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Abstract. Up to switching isomorphism there are six ways to put signs on the
edges of the Petersen graph. We prove this by computing switching invari-
ants, especially frustration indices and frustration numbers, switching auto-
morphism groups, chromatic numbers, and numbers of proper 1-colorations,
thereby illustrating some of the ideas and methods of signed graph theory.
We also calculate automorphism groups and clusterability indices, which are
not invariant under switching. In the process we develop new properties of
signed graphs, especially of their switching automorphism groups.
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1. Introduction

The Petersen graph P is a famous example and counterexample in graph theory, making
it an appropriate subject for a book (see [11]). With signed edges it makes a fascinating
example of many aspects of signed graph theory as well. There are 215 ways to put signs on
the edges of P , but in many respects only six of them are essentially different. We show how
and why that is true as we develop basic properties of these six signed Petersens.
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Figure 1.1. P , the Petersen graph.

The fundamental property of signed graphs is balance. A signed graph is balanced if all
its circles (circuits, cycles, polygons) have positive sign product. Harary introduced signed
graphs and balance [9] (though they were implicit in König [12, §X.3]). Cartwright and
Harary used them to model social stress in small groups of people in social psychology [6].
Subsequently signed graphs have turned out to be valuable in many other areas, some of
which we shall allude to subsequently.

The opposite of balance is frustration. Most signatures of a graph are unbalanced; but
they can be made balanced by deleting (or, equivalently, negating) edges. The smallest
number of edges whose deletion makes the graph balanced is the frustration index, a number
which is implicated in certain questions of social psychology ([1, 10] et al.) and spin-glass
physics ([15, 3] et al.). We find the frustration indices of all signed Petersen graphs (Theorem
7.2).

The second basic property of signed graphs is switching equivalence. Switching is a way
of turning one signature of a graph into another, without changing circle signs. Many,
perhaps most properties of signed graphs are unaltered by switching, the frustration index
being a notable example. The first of our main theorems is that there are exactly six
equivalence classes of signatures of P under the combination of switching and isomorphism
(Theorem 5.1). Figure 1.2 shows a representative of each switching isomorphism class. In
each representative the negative edges form a smallest set whose deletion makes the signed
Petersen balanced. Hence, we call them minimal signatures of P (see Theorem 7.2). Because
there are only six switching isomorphism classes of signatures, the frustration index of every
signature of P can be found from those of the minimal signatures.
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Figure 1.2. The six switching isomorphism types of signed Petersen graph.
Solid lines are positive; dashed lines are negative.

The second main theorem, which occupies the bulk of this paper, is a computation of
the automorphism and switching automorphism groups of the six minimal signatures (The-
orem 8.12). An automorphism has the obvious definition: it is a graph automorphism that
preserves edge signs. This group is not invariant under switching. It is not even truly
signed-graphic, for as concerns automorphisms a signed graph is merely an edge 2-colored
graph. The proper question for signed graphs regards the combination of switching with an
automorphism of the underlying graph. The group of switching automorphisms of a signed
graph is, by its definition, invariant under switching, so just six groups are needed to know
them all. Some of the groups are trivial, but one is so complicated that it takes pages to
describe it thoroughly.

Isomorphic minimal signatures may not be equivalent under the action of the switching
group. The number of switching inequivalent signatures of a given minimal isomorphism
type is deducible from the order of the switching automorphism group (Section 8.3).

Two further properties are treated more concisely. First, a signed graph can be colored
by signed colors. That leads to two chromatic numbers, depending on whether or not
the intrinsically signless color 0 is accepted. The chromatic numbers are invariant under
switching (and isomorphism); thus they help to distinguish the six minimal signatures by
showing their inequivalence under switching isomorphism (Theorem 9.2). The two chromatic
numbers are aspects of two chromatic polynomials, but we make no attempt to compute those
polynomials, as they have degree 10.

Finally, we take a brief excursion into a natural generalization of balance called clusterabil-
ity (Section 10). This, like the automorphism group, is not switching invariant, but it has
attracted considerable interest, most recently in connection with the organization of data
(cf. [2] et al.), and has complex properties that have been but lightly explored.
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Signed graphs, signed Petersens in particular, have other intriguing aspects that we do not
treat. Two are mentioned in the concluding section but they hardly exhaust the possibilities.

2. Graphs and Signs

We write V and E for the vertex and edge sets of a graph Γ or signed graph Σ, except
when they may be confused with the same sets of another graph. The complement of X ⊆ V
is Xc := V \X. The (open) neighborhood of a vertex v is N(v); the closed neighborhood is
N [v] = N(v) ∪ {v}. A cut in a graph is a set ∇X := {uv ∈ E : u ∈ X and v /∈ X} where
X ⊆ V . We call two or more substructures of a graph, such as edge sets or vertex sets,
automorphic if there are graph automorphisms under which any one is carried to any other.

A signed graph is a pair Σ := (Γ, σ) where Γ = (V,E) is a graph and σ : E → {+,−} is a
signature that labels each edge positive or negative. Hence, a signed Petersen graph is (P, σ).
Two examples are +P := (P,+), where every edge is positive, and −P := (P,−), where
every edge is negative. The underlying graph of Σ is Σ without the signs, denoted by |Σ|.
We say Σ is homogeneous if it is all positive or all negative, and heterogeneous otherwise; so
+P and −P are the homogeneous signed Petersens. The set of positive edges of Σ is E+,
that of negative edges is E−; Σ+ and Σ− are the corresponding (unsigned) graphs (V,E+)
and (V,E−). The negation of Σ is −Σ = (Γ,−σ), the same graph with all signs reversed. A
compact notation for a signed Petersen graph with negative edge set S is PS.

The sign of a circle (i.e., a cycle, circuit, or polygon) C is σ(C) := the product of the signs
of the edges in C. The most essential fact about a signed graph usually is not, as one might
think, the edge sign function itself, but only the set C+(Σ) of circles that have positive sign.
If this set consists of all circles we call the signed graph balanced. Such a signed graph is
equivalent to its unsigned underlying graph in most ways. We call Σ antibalanced if −Σ is
balanced.

Proposition 2.1 (Harary [9]). Σ is balanced if and only if V can be divided into two sets
so all positive edges are within a set and all negative edges are between the sets.

We say ‘divided’ rather than ‘partitioned’ because one set may be empty. If that is so,
the signature is all positive.

3. Petersen Structure

The Petersen graph P is the complement of the line graph of K5: P = L(K5). Thus,
its vertices vij are in one-to-one correspondence with the ten unordered pairs from the set
{1, 2, 3, 4, 5} and its fifteen edges are all the pairs vijvkl such that {i, j} ∩ {k, l} = ∅. (For
legibility, in subscripts we often omit the v of vertex names.) We usually write V and E for
V (P ) and E(P ) when discussing the Petersen graph as there can be no confusion with the
vertex and edge sets of a general graph.

For use later we want structural information about P .
As P has edge connectivity 3, the smallest cut has three edges.
The automorphism group AutP is well known to be the symmetric group S5 with action

on V induced by the permutations of the set {1, 2, 3, 4, 5}. Writing ST for the group of
permutations of the set T , we identify AutP with S{1,2,3,4,5}. We use the same symbol for
a permutation of {1, 2, 3, 4, 5} and the corresponding automorphism of P , as there is little
danger of confusion. AutP carries any oriented path of length 3 to any other; hence it is
also transitive on pairs of adjacent edges (distance 1) and on pairs of edges at distance 2.
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(For these properties see, e.g., [8, Section 4.4].) Furthermore, AutP carries any nonadjacent
vertex pair to any other.

The maximum size of a set of independent vertices in P is four. Each maximum indepen-
dent vertex set has the form Xm :=

{
vim : i ∈ {1, 2, 3, 4, 5} \m

}
, and any three vertices in

Xm determine m. For any m,n ∈ {1, 2, 3, 4, 5}, Xm and Xn are automorphic. An indepen-
dent set of three vertices is either the neighborhood of a vertex, or a subset of a maximum
independent set Xm. Deleting an independent vertex set leaves a connected graph except
that P \ N(v) = C6∪· K1 and P \Xm is a three-edge matching. If |W | = 3 and W ⊂ Xm,
then P \W is a tree consisting of three paths of length 2 with one endpoint in common.

3.1. Hexagons. Each hexagon is E(P \ N [v]) for a vertex v. Thus there is a one-to-one
correspondence between vertices and hexagons; we write Hv = Hlm for the hexagon that
corresponds to v = vlm. The stabilizer of Hlm is S{l,m} × S{1,2,3,4,5}\{l,m}. A hexagon is
determined by any two of its edges that have distance 2. Furthermore, any two hexagons
are automorphic.

3.2. Matchings. We need to know all automorphism types of a matching in P . Let Mk

denote a matching of k edges.
Matchings of 1 edge are obviously all automorphic.
Let M2,d denote a pair of edges at distance d = 2 or 3. Any 2-edge matching is an M2,2 or

M2,3. All M2,2 matchings are automorphic because AutP is transitive on paths of length 3.
All M2,3 matchings are automorphic; for the proof see the treatment of M3,3.

An M5 can only be a cut between two pentagons, since P \ M5 is a 2-factor and P is
non-Hamiltonian. All are clearly automorphic.

A matching of 4 edges leaves two vertices unmatched. If they are adjacent, M4 = M5 \
edge; all such matchings are automorphic. If they are nonadjacent, say they are vik and
vjk in Figure 3.1. Then M4 consists of a and one of the two M3,2’s in Hlm. Call this type
of matching M ′

4. Interpreting M ′
4 as one of the matchings in Hlm together with one of the

edges incident with vlm, it is easy to see that all matchings of type M ′
4 are automorphic.

Consequently, there are two automorphism classes of 4-edge matchings.
There are four nonautomorphic kinds of 3-edge matching M3. First we describe them;

then we prove there are no other kinds.
By M3,3 we mean a set of three edges, each pair having the same distance 3. Each M3,3

has the form

M3(m) := E(P \Xm) =
{
vijvkl : {i, j, k, l} = {1, 2, 3, 4, 5} \m

}
.

There are five such edge sets, one for each m ∈ {1, 2, 3, 4, 5}; they partition E(P ). Obviously,
all the M3(m)’s are automorphic. (An M2,3 lies in a unique M3,3, since the M2,3 determines
the value of m. That implies there are 15 different M2,3’s.) Permuting {1, 2, 3, 4, 5} \ m
permutes the edges of M3(m); it follows that any M2,3 is automorphic to any other.

We define M3,2 to consist of alternate edges of a hexagon, say Hlm, which we call the
principal hexagon of the three edges. There are two such sets for each hexagon, hence 20
M3,2’s in all, and they are all automorphic to each other. The notation M3,2 reflects the fact
that the edges in the matching all have distance two from each other. Each M2,2 is contained
in a unique hexagon, hence in a unique M3,2; thus, there are 40 M2,2’s.

There is another way to form a matching of three edges at distance 2 from one another.
In a pentagon vijvklvmivjkvlmvij take the edges e = vklvim and f = vjlvkm and the edge
a = vijvlm. We call this type M ′

3. Another view of M ′
3 is as M5 \ two edges. All matchings
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of type M ′
3 are automorphic but they are not automorphic to any M3,2 because e, f, a do not

lie in a hexagon.
A fourth type of 3-edge matching, call it M3,2/3, consists of e, f , and b = vjkvlm. The dis-

tances of these edges are 2, except that b and f have distance 3. All M3,2/3’s are automorphic,
but the distance pattern proves an M3,2/3 is not automorphic to any other type.

Lemma 3.1. Every 3-edge matching in P is an M3,3, an M3,2, an M ′
3,2, or an M3,2/3.

Proof. Let M3 be a 3-edge matching. If its edges are all at distance 3 from each other, then
M3 can only be M3,3, as two edges at distance 3 have a unique edge at the same distance
from both.

il jm

kl

imjl

km iklm

ij

g

a

jk
b b’

c’

f

c

e

Figure 3.1. The four kinds of 3-edge matching in P .

If M3 contains edges e, f at distance 2, there are four potential third edges up to the
symmetry that interchanges e and f (see Figure 3.1). Choosing g for M3, the hexagon Hlm

contains M3 so we have M3,2. Choosing a for M3, the pentagon vijvklvmivjkvlmvij shows we
have M ′

3. Choosing b, we have M3,2/3. Choosing c, we have M ′
3 again with the pentagon

vimvjkvilvkmvjlvim. �

4. Switching

Two signed graphs, Σ1 = (Γ1, σ1) and Σ2 = (Γ2, σ2), are switching equivalent (written
Σ1 ∼ Σ2) if Γ1 = Γ2 and there is a function ζ : V1 → {+,−} (a switching function) such

that σ2(vw) = ζ(v)σ1(vw)ζ(w) for every edge vw. We write σ2 = σζ1 and Σ2 = Σζ
1; that is,

we write the switched signature or graph as if we were conjugating in a group—and indeed
switching is a graphical generalization of conjugation. Another way to state switching is to
switch a vertex set X ⊆ V (the connection is that X = ζ−1(−)); that means negating the
sign of every edge in the cut ∇X. Then we write ΣX = (Γ, σX) for the switched graph. The
switching function ζX is defined by ζX(v) := + if v /∈ X and − if v ∈ X.

Switching functions multiply pointwise: (ζη)(v) = ζ(v)η(v). Multiplication corresponds
to set sum (symmetric difference) of switching sets: ζXζY = ζX⊕Y . The group of switching
functions is {+,−}V . We write ε for its identity element, the all-positive switching function.
Certain switching functions have no effect on Σ; that is, the action of {+,−}V on a signature
has a kernel,

KΓ := {ζ : Σζ = Σ} = {ζ : ζ is constant on each component of Γ}.
6



The kernel is independent of the signature, in fact, of everything except the partition of V
into vertex sets of connected components of Γ. The quotient group is the switching group of
Γ, written

Sw Γ := {+,−}V /KΓ.

The element of this group that corresponds to a switching function ζ is ζ̄, but for simplicity
of notation, we often use the same symbol ζ without the bar when it should not cause
confusion.

We say Σ1 and Σ2 are isomorphic (written Σ1
∼= Σ2) if there is a graph isomorphism

ψ : Γ1 → Γ2 that preserves edge signs, i.e., σ2((vw)ψ) = σ1(vw) for every edge. (As we are
restricting to simple graphs, ψ can be treated as a bijection V1 → V2 and (vw)ψ = vψwψ.)
They are switching isomorphic (written Σ1 ' Σ2) if Σ2 is isomorphic to a switching of Σ1;
that is, there are a graph isomorphism ψ : Γ1 → Γ2 and a switching function ζ : V1 → {+,−}
such that σ2((vw)ψ) = σζ1(vw) for every edge.

Lemma 4.1 ([14, 16]). Switching preserves circle signs. Conversely, if two signatures of Γ
have the same circle signs, then one is a switching of the other.

For instance, Σ is balanced if and only if it is switching equivalent to the all-positive
signature. Because of this lemma, switching-equivalent signed graphs are in most ways the
same.

Lemma 4.1 shows that switching isomorphism is a true isomorphism: not of graphs or
signed graphs, but of the structure on signed graphs consisting of the underlying graph and
the class of positive circles, i.e., of the pair (|Σ|,C+(Σ)) (which constitutes a type of ‘biased
graph’ [20]).

Switching equivalence and switching isomorphism are equivalence relations on signed
graphs. An equivalence class under switching equivalence is a switching equivalence class of
signed graphs. An equivalence class under switching isomorphism is a switching isomorphism
class. (Many writers say ‘switching equivalence’ when they mean ‘switching isomorphism’,
but I find it better to separate the two concepts.)

5. Switching Isomorphism Types

The most patently obvious signatures of the Petersen graph are +P and −P . Two more
are P1, which has only one negative edge, and its negative −P1, with only one positive edge.
Two more signatures are P2,d where d = 2, 3, which have two negative edges at distance d;
and the last two that mainly concern us are P3,d for d = 2, 3, which have three negative
edges, all at distance d; in P3,2 the negative edges must be alternate edges of a hexagon.
In terms of our classification of matchings, Pk,d := PMk,d

, that is, E−(Pk,d) = Mk,d. These
signed graphs are illustrated in Figure 1.2.

Theorem 5.1. There are exactly six signed Petersen graphs up to switching isomorphism.
They are +P ' −P3,3, P1 ' −P2,3, P2,2 ' −P2,2, P2,3 ' −P1, P3,2 ' −P3,2, and P3,3 ' −P .

Proof. The first step is to establish the switching equivalences stated in the theorem. To
switch −P to P3,3, switch an independent set X = Xm of four vertices; this negates ∇X
leaving three negative edges, which have distance 3. If we begin with −P1 with positive
edge uv, by choosing X to contain neither u nor v we get uv /∈ ∇X so, after switching, uv
retains its sign; therefore (−P1)X = P2,3. To switch −P3,2, where the positive edges belong
to a hexagon Hv, switch N [v]. That negates all edges except those of Hv, giving P3,2 whose
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negative edges are the originally negative edges of the hexagon. To switch −P2,2, note that
the two positive edges e and f , having distance 2, lie in a unique pentagon J . Switch the
three vertices of J that are not incident to e and the two vertices outside J that are adjacent
to e. The result is P2,2.

For the rest of the theorem we need two more steps. First, we must prove that every
signed Petersen graph belongs to the switching isomorphism class of one of the six types
+P, P1, Pk,d listed in the theorem. That is implied by Theorem 7.2. Second, we must show
that none of the six types is switching isomorphic to any other. The second step follows from
the calculation of invariants of the six switching isomorphism classes, by which we mean
numbers or other objects that are the same for every element of a switching isomorphism
class. Relevant invariants are the numbers c−5 and c−6 of negative circles of lengths 5 and
6 (Theorem 6.1), the frustration index l (Theorem 7.2, and the switching automorphism
groups (Theorem 8.12). The six classes must be distinct because no two have all the same
invariants. In fact, any two of c−5 , c−6 , and l suffice to distinguish them; and the switching
automorphism groups, though more difficult to find, suffice by themselves. �

6. Circle Signs

Lemma 4.1 leads to an effective method of distinguishing switching isomorphism classes,
by comparing the numbers of negative circles of each length.

Theorem 6.1. The numbers of negative pentagons and hexagons in each of the six signed
Petersen graphs of Theorem 5.1 are those listed in Table 6.1.

(P, σ) +P P1 P2,2 P2,3 ' −P1 P3,2 P3,3 ' −P

Negative C5’s 0 4 6 8 6 12

Negative C6’s 0 4 6 4 10 0

Table 6.1. The numbers of negative pentagons and hexagons in each switch-
ing isomorphism type.

Proof. The Petersen graph has c5 = 12 pentagons and c6 = 10 hexagons. The number of
cases to consider is lessened if we notice that negating (P, σ) leaves the number c−6 (P, σ) of
negative hexagons the same but complements the number c−5 (P, σ) of negative pentagons to
c−5 (P,−σ) = 12− c−5 (P, σ).

For +P both numbers are 0, and the values for −P follow.
In P1 there are as many negative pentagons, or hexagons, as the number of each that lie

on a fixed edge e. There are four ways to add an edge at each end of e to get a path of
length 3, and each such path completes uniquely to a pentagon or hexagon. Thus, c−5 (P1) =
c−6 (P1) = 4. The numbers for −P1 are immediate.

If we now take an edge f at distance 2 from e, the number of negative k-gons equals
2(c−k (P1)− dk) where dk is the number of k-gons that contain both e and f . It is easy to see
that d5 = d6 = 1. (Use the 3-path transitivity of P , by which under the symmetries of P
there is only one orbit of pairs of edges at distance 2.) It follows that c−5 (P2,2) = c−6 (P2,2) = 6.
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For an f at distance 3 from e there is a similar calculation. However, f cannot lie in a
common pentagon with e, so now d5 = 0. The value of d6 is not quite obvious. There are
four ways to form a path of length 3 by extending e at each end. Inspection reveals that two
of these paths cannot be completed to a hexagon on f , but the other two can be completed
uniquely. Thus, d6 = 2. We conclude that c−5 (P2,3) = 8 and c−6 (P2,3) = 4. �

7. Frustration

The proofs of Theorems 5.1 and 9.4 make use of the measurement of imbalance by edges
or vertices. The frustration index l(Σ) := the smallest number of edges whose deletion
leaves a balanced signed graph. It is equivalent to finding the largest number of edges in a
balanced subgraph of Σ, which is the signed-graph equivalent of the maximum cut problem
in an unsigned graph; in fact, l(−Γ) = the smallest number of edges whose complement
is bipartite. The frustration number (or vertex frustration number) l0(Σ) is the smallest
number of vertices whose deletion leaves a balanced signed graph. Its complement, |V | − l0,
is the largest order of a balanced subgraph. For an all-negative graph, l0(−Γ) is the smallest
number of vertices whose deletion leaves a bipartite graph.

7.1. Frustration index. The frustration index is the most significant way to measure how
unbalanced a signed graph is. For instance, in social psychology l(Σ) is the minimum number
of relations that must change to achieve balance. In the non-ferromagnetic Ising model of
spin glass theory the frustration index determines the ground state energy of the spin glass.
(Frustration index was called ‘complexity’ by Abelson and Rosenberg [1], who introduced the
idea, and ‘line index of balance’ by Harary; my name for it was inspired by the picturesque
terminology of Toulouse [15].)

Harary [10] proved that l(Σ) = the smallest number of edges whose negation or deletion
makes the signed graph balanced. (Negating an edge is equivalent to deleting it, so one
can delete or negate the edges in any combination.) An edge set whose deletion leaves
a balanced graph is called a balancing set (of edges); thus, l(Σ) = the size of a minimum
balancing set.

Lemma 7.1 (implicit in [3]). Switching does not change l(Σ). Indeed, l(Σ) = minζ |E−(Σζ)|,
the minimum number of negative edges in a switching of Σ.

That is, a signed graph has the smallest number of negative edges in its switching equiv-
alence class if and only if |E−(Σ)| = l(Σ). Let us call Σ minimal if it satisfies this equation.

By Lemma 7.1 we can distinguish switching isomorphism classes by their having different
frustration indices. This helps to prove the six signed P ’s are not switching isomorphic.

Theorem 7.2. There are precisely the following six isomorphism types of minimal signed
Petersen graph: +P , P1, P2,2, P3,2, P2,3, and P3,3. Each is the unique minimal isomorphism
type in its switching isomorphism class. The frustration indices of the six types are as stated
in Table 7.1.

To find the frustration index of any signature of P , switch it to be minimal and consult
the table. As frustration index is an NP-complete problem (its restriction to all-negative
signatures is equivalent to the well known NP-complete maximum-cut problem) that may
not be so easy, but in small examples like the Petersen graph Lemma 7.3 is a great help.

Proof. First we show that every signature of P switches to one of the six.
9



(P, σ) +P P1 P2,2 P2,3 P3,2 P3,3

l(P, σ) 0 1 2 2 3 3

Table 7.1. The frustration index of each switching isomorphism type.

Lemma 7.3. If every cut in Σ has at least as many positive as negative edges, then l(Σ) =
|E−|. If some cut has more negative than positive edges, then l(Σ) < |E−|.

Proof. If |E−(X,Xc)| > |E+(X,Xc)|, then switching X reduces the number of negative
edges. If |E−(X,Xc)| ≤ |E+(X,Xc)| for every X, then no switching can reduce the number
of negative edges; so l(Σ) = |E−| by Lemma 7.1. �

Lemma 7.3 has a pleasing effect on a cubic graph.

Corollary 7.4. In any minimal signature of a cubic graph the negative edges are a matching.

Thus, we need only examine all the automorphism types of matchings in P from Section
3. Let E− = Mk where 0 ≤ k ≤ 5.

Matchings of 0 or 1 edge are trivial: Σ is minimal. When k = 2, E− = M2,2 or M2,3 so we
have P2,2 or P2,3.

When E− = M5, switching the vertices of one of the pentagons separated by E− makes
all edges positive, which is +P . When E− = M5 \ edge or E− = M ′

3 = M5 \ 2 edges, the
same switching gives P1 or P2,2, respectively.

For E− = M ′
4 switch {vkl, vij, vkm, vjl}. This also results in P2,2.

The last case is E− = M3,2/3. Here we switch {vjk, vjl, vim}, getting P2,3.
This proves that every signature is switching isomorphic to one of the six basic types.
It remains to show that each of the six types is actually minimal. We have shown that

a signature in which E− is a matching is not minimal if it is not one of the six. Thus, if
no two of the six are switching isomorphic, each must be the unique minimal element of its
switching isomorphism class. The switching invariants c−5 , c−6 , and l are more than enough
to prove that none of the six can switch to any other. Thus, the theorem is proved. �

Corollary 7.5. In each switching equivalence class and in each switching isomorphism class
of signed Petersen graphs there is exactly one minimal isomorphism type.

The corollary cannot say that there is a unique minimal signature in each switching equiva-
lence class, because that is false. In the switching equivalence class of −P the unique minimal
isomorphism type is P3,3, but the exact choice of the three negative edges is not unique. The
number of minimal graphs in that switching equivalence class equals the number of sets of
three edges all at distance 3, which is 5.

It is a remarkable fact that not just some but every switching equivalence class, and
every switching isomorphism class, of signed Petersens has only one minimal signature up to
isomorphism. It is not surprising that some switching equivalence classes have this property,
but that all do is. By way of contrast, Kn (with n ≥ 4) has some switching equivalence
classes with unique minimal elements, either absolutely or only up to isomorphism, and
some with multiple minimal members. In the class of the signature Kn(e), which has exactly
one negative edge e, clearly the only minimal signed graph is Kn(e). In the class of −Kn

the minimal elements are all the signatures of Kn where the positive edges form a cut of
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maximum size, i.e., where V (Kn) is partitioned into two sets whose sizes differ by at most
1 [13]. There are many such signatures and all are switching equivalent to −Kn; but they
are all isomorphic. Now assume n = 2r + 1 ≥ 5 and consider one more signature, where
the negative edges are e1i for i = 2, 3, . . . , r + 1 and e2,3. Here E− is a connected subgraph.
This signature is minimal in its switching equivalence class by Lemma 7.3. Switching v1, the
negative edges are e1i for i = r+ 2, r+ 3, . . . , 2r+ 1 and e2,3. The number of negative edges
is unchanged, but they now form a disconnected subgraph. Thus, this switching equivalence
class contains (at least) two minimal graphs that are not isomorphic. We see that for Kn

there are switching equivalence classes whose minimal graph is unique, those in which the
minimal graph is unique only up to isomorphism, and those with nonisomorphic minimal
members.

Thus, the behavior of the Petersen signatures is not totally ordinary. I suspect it is unusual
but the truth is that no one knows whether, in regard to the uniqueness of either minimal
signatures or isomorphism types of minimal signatures in either their switching equivalence
or isomorphism class, most graphs resemble Kn or P .

7.2. Frustration number. The (vertex) frustration number has been less deeply explored
than the frustration index, perhaps because it seems less suitable to the social psychology
model and is certainly less relevant to spin glass theory. Besides, it appears to be less subtle
in distinguishing between different signatures of a graph, because most graphs have fewer
vertices than edges. Nevertheless, we find a use for it in counting colorations in Section 9.

Lemma 7.6. Switching does not change l0(Σ). Moreover, l0(Σ) ≤ l(Σ) in every signed
graph.

Proof. The first part is obvious from Lemma 4.1 because imbalance depends only on the set
of negative circles. The second part follows from the fact that, if we delete one endpoint
from each edge of a minimum balancing edge set, we get a balanced subgraph by deleting at
most l vertices. �

Theorem 7.7. The frustration numbers of signed Petersen graphs are given in Table 7.2.
All have frustration number equal to the frustration index.

(P, σ) +P P1 P2,2 P2,3 P3,2 P3,3

l0(P, σ) 0 1 2 2 3 3

Table 7.2. The frustration number of each switching isomorphism type.

Proof. Consult Figure 1.2. The values for +P and P1 are obvious.
A signature that has two vertex-disjoint negative pentagons cannot have l0 < 2; if the

frustration index is 2, as in P2,2 and P2,3, that must be l0.
In P3,2 the negative pentagons are the inner star and all pentagons with two outer edges.

To achieve balance we must delete an inner vertex. Deleting one such vertex v gives P3,2 \ v,
which is a subdivision of K4 in which the paths corresponding to two opposite edges in K4

are negative and the paths that correspond to other edges in K4 are positive. Every circle in
11



P3,2 \ v that corresponds to a triangle of K4 is negative. It is impossible to make this graph
balanced by deleting only one edge; hence l0(P3,2) = 3.

Because P3,3 is antibalanced, every pentagon is negative. That means a vertex set whose
deletion makes for balance must cover all the pentagons. No two vertices can do that, as
one can verify by inspecting adjacent and nonadjacent pairs; but any vertex neighborhood
N(v) does. Hence, l0(−P ) = 3.

Comparing Tables 7.1 and 7.2 shows that l0 = l in every case. �

One can easily see that l0 = l is not true in general. However, I verified that equality
holds for every signature of K4 or K3,3. I hesitantly propose:

Conjecture 7.1. For every signed cubic graph Σ, l0(Σ) = l(Σ).

8. Automorphisms and Orbits

In this section we develop a general theory of switching automorphism groups of signed
graphs. Then we compute the automorphism and, more importantly, switching automor-
phism groups of the six basic signed Petersen graphs and their negatives. Lastly we apply
that information to find the number of isomorphic but switching-inequivalent copies of each
of the six basic signatures.

We regard an automorphism of Γ as a permutation of V and we write actions as super-
scripts, so products are read from left to right.

8.1. Automorphisms and switching automorphisms of signed graphs. An automor-
phism of a signed graph is an isomorphism with itself; that is, it is an automorphism of the
underlying graph that preserves edge signs. A switching automorphism of a signed graph is
a switching isomorphism with itself. (As with switching isomorphisms, cf. near Lemma 4.1,
switching automorphisms really are automorphisms: of the biased graph (|Σ|,C+(Σ)).) The
group of automorphisms is Aut(Σ) and that of switching automorphisms is SwAut(Σ).

8.1.1. Automorphisms. As concerns automorphisms, a signed graph is just a graph whose
edges are colored with two colors; an automorphism is a color-preserving graph automor-
phism. There is not much to say except the following:

Proposition 8.1. For a signed graph Σ = (Γ, σ),

Aut Σ = Aut Γ ∩ Aut Σ+ = Aut Γ ∩ Aut Σ− = Aut Σ+ ∩ Aut Σ−.

8.1.2. Switching permutations and switching automorphisms. Switching automorphisms are
more complicated; to treat them we need precise definitions and notation. We begin with
the action of automorphisms of Γ upon signatures:

σα(vαwα) := σ(vw),

and Σα := (Γ, σα). The action of an automorphism on a switching function is similar:

ζα(vα) := ζ(v).

This leads to the commutation law

(8.1) ζα = αζα,

because
σζα(vαwα) = (σζ)α(vαwα) = σζ(vw) = ζ(v)σ(vw)ζ(w)

12



while

σαζ
α

(vαwα) = (σα)ζ
α

(vαwα) = ζα(vα)σα(vαwα)ζα(wα) = ζ(v)σ(vw)ζ(w).

Rewriting (8.1) as α−1ζα = ζα, we see that the action of α is that of conjugation, as the
notation suggests. Rewriting it in terms of ζX we obtain the important equation

(8.2) (ζX)α = ζXα ,

since ζαX(vα) = ζX(v) = ζXα(vα).
Now we can define a preliminary group to the switching automorphism group. The ground

set is {+,−}V ×Aut Γ, whose elements we call, for lack of a better name, switching permu-
tations of Γ, because when they act on a signature of Γ they switch signs and permute the
vertices. A switching permutation of Σ is any ζγ ∈ {+,−}V × Aut Γ such that Σζγ = Σ.
The multiplication rule is

(ζ, α)(η, β) = (ζηα
−1

, αβ).

Because {+,−}V and Aut Γ embed naturally into {+,−}V × Aut Γ as {+,−}V × {id} and
{ε} ×Aut Γ, we regard them as subgroups of {+,−}V ×Aut Γ and write the element (ζ, α)
as a product, ζα. The equation of multiplication is given by the next lemma.

Lemma 8.2. The product of switching permutations ζXγ and ζY ξ, where ζX , ζY ∈ {+,−}V
and γ, ξ ∈ Aut Γ, is given by

(8.3) ζXγ · ζY ξ = ζXζY γ−1 · γξ.
The inverse of a switching permutation is

(8.4) (ζXγ)−1 = ζXγγ−1.

Proof. The product formula is a restatement of the previous equations. We verify the inver-
sion formula with a short calculation:

ζXγγ−1 · ζXγ = ζXγζXγ · γ−1γ = ζXγ⊕Xγ id = ε id

by (8.2). �

The commutation laws (8.1) and (8.2) imply that the conjugate of a switching function
by an automorphism is another switching function. Consequently, {+,−}V is a normal
subgroup. That makes the group of switching permutations a semidirect product of {+,−}V
and Aut Γ, so we write it as {+,−}V o Aut Γ. We write pA for the projection onto Aut Γ.

The action of {+,−}V oAut Γ on signed graphs (Γ, σ) has kernel KΓ×{id}. The quotient
group is the switching automorphism group of Γ,

SwAut Γ :=
(
{+,−}V o Aut Γ

)
/
(
KΓ × {id}

)
.

Since Sw Γ can be identified with the normal subgroup Sw Γ×{id}, KΓ with KΓ×{id}, and
Aut Γ with the subgroup {ε̄}×Aut Γ, the switching automorphism group of Γ is a semidirect
product,

SwAut Γ = Sw Γ o Aut Γ,

which projects onto Aut Γ by a mapping p̄A. We refer to elements of SwAut Γ as switching
automorphisms of Γ. (That is a slight abuse of terminology since they do not actually switch
Γ; they switch signatures of Γ.)

A switching automorphism of Γ can be written in several equivalent ways. As a member
of
(
{+,−}V o Aut Γ

)
/
(
KΓ × {id}

)
it is (ζ, α) = ζα. As a member of Sw Γ o Aut Γ it is
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(ζ̄ , α) = ζ̄α. By the natural embeddings ζ id = ζ̄ id = ζ̄ and εα = ε̄α = α. In particular,
the identity element of SwAut Γ is ε id = ε̄ id = id. Lemma 8.2 applies in SwAut Γ simply
by putting a bar over the switching functions. (Sometimes we omit the bar, as it is obvious
which element of SwAut Γ is meant by ζα.)

The switching automorphism group of Γ contains the switching automorphism group of
each signed graph Σ = (Γ, σ). The latter group is

SwAut Σ := {ζ̄α : α ∈ Aut Γ such that α : Σζ ∼= Σ}.
That is, α must be an isomorphism from the switched signed graph to the original signed
graph. This group projects into Aut Γ by the mapping p̄A|SwAut Σ, which for simplicity we also
write as p̄A. We identify Aut Σ with the subgroup {ε̄α ∈ SwAut Γ : α ∈ Aut Σ}. Note that
a switching permutation of Σ is any switching permutation of Γ such that ζ̄γ ∈ SwAut Σ.

8.1.3. Automorphisms and switching automorphisms. Now we can state relationships amongst
the automorphisms and switching automorphisms of Σ and the automorphisms of Γ.

Proposition 8.3. As a function from SwAut Σ to Aut Γ, p̄A is a monomorphism. The
groups satisfy Aut Σ ≤ p̄A(SwAut Σ) ≤ Aut Γ.

Proof. It is obvious that p̄A is a homomorphism. To prove it is injective we examine a
switching function ζ such that ζ id is a switching automorphism. That means Σζ = Σ, in
other words, ζ ∈ KΓ. But that means the only element of the form ζ̄ id in SwAut Σ is the
trivial one, ε̄ id. Hence, p̄A is injective.

The relationships of the groups are now obvious. �

Another relationship makes an obvious but valuable lemma.

Lemma 8.4. The automorphisms of Σ are the automorphisms of |Σ| that stabilize Σ+, or
equivalently Σ−.

Switching automorphisms of homogeneously signed graphs are not very interesting in
themselves.

Proposition 8.5. The automorphisms and the switching automorphisms of a homogeneous
signature, +Γ or −Γ, are the automorphisms of the underlying graph.

Proof. This follows at once from Lemma 8.4. �

A heterogeneously signed graph, to the contrary, is likely to have switching automorphisms
that are not automorphisms of the signed graph. We see this in most, though not all, of the
heterogeneous signatures of P .

Switching can change the automorphism group drastically. Fortunately, the isomorphism
type of the switching automorphism group is invariant under switching. In addition, nega-
tions need not be considered separately.

Proposition 8.6. Aut(−Σ) = Aut(Σ) and SwAut(−Σ) = SwAut(Σ). Also, SwAut(Σζ) ∼=
SwAut(Σ) by the mapping η̄γ 7→ ζ̄ η̄γ.

Proof. The first statement is immediate from Lemma 8.4.
The second follows from considering how a switching automorphism acts. (ζ, α) is a

switching automorphism of Σ if and only if Σζ ∼= Σ, the isomorphism being via α. This
means that the same graph automorphism is an automorphism both of (Σζ)+ ∼= Σ+ and of
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(Σζ)− ∼= Σ−. It follows that ζα is a switching automorphism of −Σ under exactly the same
conditions as it is a switching automorphism of Σ.

For the third statement we simply write down the action of η̄α: it converts Σζ to (Σζ)ηα =

Σζ̄η̄α. �

Corollary 8.7. Switching Σ does not change the automorphisms in the switching automor-
phism group: pA(SwAut Σζ) = pA(SwAut Σ) for any switching function ζ.

Proof. Examine the mapping in Proposition 8.6. �

Suppose ζα is a switching automorphism. Since (Σζ)− ∼= Σ−, the switching cannot change
the number of negative edges. As switching means negating the signs of edges in a cut, the
cut must have equally many positive and negative edges. Thus we have a necessary condition
for a switching automorphism:

Proposition 8.8. If ζXα is a switching automorphism of Σ, then ∇X has equally many
edges of each sign. �

8.1.4. Coset representation. We treat multiplication in a switching automorphism group
SwAut Σ through the left cosets of Aut Σ. Choose a system R̄ of representatives of the cosets
and a system R of representatives ζXγX ∈ {+,−}V oAut Γ of the elements ζ̄XγX ∈ R̄. Then
SwAut Σ is the disjoint union of the left R̄-cosets of Aut Σ:

(8.5) SwAut Σ =
⋃

ζXγX∈R

ζ̄XγX Aut Σ.

Thus we have two levels of representation: a switching automorphism ζ̄XγX representing
each coset, and a switching permutation ζXγX to represent each ζ̄XγX ∈ R̄. Note that
ζX and ζXc = −ζX are equally valid representatives of ζ̄X ; thus we can choose X so that
|X| ≤ 1

2
|V |.

Proposition 8.9. The following three statements about two switching automorphisms, ζ̄Xγ
and ζ̄Y ξ ∈ SwAut Σ, are equivalent.

(i) They belong to the same coset of Aut Σ in SwAut Σ.
(ii) They have the same switching operation, ζ̄X = ζ̄Y .

(iii) γ and ξ belong to the same coset of Aut Σ in Aut Γ.

Proof. The switching automorphisms are in the same coset ⇐⇒ there is an α ∈ Aut Σ such
that ζ̄Xγ = ζ̄Y ξα. Because SwAut Σ ⊆ SwAut Γ and p̄A is a monomorphism, this implies
(iii) γ = ξα ∈ ξAut Σ and (ii) ζ̄X = ζ̄Y .

Now suppose (ii), i.e., there are cosets ζ̄Xγ Aut Σ and ζ̄XξAut Σ with the same switched
set X. Then (ζ̄Xγ)−1(ζ̄Xξ) ∈ Aut Σ. Simplifying, (ζ̄Xγ)−1(ζ̄Xξ) = γ−1ζ̄−1

X ζ̄Xξ = γ−1ξ. Thus,
γ−1ξ ∈ Aut Σ, which implies (iii).

Finally, suppose (iii), i.e., ξ = γα. Then ζ̄Xγ = ζ̄Y γα. As in the first part of the proof,
this implies (ii) ζ̄X = ζ̄Y and consequently ζ̄Y ξ = ζ̄Xγα ∈ ζ̄Xγ Aut Σ, which is (i). �

Corollary 8.10. Each left coset representative ζ̄XγX ∈ R̄ has a different switching function
ζ̄X .

By Corollary 8.10, X determines γX ; thus, we define

ρX := ζXγX := the unique element of R that has switching set X.
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Also, define ρXc = ζXcγXc . Then ρ̄X = ρ̄Xc because ζ̄X = −ζ̄X = ζ̄Xc . Thus, assuming Σ
is connected each ρ̄ ∈ R̄ has two associated switching sets, X and Xc, each of which serves
equally well to represent ρ̄. (There are only two because KΓ = {±ε}.)

The task now is to express the product of switching automorphisms in terms of coset
representatives. In the next subsection we do that for the more complicated signed Petersen
examples by setting up multiplication tables for R, which combine with a general formula to
give all products. Here we explain the format of such tables and obtain the general product
formula.

The product of representatives, ζXγX ·ζY ξ, has the form (ζUγU)ν where ζUγU ∈ R and the
permutation ν ∈ Aut Σ is a correction due to the fact that the product of representatives
need not be a representative itself. We need formulas for U and ν in terms of R. (The
application to R̄ consists merely of placing bars over the switching functions.) For simplicity
we assume Σ is connected, to ensure that ζ̄U is represented only by ζU or ζUc = −ζU .

Proposition 8.11. Assume Σ = (Γ, σ) is connected. For switching automorphisms (ζ̄XγX)α
and (ζ̄Y γY )β, where ζXγX , ζY γY ∈ R and α, β ∈ Aut Σ, there is the multiplication formula

(8.6) (ζXγX)α · (ζY γY )β = (±ζUγU)ν · αβ,

where U = X ⊕ Y α−1γ−1
X , γU and the sign are determined by ±ζUγU ∈ R, and ν =

γ−1
U γXγ

α−1

Y ∈ Aut Σ.

Proof. Most of the proof is a calculation:

(ζXγX)α · (ζY γY )β = (ζXγX)(ζα
−1

Y γα
−1

Y ) · αβ

= (ζXγX)(ζY α−1γα
−1

Y ) · αβ

= (ζXζ
γ−1
X

Y α−1 )(γXγ
α−1

Y ) · αβ

= (ζXζ
Y
α−1γ−1

X
)(γXγ

α−1

Y ) · αβ

= ζ
X⊕Y α

−1γ−1
X

(γXγ
α−1

Y ) · αβ.

By Corollary 8.10, ζ̄U determines γU ∈ Aut Γ such that ζ̄UγU ∈ R̄; consequently,

(ζXγX)α · (ζY γY )β = (±ζUγU)(γ−1
U γXγ

α−1

Y ) · αβ.

The sign is determined by whether U := X⊕Y α−1γ−1
X or its complement is the set U ′ switched

by the representative ζU ′γX ∈ R. In the former case U ′ = U and the sign is +, while in the
latter case U ′ = U c, which introduces the minus sign. U ′ must be one or the other because
switching any other set will give some edge in a spanning tree a different sign.

The reason ν ∈ Aut Σ is that, by the definition of U , (ζ̄XγX)α · (ζ̄Y γY )β ∈ ζ̄UγU Aut Σ.
Thus, ν · αβ ∈ Aut Σ, which entails that ν ∈ Aut Σ. �

Ideally, to use Equation (8.6) in conjunction with the multiplication table of R, one first

finds Y ′ := Y α−1
, then looks up the product (±ρU)ν = ρXρY ′ in the table and combines with

αβ. (It is not necessary to find Y α−1γ−1
X or U .) For this method to work, R should be closed

under conjugation by Aut Σ. With Σ = P3,2 and P3,3 one can choose R suitably; that is, so
it is a union of orbits of Aut Σ acting on SwAut Σ. However, it may not always be possible
to choose such an ideal system of representatives.
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Question 8.1. Does a system of representatives R̄ that is closed under conjugation by Aut Σ
exist for every signed graph?

A necessary condition for such a system is that, if (ζXγX)α is in the same coset as ζXγX ,
then it must equal ζXγX . Thus γX should commute with every automorphism α of Σ for
which ζ̄Xα = ζ̄X (equivalently when Σ is connected, Xα = X or Xc).

8.2. Petersen automorphisms and switching automorphisms. Here we find the au-
tomorphism and switching automorphism groups of the six minimal signed Petersen graphs
and their negations. Between them they have six automorphism groups and six switching
automorphism groups, but only four abstract types of switching automorphism group. By
Proposition 8.6 the negative signature, (P,−σ), has exactly the same groups as does (P, σ),
and furthermore SwAut(P3,3) ∼= SwAut(−P ) and SwAut(P2,3) ∼= SwAut(−P1). By Proposi-
tion 8.5 and 8.5, both groups of +P and −P equal Aut(P ) = S5. Thus, as abstract groups
we have five automorphism groups and three switching automorphism groups to discover;
but there are five switching automorphism groups to find as explicit subgroups of SwAutP .

Theorem 8.12. The abstract automorphism and switching automorphism groups of the
minimal signed Petersen graphs and their negatives are as shown in Table 8.1. As subgroups
of SwAutP they are shown in Table 8.2.

(P, σ) Aut(P, σ) SwAut(P, σ)

+P , −P S5 S5

P1, −P1 D4 D4

P2,2, −P2,2 Z2 V4

P2,3, −P2,3 D4 D4

P3,2, −P3,2 S3 A5

P3,3, −P3,3 S4 S5

Table 8.1. The automorphism and switching automorphism groups of the
minimal signed Petersens and their negatives. Sk, Ak, Dk, and Zk are the
symmetric and alternating groups on k letters, the dihedral group of a k-gon,
and the cyclic group of order k. V4 is the Klein four-group.

We preface the proof with a structural lemma.

Lemma 8.13. Let (P, σ) be a minimal signature of P . Suppose ∇X is a cut that contains
equally many edges of each sign, as when X is switched in a switching automorphism. Then

(a) |∇X| = 4, X = V (e0) for some edge e0, and (P, σ) = Pk,2 for k = 2 or 3, or
(b) |∇X| = 6, X = V (Q) for a path Q of order 4, and (P, σ) = P3,2, or
(c) |∇X| = 6, X = N [v] for some vertex v, and (P, σ) = P3,3.

Note that Lemma 8.13 does not apply to a switching automorphism in which there is no
switching.
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(P, σ) Aut(P, σ) SwAut(P, σ)

+P , −P S{1,2,3,4,5} {ε̄} ×S{1,2,3,4,5}

P1, −P1 with
E− = {vijvkl}

〈
(ij), (ikjl)

〉
{ε̄} ×

〈
(ij), (ikjl)

〉
P2,2, −P2,2 with
E− = {vilvjm, vklvim}

〈
(jk)(lm)

〉 〈
ε̄(jk)(lm), ζ{jm,kl}(jl)(km)

〉
P2,3, −P2,3 with
E− = {vikvjl, vilvjk}

〈
(ij), (ikjl)

〉
{ε̄} ×

〈
(ij), (ikjl)

〉
P3,2, −P3,2 with
E− = {vilvjm, vklvim, vjlvkm}

(
S{i,j,k} ×S{l,m}

)+
See Equation (8.11)

P3,3, −P3,3 with
E− = {vijvkl, vikvjl, vilvjk}

S{i,j,k,l} See Equation (8.9)

Table 8.2. The exact groups corresponding to specific negative edge sets.
i, j, k, l,m are the five elements of {1, 2, 3, 4, 5}, in any order. For G ≤ Sn, G+

denotes the set of even permutations in G. ζX is the switching function that
switches X ⊆ V (with ij denoting vertex vij for readability).

Proof. Suppose the subgraph P :X induced on X, with edge set E:X, is disconnected; then
∇X is the disjoint union of two or more cuts, hence it has at least 6 edges. As (P, σ) is
minimal, there are no more than three negative edges; hence |∇X| = 6 and X consists of
two nonadjacent vertices. Then ∇X does not contain three independent edges; by Corollary
7.4 this case is impossible.

Therefore P :X is connected, so |∇X| = 3|X| − 2|E:X|. As |∇X| is even, this implies
|X| is even, so we may assume |X| ≤ 4. Then P :X is acyclic; being connected, it is a tree.
Consequently |E:X| = |X| − 1 and we deduce that |∇X| = |X|+ 2.

If the cut has four edges, |X| = 2; so X = V (e0) for some edge e0 and ∇X consists
of the four edges adjacent to e0. Amongst them the largest distance is 2. It follows that
(P, σ) = Pk,2 as in (a).

If the cut has six edges, |X| = 4. P :X is a tree which may be either a path Q of length 4
or a vertex star. If it is a path Q, then X = V (Q) and the six edges of ∇X contain no three
edges at distance 3 from one another. Hence, d = 2 and we have (b). If P :X is a vertex star,
X = N [v] for some v ∈ V . In this case d = 3, for it is not possible to choose three edges in
∇X whose distances are all 2. Thus, we are in case (c). �

Proof of Theorem 8.12. In the course of the proof we establish many important facts about
the groups, in particular multiplication tables for the most complicated ones, SwAutP2,3 and
SwAutP3,3. The proofs of these facts could not easily be separated from that of the main
theorem so it seemed best, though unconventional, to incorporate them all including their
formal statements into one large proof. In order to keep the reader (and the author) from
getting lost, the proof is divided into subsections treating different aspects.

The groups of +P follow from Proposition 8.5. We take up the others in turn.
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8.2.1. Signatures of type P1. The automorphism group of P1 is the stabilizer of an edge in
AutP . Suppose P1 to have negative edge e = vijvkl; i.e., it is P{e}. An automorphism α can
preserve the vertices; then it is in the four-element group generated by (ij) and (kl). Or,
it can exchange the vertices; this is done, for instance, by a permutation (ikjl). The group〈
(ij), (kl), (ikjl)

〉
is the dihedral group of a square with corners labelled, in circular order,

i, k, j, l; it is generated by (ij) and (ikjl).
Due to Proposition 8.8 and the fact that no cut in P has fewer than three edges, there are

no switching automorphisms of P1 other than its automorphisms.

8.2.2. Signatures of type P2,d. We write P{e,f} for P2,d with negative edges e and f . An
automorphism of P{e,f} preserves {e, f}.

In P2,3 there is a unique third edge g at distance 3 from e and f forming a matching M3(m).
As any edge in M3(m) determines the whole matching, an automorphism of P that stabilizes
{e, f} must fix g, and vice versa. Thus, AutP{e,f} = AutP{g}.

In P2,2 = P{e,f}, e and f are at distance 2 in a hexagon Hlm. The hexagon is uniquely
determined by {e, f}. There is a unique edge g at distance 2 from e and f in H. Let
e = vilvjm, f = vklvim, and g = vjlvkm. Since an automorphism α of P{e,f} preserves distance,
the adjacent vertices vjm, vkl of E− are either fixed or interchanged, and the remaining
vertices vil, vim are also fixed or interchanged. This implies that i is fixed under α, so
α, if not the identity, transposes l and m, and consequently α = id or (jk)(lm). Hence,
AutP{e,f} =

〈
(jk)(lm)

〉 ∼= Z2, the cyclic group of order 2.
Now let us examine possible switching automorphisms ζXγ of P{e,f} = P2,d for d = 2, 3.

By Lemma 8.13 |∇X| = 4 and P{e,f} = P2,2. It follows that a nontrivial switching of P2,3

cannot be isomorphic to P2,3, so SwAutP2,3 = {ε̄}×AutP2,3. There is a nontrivial switching
by X = {vjm, vkl} forming new negative edges e′ = vjmvik and f ′ = vklvim, so γ must fix i
and transpose either j, l and k,m or else j,m and k, l. Thus, γ = (jl)(km) or (jm)(kl). We
conclude that

SwAutP{e,f} = {ε̄ id, ε̄(jk)(lm), ζ{jm,kl}(jl)(km), ζ{jm,kl}(jm)(kl)}.

8.2.3. Signatures of type P3,d. The next groups are those of P3,d = P{e,f,g} for d = 2, 3. For
each distance d choose the same negative edges e, f, g as in the previous analyses of P2,d. In
P3,2 the negative edges lie in the hexagon H = Hlm = P \N [vlm]. In P3,3 the negative edges
are e = vijvkl, f = vikvjl, g = vilvjk, so E− = M3(m).

We begin with the automorphism groups.
To determine AutP3,2, note that the hexagon containing e, f, g is Hv = P \ N [v] for

v = vlm. An automorphism α of P{e,f,g} must fix v and thus must fix or exchange l and
m. It can also permute the other indices i, j, k. Suppose α fixes l and m. As the vertices
of Hv, in order, are vli, vmk, vlj, vim, vlk, vjm, with vertex indices alternating between l and
m, and as α must preserve the set {e, f, g}, it must rotate Hv by a multiple of one-third
of a full rotation. That means it permutes i, j, k cyclically, so it is a power of (ijk). Now
suppose α exchanges l with m. Then it reverses the direction of Hv, so in order to leave
{e, f, g} invariant it must fix one of e, f, g and one of i, j, k; thus, α = (ij)(lm), (ik)(lm), or
(jk)(lm). The conclusion is that α is an even permutation of {1, 2, 3, 4, 5} and is an element
of S{l,m}×S{i,j,k}. Thus, AutP{e,f,g} = (S{l,m}×S{i,j,k})

+, the superscript + denoting even
permutations only. As the factor (lm) is predictable by evenness given the S{i,j,k} part of
an automorphism, AutP3,2

∼= S3.
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The automorphism group of P3,3 is determined by the fact that the negative edge set
{e, f, g} = M3(m). An automorphism permutes e, f, g, whence it permutes i, j, k, l arbitrarily
and fixes m. Thus, AutP{e,f,g} = S{i,j,k,l} ∼= S4.

Now we examine the switching automorphism groups. We assume P3,d = P{e,f,g} switches
by X to P{e′,f ′,g′}. Lemma 8.13 presents three cases to consider.

In Case (a), d = 2 so the three negative edges lie in the hexagon Hv. As switching changes
two edges from negative to positive, this resembles the case of P2,2, but now there are three
possible switching sets X, namely X = {w, x} for each positive edge wx in Hv. Switching X

kl

jl

km

ij

g f

kl

imjl

km

ij

g f

e’

f ’lmlm

jm jmil

im

il
w w

x x

v v

jk ik ikjk

u

e e

Figure 8.1. Switching two positively adjacent vertices (circled) on the princi-
pal hexagon in P3,2 for Case (a). Left: P{e,f,g}, before switching. The principal
hexagon Hv is the outer hexagon. Heavy lines indicate the cut ∇X. Right:
PX
{e,f,g}, after switching X = {vjm, vkl}. Heavy lines indicate the new principal

hexagon Hu and dotted lines mark the two new negative edges.

gives a P3,2 with negative edge set {e′, f ′, g′} ⊆ Hu. The vertex u can be described in terms
of the 3-edge path in Hv centered upon wx: there is a unique pentagon containing this path,
and u is its one vertex not in Hv. It follows that each different edge wx yields a different
principal hexagon after switching. Now suppose X = {vjm, vkl}; then u = vjk and PX

{e,f,g} is

isomorphic to P{e,f,g} by the even permutation γX := (jm)(kl). Similarly, each of the other
two switching sets X gives PX

{e,f,g} which is isomorphic to P{e,f,g} by an even permutation.
It follows from Proposition 8.9 that each different ζXγX belongs to a different left coset of
AutP{e,f,g} in SwAutP{e,f,g}. Thus we have three cosets besides AutP{e,f,g} itself.

The three coset representatives are a single orbit of the action of AutP{e,f,g} on SwAutP{e,f,g}.
To prove this we may point to symmetry or we may compute the action on a coset represen-
tative ζ̄XγX , or rather on the switching permutation ζXγX . The argument from symmetry
is that each switching automorphism is obtained from one of them, say ζ̄jm,kl(jm)(kl), by
rotating Figure 8.1 through 120◦ once or twice. The rotation is carried out by the permu-
tation (kji). As for a double transposition, say (jk)(lm) ∈ AutP{e,f,g}, applying it reflects
the figure across a line parallel to vjkvlm and therefore does not change the switching auto-
morphism ζ̄jm,kl(jm)(kl); the other double transpositions similarly fix the other switching
automorphisms. For the computational proof, first, the action of powers of (ijk):

(8.7)
[ζjm,kl(jm)(kl)](ijk) = ζkm,il(km)(il),

[ζjm,kl(jm)(kl)](kji) = ζim,jl(im)(jl).
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This shows the chosen representatives are in one orbit. Next, the action of (jk)(lm):

[ζjm,kl(jm)(kl)](jk)(lm) = ζjm,kl(jm)(kl).

As AutP{e,f,g} = 〈(ijk)〉 ∪ (jk)(lm)〈(ijk)〉, this proves there are no other switching per-
mutations in the orbit. The computational proof gives the slightly stronger result that
the switching permutations, not only the switching automorphisms, are a whole orbit of
AutP{e,f,g}.

In Case (b), d = 2 and P :X is a path wxyz. Again e, f, g are alternating edges on Hv.
Given Hv, we need to know which sets X = {w, x, y, z} can be. To determine that, we

reverse the question; we fix X and ask which hexagons Hv can be. (There are 60 paths of
length 3, but as AutP is transitive on them, there is only one type.) Since e, f, g ∈ ∇X, it
must be true that |Hv ∩ ∇X| = 3. One finds by checking every vertex of P that only two
hexagons Hv have this property; the vertices v are the neighbors of x and y in Xc. By choice
of notation, we may assume v is adjacent to y.

klkm

ij

g f

klkm

ij

g f

lmlm

jm jmil il
w w

x x

v v

jk ik ikjk

e e

y y

z z

imjljl im
u

f ’

g’
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Figure 8.2. Switching the four vertices of a path in P3,2 for Case (b). Left:
P{e,f,g}, before switching X = {w, x, y, z}. The principal hexagon Hv is the
outer hexagon. Heavy lines indicate the cut ∇X. Right: PX

{e,f,g}, after switch-
ing. Heavy lines indicate the new principal hexagon Hu and dotted lines mark
the new negative edges.

Now we can describe the relationship between the path wxyz and P{e,f,g}. The path begins
with the positive edge wx of Hv, which is followed by y /∈ V (Hv), and then ends at z in Hv.
The original negative edges e, f, g are the alternating triple in Hv that excludes wx. The
vertex y is the neighbor of x along Hv. Thus, there are six possible paths for wxyz. Once
we choose w and x, the rest is determined.

After switching X = {w, x, y, z} we again have three negative edges on a hexagon; this
hexagon is Hu where u is the neighbor of x along Hv. Hv ∩Hu is the 2-edge path from w to
z in Hv; the first edge is one of e, f, g and hence positive (after switching), while the next,
call it e′, is negative. The negative edge set of PX

{e,f,g} consists of e′ and the edges f ′, g′ at
distance 2 from it along Hu. Thus, P{e,f,g} switches to P{e′,f ′,g′}.

To find a permutation α by which PX
{e,f,g} is isomorphic to P{e,f,g}, we need only examine

one case, because each path wxyz maps to any other, w′x′y′z′, by the unique automorphism
of P{e,f,g} which carries (w, x) to (w′, x′). Let e = vilvjm, f = vklvim, and g = vjlvkm, so
v = vlm, and let the path wxyz = vjmvklvijvkm. Then u = vim. The even permutation
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(ilm) is one choice for the desired isomorphism. The switching automorphism of P{e,f,g} is
ζ̄{jm,kl,ij,mk}(ilm). (In the notation of Section 8.1.4 this is ρ̄{jm,kl,ij,mk}.)

These six switching automorphisms are another orbit of AutP{e,f,g} acting on SwAutP{e,f,g}.
The proof by symmetry is contained in the observation that the six paths are automorphic
under the automorphism group. We show the computational proof in order to demonstrate
that the switching permutations are also a single orbit of AutP{e,f,g}. We compute the
nontrivial actions on one of the switching permutations:

(8.8)

[ζ{jm,kl,ij,mk}(ilm)](ijk) = ζ{km,il,jk,mi}(jlm),

[ζ{jm,kl,ij,mk}(ilm)](kji) = ζ{im,jl,ki,mj}(klm),

[ζ{jm,kl,ij,mk}(ilm)](jk)(lm) = ζ{kl,jm,ik,lj}(mli),

[ζ{jm,kl,ij,mk}(ilm)](ij)(lm) = ζ{il,km,ji,lk}(mlj),

[ζ{jm,kl,ij,mk}(ilm)](ik)(lm) = ζ{jl,im,kj,li}(mlk).

This displays all six switching permutations of P{e,f,g}.

In Case (c), X = N [v], {e, f, g} = M3(m) :=
{
vijvkl : {i, j, k, l} = {1, 2, 3, 4, 5} \m

}
, and

AutP{e,f,g} = S{1,2,3,4,5}\m. The complement of V (M3(m)) is Xm. Any vertex in Xm can be
taken as v; choosing v = vim, ζN [vim](im) is a switching automorphism of P3,3. This is the
only way to switch P{e,f,g} for a switching automorphism, so

(8.9) SwAutP3,3 = S{1,2,3,4,5}\m ∪
⋃

i∈{1,2,3,4,5}\m

ζN [vim](im)S{1,2,3,4,5}\m.

Therefore, we may rewrite Equation (8.9) as

SwAutP3,3 =
⋃

α∈S{1,2,3,4,5}\m

[ζN [vim](im)]α S{1,2,3,4,5}\m.

(where i 6= m is fixed).
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Figure 8.3. Switching the closed neighborhoodX = N [v] of a totally positive
vertex in P3,3 for Case (c). The original negative edges e, f, g are dashed; the
new ones after switching, e′, f ′, g′, are dotted. The heavy lines show the cut
∇X.
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Much as with P3,2, the switching permutations and switching automorphisms of P3,3 are
whole orbits of the actions of AutP{e,f,g} on switching permutations and switching automor-
phisms of P . This is obvious both pictorially, as AutP{e,f,g} permutes {1, 2, 3, 4, 5}\{m} and
therefore Xm, and computationally, as N [vim]α = N [viαm] so [ζN [vim](im)]α = ζN [viαm](i

αm).

8.2.4. The structure of SwAutP3,2. A switching automorphism of P3,2, if not an automor-
phism, falls under Case (a) or Case (b). Thus,

(8.10)

SwAutP3,2 = AutP3,2 ∪
⋃

λ∈〈(ijk)〉

[ζ{jm,kl}(jm)(kl)]λ AutP3,2

∪
⋃

µ∈AutP3,2

[ζ{jm,kl,ij,mk}(il)(jk)]µ AutP3,2.

That tells us the set SwAutP3,2 but to know the group we need the rules for multiplication
and for how to determine, for each permutation in pA(SwAutP3,2), which switching must be
done before the permutation to get a switching automorphism.

The description is simplified if we fix the P3,2 by choosing a specific negative edge set.
Our choice for E− is {e = v14v25, f = v34v15, g = v24v35} ⊆ H45. (That is, we are setting
i, j, k = 1, 2, 3 and l,m = 4, 5.)

To describe the group we fix two switching sets,

W := {v15, v24} and Z := {v34, v25, v13, v24},

and corresponding switching permutations,

υW := ζW (15)(24) and ωZ := ζZ(145).

(W is the X = {vim, vjl} of Case (a) and Z is the X = {vjm, vkl, vij, vkm} of Case (b). The
permutation part is what was called γW and γZ ; as before, it is partly arbitrary since it
is determined only up to right multiplication by elements of AutP3,2.) For the systems of
representatives in Proposition 8.11 we choose

R := {ε id} ∪ {υλW : λ ∈ 〈(123)〉} ∪ {ωµZ : µ ∈ AutP3,2},

which we may do because the coset representatives constitute three orbits of AutP3,2 as
shown in Section 8.2.3, and R̄ := {ζ̄XγX : ζXγX ∈ R}. As in Cases (a) and (b), W (12)(45) = W
and ρµX = ρXµ for any ρX = ζXγX ∈ R and µ ∈ AutP3,2, so R is closed under the action of
AutP3,2. The sets W µ and Zµ are found in Table 8.3.

The switching set X associated with ρ̄ ∈ R̄ is uniquely determined if we insist that |X| ≤ 4.
(That is how we chose R.) Thus, we are representing SwAutP3,2 as the disjoint union of the
left R̄-cosets of AutP3,2:

(8.11) SwAutP3,2 =
⋃

ζXγX∈R

ζ̄XγX AutP3,2.

Note again that ζX and −ζX = ζXc are equally valid representatives of ζ̄X ; this fact helps to
calculate and interpret the multiplication tables we provide for SwAutP3,2.

The product (ζ̄XγX)α·(ζ̄Y γY )β of any two switching automorphisms is completely specified
by Proposition 8.11. To find the product follow this procedure:

(1) Set Y ′ = Y α−1
and ζY ′ = ζα

−1

Y . Then ζY ′γY ′ is an element of R because R is closed
under the action of AutP3,2.
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(2) Calculate U = X ⊕ Y ′ or (X ⊕ Y ′)c, the former if |X ⊕ Y ′| ≤ 4 and the latter
otherwise.

(3) Find ζUγU ∈ R to determine γU .
(4) The product is (ζ̄UγU)(γ−1

U γXγY ′) · αβ, which lies in the coset (ζ̄UγU) AutP3,2.
(5) The product (ζXγX)α · (ζY γY )β in {+,−}×AutP , if desired, is ±(ζUγU)(γ−1

U γXγY ′) ·
αβ, with the positive sign if |X ⊕ Y ′| ≤ 4 and the negative sign if not.

Steps (2) and (3) can be combined by using Tables 8.4–8.6, which give the products of
elements ζXγX , ζY ′γY ′ ∈ R.

To illustrate the calculations involved in preparing the multiplication tables for P3,2 we
solve three representative cases.

Example 8.1. For the first two examples we compute the product of ωZ times two other
switching permutations in R. First,

ωZωZ = ζ{34,25,13,24}(145) · ζ{34,25,13,24}(145)

= ζ{34,25,13,24}ζ{34,25,13,24}(145)−1 (145)(145)

= ζ{34,25,13,24}ζ{31,24,53,21}(541) = ζ{34,25,13,24}⊕{31,24,53,21}(541)

= ζ{34,25,53,21}(541) = ζZ(23)(45)(541) = ω
(23)(45)
Z .

Next, a more complicated example involving complementation of the switching set and a
residual permutation that is an automorphism of P3,2.

ωZω
(321)
Z = ζ{34,25,13,24}(145) · ζ{24,15,23,14}(345)

= ζ{34,25,13,24}ζ{24,15,23,14}(145)−1 (145)(345)

= ζ{34,25,13,24}ζ{21,54,23,51}(15)(34) = ζ{34,25,13,24}⊕{12,45,23,15}(15)(34)

= −ζ{14,35}(15)(34) = [−ζ{14,35}(14)(35)] · [(14)(35)]−1(15)(34)

λ W µ υWµ Zµ ωZµ

id W = {v15, v24} ζW (15)(24) Z = {v34, v25, v13, v24} ζZ(145)

(123) {v25, v34} ζ
(123)
W (25)(34) {v14, v35, v12, v34} ζ

(123)
Z (245)

(321) {v35, v14} ζ
(321)
W (35)(14) {v24, v15, v23, v14} ζ

(321)
Z (345)

(12)(45) {v15, v24} υW {v35, v14, v23, v15} ζ
(12)(45)
Z (542)

(23)(45) {v14, v35} υ
(321)
W {v25, v34, v12, v35} ζ

(23)(45)
Z (541)

(13)(45) {v34, v25} υ
(123)
W {v15, v24, v13, v25} ζ

(13)(45)
Z (543)

Table 8.3. The transforms W µ and Zµ and associated switching automor-
phisms, for µ ∈ AutP3,2. Recall that υµW = υWµ and ωµZ = ωZµ .
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· υW υ
(123)
W υ

(321)
W

υW ε̄ id ω
(321)
Z (123) ω

(13)(45)
Z (321)

υ
(123)
W ω

(12)(45)
Z (321) ε̄ id ωZ(123)

υ
(321)
W ω

(123)
Z (123) ω

(23)(45)
Z (321) ε̄ id

· ωZ ω
(123)
Z ω

(321)
Z

υW ω
(12)(45)
Z ω

(123)
Z (12)(45) υ

(123)
W (321)

υ
(123)
W υ

(321)
W (321) ω

(13)(45)
Z ω

(321)
Z (23)(45)

υ
(321)
W ωZ(13)(45) υW (321) ω

(13)(45)
Z

· ω
(12)(45)
Z ω

(23)(45)
Z ω

(13)(45)
Z

υW ωZ −ω(23)(45)
Z (12)(45) υ

(23)(45)
W (123)

υ
(123)
W −ω(12)(45)

Z (23)(45) υW (123) ωZ

υ
(321)
W υ

(13)(45)
W (123) ω

(321)
Z −ω(13)(45)

Z (13)(45)

Table 8.4. The multiplication table of elements of {+,−}×AutP that repre-
sent coset representatives of the second kind times the second and third kinds
in SwAutP3,2.

= −υ{14,35} · (35)(14)(15)(34) = −υ(321)
W (13)(45).

Example 8.2. We use Example 8.1 to compute left multiplication by a transform of ωZ .

ω
(321)
Z ω

(123)
Z =

[
ωZω

(123)(321)−1

Z

](321)
=
[
ωZωZ

](321)
,

which by Example 8.1

=
[
− υ(321)

W (13)(45)
](321)

= −υ(123)
W (32)(45).

By explicitly inverting the isomorphism p̄A : SwAutP3,2 → A5 : ζ̄ξ 7→ ξ we can say, for
any ξ ∈ A5, exactly which switching function ζXγX should be associated with it.
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· υW υ
(123)
W υ

(321)
W

ωZ −ω(12)(45)
Z (12)(45) υ

(123)
W (321) ω

(13)(45)
Z

ω
(123)
Z ω

(23)(45)
Z −ω(13)(45)

Z (23)(45) υ
(321)
W (321)

ω
(321)
Z υW (321) ω

(12)(45)
Z −ω(23)(45)

Z (13)(45)

ω
(12)(45)
Z −ωZ(12)(45) ω

(321)
Z υ

(321)
W (123)

ω
(23)(45)
Z ω

(123)
Z υ

(123)
W (123) −ω(321)

Z (13)(45)

ω
(13)(45)
Z υW (123) −ω(123)

Z (23)(45) ωZ

Table 8.5. The multiplication table of elements of {+,−}×AutP that rep-
resent coset representatives of the third kind times the second kind in
SwAutP3,2.

Proposition 8.14. For a permutation ξ ∈ A5, the corresponding switching automorphism
of P3,2 is ζ̄Xξζ̄XγXα ∈ ζ̄XγX AutP3,2 where ζXγX ∈ R is given by

ζXγX =


ζ∅ id = ε id if {4, 5}ξ−1

= {4, 5},
ζ{34,25,13,24}λ(i45) if {4, 5}ξ−1

= {i, 4}, where λ = (123)i−1,

ζ{25,34,12,35}λ(54i) if {4, 5}ξ−1
= {i, 5}, where λ = (123)i−1,

ζ{i5,j4}(i5)(j4) if {4, 5}ξ−1
= {i, j} ⊂ {1, 2, 3}, where j = i(123),

and α = γ−1
X ξ.

Proof. The question is to find the vertex set X such that γX , of ζXγX ∈ R, satisfies γXα = ξ
for some α ∈ AutP3,2; in other words, γ−1

X ξ = α ∈ AutP3,2. By this definition of α,

{4, 5}ξ−1
= {4, 5}α−1γ−1

X . But {4, 5} is invariant under AutP3,2. Therefore, {4, 5}ξ−1
=

{4, 5}γ−1
X , which depends only on the coset of AutP3,2 to which ξ belongs. In other words,

we need only consider the case α = id, which means we examine only all ξ = γX . Now the
proposition follows easily by inspection of the ten cases of γX .

A better method is to show that the proposition for one X implies it for all Xλ. Replacing
X by Xλ,

{4, 5}(γ
Xλ

)−1

= {4, 5}(γλX)−1

= {4, 5}λ−1(γX)−1λ = ({4, 5}(γX)−1

)λ.

Taking λ = (123)p, and supposing that {4, 5}γ−1
X = {4, 5}, {i, 4}, {i, 5}, or {i, i(123}, we

deduce that {4, 5}(γ
Xλ

)−1
= {4, 5}, {iλ, 4}, {iλ, 5}, or {iλ, (iλ)(123)}, respectively. That proves

the claim for λ = (123)p. Thus, we need only check the proposition’s validity for X =
∅, Z, Z(12)(45), and W , which is easier than checking all ten X’s. �

A natural question is whether SwAutP3,2 can be written as a product of subgroups,
H · AutP3,2 where H ∩ AutP3,2 = {id}, or in other words whether there exists a system of
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· ωZ ω
(123)
Z ω

(321)
Z

ωZ ω
(23)(45)
Z υW −υ(321)

W (13)(45)

ω
(123)
Z −υW (12)(45) ω

(12)(45)
Z υ

(123)
W

ω
(321)
Z υ

(321)
W −υ(123)

W (23)(45) ω
(13)(45)
Z

ω
(12)(45)
Z −ω(23)(45)

Z (12)(45) ε̄ id −ω(13)(45)
Z (23)(45)

ω
(23)(45)
Z ε̄ id ω

(12)(45)
Z (12)(45) ω

(13)(45)
Z (13)(45)

ω
(13)(45)
Z −ω(23)(45)

Z (13)(45) −ω(12)(45)
Z (23)(45) ε̄ id

· ω
(12)(45)
Z ω

(23)(45)
Z ω

(13)(45)
Z

ωZ −ω(123)
Z (12)(45) ε̄ id −ω(321)

Z (13)(45)

ω
(123)
Z ε̄ id −ωZ(12)(45) −ω(321)

Z (23)(45)

ω
(321)
Z −ω(123)

Z (23)(45) −ωZ(23)(45) ε̄ id

ω
(12)(45)
Z ω

(123)
Z υ

(12)(45)
W −υ(13)(45)

W (23)(45)

ω
(23)(45)
Z −υ(12)(45)

W (12)(45) ωZ υ
(13)(45)
W

ω
(13)(45)
Z υ

(12)(45)
W −υ(23)(45)

W (13)(45) ω
(321)
Z

Table 8.6. The multiplication table of elements of {+,−}×AutP that rep-
resent coset representatives of the third kind in SwAutP3,2.

left coset representatives that is a subgroup. It does not, for it is known that no subgroup
of A5 of order 6 has such a complementary subgroup.

8.2.5. The structure of SwAutP3,3. We know the set SwAutP3,3 but for a full description
we need the rule of multiplication and the rule for inverting the projection pA. It is easier
to do this if we fix m, so we assume m = 5. Then E− = M3(5), AutP3,3 = S{1,2,3,4}, and

(8.12) SwAutP3,3 = S{1,2,3,4} ∪
4⋃
j=1

ζ̄N [j5](j5)S{1,2,3,4}.
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An element of the group has the form β or ζ̄N [j5](j5)β for β ∈ S{1,2,3,4} and j ∈ {1, 2, 3, 4}.
To compute a product refer to Table 8.7.

Left ·Top β ζ̄N [j5](j5)β

α αβ ζ̄N [jα−15](j
α−1

5)αβ

ζ̄N [i5](i5)α ζ̄N [i5](i5)αβ

{
αβ if j = iα

ζ̄N [jα−15](ij
α−1

5)αβ if j 6= iα

Table 8.7. The multiplication table of SwAutP3,3 with negative edge set
M3(5) = {v12v34, v13v24, v14v23}. i, j ∈ {1, 2, 3, 4} and α, β ∈ S{1,2,3,4}.

The second product column in Table 8.7 requires proof, for which the main step is this com-
putation (done for a switching permutation ζα and consequently the same for the switching
automorphism ζ̄α):

α · ζN [j5](j5) = ζN [jα−15]α(j5) = ζN [jα−15](j
α−1

5) · α.

That gives the first product. For the second we continue the calculation, first when j = iα:

ζN [i5](i5)α · ζN [iα5](i
α5) = ζN [i5](i5)ζN [i5](i5)α = ζN [i5]ζN [5i](i5)(i5)α = α;

second when j 6= iα:

ζN [i5](i5)α · ζN [j5](j5) = ζN [i5](i5)ζN [jα−15](j
α−1

5)α

= ζN [i5]ζN [jα−1 i](i5)(jα
−1

5)α = −ζN [jα−15](ij
α−1

5)α,

because N [pq]⊕N [qr] = N [pr]c, whence ζN [pq]ζN [qr] = ζN [pr]c = −ζN [pr].
Every permutation ξ ∈ S{1,2,3,4,5} is the projection of a unique element ζ̄XγX · α ∈

SwAutP3,3 belonging to the coset ζ̄XγX AutP3,3. The following formulas give ζX , γX , and α
in terms of ξ, thereby inverting pA. Let ζXγXα := p−1

A (ξ). Then ζXγX identifies the coset of
S{1,2,3,4}, and α identifies the element of S{1,2,3,4} that gives ξ.

(ζX , γX , α) =

{
(ε, id, ξ) if 5 is fixed by ξ,

(ζN [5ξ−15], (5
ξ−1

5), (5ξ
−1

5)ξ) if 5 is not fixed.
(8.13)

(Note that (5ξ
−1

5)ξ in cycle form is ξ with 5 deleted from whichever cycle it is in. Also note
that if we interpret N [kk] as the empty set, so ζN [kk] is ε, and (55) as the trivial cycle (5),
then the first line is subsumed in the second line.)

8.2.6. The end of the proof. That concludes the proof of Theorem 8.12. �
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8.3. Orbits and copies. There are two ways signed graphs Σ and Σ′ based on the same
graph Γ can be isomorphic. They may have the same set of positive circles, which (by
Lemma 4.1) is the same as saying they are switching equivalent; then for many purposes
they are essentially the same. The other possibility is that they belong to different switching
equivalence classes; in other words, their positive circles are not the same ones even though
they correspond under an automorphism of Γ. From the automorphism and switching auto-
morphism groups we can deduce the number of signatures of Γ that are isomorphic to Σ and
also the number that are switching inequivalent to Σ and to each other, i.e., the number of
switching equivalence classes of signatures isomorphic to Σ.

There is a nice bonus to this: we get an interpretation of the part of Aut Γ that does not
belong to p̄A(SwAut Σ). Apply any automorphism γ ∈ Aut Γ to Σ. Then Σγ ∼ Σ if and only
if γ ∈ p̄A(SwAut Σ). That means Σγ for γ /∈ p̄A(SwAut Σ), while isomorphic to Σ, belongs
to a different switching equivalence class.

A fine example is SwAutP3,2, whose projection is the alternating group A5. Any single
transposition changes (P, σ) ∼= P3,2 to an inequivalent (P, σ′), but there is one that is simplest.
In the notation of Table 8.2, it is (lm). This permutation preserves the hexagon Hlm that
contains E− while reversing the signs of the hexagon’s edges. Whether there are such
distinguished permutations to change one switching automorphism class of P1, P2,2, or P2,3

to another is not known.
The number of different isomorphic (but possibly switching equivalent) copies of a partic-

ular signature Σ is the number of orbits of Aut Σ, which equals |Aut Γ|/|Aut Σ|. The number
of different copies that are not switching equivalent, i.e., the number of switching equivalence
classes of signatures isomorphic to Σ, is |Aut Γ|/|SwAut Σ|, the number of orbits of SwAut Σ.
For instance, |AutP1| = |SwAutP1| = |D4| = 8; |AutP |/|AutP1| = |AutP |/|SwAutP1| =
5!/8 = 15; and (obviously) there are |E| = 15 ways to have one negative edge, none of which
is switching equivalent to any other.

(P, σ) +P , −P P1, −P1 P2,2, −P2,2 P2,3, −P2,3 P3,2, −P3,2 P3,3, −P3,3

# copies 1 15 60 15 20 5

# [copies] 1 15 30 15 2 1

Table 8.8. The number of different signatures of P that are isomorphic to
each minimal signed Petersen graph and its negative (‘copies’); and the number
of switching equivalence classes of such signatures (‘[copies]’).

9. Coloring

A coloration (in full, proper k-coloration, where k ≥ 0) of a signed graph is a function
κ : V → {0,±1,±2, . . . ,±k} such that if vw is an edge, then κ(w) 6= σ(vw)κ(v). The
chromatic number χ(Σ) is the smallest k such that there is a proper k-coloration of Σ. A
signed graph has a second chromatic number, the zero-free chromatic number χ∗(Σ); it is
the smallest k such that there is a proper k-coloration of Σ that does not use the color 0.
As the color 0 can be replaced by +(k + 1) to turn a coloration into a zero-free coloration,
χ∗(Σ) = χ(Σ) + 0 or 1.
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The chromatic numbers pair with chromatic polynomials. The chromatic polynomial of Σ
is the function χΣ(2k+1) := the number of proper k-colorations, and the zero-free chromatic
polynomial is χ∗Σ(2k) := the number that are zero free. (One can prove these functions are
monic polynomials of degree |V | by any method that establishes the chromatic polynomial
χΓ(y) of an ordinary graph; see [18]. There is another connection: χΓ(y) = χ+Γ(y) = χ∗+Γ(y).)

Proposition 9.1. The chromatic numbers and the chromatic polynomials of a signed graph
are invariant under switching and isomorphism.

Proof. Isomorphism invariance is obvious. For switching invariance, consider a proper col-
oration κ. A switching function ζ acts on κ by transforming it to κζ(v) := ζ(v)κ(v). The
condition for a coloration to be proper, κ(w) 6= κ(v)σ(vw), when multiplied by ζ(w), takes
the form

κζ(w) = κ(w)ζ(w) 6= κ(v)σ(vw)ζ(w) = [κ(v)ζ(v)][ζ(v)σ(vw)ζ(w)] = κζ(v)σζ(vw).

Thus, κζ is a proper coloration of Σζ if and only if κ is a proper coloration of Σ. This
establishes a bijection between proper colorations of Σ and of Σζ and hence the proposition.

�

9.1. Chromatic numbers. The chromatic numbers are weak invariants; they are nearly
the same for all signatures of P .

Theorem 9.2. The chromatic and zero-free chromatic numbers of signed Petersen graphs
are as in Table 9.1.

(P, σ) +P P1 P2,2 P2,3 P3,2 P3,3

χ(P, σ) 1 1 1 1 1 1

χ∗(P, σ) 2 2 2 2 2 1

Table 9.1. The chromatic numbers of signed Petersen graphs.

To find the chromatic numbers of any (P, σ), switch it into one of the minimal forms and
look it up in Table 9.1. Note that +P ' −P3,3, P1 ' −P2,3, P2,2 ' −P2,2, P2,3 ' −P1,
P3,2 ' −P3,2, and P3,3 ' −P .

We prepare for the proof of Theorem 9.2 with definitions and a lemma.
By a signed color we mean 0 or +i or −i for i > 0. For consistency with the definition of

chromatic numbers, when coloring a signed graph we call ±1 a single unsigned color and we
do not count 0 as an unsigned color. Thus, the counting of unsigned colors on signed graphs
is very different from that on unsigned graphs. We can color an unsigned graph with signed
colors but each has to be counted separately; for example, 0,+1,−1 are three colors when
coloring an unsigned graph.

Note that the endpoints of a negative edge may have the same signed color as long as that
color is not 0.

Contracting a graph Γ by an edge set S means one shrinks each connected component of
the spanning subgraph (V, S) to a vertex. The contracted graph is written Γ/S. (Technically,
a vertex W of Γ/S is a subset of V consisting of the vertices of one component of (V, S); they
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are the vertices that are coalesced into one by the shrinking.) The edges of S are deleted.
Another edge becomes a loop if its endpoints belong to the same component of (V, S). We
say that an original vertex that is a component of (V, S) remains a vertex of Γ/S. Any other
vertex of Γ/S results from coalescing two or more original vertices; we say it results from
contraction to distinguish it from remaining original vertices.

Lemma 9.3. Let Σ be a signed graph and let m ≥ 1.

(a) Suppose χ(|Σ|/E−(Σ)) ≤ 2m. Then χ(Σ) ≤ χ∗(Σ) ≤ m.
(b) Suppose |Σ|/E−(Σ) can be colored with the colors 0,±1, . . . ,±m in such a way that no

vertex resulting from contraction gets the color 0. Then χ(Σ) ≤ m and χ∗(Σ) ≤ m+ 1.
(c) If χ(|Σ|/E−(Σ)) ≤ 2 and Σ has at least one edge, then χ(Σ) = χ∗(Σ) = 1.
(d) If χ(|Σ|/E−(Σ)) = 3, then χ∗(Σ) = 2.

Proof. (a) Color |Σ|/E− with the colors ±1, . . . ,±m. This coloration can be pulled back to
Σ, because the vertices that are contracted into W can all be given the signed color of W .
Thereby we see that Σ needs at most m unsigned colors, without using the color 0.

(b) Color |Σ|/E−(Σ) as specified. This coloration can be pulled back to Σ, because the
vertices that are contracted into W can all be given the signed color of W . Thereby we
see that Σ needs at most m unsigned colors if 0 is permitted but it may need m + 1 if 0 is
excluded.

(c) When the contraction is bipartite, assign color +1 to one color class and−1 to the other.
Pulling this coloration back to Σ yields a zero-free coloration, from which the chromatic
numbers follow—as long as there is at least one edge in Σ so one cannot color every vertex
0.

(d) From (a) we conclude that χ∗(Σ) ≤ 2. Trying to color Σ using only ±1, the endpoints
of a negative edge must have the same signed color; therefore, such a coloration of Σ can
only be a pullback of a 2-coloration of |Σ|/E−, which does not exist. Hence, there is no
coloration of Σ using only one unsigned color without 0, and therefore χ∗(Σ) = 2. �

Proof of Theorem 9.2. The chromatic number of P itself is 3 [11]. Thus, +P needs exactly
three signed colors, which may be 0,+1,−1 if 0 is used and otherwise must be, for example,
+1,−1,+2.

The only bipartite contraction is P/E−(P3,3); it can be colored with +1,−1, so P3,3 can
be colored using ±1. (One can more easily see this by coloring the switching-isomorphic
graph −P .) The other contractions need three or four signed colors.
P/E−(P2,d) (d = 2, 3) has chromatic number 3, and since there are just two contracted

vertices they can get nonzero signed colors; it follows that P2,d is colorable with signed colors
±1, 0, no contraction vertex being colored 0. Therefore, χ(P2,d) = 1 and χ∗(P2,d) = 2. The
same reasoning holds for P1, where there is one contracted vertex.

The most complicated contraction is P/E−(P3,2). It has a triangle composed of contracted
vertices, so its chromatic number is 3 but there does not exist a coloration with colors ±1, 0
in which no contracted vertex has color 0. However, one can color P3,2 directly using ±1, 0.
The hexagon that contains all negative edges should be colored alternately +1 and 0. The
vertices adjacent to the hexagon get color −1 and the remaining vertex is colored 0 or +1.
Thus, χ(P3,2) = 1 and χ∗(P3,2) = 2. �

9.2. Coloration counts. A more refined coloring invariant, the chromatic polynomial, does
differ for different signatures of P , and most likely the zero-free chromatic polynomials differ
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as well. Since the polynomials have degree 10, computing them is too large a project for
us. (χP (y) is known; perhaps it is possible to imitate the technique for calculating it in [5,
Additional Result 12c].) I propose that the number of proper k-colorations for any k ≥ 1,
and also the number of zero-free proper k-colorations for any k ≥ 2, is a distinguishing
invariant. We prove this for proper 1-colorations.

Theorem 9.4. Any two signatures of the Petersen graph that are not switching isomorphic
have different chromatic polynomials and in particular they have different numbers χ(P,σ)(3)
of proper 1-colorations.

Conjecture 9.1. (a) Two signed Petersen graphs that are not switching isomorphic have
different zero-free chromatic polynomials; in particular they have different numbers χ∗(P,σ)(4)

of zero-free proper 2-colorations. (b) For any µ ≥ 2, the six values χ(P,σ)(2µ+1) are different
for each switching isomorphism class of sign functions, and so are the six values χ∗(P,σ)(2µ).

We will establish Theorem 9.4 by investigating χ(P,σ)(3)− χ+P (3) with the aid of several
general lemmas and formulas. Calculating the difference give the actual value, because

χ+P (3) = χP (3) = 120.

A proof depends on the fact that every 3-coloration of P has the same form as every other,
under graph automorphisms and permutations of the colors. In a coloration define a head
vertex to be a vertex whose neighbors have only one color. Each proper 3-coloration of P has
a unique head vertex; and there are 12 such colorations for each head vertex. (To prove this,
examine the two ways to 3-color N [v] where v is the head vertex. We omit the details.) To
color with a given head vertex, one chooses its color, then chooses the neighborhood color,
then colors the uncolored hexagon with the two non-neighborhood colors. One concludes
that χP (3) = 120.

We begin preparing for the proof of Theorem 9.4 with the balanced expansion formula of
[19, Theorem 1.1], which states that for any signed graph Σ = (Γ, σ),

(9.1) χΣ(2µ+ 1) =
∑
W⊆V :

W independent

χ∗Σ\W (2µ).

(The proof is easy, by counting colorations according to the set W with color 0.) Applying
this to the difference of Σ and +Γ,

χΣ(2µ+ 1)− χ+Γ(2µ+ 1) =
∑
W⊆V :

W independent

χ∗Σ\W (2µ)− χ∗+Γ\W (2µ).

The term of W disappears if Σ \W is balanced; thus,

χΣ(2µ+ 1)− χΓ(2µ+ 1) =
∑
W⊆V :

W independent,
Σ\W unbalanced

χ∗Σ\W (2µ)− χΓ\W (2µ),(9.2)

since χ∗+Γ(y) = χΓ(y).
Observe that

(9.3) χ∗Σ(2) =

{
2c(Σ) if Σ is antibalanced,

0 if it is not.
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To prove this, suppose a zero-free, proper 1-coloration exists. Since there are only the two
signed colors +1 and −1, a negative edge must have the same color at both ends and a
positive edge must have oppositely signed colors at its ends. Taking the bipartition of V
into sets of vertices with the same sign, that means a positive edge in −Σ has both ends in
the same part and a negative edge has ends in opposite parts. Hence, −Σ is balanced and
Σ is antibalanced. If Σ is antibalanced, there are two choices of color in each component.

Lemma 9.5. If Σ has two of the properties of balance, antibalance, and bipartiteness, then
it has the third property as well.

Proof. Balance means every circle is positive. Antibalance means every even circle is positive
and every odd circle is negative. In a bipartite signed graph, balance and antibalance are
equivalent. In any signed graph, the conjunction of balance and antibalance implies there
are no odd circles. �

Now we can further simplify Equation (9.2) when µ = 1. By Lemma 9.5 there are three
possibilities: Γ\W may be bipartite with Σ\W not antibalanced, Σ\W may be antibalanced
but nonbipartite, or it may be nonbipartite and not antibalanced. Then by Equation (9.3),

χΣ(3)− χΓ(3) =
∑
W⊆V :

W independent,
Σ\W antibalanced and not bipartite

2c(Γ\W )

−
∑
W⊆V :

W independent,
Σ\W bipartite and not antibalanced

2c(Γ\W ).
(9.4)

Proof of Theorem 9.4. We use a formula deduced from Equation (9.4). For k = 0, 1, 2, let

αk(Σ) := the number of independent sets X ⊆ V such that Σ \X is balanced.

Lemma 9.6. For a signed Petersen graph,

(9.5) χ(P,σ)(3)− χ+P (3) = 2α0(−(P, σ)) + 2α1(−(P, σ)) + 2α2(−(P, σ))− 4c−6 (P, σ).

Proof. By Section 3, either |W | ≤ 1, W is a pair of nonadjacent vertices, or W = N(v) for
some vertex v. In the former cases P \W is connected and nonbipartite. In the last case it
is bipartite.

Suppose (P, σ) \W is antibalanced and not bipartite. Because P \W is not bipartite,
|W | ≤ 2. Therefore, P \ W is connected and the term of W contributes 2 to the first
summation if (P, σ) \W is antibalanced, 0 otherwise. The respective contributions of W of
size 0, 1, 2 are 2α0(−(P, σ)), 2α1(−(P, σ)), and 2α2(−(P, σ)).

Suppose P \W is bipartite and not antibalanced. Here W = N(v) so P \W = Hv ∪· K1.
Because (P, σ)\W is not antibalanced, the term of W contributes 4 to the second summation.
Each hexagon lies in P \W for a unique W = N(v). Since the contribution of each negative
hexagon to (9.5) is −4, the total contribution of all negative hexagons is 4c−6 (P, σ). �

It remains to evaluate the αk, as c−6 is given by Table 6.1. The results are in Table 9.2
along with the values of χ(P,σ)(3)− χ+P (3) and χ(P,σ)(3).

Some of the values αk are not obvious. For P3,2 and −P , all αk = 0 because l0 > 2
(Theorem 7.7). α1(P1) = 2 because any edge is the intersection of two pentagons, hence only
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(P, σ) +P P1 P2,2 P2,3 ' −P1 P3,2 P3,3 ' −P

α0(P, σ) 1 0 0 0 0 0

α1(P, σ) 10 2 0 0 0 0

α2(P, σ) 30 14 6 4 0 0

c−6 (P, σ) 0 4 6 4 10 0

χ(P,σ)(3)− χ+P (3) 0 −8 −12 16 −40 82

χ(P,σ)(3) 120 112 108 136 80 202

Table 9.2. The numbers necessary to prove Theorem 9.4.

by deleting an endpoint of the negative edge can we balance P1. α1(P2,2) = α1(P2,3) = 0
because each graph has l0 > 1. That leaves α2 of P2,2, P1, and −P1 ' P2,3.

Consider deleting a nonadjacent vertex pair from P2,2 ' −P2,2. Suppose the negative
edges are v15v34 and v23v45 (see Figure 1.1). We get balance by deleting one endpoint of each
edge, ignoring {v15, v23} because those vertices are adjacent; that is three vertex pairs. If we
switch v15 and v23 first so the negative edges are v15v24 and v23v14, we find three more ways
to get balance. Thus, the obvious approach gives six balancing sets. These are all. To prove
that, we list four negative pentagons forming two vertex-disjoint pairs:

A := v24v15v34v12v35 and A′ := v14v23v45v13v25,

and

B := v14v23v45v12v35 and B′ := v34v15v24v13v25.

We need one vertex from each pair, which means (Case 1) one from A ∩ B = {v12, v35} and
one from A′∩B′ = {v13, v25}, or else (Case 2) one from A∩B′ = {v24, v15, v34} and one from
A′ ∩B = {v14, v23, v45}. The two other negative pentagons are

C := v15v23v45v13v24 and D := v34v15v23v14v25.

Case 1 cannot cover both of these. In Case 2, we can take any pair except v24v45, v34v14, or
(because they are adjacent) v15v23. Therefore, α2(P2,2) = 6.

Next, consider P1 with negative edge v15v23. The obvious pairs are v15 and any non-
neighbor, and v23 and any of its non-neighbors; that is 12 pairs. Two pairs that are less
obvious are {v24, v34} and {v14, v54}, which eliminate all circles on v15 and v23, respectively.
To show there are no other possible pairs we list the negative pentagons:

D, C, v12v34v15v23v45, v14v35v24v13v25.

If a pair excludes v15 and v23 it needs one vertex from each of the following triples:

v12v34v45, v45v13v24, v14v35v24, v14v25v34,

in which nonconsecutive sets are disjoint. The possible pairs then are v45v14 and v24v34.
Thus, α2(P1) = 14.
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Finally, consider −P1 ∼ P2,3 with (after switching X4) negative edges e := v12v35 and
f := v13v25. The obvious pairs are one from e and one from f . They are the only ones
possible. As with P2,2, A,A′, B,B′ are negative and we have two cases. Case 1 gives the four
obvious vertex pairs. Case 2 is impossible, because it fails to cover every negative pentagon,
which is every pentagon that does not contain the edge v15v23. Hence, α2(P2,3) = 4.

The values of χ(P,σ)(3) − χ+P (3) and χ(P,σ)(3) follow from Lemma 9.6. (I also calculated
χP1(3) and χ−P (3) directly, confirming the values 112 and 202.) They are different for each
switching isomorphism type; that proves the theorem. �

Theorem 9.4 suggests a problem.

Question 9.1. Is it possible for two switching-nonisomorphic signatures of the same graph
to have the same chromatic polynomial? Can they have the same zero-free chromatic poly-
nomial?

It is not possible for a 2-regular graph.

Proposition 9.7. Two different, switching nonisomorphic signatures of the same 2-regular
graph have different chromatic polynomials and different zero-free chromatic polynomials.

Proof. It suffices to consider a circle Cl with two signatures, σ0 in which it is positive and
σ1 in which it is negative. It is well known that χCl(y) = (y− 1)

[
(y− 1)l−1− (−1)l−1

]
; thus,

χ(Cl,σ0)(y) = χ∗(Cl,σ0)(y) = (y − 1)
[
(y − 1)l−1 − (−1)l−1

]
.

To calculate the polynomials of Σ1 := (Cl, σ1) we apply the matroid theory of [17, 18]. By
[17, Theorem 5.1] the matroid G(Σ1) is the free matroid Fl on l points, whose characteristic
polynomial is

∑
A(−1)|A|y|A|, summed over all flats, i.e., all subsets of E; thus it equals

(y − 1)l. By [18, Theorem 2.4], χΣ1(y) equals the characteristic polynomial of Fl. For
χ∗Σ1

(y) we sum only over balanced sets A; since the only unbalanced flat is E, χ∗Σ1
(y) =

(y − 1)l − (−1)l. �

A possible approach to Question 9.1 may be through the geometrical interpretation of
signed-graph coloring in [4, Section 5].

10. Clusterability

A signed graph Σ is called clusterable if its vertices can be partitioned into sets, called
clusters, so that each edge within a cluster is positive and each edge between two clusters is
negative. Such a partition is a clustering of Σ. By Proposition 2.1 balance is clusterability
with at most two clusters. Clusterability is the other property we discuss, besides the
automorphism group, that is not invariant under switching. Davis proposed it as a possibly
more realistic alternative to balance as an ideal state of a social group [7], and he proved:

Proposition 10.1. A signed graph is clusterable if and only if no circle has exactly one
negative edge.

Clusterability of signed graphs has recently taken on new life in the field of knowledge and
document classification under the name ‘correlation clustering’ [2].

There are (at least) two ways to measure clusterability. When Σ is clusterable, the smallest
possible number of clusters is the cluster number clu(Σ). Even if a signed graph is inclus-
terable, it becomes clusterable when enough edges are deleted; the smallest such number is
the inclusterability index Q(Σ).
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Theorem 10.2. The cluster number of a signed graph is clu(Σ) = χ(|Σ|/E+(Σ)). Σ is
clusterable if and only if |Σ|/E+(Σ) has no loops.

Thus an all-positive signed graph is a cluster by itself: clu(+Γ) = 1. For an all-negative
signed graph, clu(−Γ) = χ(Γ).

Proof. In the contraction Γ′ := |Σ|/E+, let [v] ∈ V ′ denote the vertex corresponding to
v ∈ V .

Suppose Σ has a clustering π = {V1, . . . , Vk} into k parts (with each Vi nonempty). That
means, first, that all positive edges are contained within Vi’s, so each [v] is contained within
a set Vi. Furthermore, two vertices [u], [v] ∈ V ′ that lie within the same Vi are nonadjacent,
since E ′ = E− and no negative edges are within Vi. Therefore the function κ : V →
{1, 2, . . . , k} defined by κ(v) = i if [v] ⊆ Vi is a (proper) coloration of Γ′, and furthermore
every color is used at one or more vertices. (κ is determined by π only up to permutations
of the colors.)

Conversely, if κ′ is a (proper) coloration of Γ′ using exactly k colors, say with color set
{1, 2, . . . , k}, let Vi := {v ∈ V : κ′([v]) = i}. That implies Γ′ has no loops and that every
color is applied to a vertex, so no Vi is empty. Then in Σ, no negative edge can lie within
a set Vi and, because every positive edge of Σ is within a set [v], it lies inside a Vi. Hence,
π = {V1, . . . , Vk} is a clustering of Σ into k clusters.

Consequently, clusterings of Σ coincide (modulo permuting the colors) with k-colorations
of Γ′ that use all k colors, for any k. The theorem follows immediately. �

Observe that |Σ|/E+(Σ) = |Σ|/E−(−Σ). Thus, the contraction used here in connection
with Σ is the same one used in Theorem 9.2 in connection with −Σ.

To supplement Davis’s criterion for clusterability—that is, for zero inclusterability index—
we state a criterion for unit index. The proof is a simple check.

Proposition 10.3. Q(Σ) = 1 if and only if there is a circle with exactly one negative edge
and there is an edge common to all such circles.

Theorem 10.4. The clusterabilities of the minimal signed Petersen graphs and their nega-
tives are as stated in Table 10.1.

(P, σ) +P −P P1 −P1 P2,2 −P2,2 P2,3 −P2,3 P3,2 −P3,2 P3,3 −P3,3

clu(P, σ) 1 3 – 3 – 3 – 3 – 4 – 2

Q(P, σ) 0 0 1 0 2 0 2 0 3 0 3 0

Table 10.1. The clusterability measures of the minimal signed Petersen
graphs and their negatives. A dash denotes an inclusterable signature.

Proof. The cluster numbers are obvious for +P , which is balanced, and P1, P2,2, P2,3, P3,2, P3,3,
all of which violate Davis’s criterion for clusterability. The negatives of these graphs are clus-
terable; their cluster numbers follow from Theorem 10.2. Specifically:

The contraction P/E+(−P2,2) has a triangle and is easy to color in 3 colors; thus, clu(−P2,2) =
3.
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The more complex graph P/E+(−P3,2) consists of three triangles overlapping at vertices—
which require three colors arranged so that the three divalent vertices have different colors—
and one more vertex adjacent to the divalent vertices; therefore, the chromatic number is 4.
That gives clu(−P3,2) = 4.

The contraction P/E+(−P3,3) = K3,4. Thus, clu(−P3,3) = 2.
The contraction P/E+(−P2,3) is K3,4 with one vertex split, forming a C5. As the contrac-

tion is nonbipartite, clu(−P2,3) > 2, but as only one vertex was split, only one more color is
needed.

The fact that clusterability is equivalent to having inclusterability index 0 leaves five sig-
natures with positive inclusterability index. Clearly, Q(Σ) ≤ |E−|. That implies Q(P1) = 1.
Proposition 10.3 implies that the other inclusterability indices are at least 2, since in each Pk,d
there are two edge-disjoint circles containing exactly one negative edge each. Consequently,
Q(P2,2) = Q(P2,3) = 2.

In each of P3,2 and P3,3, all the pentagons with one edge on the outer pentagon in Figure
10.1 have exactly one negative edge. Call them the sharp pentagons. To make the signed
graph clusterable we must eliminate (at least) all sharp pentagons; thus, we have to remove
at least an edge from each one. Any two sharp pentagons have just one edge in common,
and no three of them have a common edge. Therefore, to eliminate sharp pentagons one has
to delete at least three edges. It follows that Q(P3,2) = Q(P3,3) = 3. �

P3,2 P3,3

Figure 10.1. Signed Petersen graphs with three negative edges. Each sharp
pentagon has one negative edge.

As clusterability is not a switching invariant, the data in Table 10.1 are not sufficient to
describe all signatures of the Petersen graph. The number of inequivalent clustering problems
equals the number of nonisomorphic edge 2-colorations of P , which is large. That makes
it interesting to ask about the maximum inclusterability of P , defined as the maximum
inclusterability index of any signature.

Theorem 10.5. The largest inclusterability index of any signed Petersen graph is 3.

Proof. Several of the signatures in Table 10.1 attain inclusterability 3, so the problem is to
prove no higher value is possible.

We begin with two general observations. First, every signed graph satisfies

(10.1) Σ′ ⊆ Σ =⇒ Q(Σ′) ≤ Q(Σ).

Second, here are properties of general graphs and cubic graphs.
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Lemma 10.6. If the underlying graph of a signed graph Σ has a cut with more negative than
positive edges, then Q(Σ) < |E−|.

Proof. If there is a cut ∇X with more negative than positive edges, delete the positive edges
of ∇X and any negative edges outside ∇X. In the remaining graph (P, σ) \ S the negative
edges form a cut, so (P, σ) \ S is clusterable; but as the number of edges that were deleted
is less than |E−|, Q(P, σ) < |E−|. �

Proposition 10.7. Let Γ be a graph whose maximum degree is at most 3. The maximum
inclusterability index of any signature is attained only by signatures in which the negative
edge set is a matching.

Proof. This follows from Lemma 10.6 by examining the vertex cuts ∇{v} in a signature that
maximizes inclusterability. �

Proof of Theorem 10.5, continued. We may assume that (P, σ) is a signed Petersen that
has maximum inclusterability and that E− is a matching. A matching in P has at most 5
edges. The matchings were classified in Section 3.2.

If |E−| has 5 edges, it separates two pentagons. Since (P, σ) \ E− is all positive, (P, σ) is
clusterable with two clusters that are the vertex sets of the pentagons of P \ E−.

Suppose, then, that E− is a matching with 4 edges.
Lemma 10.6 applies when E− = M5\ edge, with X = V (C) where C is one of the

pentagons separated by M5.
If the matching is M ′

4, there is a hexagon Hlm with three negative edges and the fourth
negative edge d is incident with vlm (Figure 3.1). The two negative edges at distance 2 from
d, together with d, are part of an M5 that is a 5-edge cut with three negative edges.

It follows that Q(P, σ) < 4 when E− is a 4-edge matching, so the theorem is proved. �

11. Other Aspects

The signed Petersen graphs have other properties that we intend to treat elsewhere.
For instance, we can establish the smallest surface in which each (P, σ) can be embedded

so that a circle is orientable if and only if it is positive (this is called orientation embedding).
This embeddability, by its definition, is a property of switching isomorphism classes, so there
are just six cases. The only signature that embeds in the projective plane is P2,3; as P is
nonplanar, every other signature of P embeds only in a higher nonorientable surface (if not
balanced) or in the torus (if balanced).

Another aspect is the relationship between (P, σ) and its signed covering graph (the ‘de-
rived graph’ of [5, Section 9]), in which each vertex of P splits into a pair, +v and −v, and
edges double as well, with positive edges connecting vertices of the same sign and negative
edges connecting vertices of opposite sign. The switching automorphisms of the signed graph
are closely related to the fibered automorphisms of the signed covering.

As Aut Σ is not invariant under switching, there is a very large number of possible au-
tomorphism groups of signed Petersen graphs: as many as there are nonisomorphic sets of
signatures with negatives paired together. (We should pair Aut(Σ) with Aut(−Σ) because
they have the same automorphisms by Proposition 8.6.) Sometimes the two members of the
pair are isomorphic. Table 8.1 shows examples.) The number of such sets is unknown.

Switching and the switching automorphism group generalize from the sign group to any
group G. A gain graph is a graph whose edges are labelled invertibly by elements of G; this
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means that, if ϕ(e) is the gain of oriented edge e and e−1 is e in the opposite orientation, then
ϕ(e−1) = ϕ(e)−1. Gain graphs and switching over arbitrary groups were introduced in [20].
Many of the basic properties of switching automorphisms should extend to the general case,
though some, such as the simple description of the switching kernel K, may depend on having
an abelian group, and some (at least, the property that the gain is independent of direction)
require a group of exponent 2. This brief description is just an outline; a complete theory of
switching automorphisms over an arbitrary gain group, and its application to examples, are
open problems.
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Repr. in M. Mézard, G. Parisi, and M.A. Virasoro, Spin Glass Theory and Beyond, Singapore, World
Scientific, 1987, pp. 99–103.

[16] Thomas Zaslavsky, Characterizations of signed graphs, J. Graph Theory 5 (1981), 401–406. MR
83a:05122. Zbl 471.05035.

[17] ——, Signed graphs, Discrete Appl. Math. 4 (1982), 47–74. Erratum, Discrete Appl. Math. 5 (1983),
248. MR 84e:05095. Zbl 503.05060.

[18] ——, Signed graph coloring, Discrete Math. 39 (1982), 215–228. MR 84h:05050a. Zbl 487.05027.
[19] ——, Chromatic invariants of signed graphs. Discrete Math. 42 (1982), 287–312. MR 84h:05050b. Zbl

498.05030.
[20] ——, Biased graphs. I. Bias, balance, and gains. J. Combin. Theory Ser. B 47 (1989), 32–52. MR

90k:05138. Zbl 714.05057.
[21] ——, A mathematical bibliography of signed and gain graphs and allied areas, Electronic J. Combin.,

Dynamic Surveys in Combinatorics (1998), No. DS8 (electronic). MR 2000m:05001a. Zbl 898.05001.

39


