofner.

We were showing that if a class of circles B is theta-additive, then B is additive. Additivity
of B can be restated as: if Ci ∈ B for i = 1, . . . , n and C1 ⊕ C2 ⊕ · · · ⊕ Cn = ∅, then∑n

i=1 σ̄(Ci) = 0. Here σ̄ is the linear extension to the whole cycle space of the function of
circles given by

σ̄(C) =

{
0 if C ∈ B,

1 if C /∈ B.

This latter function, with domain C , is known as the indicator function or characteristic
function of B as a subset of C ; it is usually written 1B.

If the Ci are pairwise edge disjoint, linear extension directly implies that
∑n

i=1 σ̄(Ci) =
σ̄(
⊕n

i=1 Ci) = 0.
If the Ci are not pairwise edge disjoint, two of the Ci intersect. By choice of notation,

say C1 ∩ C2 6= ∅. Let e ∈ C1 ∩ C2. Assume by way of contradiction that the Ci form a
counterexample to our proposition. This counterexample contains e as an edge. Therefore,
there is a counterexample collection of circles containing e such that the number of Ci
containing e is minimal. Without loss of generality, we assume our Ci form this minimal
counterexample.

Since C1 and C2 share an edge, they are contained in the same block of Σ. This allows us
to apply the Tutte path theorem:

Theorem 13 (Tutte’s Path Theorem). Let L be a theta-additive class of circles in a graph
Γ, and let C,C ′ be circles in Γ contained in a single block. There exists a sequence of circles
C = C0, C1, . . . , Cn = C ′ such that

C1, . . . , Cn−1 /∈ L and

Ci−1 ∪ Ci is a theta graph for i = 1, . . . , n.

We apply this theorem to C1 and C2 using the theta-additive class of circles C such that
e /∈ C. This gives us a sequence of circles C1 = C ′0, C

′
1, . . . , C

′
l = C2 with

e ∈ C ′0, . . . , C ′l and C ′i−1 ∪ C ′i is a theta graph for i = 1, . . . , l.

Let Di = C ′i−1 ⊕ C ′i for i = 1, . . . , l. Since C ′i−1 ∪ C ′i is a theta graph, each Di is a circle.
Since e ∈ C ′0, . . . , C ′l , e /∈ Di for all i = 1, . . . , l. Moreover,

D1 ⊕D2 ⊕ · · · ⊕Dn = (C ′0 ⊕ C ′1)⊕ (C ′1 ⊕ C ′2)⊕ · · · ⊕ (C ′l−1 ⊕ C ′l)
= C ′0 ⊕ Cl = C1 ⊕ C2.

Also, σ̄(Di) = σ̄(C ′i−1) + σ̄(C ′i) from our assumption that B is theta-additive. Therefore,

l∑
i=1

σ̄(Di) =
l∑

i=1

(σ̄(C ′i−1) + σ̄(C ′i))

= σ̄(C ′0) + σ̄(C ′l) = σ̄(C1) + σ̄(C2).

11



Now consider the class of circles {D1, . . . , Dl, C3, C4, . . . , Cn}. Since none of theDi contains
e, this class of circles has fewer instances of e as an edge than {C1, . . . , Cn}. By minimality
of our counterexample, this class must be additive. We now have

0 = σ̄(C1 ⊕ · · · ⊕ Cn)

= σ̄(D1 ⊕D2 ⊕ · · · ⊕Dl ⊕ C3 ⊕ · · · ⊕ Cn)

= σ̄(D1) + σ̄(D2) + · · ·+ σ̄(Dl) + σ̄(C3) + · · ·+ σ̄(Cn)

= σ̄(C1) + · · ·+ σ̄(Cn).

Thus B is additive. This allows us to finish our proof of the following theorem.

Theorem 14. B is a theta-additive class of circles ⇐⇒ there exists a signature σ such
that B is the collection of positive circles of σ.

Proof. (⇐) has been covered previously and is a simple calculation.
For (⇒), choose a maximal forest in Γ, fix a basepoint for each component, and switch so

that the chosen forest is all positive. If e is an edge not in the forest, let Ce be the unique
circle through the basepoint that has e as its only non-forest edge. Define the sign of e to be
σ̄(Ce) where σ̄ is the linear extension of the indicator function of B. It is a simple calculation
that this returns B as its set of positive circles. �

Notes for 1 Feb. 2017 – Josh Carey.

3. No Negative or No Positive Circles

We want to know under what circumstances a signed graph will have no negative circles.
Since half edges are irrelevant, we can assume there are none. There is exactly one way to
have no negative circles: Σ must be balanced; equivalently Σ ∼ (|Σ|,+).

How can we determine whether or not Σ does have a negative circle? To prove a positive
or negative answer is easy, in a sense:

(i) Produce a Harary bipartition; this implies Σ is balanced.
(ii) Find a negative circle; this implies Σ is unbalanced.

The bigger question is how to find the bipartition or the negative circle. We can proceed
algorithmically in at least two ways (which are quite similar). First, check a limited number
of circle signs:

F1. Find a spanning tree T .
F2. Test all the fundamental circles CT (e) of edges not in T . [FUND. CIRCLES DE-

FINED?] If one is negative, Σ is unbalanced. If none is, Σ is balanced.

This method doesn’t immediately produce a Harary bipartition. But the second method
does: we apply switching:

S1. Find a spanning tree T .
S2. Switch Σ so T is all positive.
S3. Check the sign of every non-tree edge. If one is negative, Σ is unbalanced. If all are

positive, Σ is balanced.
12



The sign of e in the second method is the sign of its fundamental circle in the first method,
so the two are closely related. In the switching method the Harary bipartition of a balanced
graph appears clearly as {ζ−1(+), ζ−1(−)}, where ζ is the switching function used in the
second step. Both methods are fast, as they involve fewer than #E steps.

Now let’s reverse the first question. Under what circumstances does a signed graph have
no positive circles? A theta graph has 1 or 3 positive circles, so we want no theta subgraphs.
If a block has more than one circle, it is a theta subgraph. So every block of Σ is an isolated
vertex, an isthmus, or a negative circle. I call a graph of this kind a cactus forest (a cactus
is a connected graph in which every block is a circle); when it is signed so every circle is
negative it is a contrabalanced cactus forest (contrabalance meaning there are no balanced
circles).

The great difference between the two answers is a clear proof that + and − are very
different.5

4. Frustration–Deletion–Negation

4.1. Physics!
[ONLY SOME IS PHYSICS – SORT THIS OUT.]
I want to start this topic with a connection to physics. A state of a signed graph Σ is a

mapping s : V → {+,−}. That is, a state of Σ is an assignment of a sign to each vertex.
For an edge e:vw, if s(v)s(w) = σ(e), then e is satisfied. If s(v)s(w) 6= σ(e), then e is
frustrated. A signed graph (with no half or loose edges; they don’t use them) is therefore
called (in physics) frustrated if it is unbalanced and satisfied if it is balanced (but I won’t use
physics terminology except for the excellent names “frustration index” and “number”—my
own coinages, approved by Harary!).

Signed graphs appear in the non-ferromagnetic Ising model of statistical physics. In this
model we have a graph with weighted edges, the weights being real numbers, and we assign
a state to the graph. The values on the vertices are called “spins” and are assumed to be
either up (+) or down (−). [MORE]

A balancing edge set is a set S ⊆ E such that negating the signs on S makes Σ balanced.
The frustration index l(Σ) := min{#S : S is a balancing set of edges}. If we use s to
switch, we get Σs where the set of unsatisfied edges in the all-positive state equals the set of
unsatisfied edges of Σ in state s. The former is E−(Σs), which is a balancing set.

[ADD ENERGY = FRUST.]

Notes for 3 Feb. 2017 – Chris Eppolito.

4.2. Negation and Deletion Sets of Edges.
First we recall several definitions:

Definition 14. Let Σ be a signed graph. A set S ⊆ E(Σ) is a negation set in Σ when the
signed graph Σ′ obtained from Σ by negating all edges in S is balanced. A set S ⊆ E(Σ) is
a deletion set in Σ when the signed graph Σ \ S is balanced.

5In case you wondered, this is not trivial. For “signed graphs” in knot theory there is no difference between
the two signs; one can reverse them and nothing changes. I consider these signs to be colors and call the
graphs sign-colored graphs.
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Definition 15. A cut-set in a graph Γ is a set C ⊆ E(Γ) such that Γ\(E(Γ)\C) is bipartite.

Proposition 15. Let Γ be a graph. The minimal deletion sets of −Γ are precisely the
complements of maximal cut-sets in Γ.

The Harary Balance Theorem implies that −Γ is balanced precisely when Γ is bipartite.
This suggests that balance may be a signed-graph generalization of bipartiteness.

Proof. Any cut-set S of Γ determines a bipartite subgraph (V (Γ), S) ≤ Γ, so Sc is necessarily
a deletion set of −Γ; furthermore, maximality of S as a cutset implies minimality of Sc as
a deletion set. Likewise any deletion set S of −Γ has the property that −Γ : Sc is balanced
giving that (V (Γ), Sc) is bipartite; furthermore minimality of S as a deletion set yields
maximality of Sc as a cut-set. Hence the desired result follows. �

Proposition 16. Let Σ be a signed graph.

(1) Every negation set of Σ is a deletion set.
(2) Every minimal deletion set of Σ is a minimal negation set.6

Lemma 17. A set S is a deletion set for Σ if and only if S intersects every element of
Bc(Σ).

In other words, deletion sets of Σ are precisely transversals of Bc(Σ).

Proof. Let Σ be a signed graph. Notice immediately that we have the following equality:

Bc(Σ \ S) = {C ∈ Bc(Σ) | C ∩ S = ∅}

Furthermore S ⊆ E(Σ) is a deletion set for Σ precisely when Σ \ S is balanced under the
induced signing from Σ. Hence we complete the proof as follows:

S ⊆ E(Σ) is a deletion set for Σ ⇐⇒ Σ \ S is balanced

⇐⇒ Bc(Σ \ S) = ∅
⇐⇒ for all C ∈ Bc(Σ) we have C ∩ S 6= ∅
⇐⇒ every element of Bc(Σ) intersects S. �

Lemma 18. The class of deletion sets of Σ is invariant under switching.

Proof. A result from before gives B(Σ) = B(Σζ), and what remains follows by Lemma
17. �

Lemma 19. The class of negation sets of Σ is invariant under switching.

Denote the signed graph obtained by negating signs on edges in S by Neg(Σ, S) = (|Σ|, σS).

Proof. If S is a negation set of Σ, then Neg(Σ, S) is balanced. Thus there is a switching ζ
with Neg(Σ, S)ζ all positive. Next one notes that (σS)ζ = (σζ)S, which in turn implies that
Neg(Σ, S)ζ = Neg(Σζ , S). In particular Neg(Σ, S) is balanced precisely when Neg(Σζ , S) is
balanced, by switching invariance of balance. Hence S is a negation set of Σ, as desired. �

Proof of Proposition 16. We may assume without loss of generality that |Σ| has only loops
and links and is connected.

6“Minimal” means “minimal with respect to containment.”
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Part 1: Suppose S ⊆ E(Σ) is a negation set for Σ, and consider the graph Σ \ S; notice
that Σ \ S ⊆ Neg(Σ, S) and Σ \ S ⊆ Σ trivially. Moreover, every (signed) circle C in Σ \ S
is positive in Neg(Σ, S) as S is a negation set. Hence S is a deletion set as desired.

Part 2: Suppose S ⊆ E(Σ) is a minimal deletion set for Σ, and let C be an arbitrary
circle in Neg(Σ, S). By minimality of S and connectedness of |Σ| there is a spanning tree
T of Σ contained in Σ \ S. Now switch Σ by a function ζ = ζT such that σζ(t) = + for
all t ∈ T . By considering fundamental circuits in Σ \ S we see that Σζ \ S is all positive.
Hence E−(Σζ) ⊆ S is a deletion set of Σ, so by minimality of S, S = E−(Σζ). What remains
follows by invariance of the negation sets of Σ under switching. To see that S is a minimal
negation set we need only note that if S ′ ⊆ S is a negation set, then it is a deletion set by
Part 1, so S ′ = S by minimality of S.

We conclude that the original statement is true. �

Proposition 20. The minimal negation sets of Σ are precisely the minimal deletion sets.

Proof. By Part (2) of Proposition 16, the minimal deletion sets of Σ form a subclass of the
minimal negation sets of Σ.

Conversely, let S ⊆ E(Σ) be a minimal negation set of Σ. Now S is a deletion set of Σ by
Part (1) of Proposition 16, so there is a minimal deletion set S ′ ⊆ S by finiteness of E(Σ);
finally, by Part (2) of Proposition 16 S ′ is a minimal negation set of Σ, and minimality of S
gives S = S ′. Thus the minimal negation sets of Σ form a subclass of the minimal deletion
sets of Σ. Hence the result holds. �

Example 1. Let Σ be a signed graph.

(1) Deletion sets need not be negation sets.
(2) Negation sets need not be minimal deletion sets.

Proof. Consider the all-negative circle depicted below:

a

b

(1): Clearly {a} is a deletion set, but not a negation set.
(2): Clearly {a, b} is a negation set, but the (unique) minimal deletion set is ∅.
This example shows that Proposition 16 is tight. �

4.3. Results on the Frustration Index.

Definition 16. Let Σ be a signed graph. The frustration index is

l(Σ) := min {#S | S ⊆ E(Σ) is a deletion set of Σ} .

The frustration number is

l0(Σ) := min {#X | X ⊆ V (Σ) and Σ \X is balanced} .

The following proposition gives a nice interpretation of these concepts in terms of the
structure of the underlying graph in a special case.
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Proposition 21. Let Γ be a graph. Then

l(−Γ) = min {#S | S ⊆ E(Γ) and Γ \ S is bipartite} ,
l0(−Γ) = min {#X | X ⊆ V (Γ) and Γ:X is bipartite} .

Proof. By the Harary Balance Theorem it follows that −Γ is balanced precisely when Γ is
bipartite. What remains follows by examining the appropriate definitions. �

Proposition 22. For every signed graph Σ without half edges,

l(Σ) = min
{

#E−(ΣX) | X ⊆ V (Σ)
}

(If there are half edges, they have to be added into the count to get l(Σ).)

Proof. Left as an exercise. �

Definition 17. The maximum frustration index of a graph Γ is

lmax(Γ) := max {l(Γ, σ) | σ is a signing of Γ} .

Example 2. The graph K4,4 has maximum frustration index 4.

The following (open) problem has been solved for r ≤ 5:

Problem 1 (Open). Compute lmax(Kr,s) for all r, s ∈ Z>0.

The following simple result was proved by Petersdorf.

Proposition 23 (?). For n ∈ Z>0, lmax(Kn) = l(−Kn) =
(
n−2

2

)
.

Exercise: Is the correct value of l(−Kn) actually
(
n−2

2

)
? If not, correct it!

Proof. Another exercise. �

Petersdorf also proved something that is less simple: [−Kn] is uniquely maximizing, i.e., it
is the only switching class that maximizes the frustration index of a signed complete graph.
This raises the following natural question:

Problem 2 (Open). Characterize all graphs Γ for which lmax(Γ) = l(−Γ).

One might also consider the following question.

Definition 18. A graph (or signed graph) is said to decompose into graphs of the class C
when it can be expressed as an edge-disjoint union of graphs in the class C.

Problem 3 (Open). Which signed graphs decompose into positive, or negative, circles?

One can obtain obvious necessary conditions, but sufficient conditions are much harder.

Notes for 6 Feb. 2017 – Micah Loverro.
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5. Working with Signed Graphs

Let’s discuss some basic operations on signed graphs.
Disjoint union is the usual disjoint union of the underlying graphs with the obvious sign

function.
A subgraph (or sub-signed graph, or signed subgraph) of a signed graph (Γ, σ) is obtained

by taking a subgraph Γ′ of Γ and letting σ′ be the restriction of σ to E∗(Γ′). A subgraph
always inherits the signs of Σ.

Union If two signed graphs Σ1 and Σ2 share a common signed subgraph Σ, their union
along Σ can be thought of as gluing them together along Σ. In contrast to unsigned graph
theory, in order for this to make sense σ1 and σ2 must have the same values when restricted
to E∗(Σ).

The positive subgraph and negative subgraph of Σ are defined to be Σ+ := (E+(Σ), V (Σ))
and Σ− := (E−(Σ), V (Σ)), respectively. They are unsigned graphs.

Deleting a vertex v means, as usual, removing v from the vertex set, and removing all
edges e incident to v from the edge set.

Reducing a vertex means we remove v from the vertex set, but we do not delete any edges.
Instead, we may be left with half edges or loose edges.

Deleting an edge is simple enough. Just remove e from the edge set. The new sign function
is σ restricted to E \ {e} .

Induced Subgraph For a subset of vertices W ⊆ V , the subgraph induced by W is denoted
by Σ: W . The vertex set isW and the edge set is E : W = {e ∈ E | v(e) ⊆ W and v(e) 6= ∅}.

Let’s write q(Γ) (a random letter) for the number of switching isomorphism classes of
signatures of the graph Γ. For example q(K4,4) = 10.

We define b(Σ) as the number of balanced (connected) components of Σ, and c(Σ) as the
total number of components.

We have the notion of a balancing edge or edge set or vertex or vertex set X. X is a total
balancing (edge, edge set, vertex, or vertex set) if Σ\X is balanced. X is a partial balancing
(edge, edge set, vertex, or vertex set) if b(Σ \X) > b(Σ).

If Σ is connected, one way we can compute a minimal edge balancing set is by switching
so that some spanning tree is all positive. Then the negative edges comprise a minimal
(total) edge balancing set. If Σ has more than one connected component, this process can
be applied to each individual component.

There are two partitions associated with a signed graph. Just as for an unsigned graph
we have π(Σ), the partition of the vertex set V into vertex sets of connected components.
Unique to signed graphs is the balanced partial partition, denoted by πb(Σ), which is the set
of vertex sets of balanced components of Σ. Note that πb(Σ) is merely a partial partition of
the vertices, meaning a partition of a subset of V . Clearly, c(Σ) = |π(Σ) and b(Σ) = |πb(Σ)|.

Given Σ and a set of edges S ⊂ E, we understand πb(S) to mean πb(V, S, σ|S); and
similarly for π.

Contraction Now we can define contraction for an edge set S ⊆ E. Recall for ordinary
graphs Γ/S has vertex set V (Γ/S) = π(V, S) = π(S) and edge set E(Γ/S) = E \ S. For
signed graphs, it turns out we want the vertex set to be V (Σ/S) = πb(S).

Notes for 8 Feb. 2017 – Ted Ofner.
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This lecture covered the definition and basic properties of contraction in signed graphs.
We begin with the “balanced partial partition,” a key object in the contraction process. For
the duration of these notes Σ is a signed graph with vertex set V, edge set E, endpoint
mapping V : E →P(V ) and signature σ : E → {+,−}.

Definition 19. Let S ⊆ E; let Σ|S be the signed graph (V, S, end|S, σ|S). Let BS ⊆ Σ|S be
the union of the balanced components of Σ|S. Then the balanced partial partition of S is the
set

πb(S) = π(BS) = {V (B) | B is a balanced component of Σ|S}.

We can now define the contraction of Σ by S.

Definition 20. Let S ⊆ E. The contraction Σ/S is the graph with vertex set πb(S), edge
set E \ S, endpoint mapping e 7→ {W ∈ πb(S) | V (e) ∩W 6= ∅}, and signature σ|E\S.

In essence, we normally contract all balanced portions of S, and delete all the unbalanced
portions. This may create half or loose edges. One key property of the contraction is it’s
good behavior with respect to signature switching, which is captured by this proposition.

Proposition 24. Let ζ : πB(S)→ {+,−} be a state of Σ/S. Define the state ζ̃ of Σ by

ζ̃(v) =

{
ζ(w) if v ∈ w ∈ πb(S),

ζ̃(v) = + otherwise.

Then (Σζ̃)/S = (Σ/S)ζ .

Proof. Since switching by a state doesn’t affect balance or imbalance of a graph, (Σζ̃)/S and

(Σ/S)ζ have the same vertex set πb(S, σ) = πb(S, σζ̃). Trivially, they have the same edge set,
E \ S. Since the endpoint mapping does not depend on the signature, it is also unaffected.
The only thing left to check is that the edge signatures match.

Let e ∈ E \ S. First, consider e as an edge of Σζ̃ . If its ends u and v lie in BS, let
wu, wv ∈ πb(S) be the components of BS such that u ∈ wu, v ∈ wv. Then

σζ̃(e) = ζ̃(u)σ(e)ζ̃(v)

= ζ(wu)σ(e)ζ(wv) = σζ(e).

Otherwise, e is a half or loose edge in Σ/S. The sign of a half or loose edge does not change
the balance and unbalance of Σ/S, so we need not consider the sign of e. �

Notes for 10 Feb. 2017 – Amelia Mattern.

Theorem 25. Let S, T be disjoint sets of edges in Σ.

(1) (Σ \ S) \ T = Σ \ (S ∪ T ).
(2) (Σ \ S)/T = (Σ/T ) \ S.
(3) (Σ/S)/T = (Σ/T )/S = Σ/(S ∪ T ).
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Proof. (1) Observe that V ((Σ \ S) \ T ) = V (Σ) = V (Σ \ (S ∪ T )). Also,

E((Σ \ S) \ T ) = (E(Σ) \ S) \ T = E(Σ) \ (S ∪ T ) = E(Σ \ (S ∪ T )).

Finally, if e 6∈ S ∪ T, then e remains unchanged in both (Σ \ S) \ T and Σ \ (S ∪ T ). Thus,
(Σ \ S) \ T = Σ \ (S ∪ T ).

(2) First observe that V (Σ\S) = V (Σ) and πb(Σ|T ) = πb((Σ\S)|T ) since they are the same
signed graph. So V ((Σ \ S)/T ) = V (Σ/T ) = V ((Σ/T ) \ S). Furthermore, E((Σ \ S)/T ) =
E \ (S ∪T ). Since an edge in S ∪T disappears from (Σ/T ) \S) and (Σ \S)/T , we need only
consider what happens to e ∈ E(Σ) \ (S ∪ T ). Let e ∈ E(Σ) \ (S ∪ T ). The sign of the edge
carries over when doing deletion or contraction, so we need not be concerned with the sign
of e.

Case 1: Let e:uv be a positive link. Note that in Σ \ S there is no change to e.

Case 1.1: Suppose u and v are in the same component of Σ|T, call it T1. There are
two subcases.

If T1 is balanced, then e becomes a positive loop in (Σ \ S)/T and in (Σ/T ) \ S.
If T1 is unbalanced, then e becomes a loose edge in (Σ \ S)/T and in (Σ/T ) \ S.

Case 1.2: Suppose u and v are in different components of Σ|T . Let u ∈ T1 and
v ∈ T2. There are four subcases to consider.

If both T1 and T2 are balanced, then e becomes e:V (T1)V (T2) in (Σ \ S)/T and in
(Σ/T ) \ S.

If both T1 and T2 are unbalanced, then e becomes a loose edge in (Σ \ S)/T and
in (Σ/T ) \ S.

If T1 is balanced and T2 is unbalanced, then e becomes the half edge e:V (T1) in
(Σ \ S)/T and in (Σ/T ) \ S.

If T1 is unbalanced and T2 is balanced, then e becomes the half edge e:V (T2) in
(Σ \ S)/T and in (Σ/T ) \ S.

If e is a negative link, we switch so that it is positive and Case 1 applies.
Case 2: Suppose e:vv is a loop or e:v is a half edge. Then in Σ \ S there is no change to

e.

Case 2.1: Suppose v is in a balanced component of Σ|T , call it T1. Then e becomes
a loop e:V (T1)V (T1) or half edge e:V (T1), respectively, in (Σ\S)/T and in (Σ/T )\S.
Case 2.2: Suppose v is in an unbalanced component of Σ|T , call it T1. Then e
becomes a loose edge in (Σ \ S)/T and in (Σ/T ) \ S.

Case 3: Suppose e:∅ is a loose edge. Then e remains unchanged in (Σ \ S)/T and in
(Σ/T ) \ S.

Therefore (Σ \ S)/T = (Σ/T ) \ S.
(3) First observe that V (Σ/S) = πb(Σ|S) so V ((Σ/S)/T ) = πb((Σ/S)|T ). Also, V (Σ/(S∪

T )) = πb(Σ|(S ∪ T )). We want to show that these are equal. By a previous result, all
switching can be done before contraction and can be done so every balanced component of
Σ|S is all positive and consequently every balanced component of Σ|(S ∪ T ) is all positive.
For the remainder of the “proof” see the picture and notes below.
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We have V1i, V2i, . . . ∈ πb(Σ|S). Also, each Vi ∈ πb(Σ|(S ∪ T )) is the union of some
Vi1, Vi2, . . . ∈ πb(Σ|S).When we contract to (Σ/S)/T we find that {Vi1, Vi2, . . .} ∈ πb((Σ/S)|T ).
So {Vi1, Vi2, . . .} ∈ V ((Σ/S)/T ). Also, Vi ∈ V (Σ/(S ∪ T )). So each Vi ∈ V (Σ/(S ∪ T )) is
the union of some vertices of V (Σ/S). So we are treating the set of Vi’s and the union of
the V ′i s as the same thing. Note that a negative circle in S ∪ T , which doesn’t exist in S,
then becomes a half edge or a negative circle in (Σ/S)|T. The rest of the cases are left as an
exercise. �

Notes for 15 Feb. 2017 – Ted Ofner.

6. Closure

This lecture began with a discussion of the lattice correspondence between signed graphs
and hyperplane arrangements from yesterday, but it quickly became clear some legwork was
missing; namely, the definition of closure of an edge set. For the purpose of organization, I
present the discussion of closure.

The Closure of an Edge Set in a Signed Graph.

Definition 21. Given S ⊆ E, define

Vu(S) := {vertices of the unbalanced components of S}
and

bcl(S) := S ∪ {loose edges} ∪ {e /∈ S | there exists a positive circle C with C \ e ⊆ S};
this is called the balance-closure of S. (Not the “balanced closure”; it may not be balanced.)
The closure of S is the edge set

clos(S) := E:Vu(S) ∪ bcl(S).

Proposition 26 (Properties of Closure). If S ⊆ E is balanced, then

(1) clos(S) = bcl(S).
(2) bcl(bcl(S)) = bcl(S).

Proof. (1) Since S is balanced, Vu(S) is empty, thus clos(S) = bcl(S).
(2) Switch Σ so S ⊆ E+. Then

bcl(S) = S ∪ {loose edges}
∪ {e /∈ S | there is a path in S connecting the endpoints of e and e is positive}

= S ∪ {loose edges}
∪ {e ∈ E+ | there is a path in S connecting the endpoints of e}.

Since bcl(S) ⊆ E+, bcl(S) is balanced. Any circle in bcl(S) can have its non-S edges replaced
by paths in S leaving a circle in S. [What does “leaving” mean here?] Thus any edge
in bcl(bcl(S)) is in bcl(S). [That proof is wrong. One doesn’t get a circle.] �

At this point we stopped to prove that clos(S) was a closure operator, which gives us a
lattice consisting of the closed sets in P(E).

Proposition 27. clos is an abstract closure operator, i.e.,
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(1) S ⊆ clos(S),
(2) clos(clos(S)) = clos(S),
(3) If S ⊆ Q, then clos(S) ⊆ clos(Q).

Proof. (1) S ⊆ bcl(S) ⊆ clos(S).
(2) Let e ∈ clos(clos(S)). Then both endpoints of e lie in V (clos(S)). [This is the wrong

statement.] If both endpoints of e are in bcl(S), [This is the wrong hypothesis.] then
e ∈ bcl(bcl(S)) = bcl(S). [THIS IS WRONG. e ∈ bcl(bcl(S)) = bcl(S) is only valid if
S is balanced.]
If both endpoints of e are in Vu(clos(S)), then e ∈ Vu(S). Otherwise, e ∈ bcl(E : Vu(S)) ⊆
E:Vu(S).

(3) This is clear from inspecting the definitions. �

Notes for 13 Feb. 2017 – Josh Carey.

7. The Hyperplane Arrangement

A hyperplane in Rn is the solution set of a linear equation. A linear equation a · x = b is
consistent if a 6= 0 or b = 0, homogeneous if b = 0, and inhomogeneous if b 6= 0; we apply
the same names to their solution sets.

An arrangement of hyperplanes is a finite set of hyperplanes. An arrangement of any
hyperplanes, not necessarily homogeneous is affine; an arrangement of homogeneous hyper-
planes is homogeneous or linear (and its hyperplanes are called the same). A region of A is
a component of Rn \ (

⋃
A ).

Notice that I allowed the equation 0 ·x = 0, whose solution set is Rn, because it does arise
naturally in operating with hyperplane arrangements; I call it the degenerate hyperplane. If
the degenerate hyperplane belongs to an arrangement, then the arrangement has no regions,
because its union is all of Rn.

The characteristic polynomial of a hyperplane arrangement A is

pA (y) =
∑

S⊆A :
⋂

S 6=∅

(−1)|S |ydim(
⋂

S ).

As a very special case, suppose h0 ∈ A is the degenerate hyperplane. Then

pA (y) =
∑

S⊆A \{h0}⋂
S 6=∅

(−1)|S |ydim
⋂

S +
∑

S⊆A \{h0}
h0∩(

⋂
S ) 6=∅

(−1)|S |+1ydim(h0∩(
⋂

S )) = 0.

Here is a preview of the geometry of signed graphs (though no signed graphs are mentioned
yet):

Theorem 28 (Zaslavsky [14]). The number of regions of A equals (−1)npA (−1).

We define the intersection semilattice of A by

L (A ) := {
⋂

S : S ⊆ A and
⋂

S 6= ∅}.
the set of nonempty intersections of subsets of A }, partially ordered by reverse inclusion.
This is a meet semilattice; that is, it has meets but not necessariiy joins. The problem with
joins is that the join t1 ∨ t2 of subspaces t1, t2 ∈ L (A ) ought to be t1 ∩ t2 but that is not
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available if the intersection is empty. However, a homogeneous arrangement never has this
problem since every hyperplane contains the zero vector; and signed-graphic hyperplanes are
homogeneous. Therefore, we shall be referring to the intersection lattice.

Now we define the hyperplanes that correspond to edges of a signed graph. Assume the
graph has V = {v1, . . . , vn}; the hyperplanes are in Rn. Define

h+
ij := (0, . . . , 1, 0, . . . ,−1, 0, . . .)⊥ = {x : xi = xj},
h−ij := (0, . . . , 1, 0, . . . , 1, 0, . . .)⊥ = {x : xi = −xj},
hi := {x : xi = 0}.

For a signed graph Σ, we have the following bijection (with multiplicity; multiple edges of
the same sign give the same geometrical hyperplane but we regard them as separate copies):

e:vivj ←→ h
σ(e)
ij : xi = σ(e)xj (or xj = σ(e)xi),

e:vi ←→ hi : xi = 0,

e:∅←→ the degenerate hyperplane 0 = 0.

Note that subscript order is immaterial since h±ij = h±ji. A positive loop, like a loose edge,

corresponds to h+
ii = Rn since its equation is xi = xi. A negative loop, like a half edge,

corresponds to a coordinate hyperplane xi = 0 since its hyperplane is h−ii : xi = −xi.
If we treat an unsigned graph Γ as all positive we have a bijection between edges and

hyperplanes given by eij ↔ h+
ij. This is how an unsigned graph would naturally be repre-

sented by a hyperplane arrangement (according to my advisor Curtis Greene); we believe
it is correct because the correspondence extends to several other properties of a graph (as
we shall see later in the course). Subsequently I proved these correspondences extend to
signed graphs. (There has been much more work on graph-like arrangements but that takes
us outside signed graphs.)

A classical root system arrangement is one of the following:

An−1 = {h+
ij | i < j},

Dn = {h+
ij, h

−
ij | i < j},

Bn = Cn = An−1 ∪ {h−ij | i ≤ j}.
Thus, H [Σ] ⊆ Bn for any signed graph.7

Here is a preview of two more theorems we’ll prove:

Theorem 29. There is a lattice isomorphism L (H [Σ]) ∼= Lat Σ.
Deletion in Σ and H [Σ] correspond, and contraction in Σ corresponds to induction in

H [Σ]; that is, H [Σ \ S] = H [Σ] \H [Σ|S] and H [Σ/S] is the arrangement in
⋂

H [Σ|S]
induced by intersection with H [Σ \ S].

Theorem 30. For a signed graph Σ, pH [Σ](y) = χΣ(y). Thus, H [Σ] has (−1)nχΣ(−1)
regions.

7I got into signed graphs because Richard Stanley asked me if I could treat root system arrangements by
means of Theorem 28. I had to invent signed graphs to do it. For the result see [15].

I was not the first nor the second, nor probably the third or fourth, to invent signed graphs. The list of
independent inventors has become fairly long; but I am confident from extensive study of the literature that
Harary was first.

23



Notes for 17 Feb. 2017 – Chris Eppolito.

Let Σ = (V,E, σ) be a signed graph with loose edge set E0 ⊆ E. First we recall the
definition of the closure operator closΣ.

Definition 22. The balance-closure operator 8 on Σ is defined by

bclΣ : P(E)→P(E)

: S 7→ S ∪ E0 ∪ {e ∈ E | there is a C ∈ B with e ∈ C and C \ e ⊆ S}
The unbalanced vertex set of Σ is defined by

Vu(Σ) = {v ∈ V | v is in an unbalanced component of Σ|S}
The closure operator on Σ is given by

closΣ : P(E)→P(E) : S 7→ bcl(S) ∪ (E:Vu(S))

Recall that clos = closΣ is an abstract closure on E; the lattice of closed sets of E under
clos is denoted by Lat(Σ). Moreover, Lat(Σ) has meet and join given by:

A ∧B = A ∩B, A ∨B = clos(A ∪B)

This fact follows from basic properties of abstract closure operators.
For ease of notation we let L := L (H [Σ]) and H := H [Σ].
We make the following simple observation.

Lemma 31 (Walk Lemma). Let S ⊆ E be given. If W is a walk from u to v entirely in S,
then xu = σ(W )xv for all x ∈ α(S).

This lemma essentially proves itself; if one wished to be overly formal, we could prove this
result by mathematical induction on the length of the walk W .

Lemma 32 (Coordinates Lemma). Let t ∈ L and let Bi for i ∈ [m] be the balanced compo-
nents of β(t). Switch so that all Bi are all positive. Let {V ±(Bi)} be the Harary bipartition
of Bi, where we choose V +(Bi) 6= ∅. Then t is given by the following equations:

xi = 0 for all vi ∈ Vu(β(t)),

xi =

{
cj(x) for vi ∈ V +(Bj)

−cj(x) for vi ∈ V −(Bj)
for all vi ∈ Bj some constant cj(x).

Proof of Lemma. First we show that t satisfies the equations above. Let x ∈ t be arbitrary.
If vi ∈ Vu(β(t)), then either the component K of vi in Σ|β(t) has a half-edge or vi is on a

negative circle. If vj ∈ K has a half-edge, then choosing any walk W from vj to vi gives the
result by the Walk Lemma and the equation xj = 0. Otherwise vi is on a negative circle C.
Let W be the walk in K beginning at vi which follows C once to end at vi; by construction
σ(W ) = −, so by the Walk Lemma xi = −xi; in particular xi = 0.

If vi ∈ Bj, then choose any vertex v+ ∈ V +(Bi). Now let W be any walk from vi to v+ in
Bj; by balance every such walk has the same sign. In particular σ(W ) = + precisely when
vi ∈ V +(Bj), and the Walk Lemma together with connectedness of Bj gives that for all there
is a cj(x) such that xi = cj(x) if vi ∈ V +(Bj) and xi = −cj(x) if vi ∈ V −(Bj).

Hence we have shown that t satisfies the given equations.

8Not “balanced closure”; bcl(S) is not balanced in general.
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On the other hand, if x ∈ RV satisfies the above equations for some t ∈ L , then the
relations of t are a subset of the relations given above, which immediately implies that x ∈ t.

We conclude that the original statement is true. �

We have the following proposition relating the hyperplane arrangement of Σ and the lattice
of closed sets of E:

Proposition 33. The functions α and β defined by

α : P(E)→ L (H [Σ]) : S 7→
⋂
e∈S

he,

β : L (H [Σ])→P(E) : t 7→ {e ∈ E | he ⊇ t}
satisfy βα = closΣ, αβ = idL , and Im(β) = Lat(Σ).

We will prove the proposition via a series of lemmas.

Lemma 34. β(t) is closed (under closΣ) for all t ∈ L .

Proof of Lemma. [First we show that bcl(β(t)) ⊆ β(t) for all t ∈ L . ] Let e:uv be
an edge such that β(t) ∪ e contains a positive circle C through e. Then σ(e) = σ(C \ e),
so by the Coordinates Lemma and the Walk Lemma we have t ⊆

⋂
a∈C\e ha =

⋂
a∈C ha; in

particular t ⊆ he, so e ∈ β(t); loose edges are trivially in β(t) as they correspond to the
trivial hyperplane. Hence bcl(β(t)) ⊆ β(t) as desired.

Next we show that E:Vu(β(t)) ⊆ β(t) for all t ∈ L . Note primarily that9

Vu(β(t)) = {v ∈ V | v is in an unbalanced component of β(t)}
= {v ∈ V | xv = 0 for all x ∈ t}

In particular every edge e ∈ E:Vu(β(t)) satisfies the conditions of the Coordinates Lemma;
thus t ⊆ he so e ∈ β(t).

Hence clos(β(t)) = bcl(β(t)) ∪ E:Vu(β(t)) ⊆ β(t) ⊆ clos(β(t)) gives β(t) ∈ Lat(Σ). �

Lemma 35. The identity βα = clos holds.

Proof of Lemma. Let S ⊆ E be arbitrary. Formulaically we have

β(α(S)) = β
( ⋂
s∈S

hs
)

=
{
e ∈ E | he ⊇

⋂
s∈S

hs
}

so we see S ⊆ βα(S); by our work above this gives clos(S) ⊆ β(α(S)). If e ∈ β(α(S)), then
he ⊇

⋂
s∈S hs = α(S) so α(S) satisfies the equations of he; in particular one can deduce the

equation of he from the equations of the hyperplanes hs for s ∈ S. If e is a loose-edge or a
positive loop, this trivially follows as he is the trivial hyperplane. If e:v is a half-edge or e:vv
is a negative loop, then xv = 0 implies that v ∈ Vu(S), so e ∈ E:Vu(S) ⊆ clos(S). Otherwise
e:uv is a link. In this case there is a minimal set Se ⊆ S such that the equation for he may
be deduced from those of {hs | s ∈ Se}.

We now show that Se is a path in |Σ|. Note primarily that Se determines a connected
subgraph of |Σ|; if it were not, then either Se is not minimal (i.e. contains an extra edge) or
Se does not connect the ends of e (i.e. does not determine the equation for he). Now if Se
is not a path, then Se is not minimal as we may exclude any extraneous edges; thus Se is a
path subgraph from u to v in Σ|S. Hence Se ∪ e is a circle in Σ.

9This is easily proved using the Walk Lemma.
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Let W denote a walk from u to u following Se ∪ e in cyclic order. (There are two such
walks; both have the same sign, so for our purposes either will do.) If σ(W ) = −, then
u, v ∈ Vu(S) giving that e ∈ E:Vu(S) ⊆ clos(S). If σ(W ) = +, then e ∈ bcl(S) ⊆ clos(S).

Hence in all cases β(α(S)) ⊆ clos(S) and our above work gives β(α(S)) = clos(S). As
S ⊆ E was arbitrary, we conclude that βα = clos. �

Lemma 36. The functions α and β satisfy the identity αβ = idL .

Proof of Lemma. Let t ∈ L . Now α(β(t)) =
⋂
e∈β(t) he implies by definition of β(t) that

t ⊆ α(β(t)). On the other hand t =
⋂
s∈S hs for some subset S ⊆ E, so we immediately

see that S ⊆ β(t) and from this it follows that α(β(t)) ⊆ t. Hence we have αβ = id as
desired. �

The content of the proposition is precisely a conjunction of the previous three lemmas.
Our main interest in this proposition is the following theorem.

Theorem 37. As lattices, Lat(Σ) and L (H [Σ]) are isomorphic.

The proof will be given in the next lecture.

Notes for 20 Feb. 2017 – Micah Loverro.

Recall L = L (H [Σ]) and recall that we have the mappings

α : P(E)→ L

and

β : L → Lat(Σ).

We have shown, so far, that β is well defined.

Lemma 38. Let t ∈ L and S = β(t) ⊆ E. Let B1, . . . , Bm be the balanced components of
S and Vu(S) the vertices of unbalanced components. Then after switching so that each Bj is
positive, t is given by{

xi = 0 for vi ∈ Vu(S),

xi = cj, a constant depending only on j, for all vi ∈ V (Bj).

Proof. Let T = {x = (x1, . . . , xn) ∈ Rn | x satisfies the equations of the lemma}. Last time
we showed T ⊆ t. Now we want to show t ⊆ T .

Recall that β(t) = {e | t ⊆ he}, and α(S) =
⋂
e∈S he.

Let’s show that T = α(S). Let x ∈ α(S). Then, first of all, xi = 0 if vi supports a half
edge or a positive loop.

Suppose S contains a circle C = v0e1v1 · · · elvl with vl = v0. Then x0 = σ(e1)x1 =
σ(e1)σ(e2)x2 = · · · = σ(C)x0. If C is a negative circle, then x0 = 0. If Vu(S) 6= ∅ then we
have a vertex vj with xj = 0 in each component of S:Vu(S). Suppose xi ∈ V (Uj) for an
unbalanced component Uj. Then there is a path P from vj to vi which gives xi = σ(P )xj.
Thus if vi ∈ Vu(S) we must have xi = 0.

Now consider a balanced component Bj. If vi, vh ∈ V (Bj) then there is a positive path P ′

connecting them, so xi = σ(P ′)xh = xh. That is, x is constant on V (Bj).
This proves that α(S) ⊆ T .
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For the other inclusion we follow the definitions. Let x ∈ T . Since xi = 0 for every
unbalanced vertex, we have x ∈ he for each e ∈ S:Vu(S). Since xi = xh whenever vi and
vh belong to the same balanced component, we have x ∈ he for each e in the balanced
component. That is, x ∈ α(S).

Now we know that T = α(S).
Finally, notice that S = β(t) = {e | he ⊇ t} ↔ {he | he ⊇ t}, so α(S) =

⋂
{he | he ⊇ t} = t

since t ∈ L implies that t is the intersection of the hyperplanes that contain it.
So t = α(S) = T . �

The next step to establishing our bijection is the following

Lemma 39.

1. β(α(S)) = clos(S).
2. α(β(t)) = idL (t).

[Part 2 duplicates a previous lemma. Compare proofs!]

Proof. For the first part, α(β(t)) =
⋂
{he | e ∈ β(t)} =

⋂
{he | he ⊇ t} = t as required.

For the second part, we begin with the observation that

β(α(S)) = {e | he ⊇ α(S)} =
{
e | he ⊇

⋂{
hf | f ∈ S

}}
.

We know from previously that β(α(S)) is a closed set containing S, so β(α(S)) ⊇ clos(S).
It remains to show the reverse inclusion. That is, if he ⊇

⋂
{hf | f ∈ S} then e ∈ clos(S).

Denote
⋂
{hf | f ∈ S} by t, and write clos(S) =

⋃m
j=1 bcl(Bj)∪ (E:Vu(S))∪{loose edges},

from the definition. We may as well also assume (by switching) that all Bj are all positive.
If e joins two balanced components Bj, Bj′ then he 6⊇ t since the Coordinate Lemma gives

no equations combining vertices of Bj with those of Bj′ .
If e:vivh with vi, vh in the same Bj then xi = xh so e ∈ bcl(Bj).
If e:vivh or e:vi with vi, vh ∈ Vu(S) then clearly e ∈ clos(S).
In any case we have β(α(S)) = clos(S). �

Now we have shown that β and α|Lat(Σ) are inverse bijections.

Notes for 22 Feb. 2017 – Amelia Mattern.

We continue our discussion of the characteristic polynomial of a hyperplane arrangement.
Recall its definition:

pH [Σ](λ) :=
∑

S⊆H [Σ]

(−1)|S |λdim(
⋂

S ) =
∑

t∈L (H [Σ])

µ(∅, t)λdim t

where

µ(∅, t) =

{
0 if 0̂ is not closed,

µ(0̂, t) = 1 if 0̂ is closed.
.

In the above statement the first equality is the definition and the second equality comes from
a previous theorem.
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In general, if we have a set X and an abstract closure operator W 7→ W on X, then the
class of closed sets, C , is a lattice, and for Z ∈ C we define

µ(Y, Z) =

{
0 if Y 6∈ C ,

µC (Y, Z) if Y ∈ C .

Lemma 40. Let C , µ, and Z be as above. Then

µ(Y, Z) =
∑

Y⊆S⊆Z
S=Z

(−1)#S.

Remark 1. If we discard X \Z and Y from X we have a structure isomorphic to [Y, Z]P(X)

with closure W 7→ W ∪ Y \ Y and µ(Y, Z) equal to µ(∅, Z \ Y ).

Proof. (1) If Y 6∈ C , then∑
Y⊆S⊆Z: S=Z

(−1)#S =
∑

Y⊆S1⊆Y

∑
S2⊆Z\Y
S1∪S2=Z

(−1)#(S1∪S2) =
∑

Y⊆S1⊆Y

(−1)#S1

∑
S2⊆Z\Y
S1∪S2=Z

(−1)#S2 .

But ∑
Y⊆S1⊆Y

(−1)#S1 = (−1)#Y
∑

T⊆Y \Y

(−1)#T = (−1)#Y 0|Y \Y | = 0.

(2) If Y ∈ C , then (−1)#Y 0|Y \Y | = 1 and S1 = Y = Y . So∑
Y⊆S⊆Z
S=Z

(−1)#S =
∑

Y⊆S1⊆Y

(−1)#S1

∑
S2⊆Z\Y
S1∪S2=Z

(−1)#S2 = (−1)#Y 0|Y \Y |
∑

S2⊆Z\Y
S1∪S2=Z

(−1)#S2

=
∑

S2⊆Z\Y
Y ∪S2=Z

(−1)#S2 = (−1)#Y
∑

Y⊆S⊆Z
S=Z

(−1)#S.

Define
F (Y, Z) := (−1)#Y

∑
Y⊆S⊆Z
S=Z

(−1)#S and G(Y,A) =
∑

Y⊆Z⊆A
Y,A,Z∈C

F (Y, Z).

Then
G(Y,A) =

∑
Y⊆S⊆Z⊆A

S=Z

(−1)#Y (−1)#S =
∑

Y⊆S⊆A

(−1)|S\Y | = 0|A\Y |.

Therefore

G(Y,A) =

{
0 if Y ⊂ A,

1 if Y = A,
so

G(Y,A) =
∑

Y⊆Z⊆A

ζC (Z,A)F (Y, Z),

where ζC is the zeta function of C , defined by

ζC (Y,A) :=

{
0 if Y ⊆ A,

1 if Y 6⊆ A.
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By Möbius inversion in C ,

F (Y,A) =
∑

Y⊆Z⊆A

µ(Z,A)G(Y, Z) = µ(Y,A)

since µ(Z,A) = 0 unless Z = A. �

Notes for 24 Feb. 2017 – Josh Carey.

8. Coloring

Here is the classical definition of graph coloring. Let Γ = (V,E) be a graph. A coloration
of Γ is a function κ : V → [k], where k ∈ Z≥0. ([0] is defined to be the empty set.) It is
zero-free if it never takes the value 0. A coloration is proper if for each edge e:vw we have
κ(v) 6= κ(w).

Now the generalization to signed graphs. Let Σ = (V,E, σ) be a signed graph. A coloration
of Σ is a function κ : V → Ck, where Ck = {−k, . . . , 0, . . . , k}. A coloration of Σ is proper if
for each link or loop e:vw, we have κ(v) 6= σ(e)κ(w); for a half edge e:v, we have κ(v) 6= 0;
and Σ has no loose edges.

Define χΣ(λ), for λ ∈ Z≥0, as the number of proper λ-colorations of Σ.

Theorem 41 (Birkhoff–Whitney). For a graph, the chromatic function χΓ(λ) is a monic
polynomial of degree n = #V .

We are going to prove the same theorem for a signed graph. To begin, we show the
chromatic function is invariant under switching.

Proposition 42. χΣX (λ) = χΣ(λ) for λ ∈ Z≥0.

Proof. Let κ be a proper coloration of Σ. We want a corresponding proper coloration of ΣX .
To get it we switch κ to κX defined by

κX(v) =

{
−κ(v) if v ∈ X,
κ(v) if v 6∈ X.

Now we have a bijection, which is worth stating formally.

Lemma 43. If X ⊆ V (Σ), κ 7→ κX gives a bijection between proper colorations of Σ and
proper colorations of ΣX .

This lemma is almost immediate (I leave it to the reader) and it implies our proposition.
�

Theorem 44 (Incorrect theorem). For any edge e ∈ E(Σ), we have χΣ(λ) = χΣ\e(λ) −
χΣ/e(λ).

Incomplete proof. We consider two cases.
Case 1: e is a loose edge or positive loop. Then Σ/e = Σ \ e so χΣ\e(λ) − χΣ/e(λ) = 0.

Also, Σ has no proper colorations, thus χΣ(λ) = 0.
Case 2: e is a negative loop or half edge at v. Fix λ. We want a bijection between P (Σ\e)

and P (Σ)tP (Σ/e). Let κ ∈ P (Σ \ e). Either κ(v) = 0 or κ(v) 6= 0. In the former case, κ is
proper on Σ but improper on Σ/e and in the latter case, κ is proper on Σ/e but improper
on Σ. �
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[We discovered a mistake in the theorem and stopped until next class.]

Notes for 27 Feb.–1 Mar. 2017 – Chris Eppolito.

8.1. Deletion-Contraction Formula for the Chromatic Quasipolynomial.
Let Σ = (V,E, σ) be a signed graph. We introduce the following notation for λ ∈ Z≥0:

KΣ(λ) := {κ | κ is a proper λ-coloration of Σ} .

Recall that we define χΣ(λ) := #KΣ(λ) and the color set for λ-coloring is denoted by Cλ.

Proposition 45. Each proper λ-coloration of Σ induces a proper λ-coloration of ∆ for every
∆ ⊆ Σ. In particular. if ∆ spans Σ, this gives an injection KΣ(λ)→ K∆(λ).

Proof of Proposition. Let κ be a proper λ-coloration of Σ. Then every edge of ∆ is proper
under κ, so the mapping

κ|∆ : V (∆)→ Cλ : v 7→ κ(v)

is a proper λ-coloration of ∆, as desired. It follows trivially [NOT SO!] from the definition
of κ|∆ that the mapping κ 7→ κ|∆ is injective. �

We are in the process of proving the following theorem. Recall that an edge is unbalanced
if and only if it is a half edge or a negative loop.

Theorem 46 (Deletion-Contraction Formula). Let e be an edge of Σ. If either e is not an
unbalanced edge or λ is odd, then χΣ(λ) = χΣ\e(λ)− χΣ/e(λ).

Proposition 47. Let ζ be a switching of Σ. Every proper coloration κ of Σ induces a proper
coloration κζ of Σζ via the formula κζ(v) = ζ(v)κ(v). Furthermore, the mapping ζ̂ : κ 7→ κζ

is an involutory bijection KΣ(λ)→ KΣζ for all λ ∈ Z≥0.

Proof. Suppose κ is a proper coloration of Σ; thus |Σ| has no positive loops and no loose edges.
Trivially for all half-edges e:v and negative loops e:vv of |Σ| we have κζ(v) = ζ(v)κ(v) 6= 0
as κ(v) 6= 0 by assumption. Now suppose e:uv is a link; thus κ(u) 6= σ(e)κ(v), and from this
we derive the following desired non-equality:

κζ(u) = ζ(u)κ(u) 6= ζ(u)σ(e)κ(v) = (ζ(u)σ(e)ζ(v)) · (ζ(v)κ(v)) = σζ(e)κζ(v).

Hence κζ is a proper coloration of Σζ as desired.
A simple computation shows (κζ)ζ = κ, so this mapping is an involution as desired. �

Now, let π̃e denote the function taking a vertex in V to its component in the graph (V, {e});
that is, π̃e : V → π(Σ|{e}).

Lemma 48. Let e:uv be a positive link of Σ and let κ be a proper coloration of Σ \ e.
(1) If κ(u) = κ(v), then the following is a proper coloration of Σ/e:

κ/e : V/u∼v → Cλ : π̃e(x) 7→ κ(x).

(2) If κ(u) 6= κ(v), then the following is a proper coloration of Σ:

κe : V → Cλ : x 7→ κ(x).
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Proof. The proof is essentially a straightforward verification of conditions.
Let e:uv be a positive link of Σ and let κ be a proper coloration of Σ \ e.
Part 1 : If κ(u) = κ(v), then immediately κ/e is well-defined. Conditions on half-edges

and negative loops have not changed under κ/e, so all such edges are proper. Notice that
κ(u) = κ(v) implies by propriety of κ that there are no other links between u and v. Hence
it follows that κ/e is proper.

Part 2 : If κ(u) 6= κ(v), then as e is positive and κ proper on Σ \ e it follows immediately
that κe is a proper coloration of Σ.

We conclude that the statement holds. �

Lemma 49. Let e:uv be a positive link of Σ. If κ is a proper λ-coloration of Σ/e, then the
function κ̃ : V → Cλ : x 7→ κ(π̃e(x)) is a proper λ-coloration of Σ \ e.

Proof. For vertices u, v that are adjacent in Σ \ e by an edge of sign ε, πe(u) and πe(v)
are adjacent in Σ/e by an edge or edges of the same sign. Therefore, κ̃(u) = κ(πe(u)) 6=
εκ(πe(v)) = εκ̃(v). Thus, κ̃ is proper. �

Proposition 50. Let λ be odd and e a negative loop or half-edge in Σ. There is a bijection
KΣ\e(λ)↔ KΣ(λ) tKΣ/e(λ).

Proof. Let λ be odd, and suppose e is either a negative loop or half-edge at the vertex v.
Let κ be a proper λ-coloration of Σ \ e. �

Proposition 51. Let e be a positive link of Σ and let λ ∈ Z≥0. There is a bijection

KΣ\e(λ)↔ KΣ(λ) tKΣ/e(λ).

We could actually prove more. The bijection as described in the previous lemmas has a
nice form for all λ. We only need the existence of a bijection to prove the theorem, so this
is what I will prove.

Proof. Primarily, notice that the maps KΣ(λ) → KΣ\e and KΣ/e(λ) → KΣ\e have disjoint
images. This follows trivially from the fact that all images κ of proper colorations of Σ/e
have κ(u) = κ(v) while all images of proper colorations of Σ necessarily have κ(u) 6= κ(v) as
e:uv is positive. On the other hand, [Proposition 45 gives that the former function is
injective. That the latter function is injective follows trivially from its definition.]
that these two mappings are injective follow in straightforward fashion from their definitions.
Hence gluing these maps we obtain an injective map KΣ(λ) tKΣ/e(λ)→ KΣ\e(λ).

Let two proper λ-colorations κ and ρ of Σ \ e be given so that the mapping µ described
in Lemma 48 has µ(κ) = µ(ρ). As the image of a coloration under µ agrees on all vertices
(up to identification) with its preimage, we may conclude that κ = ρ. Hence this mapping
is injective.

We conclude that the proposition holds. �

Proof of Theorem. If e is a loose edge or a positive loop, then χΣ(λ) = 0; on the other hand,
Σ \ e = Σ/e in this case, so the result holds.

If e:uv is a link, choose any switching function ζ for Σ such that e is positive in Σζ . What
remains follows by straightforward applications of Proposition 47 and Proposition 51.

If e:uv is a half-edge or negative loop and λ is odd, then Proposition 50 gives the result.
Hence the Proposition holds in all cases as desired. �
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Theorem 52. Suppose Σ = (l×Σ0)∪
⊔
i∈[k] Σi, where each Σi, for i ∈ [m], is without loose

edges and (l × Σ0) denotes a graph consisting of l loose edges. Then χΣ = 0l
∏m

i=1 χΣi.

Proof. By Proposition 45, every coloration of Σ is a combination of colorations of its com-
ponents Σi. Moreover, every coloration of Σ arises in this way. Furthermore, the coloration
of Σ is proper iff the component colorations are proper and l = 0. Hence the result. �

Recall that b(S) is the number of balanced components of S in Σ for all S ⊆ E.

Theorem 53. For λ ∈ Z≥0 we have the following formula:

χΣ(λ) =

{∑
S⊆E(−1)#Sλb(S) if λ is odd,∑
S⊆E, balanced(−1)#Sλb(S) if λ is even.

We begin the proof with an easy case.

Lemma 54. There is equality in Theorem 53 if Σ has positive loops or loose edges.

Proof. Let pΣ(λ) denote the right-hand side of the equation in the statement of the theorem.
Let L denote the set of positive loops and loose edges of Σ. If L 6= ∅, then χΣ(λ) = 0.
On the other hand (combining two formulas in one by the condition “[balanced]” when λ is
even):

pΣ(λ) =
∑
S⊆E

[balanced]

(−1)#Sλb(S) =
∑
S1⊆L

(−1)#S1

∑
S2⊆E\L
[balanced]

(−1)#S2λb(S2)

=

( ∑
S1⊆L

(−1)#S1

)( ∑
S2⊆E\L
[balanced]

(−1)#S2λb(S2)

)
= 0

∑
S2⊆E\L
[balanced]

(−1)#S2λb(S2) = 0. �

Proposition 55. For a set S ⊆ E(Σ), the following statements are equivalent:

(1) S is balanced.
(2) bcl(S) is balanced.
(3) closΣ(S) is balanced.

Proof. The reverse implications (3) =⇒ (2) =⇒ (1) follow trivially as subsets of balanced
sets are balanced. To see that (1) =⇒ (3), switch Σ by ζ so that S is all positive. Note
that Vu(S) = ∅, so clos(S) = bcl(S) is necessarily a subset of the loose edges of Σζ and the
positive edges of Σζ by its definition. As balance is preserved under switching, the result
holds. �

Proposition 56. For S ⊆ E, b(S) = b(clos(S)).

Proof. By the definition of the closure operator, b(clos(S)) = b(bcl(S)). On the other hand,
b(bcl(S)) = b(S) by Proposition 55. �

Lemma 57. A set T ∪ e is balanced in Σ if and only if T is balanced in Σ/e and V (e) is
not an unbalanced component of Σ|(T ∪ e).

Proof. The sufficiency follows by switching T ∪ e to all positive and noticing that T is then
all positive in Σ/e. For the necessity, suppose T ∪ e is unbalanced in Σ we consider several
cases.
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Case 0 : If e is a positive loop or a loose edge, then Σ \ e = Σ/e, so the result holds
trivially.

Case 1 : If e is a link, then switch so e is positive. Thus T ∪ e contains a negative circle or
a half-edge. The half-edge case implies T is not balanced in Σ/e. Otherwise T ∪ e contains a
negative circle C. If e ∈ C, then C/e ⊆ T is a negative circle in the contraction, so T is not
balanced. If e /∈ C, either e is a chord of C or not. If not, then C ⊆ T is a negative circle
of Σ/e. If so, then C ∪ e is a θ-graph, so we may write C = P t Q where P ∪ e and Q ∪ e
are circles of Σ. Now σ(C) = σ(P )σ(Q) = −, so exactly one of these is negative; by choice
of notation σ(P ) = −. In particular, P ⊆ T is a negative circle in the contraction, so T is
unbalanced in the contraction.

Case 2 : If e is a half-edge or negative loop, consider V (e). If V (e) is an component of
Σ|(T ∪ e), then this component vanishes in the contraction and T is thus balanced in the
contraction if and only if T is balanced in Σ. Otherwise, either a half-edge or a loose edge
is created in the contraction by e.

Thus we see that the original statement holds. �

An important corollary is a straightforward consequence of the proof above.

Corollary 58. For T ⊆ E and e ∈ E \ T , bΣ(T ∪ e) = bΣ/e(T ).

Lemma 59. The right-hand side of the formula in the theorem satisfies the same deletion-
contraction recursion as the left side.

Proof. Let pΣ(λ) denote the right-hand side of the formula in the theorem. Let e ∈ E be
fixed. We compute as follows:

pΣ(λ) =
∑
S⊆E

[balanced]

(−1)#SλbΣ(S) =
∑
S⊆E\e

[balanced]

(−1)#SλbΣ(S) +
∑

e∈S⊆E
[balanced in Σ]

(−1)#SλbΣ(S)

= pΣ\e(λ) +
∑
T⊆E\e

[T∪e balanced in Σ]

(−1)#T+1λbΣ(T∪e)

= pΣ\e(λ)−
∑
T⊆E\e

[T balanced in Σ]

(−1)#TλbΣ/e(T )

= pΣ\e(λ)− pΣ/e(λ)

Hence we conclude that the original statement is true. �

The proof of the following lemma is straightforward.

Lemma 60. The right-hand side of the equation in the theorem is multiplicative over com-
ponents.

Proof of Theorem. Both the left-hand and right-hand sides of the equation satisfy the same
base and recursion. �
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Notes for 8 Mar. 2017 – Josh Carey.

We define the chromatic quasipolynomial χΣ(λ) for λ ∈ Z≥0. It will have the property that
χΣ|odd integers ≥0 is χΣ(λ) (the chromatic polynomial) and χΣ|even integers ≥0 is a polynomial,
χ∗Σ(λ) (the zero-free chromatic polynomial).

First, we define a quasipolynomial. It is a kind of function of (some) integers. A function
f on the positive, or nonegative, integers is a quasipolynomial if there are a number p and p
polynomials, f0, f1, . . . , fp−1, such that f(n) = fn mod p(n).

Here is a big theorem in graph theory that we will extend to signed graphs.

Theorem 61 (Stanley). For a graph Γ, (−1)nχΓ(−1) is the number of acyclic orientations
of Γ.

The general problem, necessary if one is to make use of the generalized Stanley theorem for
example, is to find the chromatic quasipolynomial of a signed graph. Consider, for example,
+Kn. Then χ+K0(λ) = 1, χ+K1(λ) = λ, . . . , χ+Kn = (λ − (n − 1))χ+Kn−1 ; so for arbitrary
n, we have χ+Kn(λ) = (λ)n where (λ)n denotes the falling factorial:

(λ)n =

{
λ(λ− 1) · · · (λ− [n− 1]) if n > 0,

1 if n = 0.

Here is another example where we can compute the chromatic polynomial explicitly. A
graph Γ is chordal when it is simple and has no induced circles of length bigger than 3. Equiv-
alently, Γ is chordal if there is a simplicial vertex ordering, (v1, . . . , vn) (this is a well-known
theorem of G.A. Dirac). Letting Γi := Γ:{v1, . . . , vi}, being a simplicial vertex ordering
means the neighborhood N(Γi; vi) is a clique for all i. Now let di = d(Γi; vi), the degree of
vi in Γi (not its degree in Γ). Then χ+Γ(λ) = (λ− dn)χ+Γ\vn(λ) =

∏n
i=1(λ− di).

You will have noticed that

Proposition 62. For a balanced signed graph Σ = (Γ, σ), χΣ(λ) = χΓ(λ).

Proof. If Σ = +Γ, the only requirement on a proper coloration is that κ(u) 6= κ(v) if u, v are
adjacent; so the proper colorations are the same for +Γ as for Γ (we can use the signed color
set Cλ for Γ; only the number of colors matters). If Σ is not all positive, it switches to all
positive (Corollary 3) and that switching doesn’t change the chromatic function (Proposition
42), so χΣ = χ+Γ = χΓ. �

Now an important connection to the hyperplane arrangement.

Theorem 63. χΣ(λ) = pH [Σ](λ) for odd integers λ, where χΣ(λ) is the chromatic polynomial.

This is immediate because the two functions have the same algebraic formula.
The 0-colored vertices are all nonadjacent. Also, they cannot support any loops or half

edges. We call such a set stable. Equivalently, X ⊆ V is stable if and only if E:X = ∅,
κ : V → {−k, . . . , 0, k}. If X = κ−1(0), then Σ:(V \ X) is zero free so it has χ∗Σ\X(λ − 1)
proper colorations.

Theorem 64. χΣ(λ) =
∑
X⊆V

X is stable

χ∗Σ\X(λ− 1).
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Notes for 10 Mar. 2017 – Amelia Mattern.

We continue with the proof of Theorem 64 from last class.

Proof. Let Σ be a signed graph. Fix an odd positive integer λ and let

KΣ := KΣ(λ) := {κ | κ is a proper λ-coloration of Σ}.
Also let

B := {(X, κ∗) | κ∗ is a proper λ-coloration of Σ \X and X is stable}.
Let κ ∈ KΣ and let X = κ−1(0). Then X is stable, since otherwise there is an improper edge
in E:X. Also, Σ \X is properly colored without 0. This gives a mapping γ : KΣ → B : κ 7→
(X, κ|V \X).

Conversely, let (X, κ∗) ∈ B. Then define κ : V → C (where C is the color set) by

κ(v) =

{
0 if v ∈ X,
κ∗(v) if v 6∈ X.

Let e be an edge of Σ. Then e 6∈ E : X. If e ∈ E:(V \ X) it is κ∗-colored and therefore
proper. If e is an edge between X and V \X, then one endpoint is colored 0 and the other
is colored non-zero, and thus it is proper. If e is a loose edge, then it is in Σ \X for every
X. But since κ∗ is a proper coloration of Σ \X, there can be no loose edges if there exists
even one X. Luckily, we are saved by the null set as ∅ is always stable. Therefore, κ is a
proper coloration of Σ. So we now have mappings γ : KΣ → B and δ : B → KΣ. It’s too
easy for words to check that γδ and δγ are the appropriate identity functions. Therefore γ
and δ are bijections.

That was for any odd positive integer λ. Now let λ be anything and use the fact that,
since we have a polynomial equation for all positive odd integers, the polynomial function
extends to any argument. Thus,

χΣ(λ) =
∑
X⊆V

X stable

χ∗Σ\X(λ− 1). �

Good examples.
Now we look at some good special examples of signed graphs.

Definition 23. A signed graph is full if every vertex supports an unbalanced edge. Σ•

denotes Σ with a half edge or negative loop added to every vertex that did not already have
one.

Example 3. For a graph Γ, (±Γ)• (written more simply as ±Γ• ) is the full signed expansion
of Γ. Here Γ is a link graph.

Corollary 65. χΣ• (λ) = χ∗Σ(λ− 1).

Proof. X stable implies X = ∅. �

Example 4. For a link graph Γ,

χ±Γ• (λ) = χ∗±Γ(λ− 1).

In particular,

χ±K•n (λ) = χ∗±Kn(λ− 1) = 2n
(λ− 1

2

)
n
.

35



Example 5. For a link graph Γ,

χ−Γ• (λ) = χ∗−Γ(λ− 1).

In particular,

χ−K•n (λ) = χ∗−Kn(λ− 1).

Example 6. Let Σ be ±Kn with half edges at all vertices v ∈ W for some W ⊆ V . Then

χΣ(λ) = χ∗Σ(λ− 1) +
∑
v 6∈W

χ∗Σ\v(λ− 1) = χ∗±Kn(λ− 1) + (n−#W )χ∗±Kn−1
(λ− 1).

Let’s compute χ∗±Kn(µ). Let µ = 2k and color using ±[k]. The only restriction on a proper
coloration κ is that |κ(vj)| 6= |κ(vi)| for j 6= i. So κ is proper if and only if |κ| is proper on
Kn. It follows that χ∗±Kn(2k) = 2nχKn(k). Thus χ∗±Γ(2k) = 2nχΓ(k). This implies that

χΓ• (λ) = χ∗±Γ(λ− 1) = 2nχΓ

(λ− 1

2

)
.

The lattice Lat(±K•n ) is the Dowling lattice of rank n of the group {+,−}. Every group
G has a Dowling lattice of rank n for all n > 0. The customary notation for this lattice is
Qn(G). The Dowling lattice is an important example in matroid theory. A paper by Kahn
and Kung [9] demonstrates that it has a role analogous to that of projective spaces, although
not as central.

As for the hyperplane arrangement, we have H [Σ• ] = H [Σ]∪{all coordinate hyperplanes}.
This is why full graphs are useful: the coordinate hyperplanes provide a kind of frame that
simplifies many calcuations. For example,

H [±Kn] = the root system arrangement Dn

while

H [±K•n ] = the root system arrangement Bn = Cn.

Notes for 13 Mar. 2017 – Josh Carey.

8.2. Chromatic Number.
The chromatic number of a signed graph Σ is

χ(Σ) = min{λ ≥ 0 | χΣ(λ) > 0}.

Here χΣ(λ) denotes the chromatic function, i.e., the number of proper λ-colorations. This
definition is unambiguous if Σ has a proper coloration at all. In the exceptional case that
Σ has a loose edge or positive loop, hence no proper colorations, we define χ(Σ) =∞. The
chromatic number is always positive (counting ∞ as positive) with one weird exception:
When Σ = ∅, then χ(Σ) = 0 since there is one proper coloration with no colors and there
are no colorations at all with a positive number of colors.

Proposition 66. Assume Σ 6= ∅. For a nonnegative integer λ, χΣ(λ) > 0 if and only if
λ ≥ χ(Σ).
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Proof. To avoid triviality we assume Σ has no positive loops or loose edges. We want to
prove that if χΣ(λ) > 0 and λ′ > λ, then χΣ(λ′) > 0. In fact, we prove that χΣ is strictly
increasing for λ ≥ χΣ.

Assume Σ properly colored with λ colors. There are two cases depending on parity.
If λ is even, we colored with color set ±

[
λ
2

]
, omitting 0. If we enlarge the color set to{

−λ
2
, . . . , 0, . . . , λ

2

}
, we still have the same coloration as well as the possibility of recoloring

any one vertex with 0, so χΣ(λ+ 1) > χΣ(λ) > 0.
If λ is odd, we colored with κ : V → {−λ−1

2
, . . . , 0, . . . , λ−1

2
}. We would like to replace the

color 0 by the colors ±λ+1
2

. We can do this because κ−1(0) is stable, so we can recolor κ−1(0)

by any combination of 0 and ±λ+1
2

. If 0 was used in κ, that gives us at least two proper

colorations derived from κ. If not, we can change the color of any one vertex to ±λ−1
2

, thus
giving at least 2 additional derived proper colorations. Therefore χΣ(λ+1) > χΣ(λ) > 0. �

(We made no effort to prove the strongest kind of increase. We know that asymptotically
χΣ(λ) ∼ λn because that is the leading term of the chromatic quasipolynomial, as we show
next.)

There will be more to say about the chromatic number later, when we prove the signed-
graph analog of the famous (or notorious) Brooks’ Theorem for unsigned graphs.

8.3. Chromatic Coefficients.
Now we investigate the coefficients of the chromatic polynomials. Here we separate the

total chromatic polynomial (odd arguments) from the balanced chromatic polynomial (even
arguments). I use a trick of notation to combine the two cases, as their proofs are virtu-
ally identical. The notations in square brackets, [b] and [balanced], apply to the zero-free
chromatic polynomial, χ∗Σ (or χb

Σ), that is, even values of λ; while omitting the bracketed
notations gives the formulas for the total chromatic polynomial, χΣ(λ), with odd values of
λ.

Theorem 67. Let Σ be a signed graph with no positive loops or loose edges. Then χ
[b]
Σ (λ) =

w
[b]
0 λn+w

[b]
1 λn−1 + · · ·+w

[b]
n λ0, where each w

[b]
i is a constant relative to λ, but depends on Σ.

Then w
[b]
0 = 1, (−1)iw

[b]
i > 0 for i ≤ n− i[b]

0 and w
[b]
i = 0 for i > n− i[b]

0 , where i0 = n− b(Σ)
and ib0 = n− c(Σ).

Proof. The proof is in two parts. The first depends on the subset expansions to show that

both χ
[b]
Σ (λ) are polynomials. The second applies induction on the number of edges to get

the coefficient signs.

In the first step of the first part we demonstrate that χ
[b]
Σ (λ) has degree n. From Theorem

??,

χ
[b]
Σ (λ) =

∑
S⊆E

[balanced]

(−1)#Sλb(Σ|S).

The largest b(Σ|S) can be is n and that only when S contains no links and no unbalanced

edges. So S = ∅ and the coefficient of λn is 1. Therefore, χ
[b]
Σ (λ) is indeed monic of degree

n.
The lowest value of b(Σ|S) is attained when S = E, in which case b(Σ|S) = b(Σ); therefore

i0 = n− b(Σ).
Considering χb

Σ(λ), the lowest value of b(Σ|S) over balanced sets S is c(Σ). This can be
seen from the following computation for a balanced edge set: b(Σ|S) = c(Σ|S) (because S

37



is balanced) ≥ c(Σ) (because S ⊆ E). Therefore b(Σ|S) ≥ c(Σ). If S is a maximal forest
in Σ, then c(S) = c(Σ); but since S is balanced, we also have b(S) = c(S). Therefore
b(Σ|S) = c(Σ) is attained. So, ib0 = n− c(Σ).

There is one gap here. We have not shown that w
[b]
i 6= 0 for 0 ≤ i ≤ n− i[b]

0 . That will be
proved in the second half of the proof.

We now proceed to prove the coefficient signs by induction on #E. We begin with the

case where E = ∅. Then χ
[b]
Σ (λ) = λn. We know (Theorem ??) that for any link e and (for

the total polynomial) any unbalanced edge e, we have

χ
[b]
Σ (λ) = χ

[b]
Σ\e(λ)− χ[b]

Σ/e(λ) =
n∑
i=0

w
[b]
i (Σ \ e)λn−i −

n−1∑
i=0

w
[b]
i (Σ/e)λn−1−i,

because |V (Σ/e)| = n− 1. Changing indices of summation, our expression becomes

n∑
j=0

w
[b]
j (Σ)λn−j =

n∑
j=0

w
[b]
j (Σ \ e)λn−j +

n∑
j=i

(−w[b]
j−1(Σ/e))λn−j

= w
[b]
0 (Σ \ e)λn +

n∑
j=1

[
w

[b]
j (Σ \ e)− w[b]

j−1(Σ/e)
]
λn−j.

By the induction hypothesis

w
[b]
j (Σ) = w

[b]
j (Σ \ e)− w[b]

j−1(Σ/e)

= (−1)j|w[b]
j (Σ \ e)| − (−1)j−1|w[b]

j−1(Σ/e)|

= (−1)j
(
|w[b]

j (Σ \ e)|+ |w[b]
j−1(Σ/e)|

)
.

This proves that w
[b]
j (Σ) 6= 0 if either w

[b]
j (Σ \ e) or w

[b]
j−1(Σ/e) is nonzero, and that its sign

is (−1)j.

We still have to prove that at least one of w
[b]
j (Σ \ e) and w

[b]
j−1(Σ/e) is nonzero. [MORE

PROOF NEEDED.]
�

Notes for 15 Mar. 2017 – (Frosty the Snowman).

Snow day!

Notes for 17 Mar. 2017 – Micah Loverro.
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8.4. Chromatic Number Again.
A coloration of a signed graph Σ is a function κ : V → Z. (We could reasonably replace

Z with other color sets but they have to be sign-symmetric, as you will see.)

Definition 24. A coloration of Σ is a function κ : V → Z. It is zero free if 0 /∈ Imκ. It is a
2k + 1-coloration if Imκ ⊆ [−k, k]. It is a 2k-coloration if Imκ ⊆ ±[k].

A coloration κ of Σ is proper if

1. κ(v) 6= σ(e)κ(w) whenever e:vw is a link or a loop,
2. κ(v) 6= 0 whenever e:v is a half edge, and
3. Σ has no loose edges.

The chromatic number of Σ is

χ(Σ) = min{λ ≥ 0 | there is a proper λ-coloration of σ}.
We also define the chromatic function, χΣ(λ) := the number of proper λ-colorations of Σ,
for integers λ ≥ 0.

Here are two theorems about the nature of the chromatic function.

Theorem 68. If λ ≥ χ(Σ), there is a proper λ-coloration of Σ. In fact, χΣ(λ) is increasing.

Theorem 69. χΣ(λ) restricted to the even integers is a monic polynomial. So is χΣ(λ)
restricted to the odd integers.

That is, χΣ(λ) is almost a polynomial; it is a quasipolynomial of period 1 or 2. For
odd integers λ = 2k + 1, we call χΣ(λ) = χΣ(2k + 1) the chromatic polynomial, and for
even integers λ = 2k we call χΣ(2k) = χ∗Σ(λ) = χbΣ(λ) the zero-free or balanced chromatic
polynomial. [WAS quasipolynomial ALREADY DEFINED?]

Switching a Coloration.
For a switching function ζ : V → {+,−}, define the switched coloration κζ(v) := κ(v)ζ(v).

Then:

Lemma 70. A coloration κ is a proper coloration on Σ if and only if κζ is

There is the following easy upper bound for graphs. ∆(Γ) is the maximum degree of a
vertex in Γ.

Theorem 71. If Γ is a simple graph, then χ(Γ) ≤ ∆(Γ) + 1.

This bound can be improved in many ways, and has been. For instance, one can prove
from Euler’s polyhedral formula that every planar simple graph has a vertex with degree at
most 5. This can be used to prove the

Theorem 72 (6-Color Theorem). Every planar graph is 6-colorable.

Proof. The proof is by induction on #V . The lemma allows us to find a vertex v of degree
less than or equal to 5, then Γ \ {v} is 6-colorable by induction. Then we just choose a color
for v, there being at most 5 colors to avoid. �

Given any class of graphs satisfying a similar lemma, one could infer a chromatic number
bound by a similar proof. There are a number of examples in the literature. One almost
trivial example is the preceding easy theorem, that χ(Γ) ≤ ∆(Γ)+1. A famous improvement
is known as Brooks’ theorem. It may look elementary, since it reduces the trivial bound only
by 1, but the proof is not simple.
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Theorem 73 (Brooks’ Theorem (1941)). For a simple graph Γ, χ(Γ) ≤ ∆(Γ) unless Γ = Kn

or an odd circle.

I only say “simple graph” because that’s how the theorem is usually stated. Multiple
edges can only increase the upper bound ∆(Γ); they don’t change the chromatic number.
Loops do violate the bound—but a loop is an odd circle!

Recently there has appeared an analogous theorem for signed simple graphs by Máčajová,
Raspaud, and Škoviera [10].

Theorem 74 (Brooks’ Theorem for Signed Simple Graphs). Let Σ be a signed simple graph.
Then χ(Σ) ≤ ∆(Σ) except when [Σ] = [+Kn], C+

2n+1, or [C−2n].

Here Cε
n means a circle Cn with sign σ(Cn) = ε.

A simply signed graph is a signed graph with no loose edges or positive loops, at most
one unbalanced edge at each vertex, and no parallel links of the same sign. That is not the
same as a signed simple graph; the latter has no loops and no parallel edges of any sign.
Theorem 74 has been strengthened and the proof made elegant in a follow-up paper. (The
next lecture!)

Notes for 20 Mar. 2017 – (?)

Notes for 22 Mar. 2017 – (Josh Carey).

8.5. Brooks’ Theorem for Signed Simple Graphs.
[Brooks’ Theorem for signed graphs: [10] simple; [5] all, and list coloring.]

Notes for 24 Mar. 2017 – Amelia Mattern.

We continue with the proof of Brooks’ Theorem for signed simple graphs.
Case 2: If there are no “backwards” edges, then there are no edges from T1 to any vertices

not in T1; otherwise this contradicts our choice of u. Let w be the child of u1 in T1. Then
degΣ1(u1) ≥ 2 implies there exists an edge from u1 to some vertex x 6= w in T1. The existence
of the edge u1x implies that Σ1 \ {w} is connected. Also, v = u1 has degree less than or
equal to ∆− 1 in Σ1. So by lemma 3 there exists a ∆-coloration of Σ1 such that κ(u1) 6= 0.
So we can choose κ(u1) = c′. We can prove a similar fact for u2 in Σ2. In conclusion, we can
color Σ1 and Σ2 so κ(u1) = κ(u2) = c′ 6= 0.

In Σ′ := Σ \ (V1 ∪ V2), ∆(Σ′) ≤ ∆ and degΣ′(u) ≤ ∆− 2. So by lemma 2, there exists κ′,
a coloring of Σ′ with κ′(u) 6= 0. Assume we switched Σ so uu1 and uu2 are negative. Then
we can choose κ′ so that κ′(u) = c′. Note that Σ \ (V1 ∪ V2) is connected. So there exists a
connected ordering of V ′ with u as the last vertex. We continue the coloring from Σ1 and
Σ2 into Σ′ along this ordering by greedily coloring up to u. Then degΣ(u) = ∆, but we
know u has two neighbors of the same color. Thus u has a color available and the coloring
is proper. �

Remarkably, a vast generalization was proved quite quickly after the original signed
Brooks’ theorem appeared.
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Definition 25. We call a finite-set-valued vertex function L : V → Pfin(Z) a list function
and the set L(v) is the list for vertex v. Given L, if there exists a proper coloration κ of Γ
such that κ(v) ∈ L(v) for all v ∈ V , we say Γ is L-colorable.

Let f : V → Z≥0. If Γ is L-colorable for every list function L such that L(v) = f(v) for
all v ∈ V , then we say Γ is f -list-colorable.

If Γ is f -list-colorable for the constant function f ≡ k ∈ Z≥0, then Γ is called k-list-
colorable or k-choosable.

The list chromatic number of Γ is χlist(Γ) := min{k | Γ is k-list-colorable}.

The list analog of Brooks’ Theorem is a characterization of ∆-list-colorable simple graphs.
The generalization to signed graphs is:

Theorem 75 (Fleiner and Wiener [5]). A connected signed graph Σ in which all edges are
links, having no multiple edges of the same sign, is ∆(Σ)-list-colorable unless Σ is a balanced
Kn, a positive odd circle, a negative even circle, ±Kn for any n, or ±Cn for odd n ≥ 3.

Notes for 27 Mar. 2017 – Micah Loverro.

8.6. Colorations and Hyperplanes: The Geometry of λ-Coloring.
Throughout, we assume Σ has no loose edges. Loose edges trivialize everything!
Let κ be a coloration. We view now κ as an element of ([−k, k]∩Z)V ⊆ RV . We regard the

interval [−k, k]V = k[−1, 1]V as a rescaling of the centrally symmetric hypercube [−1, 1]V ,
which makes k into a dilation (or expansion) factor.

Integral Ehrhart theory.
For the time being, however, let’s discuss unsigned graph coloring, which is simpler. A

coloration will be a function V → {0, 1, . . . , λ− 1}. Then we use the polytope (λ− 1)[0, 1]V ,
where λ − 1 is the dilation factor for the unit hypercube, so κ ∈ (λ − 1)[0, 1]V ∩ ZV . The
condition for κ to be proper is that (i) κ(v) 6= κ(u)σ(e) for every link e:uv ∈ E, i.e., κ 6∈ he
where he is the hyperplane xu = xv corresponding to e, and (ii) κ(v) 6= 0 for each half edge
e:v ∈ E, i.e., κ 6∈ he:xv = 0. Thus, finding proper colorations is the same as finding integral
points in a box which is the dilated unit hypercube and that avoid all the forbidden edge
hyperplanes he. The number of proper λ-colorations is the number of lattice points in ZV
that are in the box but are not in any hyperplane. The number of such points is given by
the Ehrhart theory of inside-out polytopes.

[picture 1]
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Ehrhart Theory. [An introductory reference for Ehrhart theory is Beck and Robins [1].]
Let P ⊆ Rn be a closed integral polytope whose dimension is d (we say “integral d-

polytope” for short); that means its vertices are points of the integer lattice (which is the
only lattice we deal with in Ehrhart theory) and that the affine subspace spanned by P is
d-dimensional. For an integer t > 0, define the Ehrhart function EP (t) := the number of
lattice points in the dilated polytope tP .

Theorem 76 (Ehrhart Polynomial). If P is an integral d-polytope, then EP (t) is a polyno-
mial in t of degree d and with leading coefficient equal to the volume of P .

This theorem applies to nonconvex as well as convex polytopes, but from now on we assume
all polytopes are convex, as that is all (actually, more than) we need for graph coloring.

Let P ◦ denote the interior of P . Then EP ◦(t) = the number of lattice points in the interior
of tP .

Theorem 77 (Ehrhart Reciprocity). For an integral d-polytope P , EP ◦(t) = (−1)dEP (−t).

For proper colorations we are interested in the function EP (t) or EP ◦(t) where P is the
unit hypercube Qn := [0, 1]n in Rn and t = λ− 1 in the former case, t = λ+ 1 in the latter
(see below). I explained how to use the closed hypercube; for proper colorations, however,
it is better to use the open hypercube. If we use the color set [λ] = {1, . . . , λ}, then the
number of lattice points in P ◦ where P = (λ+ 1)[0, 1]V is the total number of colorations of
Γ. Another way to look at this is to divide the lattice points and maintain the same polytope;
then the number of colorations is the number of 1

t
-lattice points in the unit hypercube.

For proper colorations we forbid points in an edge hyperplane. The general setup is that
of a pair (P,H ) consisting of a convex polytope and an arrangement of hyperplanes, called
an inside-out polytope. We have a dilation factor t, a positive integer, and we form the
Ehrhart function EP,H (t) := the number of 1

t
-fractional points in P that are not in any of

the hyperplanes of H ; that is,

EP,H (t) := #
(
P ∩ 1

t
Zn \

⋂
H
)
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(I’m now writing n = #V instead of V ). Similarly, the open Ehrhart function is

E◦P,H (t) := #
(
P ◦ ∩ 1

t
Zn \

⋂
H
)
.

The advantage of using a fractional lattice instead of dilating the polytope is that the hyper-
planes need not be self-similar under dilation—a property that belongs only to homogeneous
hyperplanes. (In truth, we only use homogeneous hyperplanes for graph coloring; but I think
it is easier to see the whole picture when we keep the polytope and hyperplanes fixed.)

[picture 2] for unsigned graphs

The fractional lattice still has an integral polytope. That suffices for unsigned graphs,
but for signed graphs (this is not obvious but you will see why) we need the extension to
rational polytopes. That means P has vertices with rational coordinates that do not have
to be integers.

Rational Ehrhart theory.
This is the Ehrhart theory for polytopes with vertices in Qd. The definitions of the closed

and open Ehrhart functions are exactly the same as before, but the theorems are not. We
need a new invariant of P : its denominator D(P ) is the least common denominator of all
coordinates of vertices of P ; equivalently, it is the smallest number such that the vertex
set of P is contained in the D(P )-fractional lattice 1

D(P )
Zn; also equivalently, it is the least

positive integer t such that all vertices of tP are integral.
To handle rational polytopes we need a new concept. A function of positive integers,

f : Z>0 → R, is called a quasipolynomial if it is given by a cyclically repeating series of
polynomials. That means there are, say, π polynomials f0, f1, . . . , fp−1 such that f(n) =
fn mod π(n), where n mod π is the least nonnegative residue of n modulo π. The smallest π
for which that is true is called the period of f . Quasipolynomials appear in number theory
and analysis and have some equivalent forms that appear quite different at first sight, but
our interest comes from geometry through the first fundamental theorem of rational Ehrhart
theory:
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Theorem 78 (Ehrhart Quasipolynomial). Let P be a rational d-polytope in Rd. Then EP (t)
and E◦P (t) are quasipolynomials with degree d and leading coefficient volP . The period of each
quasipolynomial divides D(P ).

Thus we have polynomialsEP,0(t), . . . , EP,π−1(t), EP,π(t) = EP,0(t) with π|D(P ) andEP (t) =
EP,t mod π(t).

Given a quasipolynomial function of positive integers, the formula f(n) = fn mod π(n)
automatically extends it to all integers, in particular to negative integers. That leads up to
the second fundamental theorem of rational Ehrhart theory:

Theorem 79 (Ehrhart Reciprocity). For a rational d-polytope in Rd, E◦P (t) = (−1)dEP (−t).

This implies, in particular, that the closed and open Ehrhart quasipolynomials have the
same period.

In coloring signed graphs we only have to deal with at most two polynomials.

Theorem 80. The denominator D(P,H [Σ]) = 1 if Σ is balanced, and it = 2 if Σ is not
balanced. Moreover,

χΣ(t− 1) = EP,0(t) and χbΣ(t− 1) = EP,1(t).

I will prove this shortly through geometry supplemented with a little algebra.

Notes for 29 Mar. 2017 – Ted Ofner.

8.7. The Ehrhart Setup for Signed-Graph Coloring.
Let Σ be a signed graph and H [Σ] its corresponding homogeneous arrangement of hyper-

planes. Given λ ∈ Z>0, let χΣ(λ) be the number of proper λ-colorations of Σ. We have seen
that,

χΣ(λ) =

{∣∣(−λ+1
2
, λ+1

2
)n ∩ Zn \

⋃
H [Σ]

∣∣ for odd λ,∣∣[(−λ+1
2
, λ+1

2
) \ 0]n ∩ Zn \

⋃
H [Σ]

∣∣ for even λ.

We can see the basic ideas of Ehrhart polynomials, but the setup is not quite correct.
Firstly, we do not have a single polytope we can consider. To that end, we adjust our color
scheme.

Recall that for odd λ = 2k + 1 we use colors

{−k,−(k − 1), . . . ,−1, 0, 1, . . . , k − 1, k},
Consider the subsitution k = λ−1

2
. After this, our odd color set becomes{

− λ− 1

2
,−λ− 3

2
, . . . ,−1, 0, 1, . . . ,

λ− 3

2
,
λ− 1

2

}
,

so it is clear that we count vectors in (−λ+1
2
, λ+1

2
)n ∩ Zn.

However, for even λ = 2k, we use colors

{−k,−(k − 1), . . . ,−1, 1, . . . , k − 1, k}.
Our analogous substitution to the odd case is k = λ

2
, which gives us a color set,{

− λ

2
,−λ− 2

2
, . . . ,−1, 1, . . . ,

λ− 2

2
,
λ

2

}
.
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This set is the same size as{
− λ− 2

2
,−λ− 4

2
, . . . ,−1, 0, 1, . . . ,

λ− 2

2
,
λ

2

}
.

Then shifting by −1
2

gives a color set{
− λ− 1

2
,−λ− 3

2
, . . . ,−1

2
,
1

2
,
3

2
, . . . ,

λ− 3

2
,
λ− 1

2

}
.

Thus, in both the odd and even case we can count vectors away from H [Σ] with coordi-
nates in {λ−1

2
− i, i = 0, 1, . . . , λ− 1}. The polytope we initially consider, then, is the open

polytope (λ+ 1)(−1
2
, 1

2
)n, and we can write

χΣ(t− 1) =
∣∣∣(− 1

2
,
1

2

)n
∩ 1

t

(
Z +

( t
2

mod 1
))n
\
⋃

H [Σ]
∣∣∣

We want to use a polytope with unit volume so our resultant Ehrhart quasipolynomial
is monic, which will make it exactly the chromatic quasipolynomial. The current setup,
however, does not quite get us all the way, since there is the problem of the dependence on
t of the scaled lattice Z + ( t

2
mod 1. To fix this, we adjust our color sets one more time.

Instead of considering { t−2
2
− i, i = 0, 1, . . . , t− 2} in (− t

2
, t

2
), we shift both sets by t

2
so we

consider {0, 1, . . . , t− 1} in (0, t). This means we can always consider the lattice Z, but our
polytope is no longer centered; namely, (−1

2
, 1

2
)n is shifted by the vector 1

2
1 = (1

2
, 1

2
, . . . , 1

2
) (1

is the all-ones vector) to become (0, 1)n. The theory of Ehrhart polynomials has no problem
with this, as long as we shift our hyperplane arrangement correspondingly.

Let, therefore, Ĥ [Σ] = H [Σ] + 1
2
1, i.e., we shift all hyperplanes by the vector 1

2
1.

This gives us our desired Ehrhart description of χΣ.

Theorem 81. χΣ(t− 1) = |(0, 1)n ∩ 1
t
Zn \ Ĥ [Σ]|. �

8.7.1. The Denominator of the Chromatic Quasipolynomial.
If Σ is balanced, switch it to be all positive. Then all hyperplanes in H [Σ] have the

form xv = xu. This equation is unchanged by a shift of (1
2
, 1

2
, . . . , 1

2
), so all hyperplanes in

Ĥ [Σ] have the same form as before. The inside-out polytope ([0, 1]n, Ĥ [Σ]) has vertices
determined only by equations of the form xv = xu, xv = 0, or xv = 1. Combining such
equations can only determine a point with coordinates all 0 or 1. This the denominator of
χΣ is 1 when Σ is balanced.

If Σ is unbalanced, it may have some negative edges. In terms of H [Σ], this means
some equations for hyperplanes take the form xv = −xu. Shifted by 1

2
1, the corresponding

hyperplane in Ĥ [Σ] is xv + xu = 1. We find vertices of ([0, 1]n, Ĥ [Σ]), then, by combining
equations of the forms xv = xu, xv = 0, xv = 1, or xv + xu = 1. Combining such equations
can only determine a point with coordinates 0, 1, or 1

2
. Therefore, the denominator of χΣ is

2 when Σ is unbalanced.
Summing up:

Theorem 82. The inside-out polytope for coloring Σ has denominator 1 if Σ is balanced
and 2 if it is unbalanced. �

This theorem implies that the Ehrhart quasipolynomial—that is, the chromatic quasipoly-
nomial—is a polynomial when Σ is balanced. It does not imply that the quasipolynomial
has period 2 when Σ is unbalanced, because the period is only known to be a divisor of
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the denominator. However, we have formulas for χΣ(λ) from which we can deduce that the
chromatic quasipolynomial has period 2—it is two different polynomials—for an unbalanced
signed graph.

Problem 4. Prove that, for unbalanced Σ, the period of the chromatic quasipolynomial is
exactly 2. Use a formula or formulas we proved previously.

Notes for 31 Mar. 2017 – Chris Eppolito.

9. Orientation

9.1. Orientations of Signed Graphs.
Let Σ = (V,E, σ) be a signed graph. Recall that an orientation of Σ is a function τ taking

the set of ends of edges of Σ to {+,−} such that σ(e:vw) = −τ(v, e, εv)τ(w, e, εw). A few
simple things to note about orientations:

(1) We will often be a bit lax about edge ends, and simply denote (v, e, εv) by (v, e).
(2) Orientation is a condition at the ends of an edge. (This is clear from the definition,

but bears repeating.)
(3) Links and loops have two distinct ends, but half edges have one end and loose edges

have no ends.
(4) In pictures we use the following conventions at the ends of an edge:10

+ −

(5) Negative edges have opposing orientations at their ends, whereas positive edges have
agreeing orientations at their ends:11

+ −

+ −

(6) The edges of a signed graph are bidirected under an orientation.

We let O(Σ) denote the set of orientations of Σ.

Definition 26. A walk W = v0e1v1 · · · vl−1elvl in Σ is coherent with orientation τ when
τ(vi, ei−1)τ(vi, ei) = − for all i. A closed walk is closed coherent with τ if this condition
holds with subscripts interpreted mod l. A cycle is a coherently oriented closed walk.

Definition 27. An orientation τ is acyclic when it has no cycles, and τ is totally cyclic
when every edge of Σ belongs to a cycle under τ .

We let A O(Σ) denote the set of acyclic orientations of Σ.

10In the pictures below, the signs indicate the value of τ at the indicated end of the edge and the arrows
indicate the convention we use to denote this orientation at that end.

11In the pictures below, the signs indicate the sign on the edge and arrows indicate the orientation at the
ends of the edge.
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Definition 28. A pair (τ, κ) with orientation τ and coloration κ is called proper when for
every edge of the form e:vw we have τ(v, e)κ(v) + τ(w, e)κ(w) > 0. The pair is compatible
when the inequality above is weak.

The following proposition is easy to prove (the proof amounts to a series of observations).

Proposition 83. Let τ be an orientation of Σ and κ a coloration.

(1) If κ is an improper coloration, then (τ, κ) is improper.
(2) If (tau, κ) is proper, then for an edge e:vw, κ(w) > κ(v) implies τ(w, e) = +.
(3) If κ is a proper coloration then there is a unique acyclic orientation τ such that (κ, τ)

is proper.

There is a famous theorem of Richard Stanley’s for unsigned graphs:

Theorem 84. The number of proper pairs (κ, τ) with κ a λ-coloration of Γ is precisely χΓ(λ).
The number of compatible pairs (κ, τ) with κ a λ-coloration is precisely (−1)nχΓ(−λ).

Zaslavsky proved that the same holds for signed graphs! (The proof is omitted due to lack
of time; up to some complications the proof is the same as that for unsigned graphs.)

9.2. Digression on Signed Digraphs.
I will not discuss the theory of signed digraphs; the point here is only that these objects

are indeed different from oriented signed graphs. One can see this in the very definition of
balance.

Definition 29. A signed digraph is a pair (D, σ), where D is a directed graph and σ :
E(D) → {+,−} is a sign function. A directed cycle is a loose edge of D or a circle agree-
ing with the directions on E(D). The signed digraph (D, σ) is called balanced when the
underlying signed graph is balanced, and cycle balanced when every cycle is positive.

Thus, balance implies cycle balance, but not the reverse. I do want to mention, though,
the nice theorem connecting the two kinds of balance.

Theorem 85 (Harary–Norman–Cartwright [7]). A strongly connected digraph with edge
signs is cycle balanced if and only if it is balanced.

The theorem fails as soon as the underlying digraph has a component that is not strongly
connected.

Notes for 3 Apr. 2017 – (Josh Carey).

Notes for 5 Apr. 2017 – Amelia Mattern.

Given an orientation τ , define a mapping R̄ : τ → R̄(τ) ⊆ Rn by

τ 7→


{x ∈ Rn | τ(u, e)xu + τ(v, e)xv > 0 for e:uv,

τ(u, e) > 0 for e:u} if there are no loose edges,

∅ if there any loose edges.

It is clear that R̄(τ), if not empty, is a region of H [Σ].
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Conversely, define a mapping τ̄ : R 7→ τR of regions to orientations by choosing a point
x ∈ R and letting τR satisfy

τR(u, e)xu + τR(v, e)xv > 0 if e:uv ∈ E

and

τR(u, e)xu > 0 if e:u ∈ E.

Note that the choice of x ∈ R is immaterial.

Theorem 86. The acyclic orientations of Σ correspond (bijectively) to the regions of H [Σ]
by the mapping R̄. The inverse function is τ̄ .

Remark 2. There are no regions if Σ has a loose edge or positive loop. That is fortunate,
since τ(u, e)xu + τ(v, e)xv = [τ(u, e) + τ(v, e)]xv = 0xv = 0 for a positive loop; therefore the
inverse function would be ill-defined when Σ has a positive loop if there were any regions.

Remark 3. For e:uv, the hyperplane is he : xu−σ(e)xv = 0. Equivalently, he : σ(e)xu−xv = 0.
For the former, one half-space of he is xu− σ(e)xv > 0 and the other is xu− σ(e)xv < 0. For
the latter, one half-space of he is σ(e)xu−xv > 0 while the other is σ(e)xu−xv < 0. We will
use only the former equivalent version of he and its half-spaces.

Remark 4. Suppose an edge e:uv is oriented so that τ(u, e)xu − τ(u, e)σ(e)xv = 0, or in
other words τ(u, e)[xu − σ(e)xv] = 0. A point x 6∈ he chooses the value τ(u, e) that makes
τ(u, e)[xu − σ(e)xv] > 0, in other words the value τ(u, e) = sgn(xu − σ(e)xv). If an edge is
oriented so that τ(u, e)xu + τ(v, e)xv = 0 then a similar choice is made. These are proven to
be well-defined by a calculation.

Proof. First note that τR̄(τ) = τ (if R̄(τ) 6= ∅) and R̄(τR) = R since both function definitions

have the same conditions. Also note that R̄(−τ) = −R̄(τ), which shows that reversing the
orientation is central reflection of the regions (hence the set of regions is centrally symmetric).

Let B = (Σ, τ) be a bidirected cycle, so Σ(B) is a positive circle or a contrabalanced
handcuff. We want to show that R̄(B) = ∅. Note that switching Σ(B) has the effect of
reversing coordinate axes. In other words, Σ(B) switched by vertex u changes xu to −xu in
all the formulas, so it amounts to reversing the u-axis. Therefore, we may switch as desired.

Case 1: Assume B is a positive circle v0e1v1e2 . . . vn−1envn where v0 = vn. Switch so
Σ(B) is all positive. Then Σ(B) is oriented v0 → v1 → v2 → . . . (or the opposite). Thus
τ(vi−1, ei) = − and τ(vi, ei) = + for all i. So R̄(τ) will have τ(vi−1, ei)xi−1 + τ(vi, ei)xi > 0.
Thus xi > xi−1 for all i. So xn > . . . > xi > xi−1 > . . . > x1 > x0 = xn. This is impossible.
Therefore, R̄(τ) = ∅.

Case 2: Assume B is a contrabalanced handcuff and assume Σ(B) is as shown in the
figure below, with a1 and b1 the only negative edges after switching.
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The path from v0 to vl gives us xvl > xv0 if l > 0 and xvl = xv0 if l = 0. The path from u1

to uk gives us xuk > xuk−1
> . . . > xu1 . So xuk > xu1 if k > 1 and xuk = xu1 if k = 1. The

path from w1 to wm gives us xw0 = xwm ≤ xw1 . So xu0 ≥ xu1 , xw0 ≤ xw1 , and xw0 ≥ xu0 . The
negative edges give us xu0 + xu1 > 0 and xw0 + xw1 < 0. Using all of this together we get

xw0 ≥ xu0 ≥ xu1 and xu0 + xu1 > 0 =⇒ xu0 > 0 =⇒ xw0 > 0

xw0 ≤ xw1 and xw0 + xw1 < 0 =⇒ xw0 < 0.

A contradiction! Thus R̄(τ) = ∅. �

Notes for 19 Apr. 2017 – Micah Loverro.

We assume Σ has no loose edges, since if it does things become trivial (there are no acyclic
orientations and no regions). Recall that R[Σ] is the set of regions of H [Σ], O(Σ) is the set
of orientations of Σ, and A O(Σ) is the set of acyclic orientations of Σ.

We have the function R̄ : O(Σ)→ R[Σ] ∪ {∅} given by

τ 7→ {x ∈ Rn | τ(vi, e)xi + τ(vj, e)xj > 0 for e:vivj, τ(vi, e)xi > 0 for e:vi}.
In the other direction we have R[Σ] → A O(Σ) ⊆ O(Σ), given by R 7→ τR where τR is
defined by requiring τR(vi, e)xi + τR(vj, e)xj > 0 for all e:vivj and τR(vi, e)xi > 0 for all e:vi,
where x is any point in R (it doesn’t matter which).

The mapping R̄ is one-to-one since the orientation can’t change without crossing a hyper-
plane.

Proposition 87. The functions above satisfy

(1) R̄(τR) = R and
(2) τR̄(τ0) = τ0 if R̄(τ0) 6= ∅.

Proof. These properties follow easily from the definitions. �
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By Part (1), R̄ is onto R[Σ]. It is easy to see that the mapping τ̄ : R 7→ τR is injective.

Theorem 88. The function τ̄ : R[Σ]→ A O(Σ) is a bijection.

Proof Attempt (incomplete). We need to show that every acyclic orientation is τR for some
region R, i.e., R̄(τ) 6= ∅ if τ is acyclic.

First, assume Σ is all positive, or that we are just in the case of graphs. Each e+:vivj
corresponds to the hyperplane he:xi = xj. The orientation is either

−→
vivj or

−→
vjvi. The

possibilities for a link are τ(vi, e) = −1 and τ(vj, e) = +1 so xj > xi, or τ(vi, e) = +1 and
τ(vj, e) = −1 so xi > xj. For a half edge, e:vi is oriented toward or out of vi, thus xi > 0 or
xi < 0.

Let τ be an acyclic orientation of +Γ. For each e:vivj we have vi > vj or vi < vj, and for
each e:vi we have vi > 0 or vi < 0.

Lemma 89. This relation extends to a partial ordering of V ∪ {0}.

Proof. Extend > by transitivity. Suppose to the contrary we have a reflexivity v1 < v1. That
means there exist v1 < v2 < · · · < vp < v1 in V . Choose p minimal, so there are no repeats
among the vi. Therefore we have a cycle in (Γ, τ), contrary to the hypothesis. If 0 < 0, there
exist 0 > v1 > · · · > vp > 0, so we still get a cycle. Therefore, no reflexivity exists, and that
implies no symmetric pair vi > vj > vi exists. Thus, we have a partial ordering. �

Proposition 90. Let Γ be a graph.

1. An acyclic orientation of Γ determines a partial ordering of V .
2. A partial ordering of V determines an acyclic orientation of Γ by orienting e:vivj from

the lesser vertex to the greater vertex.

Proof. Part 1 is shown in the lemma. For Part 2, there are no cycles because there are no
downward edges. �

This correspondence is not a bijection, as multiple partial orderings may give the same
orientation.

Now we complete the proof of [Theorem 88? Is it the right theorem?] Given
τ ∈ A O(Γ), define x ∈ R̄(τ) as follows. Choose a linear extension of the partial ordering
defined by τ . By choice of names, we may assume v1 < v2 < · · · < vn. Let xi = i. Then
x ∈ R̄(τ). Since R̄(τ) is nonempty, it is a region. �

Notes for 21 Apr. 2017 – Ted Ofner.

In this lecture we attempted to prove that every acyclic orientation α of a signed graph
Σ produces a corresponding region R(α); i.e., R(α) is non-empty.

Recall that for an unsigned graph (in signed graph terms, an all positive graph) Γ we
proved that an acyclic orientation α of Γ induces a well formed (strict) partial order <α

on V (Γ) ∪ {0} such that all oriented edges point in an increasing direction. This allowed
us to show the corresponding region R(α) was empty by constructing a point in RV with
coordinates values satisfying the inequalities of their corresponding vertices.

Turning to general signed graphs, we begin by assuming Σ is switched in such a way
that Σ+ is a connected spanning subgraph. Our recalled fact gives a partial ordering <α
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on V (Σ+) ∪ {0} = V (Σ) ∪ {0}. We hope to add in our negative edges without creating any
contradictions.

Consider the inequalities implied by a negative edge. The two posibilities for a negative
edge are shown in the diagram below:

In the context of the regions, Type 1 would induce the inequality xu + xv < 0; Type 2
would induce the inequality xu + xv > 0. Half edges induce xu < 0 or xu > 0 depending
on the orientation, and negative loops act the same as half edges. After some thought and
discussion, we arrived at the following general scenario which captures the different ways an
orientation could produce a contradiction in its induced inequalities:

This diagram describes the 9 disctinct cases which result in contradictory induced inequal-
ities. In each case, an item from the top row is connected to an item in he bottom row by a
path or paths connecting the marked vertices. All connecting paths are oriented coherently
pointing from the bottom vertices to the top vertices. The paths are not assumed to be
internally disjoint, since no matter which case is constructed, an oriented cycle can be found
as a subgraph. As such, an acyclic orientation of Σ can be seen to induce no contradictory
inequalities on its region R(α).

Having established that our induced inequalities were non-contradictory, however, was not
enough for us to actually construct a point x ∈ R(α). We discussed for a bit, but failed to
arrive at a solution.

Notes for 24 Apr. 2017 – Chris Eppolito.
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10. Coloration and Orientation: The Signed Stanley Theorem

Let Σ = (V,E, σ) be a signed graph without loose edges and positive loops. Recall that a
pair (α, κ) in which α is an orientation of Σ and κ is a coloration of Σ is compatible when
the inequalities below are all satisfied:

α(v)κ(v) + α(w)κ(w) ≥ 0 for e:vw ∈ E,
α(v)κ(v) ≥ 0 for e:v ∈ E.

A compatible pair is proper when the inequalities above are satisfied strictly. We seek to
prove the following theorem over the next several meetings:

Theorem 91 (Signed Stanley Theorem). The number of proper pairs (α, κ) in which κ is any
λ-coloration equals χΣ(λ). Furthermore, the number of compatible pairs equals (−1)#V χΣ(−λ).

In what remains we set the stage with the ingredients for a proof.
Primarily, notice that bidirection of (Σ, α) and acyclicity of α imply the existence of a

unique canonical incidence matrix H = H(Σ) = (ηv,e)v∈V,e∈E for Σ. For an edge e ∈ E,
let ηe denote the column of H corresponding to the edge e. We collect several simple facts
concerning this notation.

1. The entry ηve of H(Σ) satisfies

ηve =
∑

incidences (v,e)

α(v, e) =


0 if e is not incident to v, or e:vv is a positive loop,

±1 if e:vw for w 6= v,

±2 if e:vv is a negative loop.

2. The hyperplane he equals η⊥e = {x ∈ RV | ηe · x = 0}.
3. The closed half-space h≥e equals {x ∈ RV | ηe · x ≥ 0}.
4. The open half-space h>e equals {x ∈ RV | ηe · x > 0}.
Recall that for use in the Ehrhart theory of graph coloring we defined the shifted hyper-

plane arrangement of Σ to be

H ][Σ] = {he + 1
2
1 | e ∈ E}.

We collect some remarks from previous lectures in the following list. Let λ ∈ Z≥0. Then

1. The proper λ-colorations of Σ correspond to the 1
λ+1

-fractional points of (0, 1)V \⋃
H ][Σ].

2. All λ-colorations correspond to the 1
λ−1

-fractional points in [0, 1]V .
3. (Theorem 81) The open Ehrhart quasipolynomial and chromatic quasipolynomial are

related by
E◦[0,1]V ,H ][Σ](λ+ 1) = χΣ(λ).

Finally, recall the following theorems from earlier in the course.

Theorem 92. The acyclic orientations of Σ are in natural bijection with the regions of the
hyperplane arrangement H [Σ].

Theorem 93. For A ⊆ E,

µLat(Σ)(∅, A) =
∑
S⊆A

clos(S)=A

(−1)#S.
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Theorem 94. The chromatic polynomial of Σ satisfies

χΣ(λ) =
∑

A∈Lat(Σ)

µ(∅, A)λb(A)

for all odd positive integers λ.

Theorem 95. The Möbius function of Lat(Σ) alternates in sign.12 Specifically,

(−1)rk(A)µ(∅, A) ≥ 0

(and it is positive if ∅ is closed, i.e., Σ has no positive loops or loose edges.

Theorem 96 (Ehrhart Reciprocity). The Ehrhart quasipolynomial of a polytope Q satisfies

EQ(k) = (−1)dim(Q)E◦Q(−k)

for every k ∈ Z≥0.

Theorem 97. The Ehrhart quasipolynomial of an inside-out polytope (P,H ) satisfies13

EP,H (k) =
∑

s∈L (H )

µL (H )(∅, s)EP∩s(k).

To prove the Signed Stanley Theorem (Theorem 91), we need the following proposition.
For a λ-coloration κ considered as a point in [0, 1]V as above, let t(κ) denote the intersection
of all hyperplanes h ∈H ][Σ] such that κ ∈ h.

Proposition 98. Each λ-coloration κ belongs to precisely

c(κ) =
∑

s∈L (H [Σ])
t(κ)⊆s

|µL (H [Σ])(∅, s)|

closed regions of H ][Σ].

We will prove this over the next few lectures.

Notes for 26 Apr. 2017 – Josh Carey.

The number of 1
λ+2

-fractional lattice points in [0, 1]n∩u for u ∈ L (H ][Σ]) is E[0,1]n∩u(t) =

(λ+ 1)dimu, because if we project u onto a face of [0, 1]n of dimension dimu, the projection
is a bijection of lattice points. To get the number we apply the main theorem of inside-out

12This theorem is due to Rota. It holds more generally for semimodular lattices. See Stanley, Enumerative
Combinatorics, Volume I.

13This is the central theorem of inside-out Ehrhart theory. See Beck and Zaslavsky, “Inside-Out
Polytopes”.
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theory (the first equality following):

E0
[0,1]n,H ](−λ+ 1) =

∑
u∈L (H ][Σ])

µL (∅, u)E0
[0,1]n∩u(−λ+ 1)

=
∑

A∈Lat Σ

µ(∅, A)λb(A)(−1)b(A)

=
∑

A∈Lat Σ

(−1)n−b(A)|µ(∅, A)|λb(A)(−1)b(A)

= (−1)n
∑

A∈Lat Σ

|µ(∅, A)|λb(A).

Now we use a theorem of Rota’s to show that we have here an evaluation of the chromatic
polynomial.

Theorem 99 (Rota). |µ(∅, A)| = (−1)rkAµ(∅, A) = (−1)n[(−1)b(A)µ(∅, a)].

So we can replace signs in the chromatic polynomial by absolute values:

χΣ(−λ) =
∑

A∈Lat Σ

µ(∅, A)(−1)b(A)λb(A)

=
∑

A∈Lat Σ

(−1)n|µ(∅, A)|λb(A)

= (−1)n
∑

A∈Lat Σ

|µ(∅, A)|λb(A).

Shifting the sign factor to the other side, we get the formula we were after:

(−1)nχΣ(−λ) =
∑

A∈Lat Σ

|µ(∅, A)|λb(A)

= E0
[0,1]n,H ](−λ+ 1).

Disclaimer: There are some errors in these notes which were corrected in the subsequent
lecture.

Notes for 28 Apr. 2017 – Amelia Mattern.

Summarizing essential facts of Ehrhart theory:

1. E◦Q(t) = (−1)dimQEQ(−t) for a rational polytope Q and an integer t.

2. E◦Q∩H (t) = (−1)dimQEQ,H (−t) for a rational hyperplane arrangement H .

3. E◦P,H (t) =
∑

s∈L (H ) µ(0̂, s)E◦P∩s(t) for P = [0, 1]n in Rn.

A main consequence of Theorem 97 is its closed version.

Corollary 100. For a rational hyperplane arrangement H and rational polytope P in Rn,

EP,H (t) =
∑

s∈L (H )

(−1)codim sµ(0̂, s)EP∩s(t) =
∑

s∈L (H )

|µ(0̂, s)|EP∩s(t).

Our P will be [0, 1]n but this is general, provided that P is full-dimensional and every
hyperplane of H intersects the polytope’s interior, P ◦.
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Proof. We assume the dimension of P is n. We have the following equalities:

EP,H (t) = (−1)nE◦P,H (−t)

= (−1)n
∑

s∈L (H )

µ(0̂, s)E◦P∩s(−t)

= (−1)n
∑

s∈L (H )

µ(0̂, s)(−1)dimP∩sEP∩s(t)

= (−1)n
∑

s∈L (H )

(−1)dim sµ(0̂, s)EP∩s(t)

=
∑

s∈L (H )

(−1)codim sµ(0̂, s)EP∩s(t)

=
∑

s∈L (H )

|µ(0̂, s)|EP∩s(t),

since codim s = rk s and sgnµ(0̂, s) = (−1)rk s. �

Now we let P = [0, 1]n in Rn with H ][Σ] as previously defined. Let s ∈ L (H ][Σ]). Let
Q = P ∩ s and let H be the induced arrangement in s, which is

H ]s := {h ∩ s : h ∈H ][Σ] and s 6⊆ h}.

The principal fact of Ehrhart theory applied to signed graphs, previously proved, is:

4. E◦
P,H ][Σ]

(λ+ 1) = χΣ(λ) for odd λ.

We now present our proof of the Signed Stanley Theorem, Theorem 91.

Proof. We have an integer λ > 0. We know that

χΣ(−λ) = E◦P,H ][Σ](−λ+ 1) = (−1)nEP,H ][Σ](λ− 1)

by reciprocity. We do this in order to count the fractional lattice points κ. The latter sum

= (−1)n
∑

s∈L (H ][Σ])

|µ(0̂, s)|EP∩s(λ− 1),

which gives us the number of 1
λ−1

-fractional points in P ∩ s. We rewrite this as a sum over
individual lattice points κ so we can reverse the order of summation:

(−1)n
∑

s∈L (H ][Σ])

∑
κ∈s

|µ(0̂, s)| = (−1)n
∑
κ

∑
s3κ

|µ(0̂, s)|.

Note that we are using the color set {0, 1
λ−1

, 2
λ−1

, . . . , λ−1
λ−1
}, which has a total of λ colors—

just the right number. Now let t(κ) be the smallest flat of H ][Σ] that contains κ, i.e.,
t(κ) :=

⋂
{s ∈ L : s 3 κ}. So

χ(λ) = (−1)n
∑
κ

∑
s3κ

|µ(0̂, s)| = (−1)n
∑
κ

∑
s⊇t(κ)

(s≤t(κ))

|µ(0̂, s)|,
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where s ⊇ t(κ) = {s ∈ L (H ][Σ]) : s ⊇ t(κ)}. Define H (u) = {h ∈ H : h ⊇ u}. Then
s ∈ L (H ) contains u if and only if s ∈ L (H (u)). Thus,∑

s⊇t(κ)

|µ(0̂, s)| =
∑

s∈H ][Σ](t(κ))

(−1)codim sµ(0̂, s).

Recall that the characteristic polynomial of H has the formula

pH (θ) =
∑

s∈L (H )

µ(0̂, s)θdim s = (−1)n
∑

s∈L (H )

µ(0̂, s)θcodim s.

Therefore, ∑
s∈H ][Σ](t(κ))

(−1)codim sµ(0̂, s) = (−1)npH ][Σ](t(κ))(−1),

where -1 is the number of regions of H ][Σ](t(κ)).
All of these regions D contain t(κ) so they all contain κ. But they are cut up by H ][Σ] \⋃
H ][Σ](t(κ)) into subregions R that are regions of H ][Σ]. Since κ is not in any of those

left-out hyperplanes it is in only one of those subregions R for each D. Therefore, κ is in
exactly (−1)npH ][Σ](t(κ))(−1) closed regions of H ][Σ]. Equivalently, κ is compatible with
that number of acyclic orientations. It follows that

χΣ(−λ) = (−1)n
∑
κ

(the number of acyclic orientations compatible with κ)

= (−1)n(the number of compatible pairs altogether). �

Notes for 1 May 2017 – Micah Loverro.

11. No Two Disjoint Negative Circles—with Projective Planarity

We now turn to a combinatorial problem about signed graphs that has a topological
answer.

Since negative circles are fundamental to signed graphs, a natural question to ask is:
Which signed graphs have no two disjoint negative circles? The answer is due to Lovász and
Slilaty.

Theorem 101. The signed graphs with no two disjoint negative circles are the following:

(1) Projective-planar signed graphs,
(2) signed graphs Σ with a balancing vertex v,
(3) some others, and
(4) certain simple balanced extensions of the above.

(The theorem is stated precisely and completely in Theorem 113.)
Graphs of type (2) clearly have the property. Since any circle in Σ \ v is positive, any two

negative circles in Σ must have at least v in common.
(Recall that the subgraphs that give minimal dependencies (i.e., circuits in the matroid)

are (i) the contrabalanced handcuffs (two disjoint negative circles connected by a path, or
two negative circles touching only at a vertex, and (ii) a positive circles. Thus this leads
naturally to a slightly different question: Which signed graphs contain no subgraphs of type
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(i)? Then the only circuits would be the positive circles. This question has a very different
answer; see [19].)

11.1. Surface embedding of signed graphs.
We now consider embeddings of signed graphs into closed surfaces. Throughout, we assume

that Σ has no loose edges or half-edges. [For these embeddings see [17].]
Let Tg be the orientable closed surface of genus g. It is the sphere with g handles; that

is, the connected sum of a sphere with g tori. Let Uh be the connected sum of h copies of
the projective plane P2. We also view Tg as a sphere with g handles and Uh as sphere with
h cross-caps. Recall that the Euler characteristic of Tg is 2 − 2g and the demigenus is 2g.
The Euler characteristic of Uh is 2 − h and the demigenus is h. A handle can be added as
a prohandle or an antihandle. They correspond respectively to the connected sum with a
torus or Klein bottle. Connected sum induces a partial order on closed surfaces: A ≤ B if
B can be constructed by attaching handles or cross-caps to A.

If we allow graph embeddings which are not cellular, then an embedding in a smaller
surface automatically gives an embedding in any larger surface since we are free to attach
additional handles or cross-caps in any of the regions. A natural question is then: Given a
graph Γ, what is the smallest surface for which there exists an embedding?

For this we need a combinatorial description of an embedded graph, or at least a cellularly
embedded graph. A rotation at a vertex vi as a cyclic permutation edge ends incident to vi.
A rotation system for a graph is a function

ρ : V → {cyclic permutations of edge ends}
such that each ρ(vi) is a rotation at vi.

Rotations can be regarded as permuting the neighboring vertices if (and only if) the graph
is simple. For example, if v1 is adjacent to vertices v2, v5 and v9, with no loops or multiple
edges involving v1, then we can regard the rotation at v1 as (v2v5v9) or (v2v9v5). If there
are loops or multiple edges, we need to distinguish further since an edge end incident to vi
is not determined by its adjacent vertex.

Theorem 102. The orientable cellular embeddings of a graph Γ correspond bijectively to the
rotation systems on Γ.

This is a special case of a signed-graph generalization. A rotation system for a signed
graph Σ is a rotation system for |Σ|.

Proposition 103. Given an orientation embedding Σ ↪→ S of a balanced signed graph into
a closed surface S, there is a cellular embedding Σ ↪→ Tg ≤ S into an orientable surface Tg
smaller than or equal to S.

Proof Sketch. The initial orientation embedding gives us a rotation system. Consider a walk
starting at some vertex v0, and choose an edge incident to v0 to start with. From the next
vertex v1, follow the rotation at v1 and use the next edge end in the rotation at v1 to extend
the walk. We need to make a modification if we arrive at a vertex vi by following a negative
edge; then we use ρ−1(vi) instead of ρ(vi). Given the initial choice of vertex and edge, this
gives a well-defined walk which will eventually return to v0. The final step is to glue 2-cells
along each such walk. �

57



Notes for 3 May 2017 – Chris Eppolito.

Now I assume the reader is familiar with the classic theorem that classifies all closed,
connected surfaces (the only kind we need to consider).14

Theorem 104 (Classification of Closed Surfaces). Every compact, connected surface without
boundary is a connected sum of tori and projective planes. Every compact, connected surface
without boundary can be expressed as a quotient space of a closed polygonal disk by pairwise
identifications of edges.

Thus we can draw planar diagrams of surfaces. Here are some typical examples:

Sphere

T0 = S2

α

β

α β

Torus
T1

α

α

β β

Projective Plane

P2

α

α

β β

Klein Bottle
U2

α

α

β β

There are more efficient ways to draw some of these diagrams . . . .
We use the following notations:

(1) The orientable surface of genus g is denoted by Tg.
(2) The unorientabe surface of demigenus d is denoted by Ud.
(3) The symbol # denotes connected sum of surfaces. That means taking a disk in each

surface, cutting out the interior, and identifying the two boundary circles.
(4) Surfaces S ≤ T iff T ∼= S#S ′ for some surface S ′.

The theory of graph embeddings is well studied; Graph Theory by Bondy and Murty and
Graphs on Surfaces by Mohar and Thomassen are good references for the elementary theory.
We now develop a small portion of this theory for signed graphs.

Definition 30. An orientation embedding of a signed graph Σ (assumed to have no loose
or half edges) in a surface S is an embedding of |Σ| in S such that a circle C of Σ is positive
if and only if the embedded C is orientation preserving in S. We write Σ ↪→ S to denote Σ
admits an orientation embedding into S.

(In graph embedding we only consider graphs without loose and half edges. Loose edges
embed as contractible circles separate from the rest of the graph and half edges require
boundary.)

14Algebraic Topology: An Introduction by William S. Massey is a good reference.
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Example 7. The following diagram depicts an orientation embedding −K4 ↪→ P2 via planar
diagram:

α

α

β β

We collect several simple facts about orientation embeddings in Proposition 106. First we
should define link minors

Definition 31. A link minor of a signed graph Σ is a minor of Σ such that when expressed
as a series of single-edge contractions followed by a deletion, each contraction is a contraction
of a link.

Proposition 105. A minor of Σ is a link minor if and only if it is obtained from a subgraph
of Σ by contracting a forest.

Proof. Exercise. �

Proposition 106. Let Σ be a signed graph and let S be a surface.

1. If Σ ↪→ S, then also all switchings Σζ ↪→ S.
2. If Σ ↪→ S, then Σ \ e ↪→ S for all e ∈ E.
3. If Σ ↪→ S, then Σ/e ↪→ S for all e ∈ E.
4. The class of signed graphs that orientation-embed in S is closed under taking link mi-

nors.
5. If Σ ↪→ S and S ≤ T , then Σ ↪→ T .

Proof. Exercise. These proofs mostly mimic the proofs of the corresponding statements for
unsigned graphs. �

Under our partial order on surfaces, Tg < Uh if and only if 2g < h. This fact can be
leveraged to prove the following simple results. The surface S(Σ) in part 2 is called the
minimal surface of Σ. We let d(Σ) denote the demigenus of S(Σ).

Proposition 107. Let Σ be a signed graph.

1. If Σ is balanced and Σ ↪→ Ud, then Σ ↪→ Tb(d−1)/2c.
2. There is a surface S(Σ) such that Σ ↪→ T if and only if T ≥ S(Σ).
3. The minimal surface S(Σ) is a switching-isomorphism invariant of Σ.
4. If Σ is balanced, then S(Σ) = Tg for some genus g.
5. If Σ is unbalanced, then S(Σ) = Uh for some demigenus h.

Proof. Exercise. �

Corollary 108. The demigenus d(Σ) and the state of balance of Σ determine S(Σ).
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Of particular interest for us will be the projective-planar signed graphs. These are the
signed graphs that orientation-embed in the real projective plane; the latter may be notated
U1 or P2 but in our context it suffices to write P2.

Lemma 109. If Σ ↪→ P2, then any two negative circles of Σ intersect in at least one vertex.

Proof. Suppose i : Σ ↪→ P2 is an orientation embedding of Σ. If Σ is balanced, then the
statement holds trivially. Otherwise, choose a negative circle C = v0e1v1 · · · vl−1elvl of Σ. As
C is negative, we know that the orientation reverses when travelling along i(C). In particular,
we may draw a planar diagram of P2 having boundary a doubled i(C) with the antipodal
action for identification. Now any negative circle C ′ in Σ must reverse the orientation of a
frame when travelling along i(C ′); in particular, i(C ′) must cross the boundary of any planar
diagram for Σ an odd number of times. Thus i(C ′) ∩ i(C) 6= ∅ yields C and C ′ must have
a common vertex as i is an embedding of |Σ|. �

11.2. Forbidden Link Minors for Orientation Embedding.
Kuratowski’s Theorem for planarity states that an unsigned graph Γ is planar (i.e.,

S(+Γ) = T0) if and only if the minors of Γ include neither K3,3 nor K5. A vast gener-
alization of this theorem is the next statement.

Theorem 110 (The Kuratowski Theorem for Surfaces: Robertson–Seymour [11], Bodendieck–?
[3]). For each surface S there is a finite set Ex(S) of graphs such that Γ embeds in S if and
only if no minor of Γ belongs to Ex(S).

A similar result may hold for signed graphs.

Theorem 111 (Hopeful Theorem for Orientation Embedding). For every surface S, there
is a finite set Ex±(S) of signed graphs such that Σ ↪→ S if and only if no link minor of Σ
belongs to Ex±(S).

This is unproved in general, but in a paper entitled “The projective-planar signed graphs”
[18], Zaslavsky obtained a forbidden link minor characterization for projectively orientation
embeddable signed graphs.

Theorem 112. A signed graph is projective-planar if and only if it has no link minor which
is switching isomorphic to any of −K̄◦2 , +K5, +K3,3, Φ4, −W4, or Ψ5.

The signed graphs in Theorem 112 are shown below:

−K̄◦2 +K5 +K3,3

Φ4 −W4 Ψ5
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Note that Φ4 and Ψ5 are obtained one from the other by a balanced Y -∆ transform, where
a positive triangle is transformed into a 3-edge star, or vice versa. (The signs on the Y , i.e.
the star edges, do not matter in Ψ5.)

11.3. No Non-Intersecting Negative Circles.
Now we come to the combinatorial purpose for which I introduced projective planarity:

the classification of signed graphs in which there exist no two disjoint negative circles (that
is, naving nothing in common, not even one vertex).

Definition 32. For an integer t ≥ 0, a t-sum of signed graphs Σ1 and Σ2 is obtained by
fixing two embeddings εi : Kt → |Σi| such that Im(εi) is balanced for i ∈ [2], switching these
embedded copies of Kt all positive in both Σi, identifying Im(ε1) with Im(ε2) as prescribed
by these embeddings, and finally deleting all edges of Im(εi).

The 0-sum is merely disjoint union. A 1-sum is the identification of two vertices, one in
each graph. A 2-sum is the identification (after switching as necessary) of two positive edges.

Our main interest in t-summation is the following result, partially proved by Lovász (un-
published) and fully proved by Slilaty [13].

Theorem 113 (Lovász–Slilaty). A signed graph Σ has no two disjoint negative circles if
and only if one of the following holds:

(1) Σ is balanced.
(2) Σ has a balancing vertex.
(3) Σ is projective planar.
(4) Σ is switching isomorphic to −K5.
(5) Σ may be obtained by 0-, 1-, 2-, and 3-summation of balanced signed graphs with a

graph of type (3) or (4).

Necessity is not difficult; it will be proved in the next lecture. Sufficiency is highly non-
trivial and its proof will be omitted from these notes.

Notes for 4 May 2017 – Josh Carey.

We are concerned with the signed graphs having the smallest negative-circle packing num-
ber ν(Σ). ν = 0 means there is no negative circle; that is, Σ is balanced. The first nontrivial
case is ν = 1.

Theorem 114 (Lovász–Slilaty). The negative-circle packing number ν(Σ) ≤ 1 if and only
if Σ arises from:

1. A balanced graph, or
2. a graph with a balancing vertex, or
3. a projective-planar graph, or
4. −K5 (which is not projective planar) by:
5. any number of t-summations with a previously listed graph, for t ≤ 3.

Here are a few remarks on the proof that this construction gives only signed graphs with
ν ≤ 1.

1. This is trivial; and since the t-sums remain balanced they are unnecessary.
2. This is easy; and the t-sums still have a balancing vertex so they are unnecessary.
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Figure 11.1. The forbidden link minors for orientation embeddability in the
projective plane.

3. This is proved by topology: the projective plane contains no two disjoint uncontractible
closed curves.

4. This is proved by inspection since K5 contains no two disjoint circles at all; and here
t ≤ 2 because −K5 does not contain a balanced K3.

5. This one has been set as an exercise.

Theorem 115 (Zaslavsky [18]). A signed graph Σ is projective planar if and only if it does

not contain as a link minor the following graphs: −K◦2, +K5, +K3,3, −W4, Ψ5, or Φ4.

The less familiar graphs here are illustrated in Figure 11.1.

A similar result from long before is the following purely graphic theorem. Lovász was 16
years old when he published this (in Hungarian).

Theorem 116 (Lovász). A graph Γ has no two disjoint circles if and only if it is one of the
types you can find in English in Bollobás’ book Extremal Graph Theory.

Notes for 5 May 2017 – Ted Ofner.

12. Integral Flows

12.1. The Double Covering Graph.
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Let Σ be a signed graph. The double cover of Σ is the graph Σ̃ which has

V (Σ̃) = V (Σ)× {+,−},

E(Σ̃) = E(Σ)× {+,−}

and projects to Σ via

p : Σ̃→ Σ : v+, v− 7→ v, ẽ, ẽ∗ 7→ e.

We shorten (v,+) and (v,−) to v+ and v−. For an edge e ∈ E(Σ), we write ẽ to denote

(e,+) ∈ E(Σ̃) and ẽ∗ to denote (e,−) ∈ E(Σ̃). If e:uv in Σ, then ẽ has endpoints (u,+)
and (v, σ(e)) and ẽ∗ has endpoints (u,−) and (v,−σ(e)). Throw out loose edges. A half
edge e:v ∈ E(Σ) produces a single edge ẽ with endpoints v+ and v−. The following diagram
illustrates the possibilities in the double cover construction; black edges are positive and red

edges are negative. Edges in Σ̃ are taken to be positive; the colors are merely for illustrating
the correspondence.

We see there is a degree of symmetry to the double cover. This is captured by the canonical

involution ∗ : Σ̃ → Σ̃ : v+ ↔ v−, ẽ ↔ ẽ∗. Switching v in Σ interchanges v+ and v−, pulling

edges along with them. This is an automorphism of Σ̃. Regarding Σ̃ as unsigned allows us
to consider it as covering the whole switching class of Σ.

If Σ is connected and balanced, then Σ̃ has two connected components. If Σ is connected

and unbalanced, then Σ̃ will be connected. The double cover of a graph Γ with all edges

negative, −̃Γ, is widely known under the name “bipartite double cover” of Γ.

For an oriented signed graph, an orientation of Σ̃ is determined by the relationship
τ̃(vε, e) = ετ(v, e). Here ε is either + or −.

A surface S has its oriented double cover S̃. If Σ ↪→ S (an orientation embedding), then

Σ̃ ↪→ S̃ (an ordinary embedding). The cover S̃ comes with a canonical involution ∗ : S̃ → S̃

which restricts to ∗ : Σ̃→ Σ̃ under the embedding.
Altogether, an orientation embedding of Σ in S is equivalent to an antipodal embedding

of (Σ̃, ∗) in (S̃, ∗).
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Proposition 117. (Σ̃, ∗) can be thought of as a graph Γ with a fixed-vertex-free involutory
automorphism * [Editors note: a free action of Z/2Z on Γ]. We can give Γ/∗ a signature by
making a circle in Γ/∗ positive ⇐⇒ the preimage of the circle in Γ is two disjoint circles.
Then Γ/∗ is switching equivalent to Σ.

Proof. Trace circles in the quotient Γ/∗. The lift has degree 2 or less at all its vertices so it
has to be a circle. The preimage of any vertex has two elements, so the lift has at most two
distinct components. �

Proposition 118. Let ∆ ⊆ Σ be connected. If ∆ is unbalanced, its preimage in Σ̃ is

connected. If ∆ is balanced, its preimage in Σ̃ is two disjoint copies of ∆.

As a summary remark, lots of things work nicely because switching behaves well with
respect to double covering of both graphs and surfaces.

Looking for a moment at coloring, a coloration κ : V → {−k, . . . ,+k} lifts to κ̃ : Ṽ →
{−k, . . . ,+k} by

κ̃(v+) = κ(v), κ̃(v−) = −κ(v).

Proposition 119. The improper edge set of κ lifts to the improper edge set of κ̃; i.e.,
I(κ̃) = p−1(I(κ)). In particular, κ̃ is proper if and only if κ is proper.

Proof. Check it and see ;). �

As a corollary, κ̃ is proper ⇐⇒ κ is proper.
Things get complicated when we talk about switching, which is part of the reason we

didn’t use the double cover for our region problem. [ADD some discussion.]

Notes for 8 May 2017 – Amelia Mattern.

We continue our discussion of double covers of signed graphs. In the examples for today,
black lines indicate positive edges and red lines indicate negative edges. Also, to keep the
discussion simple we assume the graphs have no loose or half edges.

Example 8. A basic exam-
ple.

Example 9. Here both cov-
ers are cycles.

Example 10. Notice that Σ
is the image of a circle, and
that the green edges above
trace the green edges below
twice.
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12.2. Integral Flows.
There is a substantial theory of integral flows on graphs and there is beginning to be a

similar theory for signed graphs. I can only give some minimal background, as we have but
a day.

Frame circuits in Σ are positive circles or contrabalanced handcuffs. They are the minimal
dependent sets of a matroid (the frame matroid), which I avoid since we don’t do matroids
in these notes.

An integral flow is a function f : E → Z, defined on oriented edges with the usual
convention that reorienting an edge negates (i.e., inverts) the flow value. The set of flows, or
flow space, is the null space of the incidence matrix H. An integral flow is an integral 1-cycle
in the sense of homology; multiplication by the incidence matrix is the boundary mapping..

Definition 33. A flow ϕ1 conforms to ϕ2 if ϕ2(e)ϕ1(e) ≥ 0 and |ϕ1(e)| ≤ |ϕ2(e)| for all
edges e. We say ϕ is conformally decomposable if ϕ = ϕ1 +ϕ2 where ϕ1 and ϕ2 both conform
to ϕ and neither one is the zero flow.

Example 11. Below is an example of a indecomposable integral flow on the circle from
Example 9.

Definition 34. A flow ϕ is minimal (or irreducible) if it is conformally indecomposable and
is not 0.

Example 12. Below is an example of a minimal flow on our graph from Example 10, shown
both in Σ and in Σ̃.
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We want to find minimal flows on signed graphs. For instance, a circuit flow is a minimal
flow on a circuit; it has the value ±1 on each edge of a circle in the circuit and the value ±2
on each edge of the connecting path of a loose handcuff.

A main question: Is every integral flow a sum of circuit flows? Yes for graphs. For signed
graphs that is not so; there are irreducible integral flows that are not circuit flows.

Example 13. Here is an example of an integral flow that is minimal, but not a circuit flow.

The reason may have to do with the properties of the incidence matrix. A matrix M is
totally unimodular (t.u.) if every minor (i.e., subdeterminant) is 0 or ±1. A matrix is totally
dyadic (t.d.) if every minor is 0 or ±2k for k ∈ Z. The incidence matrix of a graph is totally
unimodular, but that of a signed graph is not, though it is totally dyadic. The importance
of t.u. matrices comes from the fact that a matrix M is totally unimodular if and only if for

every integral ~b, Mx = b has an integral solution (if it has a solution). (This property of
a t.u. matrix follows immediately from Cramer’s Rule, since the denominator in a Cramer’s
Rule solution is a minor of M . The converse follows from suitable choices of b.)

For us the main theorem about total unimodularity is this old result of Heller and Tomp-
kins.

Theorem 120 (Heller and Tompkins [8]). A matrix M in which every column has at most
two nonzero entries, which are ±1, is t.u. if and only if some rows can be negated so that
every column with two nonzeros has one +1 and one −1.

Translating into signed-graphic language, an incidence matrix H(Σ) is t.u. if and only if
Σ (with half-edges deleted) is balanced.

Notes for 9 May 2017 – Micah Loverro.

For the sake of good notation we always begin by orienting Σ to obtain a definite incidence
matrix H (Eta). The oriented signed graph is now a bidirected graph B (Beta). An integral
flow on B is a function f : E(B)→ Z such that Hf = 0, i.e., f ∈ Nul(H). The support of f
is supp f := E \ f−1(0). The orientation is merely a notational necessity; we may reorient
edges by the rule that reorienting an edge negates the flow value on that edge, and a flow will
always be transformed into a flow on the reoriented graph. Consequently, we may always
choose an orientation such that f ≥ 0, if we wish. We regard corresponding flows on different
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orientations as the same flow, only described with different notation; thus, an integral flow
is really defined on Σ, not on any one orientation; but we need the orientation to state the
flow values.

Let f : E(B) → Z be any function. Add up the values on edges that are oriented out of
v; call that the outflow from v. Similarly define the inflow to v. Then f is a flow on Σ if
and only if every vertex has equal inflow and outflow. We call a vertex conservative (for the
obvious reason). Conservation at a vertex is preserved by reorienting edges and negating the
flow values on those edges.

Let W be a closed walk v0e1v1 · · · elvl. We define the closed walk flow fW of W as follows.
Initially, let f be the zero flow. Trace the edges in W from beginning to end. At e1, let
ε = − ± τ(v0, e1) (either choice is acceptable) and add ε to f(e1). Thus, we add 1 if e1 is
directed away from v0 but we subtract 1 if it is directed towards v0. Now at each new vertex
vi (i > 0), if the vertex is incoherent negate ε, but preserve ε if the vertex is coherent. Then,
add ε to f(ei+1). Continue in this way until the walk is finished. Then f is the W -flow fW .
(Its negative, obtained by choosing the opposite sign for the initial ε, is an equally good
W -flow. We fix one choice of ε to be called fW just to make the notation definite.) If W is
a coherent walk, then choosing the initial ε = + ensures that fW ≥ 0.

Suppose we have two flows, f and f ′. We say f ′ conforms to f if |f ′(e)| ≤ |f(e)| and
f(e)f ′(e) ≥ 0 for every edge in Σ. That means f(e) = 0⇒ f ′(e) = 0, and if f(e) 6= 0, then
f ′(e) is 0 or has the same sign as f(e).

Suppose we have an arbitrary flow f on B. By reorienting we can make f ≥ 0. Define
‖f‖ :=

∑
e∈E f(e). Find a coherent closed walk W in supp f such that fW conforms to f .

We are able to do this because flow is nonnegative and is conserved at every vertex, so if
we trace a coherent walk from any vertex of supp f we can never be prevented from leaving
a vertex we entered, except at the initial vertex if we return having used up all its inflow.
Thus we are always able to end at the starting point of our walk W . Then f − fW ≥ 0 and
‖f − fW‖ < ‖f‖. It follows by induction that:

Proposition 121. Every flow f is a sum of conforming closed walk flows.

There is a stronger decomposition of flows in graph theory. Here, once again, a graph
behaves exactly like an all-positive signed graph. A circuit flow on a circle C is a flow fC ;
its value is ±1 on each edge of C and 0 off C. An integral flow f on a graph or signed graph
is irreducible if it cannot be written as a sum of two nonzero integral flows, both conforming
to f .

Theorem 122. For unsigned graphs, every integral flow is a sum of conforming circuit flows.

In other words, the only irreducible integral flows on a graph are the circuit flows.
Although the definitions extend readily to signed graphs, this simple decomposition the-

orem does not. To explain the situation with signed graphs needs quite a bit of discussion,
of which I will only give a small part.

We first take a look at some examples of irreducible flows. Suppose C is a positive circle
such as the one below. Edges e are marked with the values of fC(e). If e is not an edge of
the circle, then fC(e) is defined to be 0. Notice that reversing the orientation of all negative
edges yields an orientation which is coherent at each vertex.
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Edges can also take flow value more than 1. If C is the graph below, the flow pictured is
also irreducible. Here we have already given the graph a coherent orientation.

...

1

1

1

2 2

1

1

The previous two examples are circuit flows on a signed graph. On signed graphs, however,
irreducible flows can be more complex than circuit flows. In the graph below, the value of
fC(e) is 1 unless labeled. This graph has no source or sink; that is one of the properties of
the support of any nonnegative flow.

2

. .
.

Chen and Wang discovered a flow decomposition like that for graphs by characterizing
all irreducible integral flows on a signed graph. The irreducible flows are too complicated
to describe here (under limitations of time), but the picture above gives an idea of what
they look like. Our proof in [4], which is more elegant than their original proof (because
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it depends on general properties instead of case-by-case analysis), depends on lifting to the
double covering graph.

Relation to the double covering graph.

If f is a flow on the double covering graph Σ̃ of Σ and p is the covering projection, then for
an edge in Σ we define (pf)(e) = f(ẽ) + f(ẽ∗) as the projected flow pf . It is a fact of double

covering graphs that any flow of Σ can be lifted to a flow of Σ̃. Flows of irreducible coherent

closed walks Wi in Σ lift to circle flows in Σ̃. That let us use the graph decomposition into

circuit flows (on Σ̃) to obtain a signed-graph decomposition of flows on Σ. The details were
not so simple!
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