Signed Graphs Homework Problems¹

Problem 1 (Due 6 February 2017). Let Σ be a signed graph. Show the following:

- 1. Every negation set of Σ is a deletion set.
- 2. Deletion sets of Σ need not be negation sets.
- 3. Every minimal deletion set of Σ is a minimal negation set.²
- 4. A negation set of Σ need not be a minimal deletion set.

Is every minimal negation set a minimal deletion set?

Problem 2 (Due 10 February 2017). Show that the maximal frustration index of K_n is equal to the frustration index of $-K_n$ and compute the value thereof.³ In symbols, show $\ell_{\max}(K_n) = \ell(-K_n)$ and compute.

Problem 3 (Due 10 February 2017). Show that the frustration index of Σ satisfies:

$$\ell(\Sigma) = \min\left\{ \#E^{-}(\Sigma^{S}) \mid S \subseteq V(\Sigma) \right\}$$

Problem 4 (Open). Characterize the graphs Γ for which $\ell_{\max}(\Gamma) = \ell(-\Gamma)$.

Problem 5 (Open). Let integers $3 \le r \le s$ be given, and let q(r, s) denote the number of switching isomorphism classes of $K_{r,s}$. Compute q(r, s).⁴

Problem 6 (Due 13 February 2017). Let integer $3 \le s$ be given and consider $K_{3,s}$.

- 1. Compute q(3, s) for all $s \ge 3$.
- 2. Describe the switching isomorphism classes of $K_{3,3}$.

Repeat for $K_{3,s}$ if it is feasable to do so.

- 3. Compute the frustration index of each switching isomorphism class of $K_{3,3}$. Repeat for $K_{3,s}$ if it is feasable to do so.
- 4. Compute a minimal reresentative of each switching isomorphism class of $K_{3,3}$.⁵ Repeat for $K_{3,s}$ if it is feasable to do so.

¹These are assigned problems from lectures in Signed Graphs given by Tom Zaslavsky during the spring of 2017 as Bingamton University. This list was IAT_EXed by Chris Eppolito (email eppolito-at-math-dot-binghamton-dot-edu with errors), and this version was most recently compiled March 29, 2017.

² "Minimal" means "minimal with respect to containment."

³This result is attributed to Petersdorf.

⁴Various results are known which could be used to relate q(r, s) to other invariants.

 $^{^5}$ "Minimal" here means "minimal with respect to the number of negative edges among all elements of the class."