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An arrangement of hyperplanes is a finite set of hyperplanes

in Buclidean d-space. (Or in projective space; which can be
treated as the Euclidean "central" case.) To see some arrange-
ments of lines in ZIE2 and of planes in ]E3 , turn to the end of
this article.

What one is interested in about an arrangement ¥ is the
decomposition of the space due to the hyperplanes. When they are
deleted the remainder of the space falls into components, called
the regions of ¥ . The closure of a region is a d-dimensional
polyhedron (not ﬁecessarily bounded); the k-faces of ¥ for each
dimension O <k < d are the k-dimensional faces of these poly-
hedra. The flats of ¥ are the non-void subspaces obtained by
taking intersections of hyperplanes. (For projective arrangements
the empty flat is not excluded.) Here are some typical questions:
How many regions are there? How many k-faces? How many are

bounded? How many are shaped like simplices? What is the topology
of the bounded faces?

All these questions are purely combinatorial: they involve
only the incidence relations among the faces and not, for example,
angles or volumes. But although apparently similar, they differ
sharply in how much one must know about the arrangement in order
to answer them. To count simplicial regions or to describe exactly
the bounded topology it is apparently necessary to know the full
combinatorial structure of ¥ . But to count regions or faces or
bounded regions and faces, curiously enough, much less is required:
what one needs to know is merely the partially ordered set of flats

of H. (See Figure 4.) It is this fact and its consequences that
I will discuss.
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Face-count formulas.

The set of flats, ordered by reverse inclusion (so its least
element O 1is the whole space = N B), we denote £(¥) and call
the semilattice of flats (in [10], "cut-intersection semilattice™)
of H . Because of its reverse ordering &£(¥) is a lower ideal

of a geometric lattice (and is a geometric lattice if ¥ is pro-
Jective or central (Figures 2,5)); thus matroids appear in the
enumerations.

The formulas employ Rota's M8bius function p(s,t) , defined
on ordered pairs of flats of ¥ . Here is a definition which is
equivalent to the usual recursive one but suggests the inclusion-
exclusion character of p . First for s = 0 (needed to count
regions):

wo,t) =z (-nF,
FoH: NF=t

~

More generally, let 8 = (h € Iil h 2 s} ; then

The numbers of regions and faces result from evaluating the
characteristic polynomial of ¥ 3

Birpsagl veyp) etk |
t €£(H)

where r is the rank of ¥ : the maximum codimension of any
flat; and the Whitney polynomial ("M8bius polynomial® in [10]) s

xcod;i.m s yr-cod.:i.m t

z
s,t €L(H)

u(s,t)

W (%,¥)

\

We write fk()i) = the number of k-faces of ¥ .

Theorem A ([10]). Let & be a Euclidean arrangement with rank

r . The number of its regions is

o(8) = (-1)"pg-1) = = |u(o,8)] .
t €£(8)

d d-k
Iet ; fd(x) =5 o fk(a) x . Then

£4(x) = (=1)* wg(-x,-1) .

Theorem B ([10]). Iet P be a projective arrangement with rank

r. (Assume P #£ @ .) The number of its regions is

e(®) = 3 (-1)7 po(-1) = £ vy 0

The polynomial f,(x) = & £.(P) x¥™ satisties

fo(x) = 3 X" + (-1)7 wo(=x,-1)] .

Two dual versions of Theorem B, in [10], Sec. 6, describe
the number of inequivalent ways to put a hyperplane between the
points of a finite subset of Euclidean or projective space, and
count the faces of zonotopes.

The next theorem requires a little explanation. When the
renk of 6 is less than 4, the smallest flats of 4 (called
its relative vertices) are not points; their dimension is d -rk 8.
Thus there can be no bounded faces. But suppose we cross-section

the faces by a subspace t , whose dimension is rk § , DPerpen=-
dicular to the relative vertices. Then the cross-section of a
relative vertex is a point. Call a face of & relatively bounded
if its cross-section is bounded.

Theorem C ([10]). The number of relatively bounded regions of a
Euclidean arrangement & with rank r is

U8 = (DT p M) = | = (o,8)] .
t €£(8)
The polynomial f;d(x) = Z;:O f;d(a) S R

f:d(x) L e 1)

s
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Corollary Cl (from [10], Cor. 2.2. See Figure 5(c)). Let ¥ be a
central Buclidean arrangement and g a hyperplane parallel to (and
not containing) z = N ¥ but otherwise in general position with
respect to H . Then lu.(O,z)I equals the number of relatively
bounded regions of ¥ U (g} , or also of ){g 4

The importance of this corollary was realized by Curtis
Greene. Suppose Vv 1is a vertex of a Euclidean arrangement & 3
H=(h €4 | h2v}, and g lies in general position with respect
to 8. Then if g sweeps from one side of v to the other, some
bounded regions of Gg disappear at v and reappear on the other
side--but now they are different regions of & . By Corollary
Cl, g hasmet |u(O,v)| new regions of . This fact provides
the key to generalizing to dimensions higher than 3 the sweep
hyperplane counting technique developed by Wetzel and his associ-
ates (in [1] and -[2] among other papers) from an idea of Brousseau.

Theorems A-C have as corollaries the well-known Euler rela-
tions, for evaluating at x = -1 gives (-l)d"r times the Euler
number (that is, fo - fl + oee & fd) of the appropriate d-space
(Buclidean, projective, or bounded). This number in the Euclidean
and projective cases is known independently from topology and can
form the starting point for a proof of the face-count formulas by
M8bius inversion. That was essentially Buck's way of handling
simple arrangements. But proving the Euler number of the bownded
space equals (-l)d"r is not trivial; Buck failed to show it and
I know of no proof independent of Theorem C.

A second proof, entirely independent of the Euler relations,
is based on the theory of Tutte-Grothendieck invariants of matroids
developed by Brylawski. If an arrangement ¥ partitions into sub-
sets 4 and B such that rk¥ = rk@ + rkB , then ¥ is called
the direct sun of ¢ and B, written ¢® 8 . (This means there
are subspaces a and b meeting in a single point such that every
d hyperplane is perpendicular to a and every R hyperplane to
b . See Figure 2.) If t is any subspace of the whole space, let

P

the arrangement induced by ¥ on t
{gnNt |g€¥ and dim(g Nt) = dim t - 1} .

%

A function of arrangements having the properties

£(@) = £(B) if &£(a) = £(B) »

f(a® B) = £(a) £(8) ,

£(¥) = £(¥ \ b) + £(¥,) if h €M is not a sumend of ¥,
is called a Tutte-Grothendieck invariant. Two T-G invariants which
agree in value on the empty arrangement and on the arrangement of
a single hyperplane {h} must agree on all arrangements. It can
be shown that (-1)° pu(y) and c(¥) are T-G invariants. Since
p{h}(y) =y-1 and xk(h} =1,

o) = 2= (-FBp ).

Theorems A and B follow. Theorem C is then provable from
Theorem B by using the projectivization of & : the projective
arrangement

ép=m)Uul, |nes,

where h_= the hyperpleme at infinity in T end b= the
completion of h in projective space. The details of all these
proofs appear in [10].

Theorems A-C and their proofs (except part of that of
Lemma 4C2 in [10]) apply more generally: they hold for oriented
matroids; thus, by an observation of Jim Lawrence, for arrange-
ments of "topological hyperplanes", which are allowed to wiggle,
so as for instance to violate Desargues's theorem, but must still
cross wherever they intersect and in other ways behave topolog-
ically like flat hyperplanes. Incidentally I was led to study
arrangements of hyperplanes in 1971 from work on axioms for
oriented matroids, so the relationship is not unexpected.

Some special cases.

It is easy to see that p(0,0) =1, p(O,h) = -1 for any
hyperplane h , and |u(s,t)| =1 whenever s <t in a simple



arrangement. And if in an arrangement of lines v is a vertex
lying on n = lines and ¢ is a line through v, then u(0,v) =
=n -1 and p(4v)=-1. Thus the classical planar formulas,
kmown at least since 1966 (see [3]), and the formulas for simple
d-dimensional arrangements (see Figure 3), known since Buck's
article and in part earlier, are special cases of the general
results. In the same way so are the "additive" formulas for E3
deduced in [2] by the sweep plane method.

Annother special case would, if it could be solved explicitly,
yield the number of threshold functions. A threshold function of
n_inputs is a switching function, f£: [il]l1 + {+1} , which can be
expressed in the linear form

f(xl,xz,...,xn) = sgn(ao +aX) + e 4 a.nxn) s

The distinct threshold functions correspond to the regions of a
certain central arrangement Zr’n in ]Rn+l » Which means they can
be counted--in principle. Furthermore (I have been told), good
estimates of the numbers of k-faces of 311 would tell something
about the computational complexity of the knapsack problem. Un-
fortunately the lattice S‘.(Sn) is so complicated it has not yet
been possible to analyze it.

Bounded regions and a decomposition of arrangements.

The projectivization of a Euclidean arrangement leads us to
the first enumerative interpretation of the B invariant intro-
duced by Crapo [h]_' for matroids. For a projective arrangement @,

BP) = (1) £ u(0,t) [d - dimt] .
t €L(P)

It follows from [4] that B is nonnegative and that it is 0 on
direct sums and on no other arrangements.

Theorem D ([10]). The number of relatively bounded regions of a
Euclidean arrangement 4 is

"X(8) = p(dy) -

Corollary D1 ([10], Cor. 7.1). & has a relatively bounded region

iff GIP is not a direct sum.

8 1is derived from the projective arrangement P = GIP by
choosing a hyperplane h € to be at infinity. A different
choice of h will lead to a new arrangement @ \ {(h} in the
Edclidean space ]P‘1 \ h, with the same number of hyperplanes
and the same regions as @& . Obviously which regions are bounded
will change with h . Nevertheless,

Corollary D2 ([10], Cor. 7.3. See Figure 6). The number of bound-
ed regions of a Euclidean arrangement derived from @ is indepen-
dent of the choice of h € P to be at infinity.

We could look at the projectivization in another way by pull-
ing back from ]Pd to ]Rd+l . Then GIP becames a central arrange-
ment ¥ in which the infinite hyperplame is hj = (x | Xo = 0} ,
the original affine space is a = (x | Xg = 1} , and 48 is the
induced arrangement )ia . The relatively bounded regions of §

are facets of those of ¥ U {a} \ [ho} . From Theorem D:

Corollary D3. (See Figure 5(d).) Suppose ¥ is a central
Euclidean arrangement and h € H. Let h*¥ be h perturbed by
translation from its initial position and let * be the perturbed
arrangement with or without h also. The number of relatively
bounded regions of M¥ , or also of the induced arrangement )ﬁ:\* r
is equal to B(M) --regardless of the choice of h .

We can also extract from Theorem D a nice geometric criterion
for the existence of a bounded region (Corollary El). Although
the criterion is no more than obvious, its proof seems to require
the full strength of the following theorem, whose proof depends on
Theorem D and is not trivial. I state it for the rank 4 case.

Theorem E ([10]). Assume the Euclidean arrangement & has rank d.
Iet z be the affine hull of the vertices, 2= (h€8|h=2z},
and P=6\ 2. Then

gd=p0P,
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n 2=2,
P is isomorphic (as an incidence structure of faces and
hyperplanes) to Pz » its cross-section by z , and

Pz has one or more bounded regions.

Thus P 1is the largest subarrangement which has a (relative-
ly) bounded region. That yields the promised criterion:

Corollary El ([10], Cor. 8.1). A Euclidean arrangement has a

bounded region if and only if its vertices span ]Ed o

For more about the bounded part of a Euclidean arrangement
see [10], sec. 9.

Arrangements and graphs.

Many of the results I have described can be applied to graphs
by way of the graphic arrangement. To T , a graph without loops

on the nodes Pys Py vees Py s corresponds the arrangement
H[T] = By 5 | T has an edge &5l

in le , Where h is the hyperplane defined by x, = xJ . Two

facts of matroid igeory connect I and ¥H[T] : theichromatic
polynomial Xl"(y) equals y°© pH[I’](Y) ; where c¢ is the number
of camponents of T ; and &(H[T']) is naturally isomorphic to
the geometric lattice £(I') whose members are the circle-closed
edge sets of T . The special value of ¥[I'] comes from an
observation of Crutis Greene: the regions of ¥[I] correspond
one-to-one to the acyclic orientations of I' . To construct

the orientation «(R) from a region R, teke a point x € R
and orient eij from Py to pj if x; < :o:._j . The graphic
corollary of Theorem A is immediate. Here b is the M3bius

function of £(I') . (See the illustrations in Figure 7.)

Theorem Gl (Stanley [9]). The number of acyclic orientations of
s (-0 lugCo,2)|

xn(-1)] = T (o,7)] .

r reg(r) T

This result can be considerably refined. Greene has worked
out an interpretation of each summand, too camplicated to describe
here. But one can easily interpret B(I’) by means of Corollary
D3, choosing an edge e 5 and letting ¥ = ¥[T] , h= hij , and
h* = (x | Xy =Xy + 1} . In any region which meets h¥ , &5
is oriented Py -»pj . A region R¥ of ¢ is relatively
bounded if no X, can go to +o in R¥ unless Ei Xy 223
this is the case precisely when no Py except Py and P 3 is
a source or sink in o(R¥) .

Theorem G2 (Greene-Zaslavsky; see [7]). Let e be any edge
of T . The number of acyclic orientations of TI' in which Dy
is the only source and p'j is the only sink is equal to

B(r) = |x(1)| = | = (0,7) o(1)|
" T ELT) 'r
(where ¢(T) = the number of components of T ), which is positive
if T is 2-connected and O otherwise.

In addition, lp.l_,(O,l)l can be interpreted by means of
Corollary Cl. Choose any node D let z = {x | X) Foeee + Xy =
= 0} , and set u=ufr]z and g={x|xi=l}.

Theorem G3 (Greene). . Let p; be any node of T . The number

of acyclic orientations of I in which Py is the only source is
equal to |x1'_(o)| , which is the positive number |p1,(o,1)| if

I' is connected, O otherwise.
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10 regions, 2 bounded.
13 edges, 5 bounded.
4 vertices, all bounded.

p(y) = ¥° - by + 5.

(a) An arrangement of L
crossing lines.
2 - 0=2, since its smallest
flats are vertices.

It has rank

5 regions, 3 relatively bounded.
4 edges (= relative vertices).

p(y) =y -4

(b) An arrangement of L4
parallel lines. It has rank
2 - 1=1, since its smallest
flats are l-dimensional.

Figure 1. Two arrangements of lines in IE:2 , their
face numbers, and their characteristic polynomials.
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8 regions, 12 regions,
8 edges, 18 facets,
1 vertex, 8 edges,
the only bounded face. 1 vertex, the only bounded face.

v = b 4+ 5y - 2
= PVert(y) I)horiz(Y)'

2 p(y)
P(y) =y - by +3.

(2) A central arrangement of 4 (b) A central arrangement of 4

lines. Its rank is2 - 0= 2. planes having rank 3 - 0 = 3. It
is the direct sum of its vertical
planes and its horizontal plane.

Vs

phoriz(y) =¥ =L

AN

2
Prert(¥) = ¥ -3y + 2.

(c) The vertical planes of (d) The horizontal plane of
2(b), having rank 3 - 1 = 2, 2(b), having rank 3 - 2 = 1.

Figure 2. Four Euclidean arrangements which are central: the
intersection of all the hyperplanes is nonempty. The decampo-
sition of (b) into (c) and (d) illustrates direct sums.

11 regions, 3 bounded.
16 edges, 8 bounded.
6 vertices, all bounded.

p(y) = ¥ - by + 6.

(a) A simple arrangement
of 4 lines.

15 regions, 1 bounded.
28 facets, 4 bounded.
18 edges, 6 bounded.
4 vertices, all bounded.

p(y)-_-y3-’+y2+6y-1¥-.

(b) A simple arrangement
of 4 planes.

Figure 3. Two Euclidean arrangements which are simple:
the intersection of any k hyperplanes (for k < d + 1)

has dimension 4 - k. .



x
k - = x
y z
£
NG /A
La 4o
(2) The arrangement & -. (b) The arrangement & .
Its bounded regions are a Its two bounded regions are
triangle and a quadrilateral. both triangular.
rank 2 wlr w%xxz><¥ A1l p(0,¢) = +1
rank 1 kxg h 2 A1l u(0,¢) = -1
rank 0 0= F 1(0,0) = 41

(¢) The semilattice £ of flats of &' and of &', and the

MObius function p(0,t) for t € £. (It is not always true that
k(0,t) depends only on the rank of t .)

p6(y) = y2 -Lky 4+ 5, wd(x,y) = y2 -y +5 4+ (by - 10)x + 5x2.
Ip(s(-l)| = 10, fcs(x) = (-l)2w6(-x,—l) = 5x2 + 1hx + 10,
|P5( 1)| = 2 fzd(x) = (-1)2wé.(-x, 1) = 5x2 + 6x + 2,

vertices edges regions

(@) The characteristic and Whitney polynomials of both arrange-
ments and their evaluations at -1 (to count faces) and +1 (to
count bounded faces).

Figure 4. Two arrangements of 4 lines. Although not isomorphic
(since only one has a quadrilateral region), they have the same
semilattice of flats and consequently the same numbers of faces
and bounded faces in each dimension.

(

T

z p(0,z) = 41
k/L m u(O,-) = =1
N |

0=T p(0,0) = +1

p(y) = y2 -3y +2

p'(y) = 2y - 3.

(a) The arrangement 65 (b) The lattice 3(55) and
its M8bius function.

¢) & withaline g in (@) & with the line k
eneral position, cutting off translated to k", cutting
w(0,2)| = 2 bounded regions off |p'(1)| = 1 bounded
Corollary Cl). region (Corollary D3).

Figure 5. A central arrangement of lines, illustrating
Corollary Cl, in (c¢), and Corollary D3, in (d).
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A,
FAN AN AN

X¥) =¥y -y -2) =y -3%° + 2y

(a) The graph K3 in all its |x(-1)| = 6 acyclic orientations.

In |x'(0)| =2 of them p is the sole source. -In Ix'@)] =1
orientation, q is also the only sink. 7

(A
i,
i

(a) The original arrangement (b) The transformed arrangement

£2 of 5 lines in E-. 2 &P, with g thrown to infinity. .

its projectivization, is the The former bounded regions are . S 4

arrangement in IEZ which in- starred. The projectivization /\ /\\

cludes the infinite line 4. & equals &£ . % \\"// \7T
T T

Figure 6. Arrangements of lines illustrating change of E
infinity (Corollary D2). Bounded regions are shaded. L4 2
( ) . X(¥) = ¥ - 59 + & - by

7]

q

(b) A greph, showing all |x'(0)| = 4 acyclic orientations
in which is the only souree. For each edge pp' there is
1= |x'(l)T such orientation in which p' is the only sink.

Figure 7. Illustrations of Theorems Gl-G3: acyclically
or%enteﬁ graphs with sources (S) and sinks (T) marked.
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