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Abstract. A multiary (polyadic, n-ary) quasigroup is an n-ary operation

which is invertible with respect to each of its variables. A biased expansion of a
graph is a kind of branched covering graph with additional structure similar to
combinatorial homotopy of circles. A biased expansion of a circle with chords
encodes a multiary quasigroup, the chords corresponding to factorizations,
i.e., associative structure.

Some but not all biased expansions are constructed from groups (group
expansions); these include all biased expansions of complete graphs (with
at least four nodes), which correspond to Dowling’s lattices of a group and
encode an iterated group operation. We show that any biased expansion of a
3-connected graph (with at least four nodes) is a group expansion, and that
all 2-connected biased expansions are constructed by identification of edges
from group expansions and irreducible multiary quasigroups. If a 2-connected
biased expansion covers every base edge at most three times, or if every four-
node minor that contains a fixed edge is a group expansion, then the whole
biased expansion is a group expansion.

We deduce that, if a multiary quasigroup has a factorization graph that is
3-connected, or if every ternary principal retract is an iterated group isotope,
it is isotopic to an iterated group.

We mention applications to generalizing Dowling geometries and to transver-
sal designs of high strength.
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1. Biased graphs and the associative law

A multiary or polyadic quasigroup1 is a set Q with a multiary operation (· · · )
or f : Qn → Q such that the equation

f(x1, . . . , xn) = x0 (1.1)

is uniquely solvable for any one variable xi given the values of the n remaining
variables. Multiary quasigroups were implicit in early work of H.A. Thurston [31,
32]; ternary quasigroups (called “N -algebras”) were studied explicitly by Rado
[29]; and finally the general study of multiary quasigroups as such was initiated
by Belousov and Sandik [7]. A Dowling geometry of a group, Qn(G), is a certain
matroid of rank n ≥ 1 associated with a group G; it was invented by Dowling
[13] and shown by Kahn and Kung [24] to have a central role in matroid theory.
These two structures are both equivalent to particular kinds of the same general
object, something I call a biased expansion of a graph. Associativity in multiary
quasigroups, and quasigroup generalizations of Dowling geometries, both depend
on and can be analyzed through the structure of biased expansions.

1.1. Associativity. The customary view of the associative law is that it describes
a relationship between two different ways of carrying out a binary operation on
three arguments:

(xy)z = x(yz).

We look at it differently: we regard associativity as a property of factorizability or
reducibility of a multiary product. For instance, letting (· · · ) denote a ternary or
binary product, we think of ordinary associativity as the combination of

(xyz) = ((xy)z) (1.2)

and
(xyz) = (x(yz)). (1.3)

1The most common term is “n-ary”, where n is left unspecified, which is unsatisfactory. Since
“polyadic” has not become popular, I propose “multiary” as a generic adjective.
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The two factorizations (1.2) and (1.3) constitute associativity in the usual sense (if
all the binary multiplications are the same), but to us this is a secondary phenom-
enon. We are more interested in association as factorization and specifically in the
consequences of the approach through biased expansions, which is suited only to
operations that come from multiary quasigroups.

Our generalized associativity is (consecutive) factorization of f :

f(x1, . . . , xn) = g(x1, . . . , xi, h(xi+1, . . . , xj), xj+1, . . . , xn), (1.4)

where 1 ≤ i+1 < j ≤ n (and (i, j) 6= (0, n)) and g and h are multiary quasigroups of
suitable arity. Such a factorization is an (i+1, j)-factorization or (i+1, j)-reduction
of f . As an associativity property we call it reductive associativity. (Reductive as-
sociativity of multiary quasigroups was studied first by Thurston [31, 32] and next,
independently, by Belousov and colleagues in many papers beginning with [7].) At
one extreme of factorizability is an irreducible multiary quasigroup, whose opera-
tion has no factorizations at all. At the other extreme are iterated groups : multiary
quasigroups whose operation has the form f(x1, . . . , xn) = x1x2 · · ·xn computed in
a group. Such a quasigroup has every factorization. Every multiary quasigroup (of
arity n > 2) that factors in all possible ways is known to be essentially an iterated
group.

By “essentially” we mean up to isotopy. Multiary operations f : Qn → Q and
g : Qn

1 → Q1 are called isotopic if there exist bijections α0, α1, . . . , αn : Q → Q1

such that

g(xα1

1 , . . . , xαn
n ) = f(x1, . . . , xn)α0 .

From our abstract graph-theoretic standpoint we cannot distinguish isotopic oper-
ations. Nor can we distinguish between operations that are related by circular per-
mutation of the n+ 1 variables, i.e., replacing the operation a0 = f(a1, a2, . . . , an)
by any operation g defined by ai = g(ai+1, ai+2, . . . , an, a0, . . . , ai−1) or ai =
g(ai−1, ai−2, . . . , a0, an, . . . , ai+1) for some i, where the subscripts are taken mod-
ulo n + 1. We call the combination of isotopy and circular permutation circular
paratopy (or cycloparatopy): that is, multiary operations are circularly paratopic if
one can be obtained from the other by a combination of isotopy and circular permu-
tation of all the variables. Our method does not distinguish multiary quasigroups
that are circularly paratopic.

Belousov treated Equation (1.4) as representing a binary operation on functions,
written f = g +i+1 h (this operation is called Mann superposition). The resulting
algebra led to many theorems. A simple example is the equation

g +i h = g′ +j h′, (1.5)

where i < j, which Belousov called (i, j)-associativity. (Thurston’s work on mul-
tiary quasigroups concerned a version of this equation.) Belousov solved it in [5]
(see Corollary 9.5) by axiomatizing the algebra of multiary quasigroups with com-
position operations +i.
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However, he left outstanding an important question. The factorization graph
∆(Q) of a multiary quasigroup Q with operation f is the circle graph Cn+1 on
node set {v0, v1, . . . , vn}, whose edges are vi−1vi for i = 1, . . . , n, n + 1 (we take
vn+1 = v0), together with an added chord vivj whenever f has a factorization as
in Equation (1.4). The question left open by Belousov is whether, whenever the
factorization graph of Q is 3-connected, then Q is isotopic to an iterated group.2 We
prove this (Theorem 9.2), as well as reproducing the solution of (1.5), as corollaries
of our structure theorem for biased expansions.

We also prove a second criterion for a multiary quasigroup to be an iterated
group isotope. A multiary quasigroup obtained from Q by fixing the values of
some set of variables in Equation (1.1) is called a retract of Q. If the fixed variables
are all independent variables (i.e., they are chosen from x1, . . . , xn), the retract is
principal. (If x0 is fixed, we may take any unfixed variable to be the dependent
variable; that is a consequence of the fact that circular permutation of the variables
produces a quasigroup operation.) We show in Section 7, as interpreted in Theorem
9.8, that Q is isotopic to an iterated group if its arity is at least three and every
principal retract that is a ternary quasigroup is an iterated group isotope.

The traditional multiary generalization of associativity is a stronger form of
(i, j)-associativity, due to Dörnte [12] and extensively studied (see, e.g., [28, 20, 23,
14]). An n-ary operation f : Qn → Q is called associative if it satisfies all the n
identities

f̂(x1, . . . , x2n−1) = f̂i(x1, . . . , x2n−1) for i = 1, . . . , n, (1.6)

where f̂i is the operation

f̂i(x1, . . . , x2n−1) := f(x1, . . . , xi−1, f(xi, . . . , xi+n−1), xi+n, . . . , x2n−1). (1.7)

(That is, (1.6) consists of n − 1 identities and one definition of f̂ .) We might call
this substitutive associativity by way of contrast with reductive associativity. A
multiary quasigroup with substitutive associativity for all i is called an n-ary group
(or n-group, or multiary or polyadic group), a 2-group being an ordinary group.

Evidently, f̂ is an example of a multiary quasigroup operation that is reducible
in a multiplicity of ways. By our general theorem just mentioned, f is isotopic
to an iterated group. That is part of the n-group structure theorem of Post [28,
pp. 245–246] (which is generally known as the Hosszú–Gluskin, or Gluskin–Hosszú,
Theorem because of the converses proved by Hosszú [23] and Gluskin [20]). Post’s
complete theorem is an explicit formula for every multiary group in terms of a
group. It should be possible to refine our method so as to obtain the formula, but
we do not do so here.3

2Dudek [15] has heard that Belousov conjectured this to be true, but I have not been able to
confirm that statement nor to find any published reference to such a conjecture.

3Post taught at the City College of New York. Several years later, as an undergraduate at
City College in 1965, I received from the mathematics department the “Emil L. Post Memorial



6 Thomas Zaslavsky

There is an extensive literature, of which n-groups are only one example, on
criteria for a multiary quasigroup to be isotopic to an iterated group. I do not
attempt to survey this literature since my theorems and proofs do not make use
of it. (The reader may consult the 1982 bibliography of n-ary groups by G lazek
[19], which includes early papers on n-ary quasigroups, and the introduction and
references of [16].) It would be interesting to see which existing criteria are, and
which are not, deducible from our graph theoretic approach. I hope this question
will be not be left unexamined.

1.2. Introduction to expansions. Our fundamental observation is that biased
expansions of circles are equivalent to circular paratopy classes of multiary quasi-
groups. First we need definitions.

A biased graph Ω = (‖Ω‖,B) consists of a graph ‖Ω‖, which may be finite or
infinite, and a linear class B of circles (circuits, cycles) of ‖Ω‖, meaning that in
each theta subgraph the number of circles that belong to B is different from two.
(A theta graph consists of three paths with the same two endpoints but no other
nodes or edges in common.) The circles in B are called the balanced circles of Ω.

A biased expansion of a graph ∆ is a biased graph Ω together with a projection
mapping p : ‖Ω‖ → ∆ that is surjective, is the identity on nodes, maps no balanced
digon to a single edge, and has the circle lifting property : for each circle C =
e1e2 · · · el in ∆ and each ẽ1 ∈ p−1(e1), . . . , ẽl−1 ∈ p−1(el−1), there is a unique
ẽl ∈ p−1(el) for which ẽ1ẽ2 · · · ẽl is balanced. In addition, no edge fiber p−1(e) may
contain a balanced digon; but this is implied by the other properties if e is not
an isthmus. One can think of Ω as a kind of branched covering of ∆. We write
Ω ↓p ∆ to mean that Ω is a biased expansion of ∆ with projection p; though usually
we omit p from the notation. We call Ω a regular or γ-fold biased expansion if
each p−1(e) has the same cardinality γ; then γ is the multiplicity of the expansion.
γ · ∆ denotes a γ-fold biased expansion of ∆. Clearly, a biased expansion of an
inseparable graph must be regular (see Figure 1). A biased expansion is trivial
if it is regular with multiplicity 1. In defining a biased expansion of a circle it is
not necessary to require Ω to be a biased graph; that follows from the rest of the
definition because a theta graph exists only by containing a digon.

A simple kind of biased expansion is a group expansion [37, Example I.6.7].
The expansion of a graph ∆ by a group G, in brief the G-expansion of ∆, is the
gain graph (definition in Sect. 1.2), denoted by G∆, whose node set is N(∆) and
whose edge set is G × E(∆), the endpoints of an edge ge (this is shorthand for
(g, e)) being the same as those of e. The projection p : G∆ → ∆ maps ge to e.
We associate with ge the group element g, called the gain of ge; in order to define
gains in a technically correct manner we orient ∆ arbitrarily and orient ge similarly
to e, so the gain of ge in the chosen direction is g and in the opposite direction
g−1. A circle in G∆ is balanced if the product of the gains of its edges, taken in a

Award”. Little did I think I would ever cite Post’s work; but now I am pleased to have that
opportunity.
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∆

Ω

a

e

b
c

f

d

S

S

p

ã

ẽ1 ẽk

b̃
c̃

f̃1
f̃k

d̃

S̃

S̃

Figure 1. Two fibers p−1(e) and p−1(f) such that e and f are
in a common circle C have the same cardinality. Lift C \ {e, f}

to S̃ and use the circle lifting property to establish inverse map-
pings p−1(e) → p−1(f) and p−1(f) → p−1(e). The mappings are

indicated by the dotted lines. A different choice of S̃ may lead to
different mappings.

consistent direction around the circle, equals 1, the group identity. This defines a
biased graph, which we write 〈G∆〉. A biased graph which is not a group expansion
is called a non-group biased expansion.

If ∆ is simple with n nodes, then G∆ is contained in GKn. Thus, group expan-
sions of complete graphs are basic.

Figure 2 shows the expansion of C3 by the group Z3 (written additively, so the
identity is 0) and the expansion of C4 by the group Z4 (also written additively).

A very different kind of biased expansion is the expansion of a circle Cn+1 of
length n + 1 by an n-ary quasigroup Q. In the quasigroup expansion QCn+1, the
nodes are v0, v1, . . . , vn. There is an edge aei−1,i for every a ∈ Q and i = 1, 2, . . . , n
as well as an edge ae0n. The balanced circles are the circles {a1e12, a2e12, . . . , anen−1,n, a0e0n}
such that (a1a2 · · · an) = a0 in Q. A quasigroup expansion need not be contained
in a biased expansion of a complete graph; see Theorem 9.1.
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C3 C4

Z3C3 Z4C4

v0

v0

v0

v0

v1

v1

v1

v1

v2

v2

v2

v2

v3

v3

a
a

b

b
c

c

d

pp

0a

0a

1a
2a 3a

0b

0b

1b
2b

3b

0c

0c

1c

2c

3c

0d

1d
2d
3d

Figure 2. Left : Z3C3, the expansion of C3 by the group Z3. The
balanced circles are the triangles {ia, jb, kc} such that i+j+k = 0.
The arrows show the orientation that has the indicated gain; the
0-edges do not need orientation since 0 is self-inverse. Right : The
group expansion Z4C4. The balanced circles are the quadrilaterals
{ia, jb, kc, ld} such that i+ j+ k+ l = 0, where a denotes an edge
v0v1 in the expansion, b denotes v1v2, etc. The edges with gain 0
and 2 do not need to be oriented since 0 and 2 are self-inverse.

Figure 3 shows the expansion of C3 by a binary quasigroup Q5 which is not
isotopic to a group. (It has a subquasigroup of order 2, which cannot be a subgroup
of a group of order 5.)

In the quasigroup expansion QCn+1 the edges are labelled by the members of
Q, so that Q is determined by QCn+1. If we forget that labelling, we have the
biased expansion 〈QCn+1〉; we still call it a quasigroup expansion, but it is no
longer possible to recover the quasigroup from 〈QCn+1〉. What we do recover is an
equivalence class of n-ary quasigroups under circular paratopy.

Start with a biased expansion γ · Cn+1. Let Cn+1 have nodes v0, v1, . . . , vn and
edges e01, e12, . . . , en−1,n, e0n. Set Eij = E(γ · Cn+1):{vi, vj}, the set of edges
between vi and vj , and fix bijections βi : Q → Ei−1,i for i = 1, . . . , n and
β0 : Q → E0n, where Q is a set that will be the set of elements of the n-ary
quasigroup. The multiary operation is (x1 · · ·xn) = β−1

0 (ẽ) where ẽ is the unique
edge in E0n that forms a balanced circle with β1(x1), . . . , βn(xn). (We do not
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PSfrag

C3

Q5C3

a b

c

p

v0

v0

v1

v1

v2

v2

0a
1a

4a

0b
1b

4b

0c
1c
2c
3c
4c

Q5

· 0 1 2 3 4

0 0 1 2 3 4
1 1 0 3 4 2
2 2 3 4 0 1
3 3 4 1 2 0
4 4 2 0 1 3

Figure 3. Q5C3, the expansion of C3 by the quasigroup Q5, and
the multiplication table of Q5. The balanced circles are the trian-
gles {ia, jb, kc} such that i · j = k.

get a single quasigroup; that is why the Q-labelling of the edges of a quasigroup
expansion QCn+1, which—together with the node indices 0, 1, . . . , n—determines
Q uniquely, makes it different from the corresponding biased expansion 〈QCn+1〉.
The arbitrary choice of the bijections is what makes Q defined only up to isotopy.
The arbitrariness of the distinguished edge e0n and the direction of reading the cir-
cle is what leaves Q well defined only up to circular permutation of the variables.)
Thus we have the first two parts of Proposition 1.1.

The third part is proved at Theorem 9.1. We say 〈QCn+1〉 extends to eij if there
is a biased expansion Ω ↓ (∆ ∪ {eij}) such that p−1(Cn+1) = 〈QCn+1〉. (Section 3
has a fuller treatment.)

Proposition 1.1. An n-ary quasigroup expansion 〈QCn+1〉 is a biased expansion
of Cn+1. Conversely, every biased expansion of Cn+1 has the form 〈QCn+1〉 for
an n-ary quasigroup Q.

Furthermore, two n-ary quasigroup expansions 〈Q1Cn+1〉 and 〈Q2Cn+1〉 are iso-
morphic if and only if Q1 and Q2 are circularly paratopic.

Moreover, 〈QCn+1〉 extends to a chord eij of Cn+1 if and only if the operation
f of Q factors as in (1.4).
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Figure 4 shows the multiplication table of the irreducible ternary quasigroup
Q3,4 (from [7, §5]) and the corresponding quasigroup expansion Q3,4C4.

p

C4Q3,4C4

v0 v0

v1 v1v2 v2

v3 v3

a

b

c

d

0a
1a 2a

3a

0b
1b

2b
3b

0c
1c2c

3c

0d
1d
2d
3d

Q3,4

(0jk)

k = 0 1 2 3

j = 0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

(1jk)

k = 0 1 2 3

j = 0 1 0 3 2
1 0 1 2 3
2 3 2 1 0
3 2 3 0 1

(2jk)

k = 0 1 2 3

j = 0 2 3 0 1
1 3 0 1 2
2 0 1 2 3
3 1 2 3 0

(3jk)

k = 0 1 2 3

j = 0 3 2 1 0
1 2 3 0 1
2 1 0 3 2
3 0 1 2 3

Figure 4. The biased expansion Q3,4C4, of C4 = abcd by Q3,4,
and the multiplication table (ijk) = l of Q3,4. The balanced circles
are those of the form {ia, jb, kc, ld} such that (ijk) = l.

Taking n = 2, we see that biased expansions of a triangle are (as Dowling
knew in terms of his geometries; see [13, pp. 78–79]) graph-theoretic realizations of
circular paratopy classes of binary quasigroups and, therefore, of Latin squares and
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3-nets. The quadrangle criterion of Latin squares [10, Theorem 1.2.1(2)] tells us
when a binary quasigroup is isotopic to a group; its translation into the language
of expansions is the following, applicable to any biased expansion of a triangle:

Quadrangle Criterion. For any twelve distinct edges eα,β
12 , eα,β

23 ,

eα,β
13 , where eα,β

ij ∈ p−1(eij) for α, β = 1, 2 and ij = 12, 23, 13, if

seven of the triangles of the form eα,δ
12 e

β,δ
23 e

α,β
13 are balanced, then

so is the eighth.

Proposition 1.2. A biased expansion of K3 has the form 〈GK3〉 for some group
G if and only if it satisfies the quadrangle criterion. �

A γ-fold biased expansion of Cn+1, where n ≥ 3, giving us an n-ary quasigroup
according to Proposition 1.1, can be interpreted as the n-dimensional generaliza-
tion of a Latin square that is called a permutation hypercube [10, p. 181] or Latin
hypercube, defined up to paratopy (isotopy and arbitrary permutation of the vari-
ables). As far as I know, no analog of the quadrangle criterion has been formulated
for such objects and therefore for biased expansions of larger graphs such as Cn+1

for n ≥ 3.

In a sense indicated by Proposition 1.1, biased expansion graphs are a graphical
generalization of groups and multiary quasigroups. That they truly are a general-
ization is shown by the fact that a biased expansion need not have a Hamiltonian
circle. If the base graph is Hamiltonian, then we have a multiary operation—
which in general depends on the choice of Hamiltonian circle—from Proposition
1.1, but if it is not, then we have something that, from an algebraic standpoint, is
more complicated; it might be thought of as a combinatorial complex of multiary
quasigroups.

If biased expansion graphs generalize groups, it is natural to ask how far a given
biased expansion is from being a group. Biased expansions of complete graphs
of order at least 4 are group expansions, essentially because K4, as the base of a
biased expansion, encodes the associative law (see Section 4). Thus, a more precise
version of the question is: How far is the base graph from being complete? But
this is still not quite right, because it might be possible to extend the expansion
to new edges between nonadjacent nodes. If the expansion extends to a complete
graph, then it is contained in a group expansion so it itself is a group expansion and
any corresponding multiary quasigroup is an iterated group isotope. In general,
there is always a maximal extension of the given biased expansion graph, that has
the most pairs of adjacent nodes (see Section 3); it is of this extended expansion
that we should ask the refined question, and indeed it makes sense to think of the
number of nonadjacent node pairs in the base graph as a measure of how much a
biased expansion fails to represent a group.
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It is perhaps noteworthy that nongroup expansions of large incomplete graphs,
and in particular irreducible multiary quasigroups, exist at all. However, all exam-
ples are 2-separable, for, as we prove in Sections 3 and 4, every biased expansion
of a 3-connected simple graph having more than three nodes is a group expansion.
From this and other work we can deduce the complete structure of a biased expan-
sion (Section 6) and answer the question raised in [37, Example III.3.8] of exactly
which graphs have a nongroup biased expansion (Corollary 6.7).

1.3. Dowling geometries. Biased expansion graphs were inspired by Dowling’s
matroids of a group—though no matroids were used in the preparation of this
article. One way to construct the rank-n Dowling matroid (or “geometry”) Qn(G)
of a group G is to take the group expansion GKn, adjoin a half edge to each
node, and take the frame matroid (or “bias matroid”) [37, Section II.2]. We sketch
this construction (from [37, Example III.5.7 or Part V]) to suggest how biased
expansions of simple graphs, especially those that are maximal on the given node
set, are a natural generalization of Dowling geometries. The unexplained terms
can be found in [37, Part III or V].

Given any biased expansion Ω ↓ ∆, one can add an unbalanced loop at each node
and take the frame matroid; call this matroid G• (Ω). The operator G• , applied
to maximal biased expansions, generalizes the construction of Dowling geometries.
The Dowling geometries are the only examples derived from groups because the
only maximal group expansions are those of the complete graphs Kn. Given that
nongroup biased expansions exist, one asks what other matroids can be obtained
from maximal biased expansions; they are natural candidates for generalized Dowl-
ing geometries. That question motivated this work. We will see (via Theorem 9.1)
that an expansion QCn+1 of Cn+1 by an irreducible n-ary quasigroup Q is maxi-
mal, since it can have no chords; thus these are part of the answer. The question
is completely answered if we can classify all maximal biased expansions. That is
our Theorem 6.2—the solution of a problem that had puzzled me since 1976.

1.4. Transversal designs. A final way to look upon a multiary quasigroup, or
a biased expansion of a circle, is as a kind of transversal design. A transversal
t-design consists of a set of points partitioned into l point classes Li (usually called
“groups”, but they have nothing to do with algebra) of k points each, and a class
of blocks, which are subsets of points satisfying

(TD1) no two points in a class are contained in a common block, and

(TD2) any t points, no two in a class together, are contained in exactly λ common
blocks,

where λ, the index, is a fixed positive integer. As t is called the strength, we refer
to an (l − 1)-design as having high strength. A k-fold biased expansion Ω of Cl is
equivalent to a transversal design T of high strength with λ = 1. The points of T
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are the edges of Ω, the class Li consists of all edges with endpoints vi−1 and vi,
and the blocks are the balanced circles.

A group expansion thus generates a design based on the group. The construction
of the design is easy to describe directly. The classes are copies of the group and
a block is any set {x1, x2, . . . , xl}, composed of one element of each class Lj , such
that x1x2 · · ·xl = 1. Here we need to assume the classes are ordered; we let the
first class be L1, the second L2, etc. The analog of factorization is consecutive
composition: supposing T ′ and T ′′ are two transversal designs of high strength
with index 1, we form their i-composition T by identifying L′

i with L′′

1 and then
defining the classes of T to be those of T ′ and T ′′, with the exception of L′

i (= L′′

1),
and the blocks to be the sets of the form B′⊕B′′ where B′ and B′′ are overlapping
blocks of T ′ and T ′′. The inverse operation to i-composition is i-decomposition.
The analog of the factorization graph is defined by the existence of i-decompositions
of T . We have the theorems, for instance, that if this graph is 3-connected and
the number of classes is at least four, then the design is derived from a group, and
that if every four-class transversal design induced by T and including the class L1

is derived from a group, then T is so derived. (Precise statements can be obtained
by translating results of Section 9.)

1.5. Overview. Here is a summary of our main results. Most of them were an-
nounced in [38], which can serve as a readable précis of this work.

Biased expansion graphs.

• A 3-connected expansion is a group expansion (Theorem 4.1).
• Edge amalgamation and edge sum for 2-separable expansions (Theorem

5.3).
• Decomposition into group and irreducible multiary quasigroup expansions

(Theorems 6.2, 6.3).
• Characterization of base graphs having nongroup biased expansions (Corol-

lary 6.7).
• Uniqueness and structure of maximal biased expansions (Theorems 3.2,

6.2, Corollary 6.6).
• An expansion of multiplicity at most 3 is a group expansion (Theorem 8.1).
• A 2-connected biased expansion with at least four nodes is a group expan-

sion if every minor of order four is gainable (Theorem 7.2).

Multiary quasigroups.

• The factorization graph of Q corresponds to the maximal extension of
QCn+1 (Theorem 9.1).

• A nonbinary multiary quasigroup whose factorization graph is 3-connected
is an iterated group isotope (Theorem 9.2).

• Characterization of possible factorization graphs (Theorem 9.3).
• A multiary quasigroup of which every ternary principal retract is an iter-

ated group isotope is itself isotopic to an iterated group (Theorem 9.8).
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2. Preliminary remarks

Here we collect a few old and new definitions and some elementary observations
about expansions.

2.1. Basic concepts. Formally, a graph Γ is a pair (N,E) consisting of a node
set N and an edge set E. The order of Γ is |N |. An edge whose two endpoints are
distinct is a link ; one whose endpoints coincide is a loop. A graph without loops
or parallel edges is called simple.

An induced subgraph is a subgraph Γ:X, where X ⊆ N , whose node set is X
and whose edge set consists of all edges of Γ with both endpoints in X. If S ⊆ E,
S:X is the set of edges in S that have both endpoints in X.

The degree of a node is the number of edges of which it is an endpoint. A
circle, also known as a polygon, circuit, or cycle, is a connected graph with degree
2 at every node, or the edge set of such a graph. A path is a connected graph
with degree 2 except at two nodes, which have degree 1; or it is a single node.
The length of a circle or path is the number of its edges. The sum (symmetric
difference) of sets is written S ⊕ T . This applies in particular to circles, regarded
as edge sets. Two paths are internally disjoint if they have no nodes or edges in
common except possibly at their endpoints. A theta graph consists of three pairwise
internally disjoint paths that have the same two endpoints; these three paths are
constituent paths of the theta graph. A graph is 2-connected or inseparable if it
is connected and any two edges lie in a common circle. A block of a graph is a
maximal inseparable subgraph. A graph is 3-connected if it is inseparable and has
at least 4 nodes, and there is no set of 2 or fewer nodes whose deletion leaves a
disconnected graph.

Suppose Γ1 and Γ2 are two graphs that have in common a link e. An (edge)
amalgamation of Γ1 and Γ2 along e, written Γ1 ∪e Γ2, is a graph obtained by
identifying the two copies of e. (It is not unique, since the copies can be identified
in two ways.) An edge sum (or 2-sum), written Γ1 ⊕e Γ2, is (Γ1 ∪e Γ2) \ e.

Suppose Γ is a graph and Ξ a subgraph. A bridge of Ξ in Γ is a maximal
subgraph B of Γ with the properties that E(B)∩E(Ξ) = ∅, B 6⊆ Ξ, and any node
common to B and an edge not in B lies in Ξ (see Tutte [35, Section I.8]).

Suppose ∆ is a graph and γ is a nonzero cardinal number, possibly infinite:
then, by γ∆ we mean ∆ with every edge replaced by γ copies of itself. Thus the
underlying graph of a regular biased expansion γ ·∆ is γ∆; note the importance of
the dot in the notation.

Biased graphs were defined in the introduction. Some additional notions: A
subgraph or edge set in a biased graph Ω is called balanced if every circle in it is
balanced. A balanced biased or gain graph should be thought of as like an ordinary
graph and the bias, i.e., the choice of balanced circles, as a kind of skewing; so the
less balanced, the more biased.
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A gain graph Φ = (‖Φ‖, ϕ) with gain group G is a graph ‖Φ‖ together with an
orientable gain function ϕ : E(Φ) → G; that is, ϕ is defined on oriented edges
and, letting e−1 denote e with the opposite orientation, ϕ(e−1) = ϕ(e)−1. A group
expansion, obviously, is a gain graph. A circle in Φ is called balanced if the product
of the gains of its edges is 1, the group identity; thus Φ produces a biased graph
〈Φ〉. Switching a gain graph Φ by a switching function η : N → G means replacing
ϕ by a new gain map, ϕη, defined by ϕη(e) = η(v)−1ϕ(e)η(w) if e is oriented from
endpoint v to endpoint w. Switching gains does not change bias: 〈Φ〉 = 〈Φη〉. Not
all biased graphs are obtainable from gains. An expansion of Ck+1 by a multiary
quasigroup that is not isotopic to an iterated group is one example; we shall see
others in Section 5. Biased graphs and gain graphs are from [37, Part I].

A minor of a graph, biased graph, or gain graph is a subgraph or contraction of
a subgraph. Since contraction of biased and gain graphs is complicated and plays
a minor role in this article, we omit the definitions, referring the reader to [37,
Sections I.2 and I.5].

We shall have use for a property of chains of paths. If A,B ⊆ ∆, an AB-path is
a path with one endpoint in A, the other in B, and otherwise disjoint from A∪B.

Lemma 2.1 (Path Lemma). In a 2-connected graph ∆ let A and B be disjoint
paths. If P0 and P are two AB-paths, then there exist AB-paths P1, . . . , Pk = P
such that each Pi−1 ∪ Pi ∪A ∪B contains exactly one circle.

Proof. This lemma can be deduced from Tutte’s Path Theorem [33, Theorem 4.34],
but we give a direct proof suggested by Marcin Mazur [26]. The proof assumes
v0v1, vl−1vl /∈ P but it can easily be modified to cover the other possibilities. The
result is trivial if P0 and P are internally disjoint. Otherwise, let the nodes of P0,
in order from A to B, be v0, v1, . . . , vl; define P0(vj) to be that portion of P0 from
vj+1 to vl−1; and make a similar definition for P . Let x0 be the first node of P
when traced from A to B. Let x1 be the first node of P (x0) that lies in P0(v0),
x2 the first node of P (x1) that lies in P0(x1), and in general xi the first node of
P (xi−1) that lies in P0(xi−1). Define k − 1 as the last value of i for which an xi

exists. For 0 < i < k, Pi is obtained by tracing P from x0 to xi and then P0 from
xi to vl; and Pk is P . Then Pi−1 ∪ Pi contains the circle formed by the segments
of P0 and P from xi−1 to xi, and no other circle; except that the unique circle in
P0 ∪P1 consists of P0 and P1 up to x1 along with A from v0 to x0, and the unique
circle in Pk−1∪Pk consists of P0 and P from xk−1 to their endpoints in B together
with B between those endpoints. �

A homomorphism (synonym: mapping) of graphs is an incidence-preserving
mapping of node and edge sets. A homomorphism of biased graphs is a homo-
morphism of the underlying graphs that preserves balance, but not necessarily
imbalance, of edge sets.
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In a biased graph there is a kind of closure called the balance-closure (not “bal-
anced closure”), defined for any edge set by

bclS = S ∪ {e /∈ S : there is a balanced circle C ∋ e such that C \ e ⊆ S}.

This is not an abstract closure operator, nor is it true that bclS must be balanced;
the essential property of balance-closure is

Lemma 2.2 ([37, Proposition I.3.1]). For S ⊆ E(Ω), bclS is balanced if and only
if S is balanced.

2.2. Basics of expansions. Elementary facts about expansions let us confine
our attention to simple, inseparable base graphs. First, it is clear that a biased
expansion of a graph ∆ is the union of arbitrary biased expansions of the blocks
of ∆. Second, biased expansion of a loop is uninteresting. Third, suppose e and f
are parallel links in ∆. In a biased expansion Ω of ∆, there is a unique bijection
between p−1(e) and p−1(f) such that, if ẽ and f̃ correspond, then ẽf̃ is balanced

and, for any set P̃ ⊆ E(Ω) that contains neither ẽ nor f̃ , P̃ ∪ {ẽ} is a balanced

circle if and only if P̃ ∪ {f̃} is. Thus, Ω is completely determined by Ω \ p−1(f).
Moreover, any gains ϕ for Ω are completely determined by the gains on Ω \ p−1(f)

by the equation ϕ(f̃) = ϕ(ẽ). (See Example 3.1.)
A homomorphism (or mapping) Ω → Ω′ of biased expansions is a biased-graph

homomorphism along with a homomorphism of base graphs such that the two map-
pings commute with projection. We shall have occasion to use only homomorphisms
that are injective.

The restriction of Ω to ∆′ ⊆ ∆, written Ω
∣

∣

∆′
, is the subgraph p−1(∆′) with the

bias and projection mapping inherited from Ω. (This should not be confused with
restricting Ω to an arbitrary subgraph of itself; Ω

∣

∣

∆′
is one such restriction, but

not all restrictions are of that form.)
A basic property of expansions is the existence of balanced copies of ∆ or any

subgraph, extending any balanced subgraph of the expansion. A lift of an edge
set S ⊆ E(∆) is a subset S̃ ⊆ E(Ω) for which p

∣

∣

S̃
is a bijection onto S. We shall

always mean by S̃ a lift of S.

Lemma 2.3. Let Ω be a biased expansion of a graph ∆. Given any subsets A ⊆
B ⊆ E(∆) and a balanced lift Ã, there is a balanced lift B̃ that contains Ã.

Proof. Extend A to a maximal subgraph S of B that has no additional circles
besides those in A. Take any lift S̃ ⊇ Ã; it is balanced because Ã is balanced.
Then bcl S̃ projects to closS = closB, where clos is the ordinary graphic matroid
closure

closS = S ∪ {e /∈ S : there is a circle C ∋ e such that C \ e ⊆ S}.

Thus, bcl S̃ is balanced by Lemma 2.2, and it contains a lift of B. Take B̃ =
p−1(B) ∩ bcl S̃. �
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One can apply the lemma, for example, when A is a forest, since any lift of
a forest is balanced. It is also the basis for an alternative definition of biased
expansions; see [37, Part V].

The nongroup biased expansions are the same as the nongainable biased expan-
sions, because if a biased expansion graph Ω has gains in a group H, then it is a
group expansion by a subgroup G of H [37, Theorem V.2.1(a)]. Moreover, G is
unique up to isomorphism [37, Theorem V.2.1]. Furthermore, if Ω ↓ ∆ is a group
expansion by G, one can choose the gain mapping ϕ : E(Ω) → G so that ϕ−1(1) is
any desired balanced lift of E(∆) (a consequence of [37, Lemma I.5.3]), and then
ϕ is determined up to automorphisms of G [37, Theorem V.2.1]. One can inter-
pret the choosability of ϕ−1(1) to mean that selecting a balanced lift of ∆ is the
expansion-graph analog of isotoping a quasigroup to a loop, where one can choose
arbitrarily the element that, after isotopy, becomes the loop identity.

2.3. Expansion minors. Certain minors of a biased expansion are themselves
expansions. An instance is a restriction of a biased expansion to a subset of the
fibers, that is, Ω

∣

∣

∆′
where ∆′ is any subgraph of ∆; analogously, the restriction of

G∆ is an expansion G∆′. Similarly, a contraction of a group or biased expansion
by a balanced edge set is again a group or biased expansion save for possibly having
extra balanced or unbalanced loops; for instance, if S̃ is a balanced edge set in a
biased expansion Ω of ∆, then Ω/S̃ without loops is a biased expansion of ∆/p(S̃)
without loops. We want a notion that combines both of these kinds of minors, that
of an ‘expansion minor’.

Let Ω be a biased expansion of a graph ∆. An expansion minor of Ω is any
minor Ω′ of Ω (without loose or half edges) whose edge set is a union of fibers
p−1(e) of Ω; that is, E(Ω′) = p−1(S) for some S ⊆ E. An expansion minor of a
group expansion is similar. As an example, any restriction Ω|S for S ⊆ E(∆), such
as an induced subgraph of Ω, is an expansion minor.

Proposition 2.4. Let ∆ be a graph.

(a) An expansion minor Ω′ of a biased expansion Ω of ∆ is a biased expansion
of a minor ∆′ of ∆. If Ω is regular of multiplicity γ, then so is Ω′.

(b) An expansion minor of a group expansion G∆ is a group expansion G∆′

of a minor ∆′ of ∆, and conversely.
(c) An expansion minor of an expansion minor of Ω or G∆ is an expansion

minor of Ω or G∆, respectively.

Part (b) is especially significant. It says that we can tell something about the
gainability of a biased expansion from its triangular expansion minors, that is,
expansion minors that are expansions of K3. We apply this idea in Section 5.

The proof is in the more precise description of expansion minors contained in
two lemmas. First we define a construction method for expansion minors.

Construction XM. Given a biased expansion Ω of ∆, take S ⊆
E(∆), a weak partition E(∆) = S ∪ T ∪ D (that is, S, T , and D
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are pairwise disjoint sets whose union is E(∆); some of them may

be void), and a balanced lift T̃ of T into Ω. From (Ω \ p−1(D))/T̃
delete p−1(T ), and delete an arbitrary subset of the isolated nodes
(if there are any). Call this Ω′.

v0v0

v1 v1v2

v3

v23a0 a0 a3a3

b0

b0
b3

b3
c2

d0

d0

d3

d3

Figure 5. The right-hand graph is an expansion minor of order
3 of Q3,4C4 (Figure 4), obtained by taking S = {a, b, d}, T = {c},

T̃ = {c2}, and D = ∅ (this is the left-hand graph), and then

contracting T̃ . The balanced circles in the expansion minor are
the circles aibjdl such that (aibjc2) = dl.

Lemma 2.5. (a) The biased graph Ω′ of Construction XM is an expansion
minor of Ω, and every expansion minor of Ω is formed in this way.

(b) Ω′ is a biased expansion of a graph ∆′ which is a minor of ∆ formed from
∆ \D/T by deleting some subset of its isolated nodes (if any).

(c) E(Ω′) = p−1(S); the projection mapping p′ = p
∣

∣

p−1(S)
; and (p′)−1(e) =

p−1(e) for each e ∈ S = E(∆′).
(d) If Ω is regular, then Ω′ is regular with the same multiplicity.

Proof. We assume that the reader is acquainted with the definitions and notation
of contraction and minors in [37, Sections I.2 and I.5].

(a) It is clear that Ω′ is an expansion minor; the task is to prove the converse.
A minor of Ω is formed by contracting an edge set A, then deleting a subset of
Ac. (We ignore isolated nodes as a triviality.) Let A0 = A:N0(A) and T̃ = A \A0.
Some of the edges after contraction may be half or loose edges if A0 6= ∅. The
half edges come in entire fibers p−1(e), where e joins N0(A) to its complement.
The loose edges come in fibers p−1(e) where e ∈ E(∆):N0(A) but e 6∈ p(A0), or
in partial fibers p−1(e) \ A0 where e ∈ p(A0). In either case we may simply delete
the entire fiber; at worst this leaves extra isolated nodes. Thus we delete p−1(D1)
where D1 = E(∆) \ E(∆:N0(A)c).
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This leaves us contracting only the balanced part T̃ of A; a process that results
in no half or loose edges. To get Ω′ we must delete all the remaining edges in
p−1(T ), where T = p(T̃ ); all of these are loops. The remaining graph Ω′′ now
meets the definition of an expansion minor of Ω; it differs from Ω′ only in that
the latter may require deleting more edges, which must be whole fibers p−1(e) for
e ∈ D2 ⊆ E(∆). Thus D = D1 ∪D2 and S = E(∆) \ (T ∪D) in Construction XM.

(b) We have to prove that, for any circle C in ∆′ = (∆ \ D)/T , edge e ∈ C,

and lift P̃ of C \ e into Ω′, there is a unique edge ẽ ∈ (p′)−1(e) such that P̃ ∪ {ẽ}
is balanced. C has the form C1 ∩ S where C1 is a circle in ∆ \ D. Lift C1 \ S

to Q̃ ⊆ T̃ . Then P̃ ∪ Q̃ is a lift of C1 \ e into Ω, for which there is a unique

ẽ ∈ p−1(e) that makes P̃ ∪ Q̃ ∪ {ẽ} balanced. By the definition of contraction,

for ẽ ∈ p−1(e) = (p′)−1(e), P̃ ∪ Q̃ ∪ {ẽ} is balanced in Ω if and only if P̃ ∪ {ẽ} is
balanced in Ω′. This concludes the proof of (b).

Parts (c) and (d) are obvious. �

There are an analogous construction and lemma for group expansions.

Construction GXM. Given G∆, take S, T , D, and T̃ as in Con-
struction XM and modify (G∆\p−1(D))/T̃ as in that construction
to form Φ′.

Lemma 2.6. (a) The gain graph Φ′ of Construction GXM is an expansion
minor of G∆, and every expansion minor of G∆ is formed in this way.

(b) Φ′ ∼= G∆′, where ∆′ is as in Lemma 2.5(b).
(c) For every minor ∆′ of ∆, G∆′ is an expansion minor of G∆.
(d) 〈Φ′〉 is an expansion minor of 〈G∆〉, and every expansion minor of 〈G∆〉

equals 〈G∆′〉 for a minor ∆′ of ∆.
(e) Construction XM applied to 〈G∆〉 yields 〈Φ′〉.

Proof. Part (a) is proved as in Lemma 2.5. Part (c) follows from (a) by taking T̃ =
p−1(T ) ∩E({1}∆) in the construction. Part (e) is obvious from the constructions.
Part (d) follows from (e) and (b).

(b) As a minor of G∆, Φ′ has gains in G [37, Theorem I.5.4]. We may assume
by prior switching of Φ = G∆ that ϕ

∣

∣

T̃
≡ 1. Thus ϕ′ = ϕ

∣

∣

E(Φ′)
, so ϕ′

∣

∣

(p′)−1(e)
is

a bijection onto G. It follows easily that Φ′ ∼= G∆′. (We do not say Φ′ = G∆′

because the prior switching means that the edge ge, in E(Φ′) as a subset of E(G∆),
may not have gain g in Φ′.) �

Example 2.1. To generate examples of Constructions XM and GXM we take the
group expansion Φ = GK4 where G is any nontrivial group and we let Ω = 〈GK4〉.
The edges of K4 are eij , with the implied orientation where appropriate. The edge
set of Ω is G × E. The edge fibers are the sets p−1(eij) = {geij : g ∈ G}.

(a) For the first example we let T = {e12, e34} andD = ∅, so S = {e13, e14, e23, e24}.

Then we choose the balanced lift T̃ = {1e12, 1e34}. The expansion minor Ω′ has

node set {v12, v34}, resulting from contraction of T̃ so that v1 is identified with v2



20 Thomas Zaslavsky

and v3 with v4. The edge set is E(Ω) \ (p−1(e12) ∪ p−1(e34)) = {geij : g ∈ G, i =

1, 2, j = 3, 4}, because first T̃ is contracted, which makes the other edges of p−1(T )
into loops (they are the edges ge12 and ge34 for g 6= 1), and then these loops are
deleted. This defines the underlying graph Γ′ = ‖Ω′‖. Now we have to find out
which circles are balanced.

All the edges of Γ′ are parallel, so the circles are digons. A digon is supposed
to be balanced in Ω′ if it arises by contracting a balanced circle in Ω; or since
this example is a group expansion, it is balanced if it arises by contracting a circle
in Φ whose gain is 1. For instance, a digon {ge13, he14} is balanced in Ω′ if and
only if {ge13, he14, 1e34} is balanced in Ω, hence if and only if g = h. A digon
{ge13, he24} is balanced in Ω′ if and only if {ge13, he24, 1e12, 1e34} is balanced in Ω,
hence again if and only if g = h. Note that, in accordance with the definition of a
biased expansion, a digon {ge13, he13} cannot be balanced, since g 6= h because the
digon has two edges. So the balanced digons of Ω′ are those of the form {geij , gekl}
where i, k ∈ {1, 2}, j, l ∈ {3, 4}, and eij 6= ekl.

This defines Ω′, which is clearly a biased expansion of K4/T , the graph with
four parallel edges {eij : i = 1, 2, j = 3, 4} joining the two nodes v12 and v34. If we
keep the original gains on the edges in Ω′ we have Φ′, the expansion minor of Φ.

(b) For a second example we lift the same T to a different pair, T̃ = {1e12, g0e34}
where g0 6= 1. The contracted expansion graph and base graph are the same but
the balanced circles are different because the criterion for balance of a digon gives
a different equation. Indeed, a digon {ge13, he14} is balanced in Ω′ if and only if
{ge13, he14, g0e34} is balanced in Ω, hence if and only if gg0 = h. This tells us the

biased graph Ω′, but it does not tell us Φ′, for in contracting Φ by T̃ there is a
switching step that was not necessary when T̃ had all identity gains.

For Φ′ we have to switch Φ to Φη in which T̃ has identity gains. We may choose
η(v) = 1 excepting that η(v3) = g0. Then ϕη(hei3) = hg0, where i = 1, 2. Thus,
the gains in Φ′ are the original gains for edges gei4 but are right-multiplied by g0
for edges hei3. This gives a complete description of Φ′.

(c) We contract edges that contain a circle. Let T = {e12, e13, e23} and D = ∅

and choose the lift T̃ = {1e12, 1e13, 1e23}. (The first two gains force the third since

T̃ must be balanced.) The rest of the construction is similar to that of (a); the base
graph has three parallel edges and the balanced digons have the form {gei4, gej4}.

3. Extension of biased expansions

An extension of a biased expansion Ω ↓p ∆ is a biased expansion Ω′ ↓p′ ∆′ such
that

(a) ∆ is a spanning subgraph of ∆′, and
(b) Ω′

∣

∣

∆
= Ω (so that p′

∣

∣

∆
= p).



Associativity in Multiary Quasigroups 21

We may say Ω′ is an extension of Ω to ∆′, or to E(∆′) \ E(∆). The extension is
simple if ∆′ is a simple graph. It is a maximal extension if it has no simple proper
extension.

We are interested in two types of extension. The first is extension to a link that
is parallel to an existing edge of ∆.

Example 3.1 (Parallel Extension). Suppose ∆ is any graph, f is a link in ∆, and e
is an edge parallel to f but not in ∆. Ω always extends to e. Take (p′)−1(e) to be

a set in one-to-one correspondence with p−1(f); form balanced digons {ẽ, f̃} when

ẽ and f̃ correspond; and for a circle P ∪ f in ∆, a lift P̃ ∪ ẽ is balanced in Ω′ if and
only if P̃ ∪ f̃ is balanced in Ω. Any selection of edges of ∆ can be reduplicated in
this way, as many times as desired.

This kind of extension can be technically useful, but the other kind is the more
important one: that is extension by an edge evw joining nonadjacent nodes of ∆.
The possibility or impossibility of such extension is crucial data about the structure
of a biased expansion.

There are four principal extension theorems. First is uniqueness (Theorem 3.1).
If a biased expansion of a 2-connected graph ∆ extends to one of ∆′, that extension
is unique, by which we mean unique up to an isomorphism that is the identity
on Ω ↓ ∆. We can express this by the existence of a commutative diagram of
extensions:

ΩN n

~~}}
}}

}}
}}

��

� p

  B
BB

BB
BB

B

Ω′

ρ
//_______

��

Ω′′

��

∆ � p

  B
BB

BB
BB

BN n

~~}}
}}

}}
}}

∆′

ρ
//_______ ∆′′

where the maps from Ω are embeddings and ρ is an isomorphism. In fact, ρ itself
is unique. (Recall that a mapping of biased expansions includes a mapping of their
base graphs that commutes with projection.)

The second result is the existence of a unique maximal (simple) extension (The-
orem 3.2). The third result says that, if e joins the trivalent nodes of a theta graph
in ∆, then Ω extends to e (Proposition 3.8). Last is the theorem that, if e is a
chord of a circle C ⊆ ∆, and Ω

∣

∣

C
extends to e, then Ω extends to e (Proposition

3.9).

Theorem 3.1 (Uniqueness of Extension). Let Ω ↓ ∆ be a biased expansion of a
2-connected graph ∆. If Ω′ ↓ ∆′ and Ω′′ ↓ ∆′ are two extensions of Ω to ∆′, then
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there is a unique biased-expansion isomorphism ρ : Ω′ → Ω′′ such that ρ
∣

∣

Ω
is the

identity, provided that ∆′ is simple or, more generally, that ρ, the projections, and
id∆′ commute.

Proof. Let e ∈ E(∆′)\E(∆) with endpoints v and w. These nodes lie in a common
circle in ∆; let P0 and P be the two vw-paths constituting the circle. To define ρ(ẽ′)

for ẽ′ ∈ (p′)−1(e) we choose P̃0 so that P̃0∪ ẽ
′ is balanced in Ω′, then ẽ′′ ∈ (p′′)−1(e)

so that P̃0 ∪ ẽ′′ is balanced, and set ρe(ẽ′) = ẽ′′. It is clear that ρe is a bijection
(p′)−1(e) → (p′′)−1(e) because the roles of Ω′ and Ω′′ are reversible.

We have to prove that ẽ′′ is independent of the choice of P̃0. Take P̃ so that
P̃ ∪ ẽ′ is balanced; then P̃0 ∪ P̃ is balanced. Since P̃0 ∪ ẽ

′′ and P̃0 ∪ P̃ are balanced,
so is P̃ ∪ ẽ′′. Now suppose we change P̃0 to P̃ 1

0 so that P̃ 1
0 ∪ ẽ′ is balanced. Then

P̃ 1
0 ∪ P̃ is balanced (because P̃ ∪ ẽ′ is), and since P̃ ∪ ẽ′′ is balanced, so is P̃ 1

0 ∪ ẽ′′.
Therefore, ρe(ẽ′) is independent of the choice of lift of P0.

Still, we ought to prove ρe(ẽ′) is independent of the choice of vw-path P0. Obvi-
ously, P0 could be any vw-path. Then suppose P is a vw-path such that P0∪P ∪ e
forms a theta graph. Let R0, R, and Re be the constituent paths of this theta
graph that, respectively, lie in P0, lie in P , and contain e. Fixing a lift of R, one
can imitate the previous proof to show that any lifts of P0 and P imply the same
bijection ρe.

Now take the original P0 and any other vw-path P . By the Path Theorem (see
Corollary 2.1) and the preceding argument, all of P0, P1, . . . , Pk = P induce the
same bijection ρe.

We now define ρ(f̃), for f̃ ∈ E(Ω′), to be f̃ if f ∈ E(∆) and ρf (f̃) if f 6∈ E(∆).
It remains to prove that ρ : E(Ω′) → E(Ω′′) is an isomorphism of biased graphs.

For that it suffices to show that, if C̃ is a balanced circle in Ω′, then f(C̃) is

balanced in Ω′′, and conversely. Choose a spanning tree T of ∆ and a lift T̃ such
that T̃ ∪ C̃ is balanced (possible by Lemma 2.3). Then C̃ ⊆ bclΩ′ T̃ . By the

definition of ρ, ρ(C̃) ⊆ bclΩ′′ T̃ . Since the latter is balanced, ρ(C̃) is balanced.

This reasoning works in both directions: if C̃ ′′ ∈ B(Ω′′), then ρ−1(C̃ ′′) is balanced.
That concludes the proof. �

Theorem 3.2 (Maximal Extension). Given any biased expansion Ω of a 2-connected
simple graph ∆, there is a unique maximal extension of Ω; its base graph is ∆∪X
where

X = {e /∈ E(∆) : Ω extends to e}.

Remember that “uniqueness” is up to isomorphisms that are the identity on Ω.

Proof. No extension Ω′′ ↓ ∆′′ can possibly have ∆′′ 6⊆ ∆ ∪ X, so we need only
produce an extension of Ω to ∆ ∪X and call upon the Uniqueness Theorem.

For each e ∈ X, let Ωe be an extension to e. The major part of the proof is to
show that Ωe1

and Ωe2
are compatible.
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Proposition 3.3 (Common Extension). If e1, e2 ∈ X, then Ω extends to ∆ ∪
{e1, e2}.

C

C1 C2

C̃

C̃1 C̃2

PP̃

P1 P2P̃1 P̃2

e1 e2ẽ1 ẽ2

p

Figure 6. The parts of C = P1 ∪ P2 (right) with ei ∈ Pi, the
chordal path P , and the circles Ci := Pi ∪ P , for defining balance
of a lift C̃ (left) in Proposition 3.3.

Proof. The core of the proposition is the definition of balance in the common
extension Ω12 of Ω1 and Ω2 (meaning Ωe1

and Ωe2
). The graph ‖Ω12‖ is simply

‖Ω1‖ ∪ ‖Ω2‖. Balance of a circle C̃ that covers a circle C in ∆12 = ∆ ∪ {e1, e2} is

as in Ω1 or Ω2, except when C contains both e1 and e2. Then we define C̃ to be
balanced if and only if there is a path P that forms with C a theta graph whose
three constituent paths are P and two paths, P1 and P2, of which P1 contains e1
and P2 contains e2 (we call P a connecting chordal path of C because it connects

the two components of C \ {e1, e2}), and P has a lift P̃ such that C̃1 and C̃2 are

both balanced. (The notation is that Ci = Pi ∪ P , P̃i is the lift of Pi that is

contained in C̃, and C̃i = P̃i ∪ P̃ .) Then Ω12 is ‖Ω12‖ with balanced circles as just
defined.

It is important to know that the definition of balance is independent of the
various choices implicit in it. We need a bit more notation. For a connecting
chordal path path P and edge e ∈ P , let R = P \ e. For a different connecting
chordal path path P ′ and e′ ∈ P ′, we define R′, C ′

1, C ′

2 analogously to R, C1, C2.
We begin with a little lemma.

Lemma 3.4. Let P and P ′ be two connecting chordal paths of C such that (C \
{e1, e2}) ∪ P ∪ P ′ contains a unique circle, D. Let e ∈ P \ P ′ and e′ ∈ P ′ \ P , or

let e = e′ ∈ P ∩ P ′. Let C̃ be a lift of C and choose arbitrary lifts R̃ and R̃′ that
agree on R∩R′ and such that D̃ is balanced if e = e′ ∈ P ∩P ′. Then, for each lift
ẽ such that C̃1 and C̃2 are balanced (in Ω1 and Ω2, respectively), there is a unique

lift ẽ′ such that C̃ ′

1 and C̃ ′

2 are balanced (in Ω1 and Ω2, respectively); and ẽ = ẽ′ if
e = e′ (Fig. 7).
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CC

C C

DD

D

D

PP

P P

P ′P ′

P ′ P ′

e1e1

e1 e1

e2e2

e2 e2

l

l

m

Figure 7. The four ways P and P ′ can appear in Lemma 3.4. l
and m are lengths ≥ 0.

Proof. Let A = C \ {e1, e2}. Note that D ⊆ A ∪ R ∪ R′ if e = e′, but e, e′ ∈ D if
e 6= e′.

Suppose e = e′. In Ω1, C̃1∪D̃ is a theta graph, C̃ ′

1 = C̃1⊕D̃, and D̃ is balanced,

so C̃1 is balanced if and only if C̃ ′

1 is. Similarly, C̃2 is balanced if and only if C̃ ′

2 is.

Also, the ẽ that makes C̃i balanced is unique, by the circle lifting property in Ωi.
It follows that ẽ = ẽ′.

If e 6= e′, then for each lift ẽ there is a unique ẽ′ = θ(ẽ) for which D̃ is balanced
(in Ω), and θ is a bijection from p−1(e) to p−1(e′). Suppose we lift e to ẽ such

that C̃1 is balanced. Then lifting e′ to ẽ′, C̃ ′

1 is balanced ⇐⇒ D̃ is balanced

⇐⇒ ẽ′ = θ(ẽ). A similar argument applies to C̃2 and C̃ ′

2. �

The next lemma shows, in particular, that the definition of balance of a lift of
C is independent of the choice of connecting chordal path.

Lemma 3.5. Given C containing e1 and e2, any connecting chordal path P , any
edge e ∈ P , and any lift R̃ of R = P \ e, then a lift C̃ is balanced if and only if

there exists ẽ such that C̃1 and C̃2 are balanced, and this ẽ is unique.

Proof. By definition, C̃ is balanced if there is ẽ such that C̃1 and C̃2 are balanced.
Suppose, conversely, that C̃ is balanced; thus, there exist a connecting chordal

path P ′ and a lift P̃ ′ such that C̃ ′

1 and C̃ ′

2 are balanced. Choose e′ ∈ P ′.
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C

C1
C2

C̃

C̃1
C̃2

P
P1

P2

P̃1

P̃2

Q
Q′

Q̃
Q̃′

R̃

R̃

e

e1 e2

ẽ

ẽ1 ẽ2

p

Figure 8. Example of chordal paths Q,Q′ in Lemma 3.5 (right)

and the process (left) of balancing C̃1 and C̃2, by choosing ẽ, to

get the lift P̃ = R̃ ∪ ẽ of P that implies balance of C̃.

Since ∆ is inseparable, there exist two connecting chordal paths of C, Q and
Q′, that are internally disjoint (Fig. 8). By the Path Lemma 2.1 there is a chain
P ′ = Q0, Q1, . . . , Qk = P of connecting chordal paths that includes Q = Qm−1

and Q′ = Qm, such that (C \ {e1, e2})∪Qi−1∪Qi contains a unique circle for all i.
Choose edges fi ∈ Qi so that f0 = e′, fk = e, and fi−1 ∈ Qi ⇒ fi = fi−1. This is
possible because Qm−1 and Qm are edge disjoint. Thus, at worst we may be forced
to take fm−1 = f0 and fm = fk, but there is no necessary relation between f0 and
fk.

Let Ri = Qi \ fi and let Ci1 and Ci2 be the circles in C ∪ Qi that contain,
respectively, e1 and e2 but not both. We may apply Lemma 3.4 k times to conclude
that, for any lifts R̃0 and R̃k, in particular, R̃0 ⊆ P̃ ′ and R̃k = R̃, and for any ẽ′

such that C̃01 and C̃02 are balanced, there is a unique lift ẽ such that C̃k1 and C̃k2

are balanced. (If θi : p−1(fi) → p−1(fi−1) is as in the proof of Lemma 3.4, then
ẽ = (θ1θ2 · · · θk)−1(ẽ).) �

To prove Proposition 3.3 we need just two more steps: to prove, first, the circle
lifting property in Ω12, and second, that B(Ω12) is a linear class.

Step 1. Circle lifting. We need to consider a circle C ∋ e1, e2 and an edge f ∈ C.
Letting S = C \ f , we assume S̃ given and must prove there is a unique f̃ such

that S̃ ∪ f̃ is balanced. We take P , e, and R as in Lemma 3.5, and fix R̃. We may
assume f ∈ P2 (Fig. 9).

Choose ẽ so that C̃1 ⊆ S̃ ∪ P̃ is balanced in Ω1, then f̃ so that C̃2 ⊆ S̃ ∪ P̃ ∪ f̃ is
balanced in Ω2. By definition, C̃ = S̃ ∪ f̃ is then balanced. Suppose both f̃1 and
f̃2 make S̃ ∪ f̃ i = C̃i balanced. By Lemma 3.5, for i = 1 and 2,

(∃ẽi) P̃1 ∪ R̃ ∪ ẽi and P̃ i
2 ∪ R̃ ∪ ẽi are balanced,
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C̃

C̃1 C̃2

P̃1

P̃2

R̃

R̃

ẽ

ẽ1 ẽ2

f̃

(1 )

(2 )

Figure 9. Adding (1 ) ẽ to make C̃1 balanced and (2 ) f̃ to make

C̃2 balanced, in Step 1 of proving Proposition 3.3.

where P̃ i
2 is the lift of P2 contained in S̃∪ f̃ i. Comparing C̃1

1 with C̃2
1 in Ω1, ẽ1 = ẽ2.

Then, comparing C̃1
2 with C̃2

2 in Ω2, f̃1 = f̃2. Thus, f̃ is unique.
Step 2. Linearity. We must examine lifts of a theta graph Θ that contains both

e1 and e2. There are two cases, according as e1 and e2 are in the same or different
paths of Θ.

B

C

C1

C2

D
P

R

R1

R2

C̃

C̃1
C̃2

P̃P̃1 P̃2 e1

e2

ẽ1 ẽ2 ẽ22

Figure 10. Case 1 (left) and Case 2 (right) in Step 2 of the proof
of Proposition 3.3.

Case 1. If e1 and e2 are in different paths, we can use the notation of Lemma 3.5.
Suppose a lift such that C̃1 and C̃2 are balanced: then C̃ is balanced by definition.
On the other hand, suppose C̃1 and C̃ are balanced while C̃2 is unbalanced. By
changing ẽ2 to ẽ22 we get a balanced lift of C2, namely, C̃2

2 = (C̃2 \ ẽ2) ∪ ẽ22. Then

C̃2 = (C̃ \ ẽ2) ∪ ẽ22 is balanced. However, in Step 1 we showed that C̃ and C̃2

cannot both be balanced. Therefore, C̃2 must have been balanced after all.
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Case 2. If e1 and e2 lie in the same path of Θ, we need new notation. Θ\{e1, e2}
has two components and contains a unique circle, call it D. Let B and C be the
other circles in Θ, and let P be a minimal path in ∆ connecting the two components
of Θ \ {e1, e2}. We may assume that P has both endpoints in N(C), so that C ∪P
is a theta graph with circles C1 ∋ e1 and C2 ∋ e2. If we write the path B ∩ C as
a concatenation of paths, R1e1Re2R2, we may also assume that P , which has one
endpoint in R, has the other end not in R2. Therefore, B ∪ C1 and D ∪ C2 are
theta graphs. In addition, B ⊕ C1 = D ⊕ C2.

Now we prove that, if two of the circles B̃, C̃, D̃ in a lift Θ̃ are balanced, then
the third one is balanced.

Suppose B̃ and C̃ are balanced. By Lemma 2.3, there is a lift P̃ such that C̃1

and C̃2 are balanced. Therefore B̃⊕ C̃1 is balanced, and as this equals D̃⊕ C̃2 and
C̃2 is balanced, D̃ is balanced.

If, however, it is C̃ and D̃ that are balanced, then D̃⊕ C̃2 = B̃⊕ C̃1 is balanced,
whence B̃ is balanced.

Supposing finally that B̃ and D̃ are balanced, we choose P̃ so that C̃1 is balanced.
Consequently, B̃ ⊕ C̃1 is balanced. This being D̃ ⊕ C̃2, we conclude that C̃2 is
balanced, whence C̃ is balanced.

Thus in every case linearity is satisfied, and therefore, Ω12 is a biased graph. �

Lemma 3.6. Suppose Ω′ extends Ω to ∆′ and e ∈ X \ E(∆′); then there is an
extension of Ω to ∆′ ∪ e.

Proof. Let

F = {∆′′ ⊆ ∆′ : Ω′
∣

∣

∆′′
extends to e}.

If ∆′′ ∈ F and f ∈ E(∆′) \ E(∆′′), then Ω′
∣

∣

∆′′
extends both to e and to f ; by

Proposition 3.3 it extends to {e, f}, so ∆′′ ∪ f ∈ F. This suffices to prove the
lemma when X is finite.

Otherwise, we apply Zorn’s Lemma in the usual way. Take a maximal chain {∆i}
in F; let ∆′′ be its union. Write Ωi for the extension of Ω′

∣

∣

∆i
to e. By Unique

Extension we can regard each Ωi for i < j as the restriction Ωj

∣

∣

∆i∪e
. Therefore

Ω′′ =
⋃

i{Ωi} is a well defined graph. It is a biased expansion of ∆′′ ∪ e because
any circle in ∆′′ ∪ e or theta graph in Ω′′ is contained in some ∆i ∪ e or Ωi. It
extends Ω′

∣

∣

∆′′
because Ω′

∣

∣

∆′′
=

⋃

i{Ω′
∣

∣

∆i
}. Therefore, ∆′′ ∈ F. If ∆′′ ⊂ ∆′, there

is an f ∈ E(∆′) \ E(∆′′) and, by the first part of the proof, ∆′′ ∪ f ∈ F. As that
contradicts the maximality of the original chain, ∆′′ must be ∆′, so Ω′ extends to
e. �

Lemma 3.7. Suppose Ω′ extends Ω to ∆′ ⊃ ∆; then Ω′ extends to ∆ ∪X.

Proof. Here let

F = {∆′′ ⊆ ∆ ∪X | ∆′′ ⊇ ∆′ and Ω′ extends to ∆′′}.
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There can be only one maximal member of F, namely, ∆ ∪X, since for any other
∆′′, taking e ∈ X \E(∆′′) we know that Ω′′, an extension of Ω′ to ∆′′, extends to
e. This proves the lemma when X \ E(∆′) is finite.

In the infinite case, again we apply Zorn’s Lemma. The union of a maximal
chain of graphs in F is itself in F, and this union must be ∆∪X or the chain could
not have been maximal. �

To complete the proof of the Maximal Extension Theorem we need only appeal
to the Unique Extension Theorem. �

Proposition 3.8 (Theta Extension). Any biased expansion of a theta graph with
trivalent nodes v and w extends to the edge evw.

Proof. Let the theta graph ∆ have constituent paths P1, P2, and P3 and write e
for evw. By Example 3.1 we may assume v and w are nonadjacent in ∆. Define a
set Ee in one-to-one correspondence with some fiber p−1(f) for f ∈ E(∆). Letting
each ẽ ∈ Ee have endpoints v and w defines a graph ‖Ω′‖ that covers ∆ ∪ e. The
task is to define balance and show it results in a biased expansion Ω′ ↓ ∆ ∪ e
extending the original biased expansion Ω ↓ ∆.

Choose a fixed edge f1 ∈ P1, let Q1 = P1 \ f1, and fix a lift Q̃0
1. Choose a

bijection ψ : p−1(f1) → Ee and, for ẽ ∈ Ee, define

Q̃0
1 ∪ f̃1 ∪ ẽ balanced ⇐⇒ ẽ = ψ(f̃1).

For any lift P̃2 and any ẽ ∈ Ee, we define

P̃2 ∪ ẽ balanced ⇐⇒ P̃2 ∪ Q̃
0
1 ∪ ψ

−1(ẽ) is balanced.

For P̃3 ∪ ẽ the definition is similar. (This leaves balance of P̃1 ∪ ẽ undefined as
yet, in general.) We need to show consistency between the states of balance of

P̃2 ∪ ẽ and of P̃3 ∪ ẽ. If both are balanced, P̃2 ∪ Q̃
0
1 ∪ψ

−1(ẽ) and P̃3 ∪ Q̃
0
1 ∪ψ

−1(ẽ)

are balanced, so P̃2 ∪ P̃3 is balanced. Similarly, if only one of P̃2 ∪ ẽ and P̃3 ∪ ẽ
is balanced, P̃2 ∪ P̃3 cannot be balanced. Thus, linearity is satisfied for lifts of
P2 ∪ P3 ∪ e. We call this 23-consistency.

Now, for a lift P̃1 we define P̃1 ∪ ẽ to be balanced if P̃2 ∪ ẽ is balanced for some
P̃2 such that P̃1 ∪ P̃2 is balanced. Suppose we took two lifts P̃ 1

2 and P̃ 2
2 such that

both P̃1 ∪ P̃
j
2 are balanced, and say P̃ j

2 ∪ ẽj is balanced. Pick P̃3 so that P̃1 ∪ P̃3 is

balanced. Then each P̃ j
2 ∪ P̃3 is balanced. By 23-consistency, P̃3 ∪ ẽ

j is balanced

for j = 1, 2; thus P̃3 ∪ Q̃
0
1 ∪ f̃

j
1 is balanced for f̃ j

1 = ψ−1(ẽj), but since f̃1
1 = f̃2

1 , we

see ẽ1 = ẽ2. Therefore, balance of P̃1 ∪ ẽ is independent of the choice of P̃2. We
call this 12-consistency.

We show that, if P̃1∪ P̃3 is balanced, then P̃1∪ ẽ is balanced if and only if P̃3∪ ẽ
is balanced. Take P̃2 so that P̃1 ∪ P̃2 ∪ P̃3 is balanced. Then P̃1 ∪ ẽ is balanced
⇐⇒ (by 12-consistency) P̃2 ∪ ẽ is balanced ⇐⇒ (by 23-consistency) P̃3 ∪ ẽ is
balanced.
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Figure 11. Illustrating the proof of Proposition 3.8. Step 1 : Use
a lift Q̃0

1 of P \f1 to form balanced circles which imply a correspon-

dence between f̃1 ∈ p−1(f1) and ẽ ∈ Ee. Step 2 : Define balance

of P̃2 ∪ ẽ and P̃3 ∪ ẽ. Step 3 : Use balance of P̃1 ∪ P̃2 and P̃2 ∪ ẽ to
define balance of P̃1∪ ẽ. Step 4 : Use balance of P̃1∪ P̃3 and P̃3∪ ẽ
to finish proving consistency of balance. Step 5 (not illustrated):
Prove uniqueness in the circle lifting property.

We still have to prove uniqueness in the circle lifting property. First, we treat
lifts of e. Any P̃i has a balanced completion P̃i ∪ ẽ, as we have seen. Suppose
P̃i ∪ ẽ

1 and P̃i ∪ ẽ
2 are balanced. If i = 2, 3, just take Q̃0

1∪ f̃1 such that P̃i ∪ Q̃
0
1∪ f̃1

is balanced. Then f̃1 = ψ−1(ẽj) for j = 1, 2, whence ẽ1 = ẽ2. If i = 1, take P̃2 so

that P̃1 ∪ P̃2 is balanced: then P̃2 ∪ ẽ
1 and P̃2 ∪ ẽ

2 are balanced, so ẽ1 = ẽ2.
Now we treat lifts of f ∈ Pi. Let R = Pi \f and take any R̃ and ẽ. If i = 2, 3, we

know that Q̃0
1∪ψ

−1(ẽ)∪ẽ is balanced, and there exists f̃ for which Q̃0
1∪ψ

−1(ẽ)∪R̃∪f̃

is balanced (and it is unique); by definition, for this f̃ and no other, (R̃ ∪ f̃) ∪ ẽ
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is balanced. If i = 1, we choose any P̃2 such that P̃2 ∪ ẽ is balanced. Then there
is a unique f̃ making P̃2 ∪ R̃ ∪ f̃ balanced, and by definition that is the only f̃ for
which (R̃∪ f̃)∪ ẽ can be balanced. Thus we have a biased expansion of ∆∪ e. �

Proposition 3.9 (Chordal Extension). Suppose Ω is a biased expansion of a 2-
connected graph ∆ and e 6∈ E(∆). For any circle C ⊆ ∆ of which e is a chord, Ω
extends to e if and only if Ω

∣

∣

C
extends to e.

C

P1 P2

P

P̃1 P̃2

P̃Ωe

eẽ

v v

w w

p

Figure 12. The configuration in the proof of Proposition 3.9,
proving consistency of ẽ. P (dotted), a path from v to w in Ω,
may intersect C (solid curve).

Proof. We need only prove sufficiency. Let e = vw. Take C, of which e is a chord,
such that Ω

∣

∣

C
extends to e. Let P1 and P2 be the paths into which e divides C.

Let Ωe be the extension to e of Ω
∣

∣

C
. To define Ω′, the extension of Ω, we set

E(Ω′) = E(Ω)∪p−1
e (e) and define a circle P̃ ∪ ẽ in Ω′, lifting a circle P ∪e in ∆∪e,

to be balanced if and only if there is a lift P̃1 such that both P̃ ∪ P̃1 and P̃1 ∪ ẽ are
balanced. It remains to prove that Ω′ is a biased graph and a biased expansion of
∆′. First we show that P2 works as well as P1 in defining balance of P̃ ∪ ẽ.

Lemma 3.10. P̃ ∪ ẽ is balanced if and only if there is a choice of P̃2 so that P̃ ∪ P̃2

and P̃2 ∪ ẽ are balanced.

Proof. First, suppose P̃ ∪ ẽ is balanced: then there is a P̃1 such that P̃ ∪ P̃1 and
P̃1 ∪ ẽ are balanced. Choose P̃2 so that P̃ ∪ P̃1 ∪ P̃2 is balanced. (That is possible

by Lemma 2.3.) Then P̃1 ∪ P̃2 ∪ ẽ is a theta graph in Ωe, so P̃2 ∪ ẽ is balanced.

Thus, P̃2 exists as desired.
The converse is similar. �

We should prove that different choices of P̃1 give consistent definitions of balance
of P̃ ∪ ẽ. Assume P 6= P1, P2.

Lemma 3.11. Suppose P̃ 1
1 ∪ P̃ and P̃ 2

1 ∪ P̃ are balanced, and P̃ 1
1 ∪ ẽ1 and P̃ 2

1 ∪ ẽ2

are balanced. Then ẽ1 = ẽ2.
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C̃

P̃1

P̃2

P̃
S̃1

S̃2

S̃3 S̃4

ẽ1ẽ2

v

w

Figure 13. The configuration in the proof of Lemma 3.11, using
P̃ (dotted) to prove consistency of ẽ with regard to C̃. P1 may
contain nodes or edges of P , forming segments S1, . . . , Sk (whose

lifts S̃i are heavy curves; k = 4 in the example) in P1 \ P .

Proof. Choose P̃2 so P̃ ∪ P̃ 1
1 ∪ P̃2 is balanced (by Lemma 2.3). Then P̃2 ∪ ẽ1 is

balanced in Ωe, because of the theta graph P̃ 1
1 ∪ ẽ1 ∪ P̃2.

The maximal subpaths of P1 that are internally disjoint from P form k ≥ 1
segments S1, . . . , Sk of positive length. Choose ei ∈ Si and let R = P1\{e1, . . . , ek}.
Then

(1) R ∪ P is connected, so R ∪ P ∪ P2 is connected, and
(2) no edge of any Si is contained in any circle of R ∪ P , nor of R ∪ P ∪ P2.

Consequently, writing R̃2 for the lift of R contained in P̃ 2
1 ,

(3) R̃2 ∪ P̃ and R̃2 ∪ P̃ ∪ P̃2 are connected, and

(4) R̃2 ∪ P̃ ∪ P̃2 is balanced, because any circle in it lies in P̃ ∪ P̃2, which is
balanced.

Now, ẽ2i lies in a circle in R̃2 ∪ P̃ ∪ ẽ2i by (3), which is balanced because it is in

P̃ 2
1 ∪ P̃ . Therefore ẽ2i ∈ bcl(R̃2 ∪ P̃ ). So

P̃ 2
1 ∪ P̃ ∪ P̃2 ⊆ bcl(R̃2 ∪ P̃ ∪ P̃2),

which is balanced (Lemma 2.2). Thus P̃ 2
1 ∪ P̃2 is balanced, so P̃2 ∪ ẽ

2 is balanced

by the theta graph P̃ 2
1 ∪ ẽ2 ∪ P̃2 in Ωe. As Ωe is a biased expansion and both ẽ1

and P̃2 ∪ ẽ
2 are balanced, ẽ1 = ẽ2. �

Thus, we have a well defined notion of balance in ‖Ω′‖ = ‖Ω‖ ∪ ‖Ωe‖.
The lemma applies as well to P2 as to P1, of course, due to Lemma 3.10.

Lemma 3.12. Suppose P̃1 chosen so that P̃∪P̃1 is balanced. Then P̃∪ẽ is balanced
if and only if P̃1 ∪ ẽ is balanced.

Proof. There is a unique ẽ0 for which P̃1 ∪ ẽ0 is balanced, because Ωe is a biased
expansion. Then P̃ ∪ ẽ0 is balanced, but by Lemma 3.11 no other P̃ ∪ ẽ can be
balanced. �
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Lemma 3.13. Suppose C̃ chosen so that P̃ ∪ C̃ is balanced. Then P̃ ∪ ẽ is balanced
in Ω′ if and only if C̃ ∪ ẽ is balanced in Ωe.

Proof. Apply Lemma 3.12 to P1 and P2, the latter requiring Lemma 3.10. �

The rest of the proof shows that Ω′ is a biased expansion. First, the uniqueness
of circle lifting.

Lemma 3.14. If C ′ is a circle in ∆′ and f ∈ C ′, and if P̃ ′ is any lift of C ′ \ f ,

then there is exactly one lift f̃ that makes P̃ ′ ∪ f̃ balanced.

Rv

Rv

Rw

Rw

R̃v

R̃v

R̃w

R̃w

S1

S2
S3

S4

S5

s1

s2

s3
s4

s5

d1

d2

S̃1

S̃2
S̃3

S̃4

S̃5

s̃1

s̃2

s̃3
s̃4

s̃5

d̃1

d̃2

e

f

ẽ

f̃

v v

w w

p

Figure 14. The configuration in the proof of Lemma 3.14, prov-
ing general consistency of ẽ. C is the solid ellipse; P is dotted.
There are m = 5 bridges of C in C ∪ P and k = 2 segments of C
that connect Rv to Rw. t = 2 so St = S2.

Proof. We may assume e ∈ C ′. When f = e, this is a consequence of Lemma 3.12.
Otherwise, let P = C ′ \ e, so f ∈ P . (We may assume P 6= P1, P2.)

We shall have need of the graph of P , which is (N(P ), P ), and that of C.
Removing f , (N(P ), P ) falls into two connected halves, one containing v and the
other w; we write R = (N(P ), P ) \ f and Rv, Rw for the two halves. We shall be
careless with notation, using P , R, etc., to denote both the graph and the edge set,
trusting that all will be clear.

A bridge of C in C ∪ P is a maximal subpath of P whose internal nodes are
in P \ C, and a bridge of P in C ∪ P is a maximal subpath of C whose internal
nodes lie in C \ P (excluding edgeless subpaths in both cases). Call the bridges of
C (which are subpaths of P ) S1, S2, . . . , Sm and choose an edge si ∈ Si for each
bridge. Let S = {s1, s2, . . . , sm}. Amongst the bridges of P (which are subpaths
of C), we are interested only in those that connect Rv to Rw. For each such bridge
choose an edge di in it, and let D = {d1, . . . , dk}, there being k such bridges. D
depends on f . Let D′ = C \D (as an edge set) (Fig. 14).
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So far, we have two biased expansions: Ω ↓ ∆ and Ωe ↓ C ∪ e. The Theta
Extension Lemma generates others, which we employ as auxiliary graphs. Since
C ∪ Si is a theta subgraph of ∆, Ω

∣

∣

C∪Si
extends to a chord ei of C that joins

the endpoints of Si. Call Ωi the resulting biased expansion of C ∪ Si ∪ ei, and
let H = {e1, e2, . . . , em}. Taking every Ωi separately, we get extensions Ωi

∣

∣

C∪ei
of

Ω
∣

∣

C
. By the Maximal Extension Theorem, all the extensions of Ω

∣

∣

C
, including Ωe,

are compatible; that is, there is an extension ΩP of Ω
∣

∣

C
to H ∪ e, determined by

Ωe and the subpaths Si. We now have three groups of biased expansions: Ω, ΩP

extending Ωe, and Ωi extending Ω
∣

∣

C∪Si
to ei (Fig. 15). All this is independent of

f .

CC

Si

e
ei

e1

e2
e3

e4

e5

v

w

Figure 15. The two kinds of extension of Ω|C : Extension to C ∪
Si ∪ ei (left) and to ΩP (right).

We wish to prove that, given R̃ and ẽ, there is a unique f̃ such that R̃ ∪ {ẽ, f̃}
is balanced. First we establish a tool.

Lemma 3.15. Let P̃ and C̃ be arbitrary lifts of P and C, let ẽi be the lift that
makes S̃i ∪ C̃ balanced in Ωi, and let H̃ = {ẽ1, . . . , ẽm}. Then P̃ ∪ C̃ is balanced in

Ω ⇐⇒ C̃ ∪ H̃ is balanced in ΩP .
Furthermore, let ẽ be any lift of e such that C̃ ∪ ẽ is balanced. Then P̃ ∪ ẽ is

balanced (in our definition given previously) ⇐⇒ C̃ ∪ H̃ ∪ ẽ is balanced in ΩP .

Proof. For the first part, when P̃ ∪ C̃ is balanced, from Ωi we know every C̃ ∪ ẽi

is balanced. Thus, ẽi ∈ bclΩP
C̃. By Lemma 2.2, C̃ ∪ H̃ is balanced.

Conversely, if C̃ ∪ H̃ is balanced, then each C̃ ∪ S̃i is balanced. Therefore,
s̃i ∈ bclΩ(C̃ ∪ P̃ \ S̃). C̃ ∪ P̃ \ S̃ is balanced because its only circle is C̃. It follows

that C̃ ∪ P̃ is balanced.
For the second part, because we assume balance of C̃∪ ẽ, P̃ ∪ ẽ is balanced ⇐⇒

P̃ ∪ C̃ is balanced in Ω. We can reformulate the statement as: P̃ ∪ C̃ is balanced
(in Ω) ⇐⇒ C̃ ∪ H̃ ∪ ẽ is balanced (in ΩP ). The proof is like that of the first
part. �

Let A = (P ∪D′) \ f . In case f ∈ P \C, f lies in a subpath St corresponding to
a chord et. If f ∈ C, we leave St and et undefined. Define B = (D′ ∪H) \ {f, et}.
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A B

d1 d1

d2 d2

e1

e3

e4

e5

e2 = et

f

S1

S2
S3

S4

S5

vv

ww

Figure 16. A and B for lifting f to balance R̃ ∪ ẽ ∪ f̃ (illustrat-
ing the case f /∈ C). Edges d1, . . . , dk and f are absent from A,
and edges d1, . . . , dk and et are absent from B, leaving each dis-
connected into one component that contains v and another that
contains w.

Then each of A and B contains R := P \ F but, due to the absence of D, f ,
and (when appropriate) et, remains disconnected into a v-component and a w-
component. Adding in any one of e, di for 1 ≤ i ≤ k, or f or et makes A and B
connected (Fig. 16).

We were given R̃ and we can extend it (in Ω) to a balanced lift Ã. Each S̃i ⊆ R̃,

except when i = t, implies a unique ẽi for which S̃i∪ ẽi is balanced (in Ωi). Thus we

have a balanced lift B̃ (in ΩP ) as well, uniquely defined. Now we add the given ẽ

and take bclΩP
(B̃∪ ẽ). It contains exactly one lift d̃i for each i and one f̃ (if f ∈ C)

or ẽt (if f 6∈ C), and it is balanced. Thus we have a balanced lift B̃ ∪ D̃ ∪{ẽ, f̃} (if

f ∈ C) or B̃ ∪ D̃ ∪ {ẽ, ẽt} (if not), which in both cases is C̃ ∪ H̃ ∪ ẽ. Moreover, the

lifts D̃ and (if f ∈ C) f̃ are the only ones that give balance, by the circle lifting

property in ΩP . When f ∈ C, Lemma 3.15 shows that, not only is P̃ ∪ ẽ balanced,
but f̃ is the only lift of f for which this is true. When f 6∈ C, we find f̃ as the

unique edge in p−1(f) ∩ bclΩt
(S̃t\f ∪ C̃ ∪ ẽt). Balance of P̃ ∪ ẽ follows from the

second part of Lemma 3.15. In both cases, f̃ exists and is unique. �

Lemma 3.16. Ω′ is a biased graph.

Proof. We look at a theta graph that contains e. Let P ∪ e and P ′∪ e be its circles
that contain e and D = P ⊕ P ′ the third circle.

Suppose, in a lift of P ∪ P ′, D̃ is balanced. Since P̃ ∪ P̃ ′ is balanced, we can
choose P̃1 so that P̃ ∪ P̃ ′ ∪ P̃1 is balanced. Then for any ẽ, P̃ ∪ ẽ is balanced
⇐⇒ P̃1 ∪ ẽ is balanced ⇐⇒ P̃ ′ ∪ ẽ is balanced. That is, one or three circles in
P̃ ∪ P̃ ′ ∪ ẽ are balanced. Thus ẽ is unique due to Lemma 3.11.

Suppose, however, that D̃ is not balanced. Take f ∈ P \ P ′ and replace f̃ ∈ P̃

by f̃0 such that P̃ 0 ∪ P̃1 is balanced. (No other lift edges are altered.) By the first



Associativity in Multiary Quasigroups 35

part, P̃ 0 ∪ ẽ is balanced ⇐⇒ P̃ ′ ∪ ẽ is balanced. If both are balanced, then P̃ ∪ ẽ
is unbalanced by Lemma 3.14, so only one circle is balanced in P̃ ∪ P̃ ′ ∪ ẽ. On the
other hand, if neither is balanced, then D̃ and P̃ ′ ∪ ẽ are unbalanced, so at most
one circle is balanced in P̃ ∪ P̃ ′ ∪ ẽ. �

The combination of Lemmas 3.14 and 3.16 proves Proposition 3.9 . �

Call a graph theta-complete if the trivalent nodes of any theta subgraph are
adjacent. The theta completion θ(∆) of a simple graph ∆ is the smallest theta-
complete simple graph that contains ∆. The results of this section imply:

Figure 17. The theta completion θ(∆) (solid and dashed lines)
of a graph ∆ (solid lines). Heavy lines show a theta subgraph that
leads to each added edge.

Theorem 3.17. A biased expansion of a simple graph ∆ extends uniquely to θ(∆).
If ∆ is the base graph of a maximal biased expansion, then ∆ is theta-complete. �

A theta-complete graph has a simple structure: see Proposition 6.4. We may
conclude from its structure that, to construct θ(∆), it is sufficient to find all non-
adjacent pairs v, w ∈ V that are the trivalent nodes of a theta subgraph of ∆ and
adjoin the edges evw. The resulting graph ∆′ is θ(∆); it is not necessary to look for
new theta subgraphs in ∆′ and repeat the adjunction process. Hence, when extend-
ing a biased expansion Ω ↓ ∆, one gets the maximal extension by finding ∆′ and
extending Ω (as in Proposition 3.8) independently to every edge of E(∆′) \E(∆);
after that, no further step is needed.

4. Inescapable groups (3-connection)

Our extension results imply a strong characterization of biased expansions of
well-connected graphs.

Theorem 4.1. Every biased expansion of a 3-connected graph of order at least
four is a group expansion. The group is unique.

The graph being expanded may have finite or infinite order.

Lemma 4.2. A biased expansion of a complete graph of any finite or infinite order
not less than four is a group expansion by a unique group.



36 Thomas Zaslavsky

Proof of Lemma. Let K be the complete graph and Ω its biased expansion.
In the finite case the lemma is a consequence of the theorem of “generalized as-

sociativity” stated by Belousov [3] and proved by Hosszú [22], Aczél, Belousov,
and Hosszú [1, Theorem 1], and Belousov [4] (see [10, pp. 76–78]), and inde-
pendently proved by Kahn and Kung [24, Section 7, pp. 490–492]. “General-
ized associativity” states that, if a set has four quasigroup operations that satisfy
g1(h1(x1, x2), x3) = g2(x1, h2(x2, x3)), all four operations are isotopic to the same
associative quasigroup. (It follows that, if a finitary quasigroup factors into binary
quasigroups in all possible ways, then the quasigroup is an iterated group isotope.)
Aczél, Belousov, and Hosszú prove this by producing explicit isotopisms. Kahn
and Kung construct four quasigroups that satisfy the same equation, from combi-
natorial data equivalent to a biased expansion of K4, in such a way that they have
identity elements; thus they are obviously equal, hence a group. Either way, it
follows from generalized associativity that every restriction Ω

∣

∣

K′
to a K4 subgraph

K ′ ⊆ K is a group expansion, say 〈GK′K ′〉. Since Ω
∣

∣

K′′

∼= 〈GK′K3〉 for K ′′ ⊆ K ′

of order three, and GK′ is unique up to isomorphism (by a theorem of Bruck [9],
or proved directly by Dowling [13, Theorem 8]), Kahn and Kung deduce that all
GK′ are isomorphic and Ω = 〈GK〉 for a group G.

In essence, these approaches depend on interpreting Ω
∣

∣

C
for a spanning circle

C of K ′ as encoding a quasigroup multiplication. Partly for completeness’ sake
and partly because it is such a natural way of deducing the group directly from
the biased expansion, we give a new proof that depends on setting up the division
operation of the group by means of a spanning star subgraph of K.

Let v0 ∈ N(K), and distinguish a balanced lift K̃0 of K. Take a set Q in one-

to-one correspondence with each fiber p−1(e). Holding K̃0 \v0 fixed, and letting v1
be another node of K, each choice of edge ẽ01 implies by balance-closure one edge
ẽ0j for each j 6= 0, 1 such that the lift K̃0 ⊇ K̃0 \ v0 is balanced. This determines
bijections ζj : p−1(e01) → p−1(e0j). We define ψ1 to be any one bijection ψ1 :

p−1(e01) → Q and ψj : p−1(e0j) → Q to be the bijection ζ−1
j ◦ ψ1. We also define,

for each ordered pair of distinct i, j 6= 0,

ε = ψj(ẽ00j) for all j 6= 0.

This will serve as the group identity.
We have now labelled (from Q) all edges ẽ0i. The next task is to label all ẽij .

We define

ψij(ẽij) = ψi(ẽ0i) if ẽ0iẽ
0
0j ẽij is balanced. (4.1)

In particular, ψ(ẽ0ij) = ψi(ẽ
0
0i) since ẽ0iẽ

0
0j ẽ

0
ij is balanced when ẽ0i = ẽ00i, so

ψij(ẽ0ij) = ε. Finally, we define division. Actually, we define an operation (α/β)ij

for each ordered pair of distinct i, j 6= 0 by

(α/β)ij = ψij(ẽij) if ψ−1
i (α)ψ−1

j (β)ẽij is balanced.
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These definitions are illustrated in Figure 18. Since ẽ0iẽ0j ẽ
0
ij is balanced when

ψi(ẽ0i) = ψj(ẽ0j), writing α for this latter value we find that

(α/α)ij = ε for every α ∈ Q.

(b)(a)

v0 v0

vivi

vjvj

αα

βε

ψij(ẽij) = α ψij(ẽij) = (α/β)ij

Figure 18. (a) The way an edge ẽij is labelled. (b) The definition
of (α/β)ij . All triangles are balanced.

The next step is to prove that division is independent of the first subscript:

(α/β)ik = (α/β)jk. (4.2)

Look at Figure 19(a): If the K4 is balanced with edges at v0 labelled α, α, β, the
labels on △vivjvk are as shown. Keeping this triangle, change the v0 edges to those
labelled as in Figure 19(b). The label ε on ẽij implies that γ′ = γ. The definition
(4.1) implies that γ = (α/β)ik and γ′ = (α/β)jk. Thus (4.2) is proved.

v0 v0

vivi

vjvj

vkvk

α

α

β

γ

γ′

ε ε

ε

(α/β)ik(α/β)ik

(α/β)jk(α/β)jk

Figure 19. Illustrating the proof of (4.2). The graphs are balanced.
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Another consequence of the definition of division is the reversal property (α/β)ij =
(β/α)ji. Assuming there are at least four nodes and applying (4.2) thrice,

(α/β)ij = (α/β)kj = (β/α)jk = (β/α)ik = (α/β)ki = (α/β)ji.

Thus, all (α/β)ij are equal: we have a single well-defined operation α/β.
From the value (α/α)ij = ε and the labelling rule for ẽij we have

(L1) α/α = ε,
(L2) α/ε = α.

By the reversal property, (ε/(β/γ))ij = ((β/γ)/ε)ji = (β/γ)ji = (γ/β)ij , so

(L3) ε/(β/γ) = γ/β.

These are three of the four axioms for a group defined by division, given in [21, p.
6]. It remains to prove that

(L4) (α/γ)/(β/γ) = α/β.

v0v0

vivi

vjvj

vkvk

α

β

γ ε

α/β α/β

α/γ

α/γα/γ

β/γβ/γ

β/γ

Figure 20. Diagrams for the proof of property (L4) expressing
the product of quotients.

Again, we use two diagrams: see Figure 20. Diagram (a) is just definitions. Holding
△vivjvk fixed, we change the edge labels at v0 so that ẽ0k has label ε. The labels
on ẽ0i and ẽ0j are from the definition of division. Then ẽij has label (α/γ)/(β/γ),
but we already know its label is α/β. That proves (L4).

Therefore, Q is a group, and it is easy to verify that Ω = 〈QK〉. �

Proof of Theorem 4.1. Let Ω ↓ ∆ where ∆ is 3-connected. By Example 3.1 we may
assume ∆ is simple. If v and w are nonadjacent nodes in ∆, they are the trivalent
nodes of a theta subgraph of ∆. By Propositions 3.8 and 3.9 and Theorem 3.2, Ω
extends to Ω′, an expansion of the complete graph on N(∆). By Lemma 4.2, then,
Ω′ is a group expansion; hence, so is Ω. �
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5. Amalgamation (2-separation)

Biased expansions of the same multiplicity can be assembled by an analog of the
ordinary graphical operation of edge amalgamation. This operation is essential to
the structure theory of biased expansions. Besides that, it enables us to produce
nongroup expansions out of group expansions, in two different ways. The easy
way is to combine expansions by different (quasi)groups of the same order. For
instance, in multiplicity 4 we can assemble a Z4-expansion and a V4-expansion,
V4 being the Klein four-group. A more sophisticated kind of application combines
expansions by the same group but with a nasty twist.

The first task is to define and justify the method of combination.
If a graph ∆ is the union of two subgraphs, ∆1 and ∆2, that have in common

only a link e and its endpoints, i.e. ∆1 ∩ ∆2 = (N(e), {e}), we say ∆ is the edge
amalgamation (or parallel connection) of ∆1 and ∆2 along e, written ∆1 ∪e ∆2,
and we call ∆\e the edge sum (or 2-sum) of ∆1 and ∆2 along e, written ∆1⊕e ∆2.
Another way to look at edge amalgamation or edge sum is as identification or
cancellation of distinct links e1 ∈ E(∆1) and e2 ∈ E(∆2). We shall sometimes take
this point of view.

These constructions can be modelled in biased expansions. Suppose Ω1 and Ω2

are biased expansions of ∆1 and ∆2. We construct an expanded edge amalgamation
of Ω1 and Ω2 along e, written Ω1∪e Ω2 or in full Ω1∪e,β Ω2, by choosing a bijection

β : p−1
1 (e) → p−1

2 (e) and using it to identify p−1
1 (e) with p−1

2 (e). The edge set of
Ω1 ∪e Ω2 is thus the disjoint union of E(Ω1) and E(Ω2) with p−1

1 (e) and p−1
2 (e)

identified by β. A circle C̃ in Ω1 ∪e Ω2 is balanced if it belongs to B(Ω1) ∪ B(Ω2)

or it has the form C̃1 ∪ C̃2 \ [p−1
1 (e) ∪ p−1

2 (e)] where C̃i ∈ B(Ωi) and e ∈ p(C̃i)

for i = 1, 2 and β(C̃1 ∩ p
−1
1 (e)) = C̃2 ∩ p

−1
2 (e). (We may write C̃ more simply as

C̃1 ⊕ C̃2 if we bear in mind the identification of p−1
1 (e) with p−1

2 (e).) The expanded
edge sum along e is Ω1 ⊕e Ω2 := Ω1 ⊕e,β Ω2 := (Ω1 ∪e Ω2) \ p−1(e), p being the
projection mapping of Ω1 ∪e Ω2. Both constructions apply to group expansions
G1∆1 and G2∆2 by taking Ωi = 〈Gi∆i〉.

An example is any biased expansion Ω of ∆1 ∪e ∆2. If Ωi = p−1(∆i) and β is
the identity map, then Ω1 ∪e Ω2 = Ω. On the other hand, a biased expansion of
∆1 ⊕e ∆2 need not be an expanded edge sum Ω1 ⊕e Ω2: see Example 5.4.

Figure 21 shows an expanded edge amalgamation of two group expansions Z4C4

and Z4C3, which is not itself a group expansion because the bijection β is not
a pseudoisomorphism (see Theorem 5.3). The base graph of the amalgamation
is C5 with a chord e. Figure 22 shows the construction of an expanded edge
amalgamation of two quasigroup expansions of a triangle when the two quasigroups
happen to be the same.

Theorem 5.1. Let ∆ = ∆1 ∪e ∆2 or ∆1 ⊕e ∆2, the amalgamation or sum along e
of graphs ∆1 and ∆2, and let Ω1 and Ω2 be biased expansions of ∆1 and ∆2 such
that #p−1

1 (e) = #p−1
2 (e). Any expanded edge amalgamation Ω1 ∪e Ω2 or expanded
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ẽ0
ẽ1
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∆1 = C4 ∆2 = C3

Ω1 ∪e,β Ω2

∆1 ∪e ∆2

∪e

∪e,β

β

Figure 21. A non-group biased expansion Ω (upper graphs) of
C5 ∪ e, where e is a chord, obtained by expanded edge amalgama-
tion of two group expansions, Ω1 = 〈Z4C4〉 and Ω2 = 〈Z4C3〉. The
expanded edge amalgamation is Ω := Ω1 ∪e,β Ω2; the base graph
∆ is the edge amalgamation C4 ∪e C3 = C5 ∪ e. The bijection β
of the amalgamation is indicated by the dashed arrows. Ω is not
gainable because β is not a pseudoisomorphism. The expanded
2-sum Ω1 ⊕e,β Ω2 is Ω with the ẽ edges deleted; it is a non-group
biased expansion of C4 ⊕e C3 = C5.

edge sum Ω1⊕e Ω2 is a biased expansion of ∆. If ∆ is the edge amalgamation, then
Ω1 and Ω2 ⊆ Ω1 ∪e Ω2. If ∆ is the edge sum and e is not an isthmus in either ∆1

or ∆2, then Ω1 and Ω2 are expansion minors of Ω1 ⊕e Ω2.
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a

b

c

d

e

ãi

b̃j

c̃k

d̃l

ẽm p

(abe) ∪e (cde)(Q · abe) ∪e (Q · cde)

Figure 22. An expanded edge amalgamation (Q · abe) ∪e (Q ·
cde) ↓ (abe)∪e (cde) of two expansions of K3 by the same (binary)

quasigroup Q. A triangle (solid lines) ãib̃j ẽm (i, j,m ∈ Q) in

Q · abe (or, c̃kd̃lẽm in Q · cde) is balanced if and only if i · j = m

(or, k · l = m) in Q. A quadrilateral ãib̃j c̃kd̃l is balanced if and

only if there is an edge ẽm such that both ãib̃j ẽm and c̃kd̃lẽm are
balanced, which will happen if and only if i · j = k · l.

Proof. We show first that Ω = Ω1∪e Ω2 is a biased graph and a biased expansion of
∆1∪e ∆2. For convenience of notation we assume that the identification prescribed
by β has been carried out.

Suppose C̃1 ∪ C̃2 is a theta graph in Ω and C̃1 and C̃2 are balanced in Ω. We
want C̃1 ⊕ C̃2 to be balanced. If C̃1 ∪ C̃2 ⊆ Ωi, this will be so. There are two ways
C̃1 ∪ C̃2 may not be in Ω1 or Ω2: one of its three constituent paths may be an edge
ẽ ∈ p−1(e), or C̃1 ∪ C̃2 may be disjoint from p−1(e). In the first case C̃i \ ẽ is a

path in Ωi and C̃1 ⊕ C̃2 is balanced by the definition of B(Ω). In the second case,

one circle is contained in an Ωi, say C̃1 ⊆ Ω1; then C̃2 lies partly in Ω1 and partly
in Ω2. Because C̃2 is balanced, it must be the sum C̃ ′

1 ⊕ C̃ ′

2 of balanced circles

C̃ ′

i ⊆ Ωi that contain an edge ẽ ∈ p−1(e). Then C̃1 ∪ C̃
′

1 is a theta graph in Ω1 and

is the union of balanced circles; thus C̃1 ⊕ C̃ ′

1 is balanced. Hence (C̃1 ⊕ C̃ ′

1) ⊕ C̃ ′

2

is balanced, and this equals C̃1 ⊕ C̃2. We have proved that Ω is a biased graph.
Given a circle C in ∆, f ∈ C, and a lift P̃ of P = C \ f into Ω, we want to

prove there is one and only one f̃ ∈ p−1(f) that makes P̃ ∪ f̃ balanced. If C ⊆ ∆i

there is nothing to prove, so we assume C = P1 ∪P2 where Pi is a path in ∆i with
endpoints N(e) and that f ∈ P2. Let Ci = Pi ∪ e. Then P1 lifts to P̃1 ⊆ P̃ and

P2 \f lifts to Q̃2 ⊆ P̃ . There is a unique ẽ for which P̃1∪ ẽ is balanced. Then there

is just one f̃ for which Q̃2 ∪ {ẽ, f̃} is balanced. Now we have two balanced circles,

P̃1 ∪ ẽ and Q̃2 ∪ {ẽ, f̃}, whose union is a theta graph with ẽ as one constituent

path; the other paths form a circle P̃ ∪ f̃ , balanced by the definition of B(Ω), that

projects to C. Hence f̃ exists as desired. Its uniqueness is obvious.
The remaining part that is not obvious is that Ω1 is a minor of Ω1⊕eΩ2. Because

e is not an isthmus in ∆2, there is a circle C in ∆2 that contains e and an arbitrary
other link f2. Let C = eQ′

2f2Q
′′

2 , lift Q′

2 ∪ Q′′

2 arbitrarily to Q̃2, and form the

subgraph Ωf2
= Ω1 ∪ p−1(f2) ∪ Q̃2. We prove that Ω1

∼= (Ωf2
\ p−1(e))/Q̃2 by
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the isomorphism ε1 that is the identity on Ω1 \ p
−1(e) and is defined on p−1(e) by

ε1(ẽ) = that edge f̃2 for which {ẽ, f̃2} ∪ Q̃2 is balanced. What has to be proved is

that, for a circle C̃ ⊆ E(Ω1), C̃ is balanced if and only if ε1(C̃) is balanced. Let

C̃∩p−1(e) = {ẽ}. Then C̃∪Q̃2∪{ε1(ẽ)} is a theta graph in which Q̃2∪{ẽ}∪{ε1(ẽ)}
is balanced. The conclusion follows. �

Theorem 5.1 allows us to produce arbitrarily large biased expansions that are
not group expansions, of any multiplicity γ ≥ 4.

Example 5.1. Let ∆ = ∆1⊕e∆2, where ∆1 and ∆2 are 2-connected of order at least
3, and let G1 and G2 be different groups of the same order γ. Form Ωi = 〈Gi∆i〉.
Any bijection G1 → G2 induces a bijection β : p−1

1 (e) → p−1
2 (e) by which we can

form an expanded edge sum Ω1 ⊕e Ω2. The sum has as minors both 〈G1∆1〉 and
〈G2∆2〉, and these in turn have minors 〈G1K3〉 and 〈G2K3〉. If Ω = 〈G∆〉, then
all triangular minors are isomorphic to 〈GK3〉, but this is impossible. Therefore Ω
is a nongroup regular biased expansion of ∆. Note that this construction cannot
be carried out for prime multiplicities γ.

Example 5.2. In the preceding construction take ∆2 = K3 and let Ω2 be any
quasigroup expansion of K3 having multiplicity γ but not isomorphic to 〈G1K3〉.
Then ∆ = ∆1 ⊕eK3 has a regular biased expansion with nonisomorphic triangular
minors 〈G1∆1〉 and Ω2, so it is a nongroup regular biased expansion of ∆. This
construction can be carried out for all multiplicities γ ≥ 4.

The technique of summing with quasigroup expansions of a triangle yields highly
nongainable biased expansions of series-parallel graphs, just to mention a sizeable
class to which it applies. The reason is that every series-parallel graph ∆ is con-
structed by doubling edges in parallel, an operation that is trivial to reproduce
in a biased expansion of ∆ (see Example 3.1), and by subdividing edges, which is
equivalent to taking an edge sum with a triangle. On the other hand, the methods
of Example 5.1 and 5.2 together still do not give non-group biased expansions with
all multiplicities γ ≥ 4 of all 2-separable inseparable graphs. For that see Corollary
6.7.

Example 5.3. In Example 5.1, take G1 = G2 = G. Then a bijection β : G → G

produces a G-expansion of the base graph if β is a pseudoisomorphism, or a non-
group biased expansion if β is not a pseudoisomorphism. Figure 21 shows an
example of the latter type.

Example 5.4. Here is an example of a biased expansion of ∆1 ⊕e ∆2 that is not an
expanded edge sum of expansions of ∆1 and ∆2. In the example, ∆1

∼= ∆2
∼= K3.

Take C4 = (N,E) where N = {v1, v2, v3, v4} and E = {e12, e23, e34, e41}. C4 is
an edge sum in two different ways: it is ∆123 ⊕e13

∆134 and ∆124 ⊕e24
∆234. Here

∆ijk denotes the triangle with node set {vi, vj , vk}. Let γ ≥ 4 and let γ · ∆123

and γ ·∆134 be biased expansions that are not both group expansions by the same
group. (That is, one or both is not a group expansion, or γ · ∆123 = 〈G∆123〉 and



Associativity in Multiary Quasigroups 43

γ · ∆134 = 〈H∆134〉 where G 6∼= H.) Then Ω = (γ · ∆123) ⊕e13
(γ · ∆134) is a biased

expansion of C4; also, Ω13 = (γ · ∆123) ∪e13
(γ · ∆134) is a biased expansion of

K4 \ e24. Thus, Ω extends to e13.
Although C4 = ∆124 ⊕e24

∆234, Ω cannot be an expanded edge sum of the form
(γ · ∆124) ⊕e24

(γ · ∆234). We prove this by contradiction. Suppose it were; then
Ω would extend to e24. By Proposition 3.3, it extends to γ ·K4 having as minors
both γ · ∆123 and γ · ∆134. These are not isomorphic, but by Lemma 4.2 γ ·K4 is
a group expansion and therefore all its triangular minors are isomorphic. We have
a contradiction.

One wants to know that a multiple edge amalgamation is independent of the
order of amalgamation. It suffices to treat two amalgamations.

Theorem 5.2. Let Ωi ↓ ∆i for i = 1, 2, 3, where

E(∆1 ∩ ∆2) = {e}, E(∆2 ∩ ∆3) = {f}, E(∆1 ∩ ∆3) = {e} ∩ {f},

and ∆1, ∆2, ∆3 are pairwise node-disjoint except as required by shared edges.
Suppose given bijections α : p−1

1 (e) → p−1
2 (e) and β : p−1

3 (f) → p−1
2 (f). Then

Ω1 ∪e,α (Ω2 ∪f,β Ω3) = (Ω1 ∪e,α Ω2) ∪f,α Ω3. (5.1)

Proof. The only question is the balance of circles in the amalgamation. Let ΩL and
ΩR be the biased expansions of ∆1 ∪e ∆2 ∪f ∆3 on the left and right sides of (5.1).

Consider a circle C̃ that meets both Ω1 \ p
−1
1 (e) and Ω3 \ p

−1
3 (f); thus C̃ consists

of P̃1 = C̃ ∩E(Ω1), P̃3 = C̃ ∩E(Ω3) (both of which are paths) and Q̃ = C̃ ∩E(Ω2).
The latter may consist of two, one, or (if N(e) = N(f)) no paths.

We may use α and β to identify p−1
1 (e) with p−1

2 (e) and p−1
2 (f) with p−1

3 (f).
The case e = f is easy, since we are really looking at Ω1 ∪e,α◦β−1 Ω3 in both ΩL

and ΩR.
When e 6= f , choose ẽ and f̃ so P̃1 ∪ ẽ and P̃3 ∪ f̃ are balanced in Ω1 and Ω3,

respectively. Then C̃ is balanced in ΩL ⇐⇒ P̃3 ∪ Q̃ ∪ ẽ is balanced in Ω2 ∪f,β Ω3

(because P̃1 ∪ ẽ is balanced) ⇐⇒ Q̃ ∪ {ẽ, f̃} is balanced in Ω2 (because P3 ∪ f̃ is

balanced). Similarly, C̃ is balanced in ΩR ⇐⇒ Q̃ ∪ {ẽ, f̃} is balanced in Ω2. It

follows that balance of C̃ is the same in ΩL and ΩR. �

The theorem implies that one can define a multiple expanded edge amalgamation
directly, even one with an infinite number of amalgamations, because defining
balance of any particular circle C̃ in the result only involves a finite number of
amalgamations, so is order independent by Theorem 5.2 and induction. For more
on the definition of multiple amalgamation see after Theorem 6.2.

When we amalgamate two group expansions, whether we get a group expansion
or not depends on the nature of the identification function β. As a mapping
p−1
1 (e) → p−1

2 (e), β induces a mapping of groups by composition with the gain
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functions, namely

β̄ =
[

ϕ1

∣

∣

p−1

1
(e)

]−1

◦ β ◦
[

ϕ2

∣

∣

p−1

2
(e)

]

: G1 → G2,

or in a more compact expression,

β̄(ϕ1(ẽ)) = ϕ2(β(ẽ)) for ẽ ∈ p−1
1 (e). (5.2)

Note that β̄ depends on the choice of gains; if we used different gain functions ϕ′

i

we would get a different bijection β̄′.
We shall need to know the effect on β̄ of switchings ηi and group automorphisms

αi applied to Φ1 and Φ2. We write ϕ′

i = ϕηiαi

i . The definition of β̄′, in full, is

ϕ′

2(β(ẽ)) = [η2(v)−1ϕ2(β(ẽ))η2(w)]α2

= η2(v)−α2 β̄(ϕ1(ẽ))α2η2(w)α2 .

Since ϕη1α1

1 (ẽ) = [η1(v)−1ϕ1(ẽ)η1(w)]α1 , we can substitute

ϕ1(ẽ) = η1(v)[ϕ′

1(ẽ)]α
−1

1 η1(w)−1

in the previous equation, getting

β̄′(ϕ′

1(ẽ)) = ϕ′

2(β(ẽ)) = η2(v)−α2 β̄[η1(v)ϕ′

1(ẽ)α−1

1 η1(w)−1]α2η2(w)α2 .

Here ϕ′

1(ẽ) can be any group element; therefore we can rewrite the equation as

β̄′(g) = η2(v)−α2 β̄[η1(v)gα−1

1 η1(w)−1]α2η2(w)α2 . (5.3)

A pseudoisomorphism of groups (or quasigroups) is any mapping G1 → G2

that has the form g 7→ gαc where α : G1 → G2 is an isomorphism and c ∈
G2. The (quasi)groups must be isomorphic for such a mapping to exist. The
pseudoautomorphisms of a group form a group, which we denotate PsAut G.

Theorem 5.3. Let ∆ = ∆1∪e∆2, where ∆1 and ∆2 are 2-connected simple graphs,
and let Ω1 and Ω2 be biased expansions of ∆1 and ∆2 with the same multiplicity.
The expanded edge amalgamation Ω = Ω1 ∪e,β Ω2 and the expanded edge sum
Ω0 = Ω1 ⊕e,β Ω2 are group expansions (of ∆ and ∆ \ e, respectively) if and only
if Ω1 = 〈G1∆1〉 and Ω2 = 〈G2∆2〉 and β, after suitable switching of G1∆1 and
G2∆2, induces an isomorphism G1 → G2.

If G1
∼= G2, the condition on β is equivalent to β̄’s being a pseudoisomorphism

G1 → G2.

What we mean by suitable switching is that there exist switching functions θ1
and θ2 such that when β is applied to (G1∆1)θ1 and (G2∆2)θ2 , then β induces an
isomorphism G1 → G2. In terms of the original, unswitched gains, the induced

mapping is
[

ϕθ1

1

∣

∣

p−1

1
(e)

]−1
◦β ◦

[

ϕθ2

2

∣

∣

p−1

2
(e)

]

. We call β twisted if no such switchings

exist, or equivalently if β̄ is not a pseudoisomorphism, and in particular if the
groups are not isomorphic in the first place.
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Proof. This is one of those theorems that seem obvious but have a complicated
proof. The beginning is easy: according to Theorem 5.1 the expanded edge amal-
gamation or sum can be a group expansion only if Ω1 = 〈G∆1〉 and Ω2 = 〈G∆2〉
for some group. Let us therefore assume this is so and write Φi = G∆i. What we
need to prove is the equivalence of the following properties:

(i) Ω0 is a G-expansion of ∆0 = ∆ \ e: that is, Ω0
∼= 〈G∆0〉.

(ii) β̄(g) = gαc for some c ∈ G and α ∈ Aut G.
(iii) There are switchings (G∆1)θ1 and (G∆2)θ2 such that

α =
[

ϕθ1

1

∣

∣

p−1

1
(e)

]−1
◦ β ◦

[

ϕθ2

2

∣

∣

p−1

2
(e)

]

is an automorphism of G.
(iv) Ω ∼= 〈G∆〉.

We show that (i) =⇒ (ii) =⇒ (iii) =⇒ (iv).
Assume, then, that Ω0

∼= 〈Φ0〉 where Φ0 = G∆0, and also, by prior switchings
η′i of Φi to Φ′

i (for i = 1, 2), that

ϕ′

1(1e) = 1 and ϕ′

2(β(1e)) = 1. (5.4)

We may choose η′1 ≡ 1 and η′2(v) = 1. Now, if we take paths P̃i in Φi such that

P̃1 ∪ {1e} and P̃2 ∪ {β(1e)} are balanced circles, then ϕ′

1(P̃1) = ϕ′

1(1e) = 1 and

ϕ′

2(P̃2) = ϕ′

2(β(1e)) = 1. (Here we orient 1e, β(1e), P̃1, and P̃2 similarly, from one

endpoint v of e to the other endpoint w.) By construction, P̃1 ∪ P̃2 is balanced in

Ω0; thus ϕ′

0(P̃1) = ϕ′

0(P̃2); consequently, we may assume by prior switching of Φ0

that ϕ0

∣

∣

P̃1
≡ 1 and ϕ0

∣

∣

P̃2
≡ 1. Note, though, that ϕ0 need not agree with ϕ′

1 even

though Ω1 \ p
−1
1 (e) ⊆ Ω0, and the same for ϕ′

2.
Nevertheless, Ω1 is isomorphic to a minor Ω01 of Ω0 that can be found by

following the proof of Theorem 5.1. In that proof choose f̃2 ∈ P̃2 and Q̃2 = P̃2 \ f̃2.
The proof constructs Ω01 with underlying graph ‖Ω0‖ = ‖Ω1‖ \ p

−1
1 (e) ∪ p−1

2 (f2).

Because P̃2 has all identity gains, the correspondence ε1 preserves gains. Therefore,
Ω01 = 〈Φ01〉 where Φ01 is a minor of Φ0 with gains ϕ01 = ϕ0

∣

∣

E(Φ01)
.

Since 〈Φ1〉 ∼= 〈Φ01〉, by uniqueness of gains [37, Theorem V.2.1(c)] ϕ01 =
(ϕ′

1)η1α1 ◦ ε1, where η1 is a switching function and α1 ∈ Aut G. Without loss
of generality we may assume that η1(v) = 1. Then

1 = ϕ′

0(P̃1) = (ϕ′

1)η1α1(P̃1) = [η1(v)−1ϕ′

1(P̃1)η1(w)]α1 = [1 · 1 · η1(w)]α1

implies η1(w) = 1.
Similarly we construct Ω02 = 〈Φ02〉, a minor of Ω0 that is isomorphic to Ω2 with

ϕ02 = (ϕ′

2)η2α2 ◦ ε2 where η2(v) = η2(w) = 1.
Applying Equation (5.3) to the special circumstances of Φηiαi

i where ηi(v) =
ηi(w) = 1, we see that

β̄′′ = α−1
1 ◦ β̄′ ◦ α2.

Consequently, β̄′ ∈ Aut G ⇐⇒ β̄′′ ∈ Aut G.
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The next step is to prove the (surprising) fact that β̄′′ is the identity. If P̃1 ∩

p−1
1 (f1) = {f̃1}, and if we write f̃∗1 = ε2(ẽ) for ẽ ∈ p−1

1 (e) and P̃ ∗

1 = P̃1\{f̃1}∪{f̃
∗

1 },

then P̃ ∗

1 ∪ {ẽ} is balanced. Similarly, P̃ ∗

2 ∪ {β(ẽ)} is balanced, so P̃ ∗

1 ∪ P̃ ∗

2 is also
balanced. It follows, from balance of each of these circles in turn, that

ϕ′′

1(ẽ) = ϕ01(f̃∗1 ) = ϕ0(f̃∗1 ),

ϕ′′

2(β(ẽ)) = ϕ02(f̃∗2 ) = ϕ0(f̃∗2 ),

ϕ0(f̃∗1 ) = ϕ0(P̃ ∗

1 ) = ϕ0(P̃ ∗

2 ) = ϕ0(f̃∗2 ),

where ϕ′′

i = (ϕ′

i)
ηiαi . Hence, ϕ′′

1(ẽ) = ϕ′′

2(β(ẽ)). This means that β̄′′ is the identity
mapping.

Therefore β̄′ is an automorphism of G; in fact, β̄′ = α1 ◦ α
−1
2 .

The course of the proof so far may be summarized in a diagram. In it, η̃i is the
permutation of p−1

i (e) induced by ηi; that is, (ϕ′

i)
ηi = η̃i ◦ ϕ

′

i. (In the description
and diagram ϕ′

i, η̃i, etc. stand for ϕ′

i

∣

∣

p−1

i
(e)

, etc.; so that all maps are bijections.)

The first square is commutative because η̃i is the identity on p−1
i (e), a consequence

of having ηi(v) = ηi(w) = 1. The triangles commute by the definition of η̃i.
The square ϕ′

1 ◦ β̄′ vs. β ◦ ϕ′

2 commutes by the definition of β̄′ and the rectangle
(ϕ′

1)η1 ◦ α1 ◦ β̄
′′ vs. β ◦ (ϕ′

2)η2 ◦ α2 commutes by the definition of β̄′′. From this it
follows that the entire diagram commutes; since β̄′′ ∈ Aut G, then β̄′ ∈ Aut G.

p−1
1 (e)

(ϕ′

1)
η1
1

&&

η̃1

//

β

��

p−1
1 (e)

ϕ′

1

//

β

��
�

�

�
G α1

//

β̄′

��
�

�

� G

β̄′′

��
�

�

�

p−1
2 (e)

(ϕ′

2)
η2

88
η̃2

// p−1
2 (e)

ϕ′

2 // G
α2 // G

The reason β̄′ is an automorphism is that we did the right kind of switching.
First we switched Φi by η′i so that ϕ′

1(1e) = 1 and ϕ′

2(β(1e)) = 1, then we switched
Φ′

i by ηi. The overall effect is that of switching Φ1 by θ1 = η1 and Φ2 by θ2 = η′2η2.
We also switched Φ0, but that is unimportant because the gains on Φ0 were not
given in advance like those on Φ1 = G∆1 and Φ2 = G∆2.

Expressed in terms of the original gains ϕi, the definition of β̄′ is β̄′(ϕ1(ẽ)) =

ϕ
η′

2

2 (β(ẽ)). Substituting the values of η′2(v) and η′2(w), this becomes

β̄′(ϕ1(ẽ)) = ϕ2(β(ẽ))η′2(w) = β̄(ϕ1(ẽ))η′2(w).

Setting ẽ = ge, we see that β̄(g) = gαc for α = β̄′ ∈ Aut G and c = η′2(w)−1 ∈ G,
thereby proving (ii) from (i).

We know (ii) =⇒ (iii) because we can produce the necessary switching functions:
θ1 ≡ 1 for Φ1 and θ2 with θ2(v) = 1 and θ2(w) = c−1 for Φ2.
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Proving (iii) =⇒ (iv) is easy. We may assume G∆1 and G∆2 switched and
α previously applied to Φ1 so that, in effect, α becomes the identity. Then β :
p−1
1 (e) = G × {e} → p−1

2 (e) = G × {e} is the identity, so the amalgamation is
〈G1∆1〉 ∪e,id 〈G2∆2〉, which is simply 〈G∆〉. �

Theorem 5.3 helps answer some questions about the existence of biased expan-
sions that do not have gains. One question is whether an expanded edge amalga-
mation or sum of two G-expansions is itself a group expansion. That depends in
part on whether or not Aut G is the full symmetric group of G \ {1}.

Lemma 5.4 ([37, Corollary V.3.4]). Assuming ∆ is a block of order at least 3,
Autp〈G∆〉 acts as the symmetric group on a fiber p−1(e) if and only if G = Zγ for
γ ≤ 3 or G = V4.

Corollary 5.5. Suppose ∆1 and ∆2 are 2-connected simple graphs of order at
least 3. An expanded edge amalgamation or expanded edge sum of group expansions
G∆1 and G∆2 is necessarily a group expansion if and only if G = Zγ for γ ≤ 3 or
G = V4; and then it is a G-expansion.

Proof. This is immediate from Lemma 5.4, which tells us that it is possible to find
a bijection β for which β̄, after suitable switching, is still not an automorphism if
and only if G is any group other than Zγ , γ ≤ 3, and V4. �

The application to multiary quasigroups is Corollary 9.6.
Another question resolved by Theorem 5.3 is whether it might be possible to

ensure that an edge amalgamation or sum is a group expansion by putting a re-
striction on triangular expansion minors. For any group expansion, all expansion
minors are expansions by the same group (Proposition 2.4). We might conjecture
a kind of converse: that Ω = 〈G∆1〉∪e 〈G∆2〉 or 〈G∆1〉⊕e 〈G∆2〉 is a G-expansion
if every triangular expansion minor is isomorphic to 〈GK3〉. However, in general
this is false.

Corollary 5.6. It is possible to have a biased expansion γ · ∆, where ∆ is a 2-
connected but 2-separable simple graph, such that every triangular expansion minor
is isomorphic to 〈GK3〉 for a fixed group G but γ · ∆ is not a group expansion,
except when G = Zγ for γ ≤ 3 or G = V4. Furthermore, γ · ∆ can be taken to be
an edge amalgamation of group expansions.

Lemma 5.7. Let G be a fixed group. Suppose Ω, a biased expanison of a 2-
connected graph ∆, is obtained by expanded edge summations and amalgamations
from G-expansions of inseparable graphs. Then every triangular expansion minor
of Ω is isomorphic to 〈GK3〉.

Proof. We use induction on the order of Ω. Suppose in the construction of Ω
that the last step is to assemble Ω1 ↓ ∆1 and Ω2 ↓ ∆2 into Ω = Ω1 ∪e,β Ω2 (or
Ω = Ω1 ⊕e,β Ω2, but it suffices to consider the case of amalgamation). Consider
a triangular expansion minor Ω3 of Ω whose edge set is E3 = p−1({e1, e2, e3}).
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Let Ω′

3 be the corresponding subgraph of Ω; that is, the subgraph induced by the
edge set E3. If e1, e2, e3 ∈ E(∆i), then Ω3 is an expansion minor of 〈G∆i〉 and
the desired conclusion follows from Proposition 2.4. Otherwise, we may assume
e1, e2 ∈ E(∆1 \e) and e3 ∈ E(∆2 \e). By the definition of a minor, there is a circle

C in ∆ that contains all three edges such that R = C \ {e1, e2, e3} has a lift R̃

for which Ω3 = (Ω′

3 ∪ R̃)/R̃. Let E30 = E3 ∪ p
−1(e), let Ω′

30 be the corresponding

subgraph of Ω, and let Ω30 = (Ω′

30 ∪ R̃)/R̃. Then Ω30 is a biased expansion of the
graph ∆30 consisting of the triangle {e1, e2, e3} and an edge e parallel to e3. By
Example 3.1, Ω3 = Ω30 \ p−1

30 (e) is isomorphic to Ω30 \ p−1
30 (e3). The latter is an

expansion minor of Ω1, hence isomorphic to 〈GK3〉. �

Proof of Corollary 5.6. The exceptional cases are covered by Corollary 5.5. For
other groups, by Corollary 5.5 Ω need not be a group expansion. However, by the
lemma, every triangular expansion minor is a G-expansion. �

Corollary 5.6 might suggest that it is difficult to say from a criterion based on
small minors whether Ω is or is not a group expansion. But that is not correct;
minors of order four suffice; see Theorem 7.2.

A question that is not answered so far is that of reducibility of arbitrary biased
expansions of 2-connected, 2-separable graphs. The methods of Theorems 5.1 and
5.3 produce only nongroup expansions that are 2-separable and have a 2-separation
whose nodes are adjacent or can be made adjacent in an extended biased expansion.
They will not give an example in which no 2-separating node pairs can be made
adjacent: for instance, a biased expansion 4 · C4 in which it is not possible to add
a chord of the C4. Any irreducible n-ary quasigroup Q with n ≥ 3 provides such
an example in the form of the expansion QCn+1. By the results of Section 6, that
is the only way.

We want criteria to decide when a biased expansion of a 2-separable graph ∆
is an expanded edge amalgamation or sum along an edge (not necessarily in ∆)
whose endpoints separate ∆.

Corollary 5.8 (Test for Decomposability across a 2-Separation). Suppose Ω ↓ ∆,
where ∆ is 2-connected, and {v, w} is a 2-separation of ∆ into subgraphs ∆1 and
∆2. Let Ωi = Ω

∣

∣

∆i
. If v and w are adjacent by an edge evw, then Ω has the form

of an expanded edge amalgamation Ω1 ∪evw
Ω2. If they are not adjacent, choose

an arbitrary circle C ⊆ E(∆) through v and w. Then Ω is an expanded edge sum
Ω′

1 ⊕evw
Ω′

2 if and only if Ω
∣

∣

C
extends to evw.

Proof. The first part is obvious. In the second part, if Ω is an edge sum, then it
extends to Ω′ ↓ ∆∪evw, formed by amalgamating instead of summing. Conversely,
if Ω

∣

∣

C
extends to evw, then Ω extends, by Proposition 3.9, and therefore is an

expanded edge sum. �
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Belousov and Sandik have a criterion for extendibility of Ω
∣

∣

C
to a chord evw,

expressed in terms of factorizability of a multiary quasigroup (which is equivalent
by Proposition 1.1). Let P and Q be the paths into which v and w divide C.
Translated to biased expansions, the criterion says:

Proposition 5.9 ([7, Lemma 6]). If there exist lifts P̃ , P̃ ∗, Q̃, and Q̃∗ such that

P̃ ∪ Q̃, P̃ ∗ ∪ Q̃, P̃ ∪ Q̃∗ are balanced but P̃ ∗ ∪ Q̃∗ is not, then Ω
∣

∣

C
does not extend.

Otherwise, it extends.

6. The structure of biased expansions

We have two main structure theorems. One is about maximal biased expan-
sions, and translates directly into a structural description of multiary quasigroups
(Corollary 9.4). The other describes all biased expansion graphs. We want to make
it very clear that these theorems are proved only for expansions of base graphs that
are 2-connected and have finite order. The former is an insignificant restriction in
general: when expanding an arbitrary graph, the expansion of each block is unre-
lated to that of any other block, so it is inevitable that a theorem can only refer to
2-connected graphs (but for regular expansions see Proposition 6.1). The restric-
tion to finite order is due to the absence of a 3-decomposition theory of infinite
graphs. (I see no reason why such a theory should not exist.) Another necessity
for our structural theorems is a Menger theorem for 2-separation of nodes in infi-
nite graphs; for this see, e.g., [11, Proposition 8.4.1]. Our results should follow for
arbitrary infinite orders once a 3-decomposition theorem is proved.

Now, here are the main results, beginning with a simple regularity property.

Proposition 6.1. A regular biased expansion that is maximal is necessarily insep-
arable.

Proof. Suppose a regular biased expansion Ω ↓ ∆ has a cutpoint v, so that Ω =
Ω1 ∪ Ω2 and Ω1 ∩ Ω2 = {v}; let ∆i = p(Ωi). Choose ei ∈ E(∆i) incident with
v and take any biased expansion Ω3 ↓ K3 whose multiplicity equals that of Ω.
Identify e1 and e2 with different edges of the K3 and amalgamate edges to form,
first, Ω1 ∪e1

Ω3 and then (Ω1 ∪e1
Ω3) ∪e2

Ω2. This is a proper extension of Ω. The
disconnected case is similar. �

Theorem 6.2 (Structure of Maximal Biased Expansions). Any 2-connected max-
imal biased expansion graph Ω ↓ ∆ of finite order n ≥ 3 is obtained by expanded
edge amalgamation of group expansions of complete graphs of order at least 3 and
irreducible, nongroup circle expansions of order at least 3, all of which are restric-
tion subgraphs Ω

∣

∣

∆′
of Ω. The group expansions and circle expansions are uniquely

determined as the maximal complete subgraphs and the maximal chordless circle
expansions contained in Ω.

Any such edge amalgamation is a biased expansion. It is maximal if and only
if, for any two group expansions that are amalgamated along an expanded edge, the
attachment map is twisted.
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The last part calls for explanation. Twist was defined at Theorem 5.3. Let ∆
be the base graph of Ω. The theorem is saying, in part, that ∆ is obtained by
amalgamating circles and complete graphs. In the second half, several complete
graphs may be amalgamated along the same edge, either one at a time or all at
once (to be explained momentarily). Call these ∆1, . . . ,∆r and the common edge
e, and let Ωi = Ω

∣

∣

∆i
. There are many ways to amalgamate one step at a time, each

described by a rooted binary tree with leaves Ω1, . . . ,Ωr. We might amalgamate
first, for instance, Ω1 and Ω2 by way of a bijection β12 : p−1

1 (e) → p−1
2 (e), then Ω3

and Ω6 by β36, then Ω5 to Ω1 ∪e Ω2 via β15, etc. All these ways have the same
outcome, by Theorem 5.2. Instead, we could amalgamate all at once by means of
commuting bijections βij : p−1

i (e) → p−1
j (e), that is, βik = βij ◦βjk and β−1

ij = βji.
The theorem means that, if Ωi = Gi∆i and Ωj = Gj∆j for groups Gi

∼= Gj , then
βij should not have the form that, according to Theorem 5.3, makes Ωi ∪e,βij

Ωj

into a group expansion. (We discuss this further at Corollary 6.6.)

Theorem 6.3 (Structure of Biased Expansions). Any 2-connected biased expan-
sion Ω of a simple graph ∆ of finite order at least 3 is obtained by operations
of expanded edge sum and amalgamation from 3-connected group expansions and
nongroup irreducible quasigroup expansions of circles, each of which is uniquely
determined and is an expansion minor of Ω.

Note that C3 and γ · C3 are considered to be 3-connected.
Call the group and circle expansions the 3-constituents of Ω. (In Theorem

6.3 they may not be uniquely determined.) Note that K3 is considered to be 3-
connected. In the construction of Ω it may be that an edge e in ∆ belongs to several
3-constituents. Then p−1(e) is the subject of several expanded amalgamations, and
we could carry them all out at once as described previously. Similarly, if an edge
e not in ∆ belongs to several 3-constituents, then it is the subject of several edge
sums; which means that all of the copies of p−1(e), except one, are amalgamated,
and the last one is summed with the amalgamation of the others. Then we could
carry out, instead, a multiple (expanded) edge sum, similar to the multiple edge
amalgamation we described.

For the proofs we need Tutte’s theory of decomposition of an inseparable graph
into 3-blocks. We outline this theory (from [35, Chapter IV, Sections 3 and 4],
originally in [34]). Let ∆ be a 2-connected graph. If ∆ is 3-connected, it is its own
unique 3-block. If it is not 3-connected, we define a cleavage to be a 2-separation
{x, y} together with a bridge B of {x, y}, such that B is inseparable and not a single
edge. (Then the complement of B has at least two edges, since ∆ is 2-connected
and 2-separable.) Choose a cleavage, and split ∆ into two graphs: B ∪ exy and
Bc∪exy, where Bc is the union of the other bridges of {x, y} and exy is a new edge,
called a virtual edge. One continues this process on the resulting graphs until one
obtains graphs ∆1, . . . ,∆k without cleavages. These are the 3-blocks of ∆. Each
virtual edge appears exactly twice and represents an edge sum; if all the indicated
sums are carried out, the 3-blocks are reassembled into ∆. Each 3-block is either
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3-connected, or a circle graph of order three or more, or a multilink of size three
or more (that is, a graph consisting of at least three parallel links and their two
nodes). There is a graph of 3-blocks, in which the nodes are the 3-blocks and two
3-blocks are adjacent when they share a virtual edge. Tutte’s theorem is, first, that
the 3-blocks are uniquely determined by ∆, and second, that the graph of 3-blocks
is a tree, called the 3-block tree of ∆ (see Fig. 23).

e

e

e

e

e

e

e

e

∆1

∆1 = C3 ∪e K4 ∪f C3

∆2

∆2 = C3 ⊕e K4 ⊕f C3

Figure 23. Two graphs with their Tutte 3-decompositions. The
dashed lines in ∆2 are virtual edges, eliminated by 2-summation
in the assembly process. The corresponding line pairs in ∆1 are
combined into single edges by 2-amalgamation.

Suppose ∆ is simple. Then a multilink ∆0 contains at most one real edge (i.e., an
edge of ∆). Suppose ∆0 does contain a real edge, e, and virtual edges e1, . . . , ek.
If ∆1, . . . ,∆k are the 3-blocks that contain the other copies of e1, . . . , ek, then
∆0⊕e1

∆1⊕e2
· · ·⊕ek

∆k is the same as the amalgamation ∆1∪e∆2∪e · · ·∪e∆k if we
treat all the ei as copies of e. Thus, by amalgamating rather than summing we can
dispense with ∆0. If ∆0 contains only virtual edges, then ∆0 ⊕e1

∆1 ⊕e2
· · ·⊕ek

∆k

is the same as (∆1 ∪ek
· · · ∪ek

∆k−1) ⊕ek
∆k if we treat all the ei as copies of ek;

so again we can dispense with ∆0. (Or, again, we can treat this as a simultaneous
edge sum.) The conclusion is that, for simple graphs ∆, the multilinks are not
needed if we modify the 3-blocks and permit amalgamation. This is what we shall
do.
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For the proof of Theorem 6.2 we need the definition of a theta-complete graph
from Section 3, and the following characterization of such graphs (when simple and
2-connected).

Proposition 6.4. Any theta-complete simple, 2-connected graph ∆ is obtained by
edge amalgamation of complete and circle subgraphs of ∆, and conversely such an
amalgamation is theta-complete.

Proof. Consider the 3-blocks of ∆ in Tutte’s unmodified system. We show that
every multilink 3-block ∆0 contains a real edge. That is the same as saying that
the two nodes of a cleavage are adjacent. This comes from theta-completeness and
a lemma.

Lemma 6.5. In Tutte’s 3-decomposition of any 2-connected graph ∆, two nodes
x, y of a cleavage are the trivalent nodes of a theta subgraph.

Proof. If {x, y} has more than two bridges, this is trivial. If it has only two bridges,
B and Bc, then we know (by definition of a cleavage) that B is 2-connected. Hence,
∆ contains two internally disjoint xy-paths in B and one more in Bc. �

Since every multilink 3-block does contain a real edge, it can be eliminated in
favor of amalgamation. And, because every 2-separating pair of nodes is adjacent,
every virtual edge lies in a 3-block that is a multilink. Consequently, when we
modify Tutte’s 3-decomposition all edge sums are replaced by amalgamations.

Conversely, we have to prove the amalgamation is theta-complete. This is obvi-
ous. �

Proof of Theorem 6.2. Assume Ω ↓ ∆ is maximal. Theorem 3.17 says that ∆ is
theta-complete. The rest is obvious.

Conversely, suppose Ω ↓ ∆ is the result of expanded edge amalgamations applied
to group expansions G1Kn1

, . . . ,GrKnr
and nongroup irreducible circle expansions

Ω1 ↓ Cl1 , . . . ,Ωs ↓ Cls . These are the 3-constituents of Ω and the Kni
, Clj are the

3-constituents of ∆. By Tutte’s 3-decomposition theorem they are unique. We have
to prove Ω cannot be extended to any edge e not in ∆, the base graph constructed
by the amalgamations.

Suppose it did extend to some e 6∈ E(∆), and let Ω′ ↓ ∆ ∪ e be the extension.
The endpoints of e cannot be contained within one 3-constituent, because each Kni

is complete, and if Ω extended to a chord of Clj , then Ωj would be reducible (by
Theorem 9.1). It follows that, if we take a path in the 3-block tree of ∆ joining a
3-block containing x to a 3-block containing y, the path has positive length. Let
∆1, . . . ,∆r be the shortest such path, with x in ∆1 and y in ∆r, and set

∆′′ = ∆1 ∪ · · · ∪ ∆r ∪ e.

Then x and y are connected by two internally disjoint paths in ∆′′ \e and therefore
by three in ∆′′.
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If ∆1, . . . ,∆r are all complete graphs, then ∆′′ is 3-connected, because the only
2-separations of ∆′′ are those at cleavages of ∆ where a ∆h−1 and ∆h share an
edge. But if ∆′′ is 3-connected, then Ω′

∣

∣

∆′′
is a group expansion, and therefore

Ω
∣

∣

∆1
and Ω

∣

∣

∆2
are group expansions, amalgamated by an attaching bijection that

makes Ω
∣

∣

∆1∪∆2
a group expansion, contrary to hypothesis. So, some ∆h is a circle

of length l ≥ 4.
We may assume by choice of indices that h > 1, so that ∆h amalgamates with

∆h−1 along an edge uv. Also, either y ∈ N(∆h), or h < r and ∆h shares with
∆h+1 an edge u′v′. It is easy to verify that one can name the nodes so that u and
y, in the former case, or u and u′, in the latter, are not adjacent. In the former
case let u′ = y. Consider the two internally disjoint xy-paths in ∆′′ \ e. One must
pass through u but not v; call P1 its portion from x to u. One must pass through
u′ but not v′; call P2 its portion from u′ to y. (This is a trivial path if u′ = y.) P1

and P2 are internally disjoint from ∆h. Consequently, the uu′-path P1 ∪ e ∪ P2 is
internally disjoint from ∆h, and in combination with the two uu′ paths in the circle
∆h, it forms a theta graph with trivalent nodes u, u′ ∈ N(∆ ∪ e). By the previous
section, then, Ω′ extends to ∆∪ e∪ euu′ . Because u and u′ are not adjacent in ∆h,
hence not in ∆ either, we have contradicted the irreducibility of ∆h.

Since in either case we deduce a contradiction, Ω is indeed maximal. �

As an example, the expanded edge amalgamation of two maximal biased expan-
sions is maximal if (but not only if) for any group G the two expansions contain
at most one 3-constituent that is a G-expansion.

Proof of Theorem 6.3. The trick is to extend Ω to edges exy for all cleavages {x, y}.
We know from Lemma 6.5 that this is possible, but we also need to know that the
cleavages are the same in the extended base graph ∆′. Clearly, ∆′ has all the
cleavages of ∆. On the other hand, in a cleavage ({x, y}, B′) of ∆′, {x, y} is a
2-separation of ∆ and B = B′ ∩ ∆ is connected, is a bridge of {x, y}, and has at
least two edges; and the same holds for any other bridge B′

1 and B1 = B′

1 ∩ ∆
unless B′

1 is an edge. These facts are a consequence of Lemma 6.5. The conclusion
is that ({x, y}, B) is a cleavage of ∆. That is, ∆ and ∆′ have the same cleavages.

Consequently, they have the same 3-blocks (in Tutte’s sense) except that the
3-blocks in ∆′ may have additional edges. Ω′ is obviously obtained from its 3-
constituents by expanded edge amalgamation, and Ω is the same except for dele-
tion of the amalgamated fibers (p′)−1(e) for each additional edge e. This deletion
simply converts an amalgamation to a sum; thus Ω is obtained by edge sum and
amalgamation from 3-connected group expansions and circle expansions. Each cir-
cle expansion, if reducible, is an edge sum of smaller circle expansions; thus Ω does
have the form stated in the theorem.

That all the 3-constituents are expansion minors follows from Theorem 5.1. �
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Two questions remain. First, what are the graphs that support maximal expan-
sions? Second, which graphs have nongroup expansions (a question raised in [37,
Example III.3.8]). Theorems 6.2 and 6.3 suggest the answers, but there are details
to attend to. Let us call a complete graph large if it has at least four nodes.

Corollary 6.6. A finite simple graph ∆ has a biased expansion that is maximal
if and only if it is inseparable and is obtained by edge amalgamation of complete
graphs and circles.

Let N1, resp. N0, be the maximum number of large, resp. all, complete 3-
constituents of ∆ that contain any one edge. The possible multiplicities of a maxi-
mal finite biased expansion γ · ∆ include every composite number γ ≥ 5 such that
(γ − 1)! ≥ 2N1, as well as γ = 4 if N0 ≤ 3.

Proof. The form of ∆ is entailed by Theorem 6.2, but it is necessary to produce
examples. The general idea is to expand each 3-constituent ∆i and amalgamate.
We assume N ≥ 2. Belousov and Sandik [7], Frenkin [18], and Borisenko [8]
demonstrated the existence of an irreducible n-ary quasigroup with γ elements
for every n ≥ 3 and composite γ ≥ 4 (see [2]). We also know there is a binary
quasigroup of every order γ ≥ 5 that is not isotopic to a group (by [10, Theorem
1.5.1] for γ 6= 6, [10, Figure 1.3.1] for γ = 6). As for a complete graph, it has group
expansions of every multiplicity. The difficulty is to assemble the expansions into
a maximal expansion.

Consider some complete 3-constituents ∆1, . . . ,∆r that share an amalgamating
edge e. Expand them all by a group G of order γ to construct Ωi = 〈G∆i〉. Now
we need attachment maps βij : p−1

j (e) → p−1
j (e). (We include βii = id.) Since

we want the amalgamated expansion to be maximal, none of the β̄ij can be a

pseudoautomorphism of G, except of course for the β̄ii. Factoring β̄ij = β̄−1
1i ◦ β̄1j ,

we conclude that the mappings β̄1i for i = 1, 2, . . . , r must belong to different cosets
of PsAut G, the group of pseuodautomorphisms, in the symmetric group of G. This
condition is necessary and sufficient for maximality of the amalgamation.

In the simplest case we expand every large complete 3-constituent on e by the
cyclic group Zγ . The number of cosets of PsAut Zγ is (γ− 1)!/2, so we can accom-
modate r ≤ (γ − 1)!/2 different complete 3-constituents. If γ ≥ 5 we expand the
K3 3-constituents by binary nongroup isotopes so we can take r = N1. If N0 ≤ 3
we can expand every complete 3-constituent by Z4 and take r = N0. The corollary
follows easily. �

The list of achievable multiplicities can be improved in special cases. If all 3-
constituents are complete, they can all be expanded by a group so γ need not be
composite; however, then we have to take r = N0. If ∆ is a circle, γ can be any
composite number ≥ 4. If ∆ is complete, γ can be any positive integer. In some
situations we could handle larger N0 or N1 by using more than one gain group.
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One would have liked to say that any two maximal biased expansions, γ · ∆1

and γ · ∆2, with a common base edge e and the same multiplicity, can be amal-
gamated into a maximal expansion by choosing β appropriately, but this is not
true. For one reason, there could be a group G that is the gain group of several
3-constituents, for which the combined number of 3-constituents in both graphs
that are G-expansions and cover e exceeds the number of cosets of PsAut G. It is
possible to describe the exact conditions under which an expanded amalgamation
is maximal, in terms of double cosets of pseudoautomorphism groups of groups of
order γ, but the description is excessively complicated.

Corollary 6.7. A finite simple graph ∆ has a regular biased expansion that is not
a group expansion if and only if it is not a forest and is not 3-connected.

The possible finite multiplicities of a regular nongroup expansion γ · ∆ include
every γ ≥ 4, except that when every block is 3-connected with at least four nodes γ
cannot be prime.

Proof. If ∆ is separable we can expand two different blocks by two different groups
of order γ with the exception noted. In a 2-separable block we can expand every 3-
constituent by Zγ and make sure to attach one of them, whether by edge summation
or edge amalgamation, so as to produce a nongroup expansion. �

7. Four-node minors

A biased expansion graph may have gains for fairly special reasons. As we
mentioned in connection with Corollary 5.6, gainability of minors of order four
suffices to imply that Ω is a group expansion. Partially for that reason, a biased
expansion may be forced to have gains in a group simply because its multiplicity
is very small.

Lemma 7.1. If Ω ↓ Cn+1, where n ≥ 3, and all expansion minors of order four
that contain a specific edge fiber p−1(ei) are group expansions (not necessarily of
the same group), then Ω is a group expansion of Cn+1.

Proof. We assume the reader is acquainted with contraction of gain and biased
graphs (see [37, Sections I.2 and I.5]). We write C = Cn+1 = e0e1 · · · en, with
N(ei) = {vi, vi+1} where v0 = vn+1. The special edge in the statement of the
lemma will be e0. The case n = 3 being trivial, we assume n ≥ 4.

Fix a balanced lift C̃0. Some notation that will be convenient: C̃0(ẽi, ẽj) is C̃0

with ẽi and ẽj replacing ẽ0i and ẽ0j . Ωijk is the expansion minor of Ω whose edge set

is p−1({ei, ej , ek}) that is obtained by contracting C̃0 \ p−1({ei, ej , ek}); similarly,
we write Ω0ijk, Ωij .

The hypothesis is that each Ω0ijk
∼= 〈GijkC4〉 for a group Gijk. Ω0ij is an

expansion minor of both Ω0ijk and Ω0ijl. In the former capacity it is isomorphic
to 〈GijkC3〉 and in the latter to 〈GijlC3〉 (by contracting ẽ0k and ẽ0l , respectively).
Since the gain group of a group expansion is unique, Gijk

∼= Gijl. It follows that
all groups Gijk are isomorphic to a single group G.
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In the rest of the proof we construct a gain graph Φ = GC and prove that
〈Φ〉 = Ω. For this purpose we consider ei to be oriented from vi to vi+1.

Step 1. We define the gain mapping ϕ. Its identity-gain edge set will be C̃0.
Any isomorphism Ω0123

∼= 〈GC4〉 defines gains ϕ on p−1({e0, e1, e2, e3}); we choose
ϕ so it is 1 on {ẽ00, ẽ

0
1, ẽ

0
2, ẽ

0
3}. We extend ϕ to p−1(ei) for i > 3 by ϕ(ẽi) = ϕ(ẽ0)−1,

where ẽ0 is the lift of e0 that makes C̃0(ẽ0, ẽi) balanced. This rule can be expressed
as choosing ϕ

∣

∣

p−1(ei)
so that 〈Φ0i〉 = Ω0i.

Note that, if we want to change ϕ−1(1) to be a different balanced lift, C̃1, we
can do it by switching ϕ.

Step 2. We next show that Φ is valid on expansion minors of order four that
include p−1(e0); that is, 〈Φ0ijk〉 = Ω0ijk.

For Ω0123 that is a matter of definition.
For Ω012k (where k > 3), because Ω012k

∼= 〈GC4〉 we can choose gains in G for
Ω012k, and we may choose them so that, contracted by ẽ03 to Ω012, they agree with
Φ012. Then the gains on Ω012k are forced by the Ω0k minor to be as in Φ. Thus,
〈Φ012k〉 = Ω012k. We infer that 〈Φ01k〉 = Ω01k.

Considering Ω01jk
∼= 〈GC4〉, the gains can be chosen to agree on Ω01j with those

of Φ01j . The minor Ω0k forces Ω01jk to have gains as in Φ, so 〈Φ01jk〉 = Ω01jk. We
further conclude from this and the previous cases that 〈Φ0jk〉 = Ω0jk.

Finally, Ω0ijk
∼= 〈GC4〉 and the gains on Ω0ij can be chosen to agree with those

of Φ0ij . Again Ω0k forces the gains of Ω0ijk to be as in Φ0ijk, so 〈Φ0ijk〉 = Ω0ijk.
Step 3. We prove by induction on n that 〈Φ〉 = Ω. The task is to prove

that every lift C̃∗ is well behaved: it is balanced in Ω if and only if ϕ(C̃∗) =
ϕ(ẽ∗0)ϕ(ẽ∗1) · · ·ϕ(ẽ∗n) = 1.

If C̃∗ has an edge ẽ∗i = ẽ0i with i 6= 0, then we contract Ω and Φ by ẽ0i and

discard loops. This gives expansion minors Ω′ ↓ Cn and Φ′ = GCn, in which C̃∗

becomes C̃∗/ẽ0j and ϕ′ is the restriction of ϕ. The process of constructing gains
in Ω′ in Step 1 produces the gain function ϕ′ if the various choices are made in
agreement with those defining Φ. By induction, therefore, C̃∗/ẽ0i is balanced in Ω′

if and only if ϕ′(C̃∗/ẽ0i ) = 1. However, ϕ′(C̃∗/ẽ0i ) = ϕ(C̃∗) because ϕ(ẽ0i ) = 1, and

by definition of contraction C̃∗ is balanced in Ω if and only if C̃∗/ẽ0i is balanced in

Ω′. Therefore, C̃∗ is well behaved.
If C̃∗ fails to contain an edge ẽ0i with i 6= 0, we replace C̃0 by a different balanced

circle C̃1 that does have an edge ẽ1i in common with C̃∗. We choose C̃1 = C̃0(ẽ10, ẽ
1
1)

where ẽ11 = ẽ∗1 and ẽ10 is the edge that makes C̃1 balanced; that is, ϕ(ẽ10) = ϕ(ẽ11)−1,

since C̃1 is well behaved. Changing C̃0 to C̃1 alters the gain mapping ϕ, but under
control: we simply switch it by a suitable switching function η. A valid choice for
η is η(vi) = 1 except η(v1) = ϕ(ẽ∗1)−1 = ϕ(ẽ10). Then (ϕη)−1(1) = C̃1, and because

〈Φ〉 is invariant under switching ϕη is a suitable gain function with respect to C̃1

in Step 1. By the previous case with C̃1 in place of C̃0, C̃∗ is well behaved. �
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Theorem 7.2. Suppose Ω ↓ ∆ is a 2-connected biased expansion graph of finite
order at least 4, and f ∈ E(∆). If every expansion minor of order 4 that contains
the edge fiber p−1(f) is a group expansion, then so is Ω.

Especially, if every expansion minor of order 4 is a group expansion, then Ω is
a group expansion; but one may also deduce the conclusion from less information.

Proof. We first prove that every 3-constituent of Ω is a group expansion. From
Theorems 5.1 and 6.3 every 3-constituent Ω0 is an expansion minor of Ω; more
precisely, there is an expansion minor Ω′′

0 which is Ω0 with the virtual edges replaced
by real edges of Ω. In the amalgamations that prove Theorem 6.3, suppose Ω0 is
a minor of Ω1 and f ∈ E(Ω2). In the last part of the proof of Theorem 5.1 take
f2 = f ; then p−1(f) will be an edge of the expansion minor corresponding to Ω1.
Tracking this process inductively shows that p−1(f) ⊆ Ω′

0. If Ω0 is 3-connected
and not a triangle, it is a group expansion by Theorem 4.1. If Ω0 is an expansion of
a circle that is not a triangle, then it is a group expansion by Lemma 7.1 because
every minor of Ω′

0 that contains p−1(f) is a minor of Ω that contains p−1(f).
Now suppose Ω0 ↓ ∆0

∼= C3. We refer again to the end of the proof of Theorem
5.1. Q′

2f2Q
′′

2 is a path of length at least 2; thus, instead of contracting Q̃2 we
may contract all but one edge in it, say ẽ2 ∈ p−1(e2). That gives a four-node
circular expansion minor Ω′′

0 ⊇ p−1({e2, f}) which contracts by ẽ2 to Ω′

0. As Ω′′

0 is
a group expansion by assumption, Ω0 is also a group expansion. Therefore, every
3-constituent of Ω is a group expansion.

If Ω is not a group expansion, then at some point in the process of amalga-
mation and summation two group expansions, G1∆1 and G2∆2, are summed (or
amalgamated, which is treated similarly) along an edge e by a twisted attach-
ment map β to form a nongroup biased expansion. We may assume f ∈ E(∆1).
There are expansion minors 〈G1C3〉 of 〈G1∆1〉, containing p−1({e, f}), and 〈G2C3〉
of 〈G2∆2〉 that contains p−1(e), and then Ω4 := 〈G1C3〉 ⊕e,β 〈G2C3〉 is a minor
of 〈G1∆1〉 ⊕e,β 〈G2∆2〉 which contains p−1(f). Ω4 is not a group expansion of
C3 ⊕eC3 = C4 because β is twisted and twistedness is unaltered by taking minors.
But Ω4 is one of the four-node expansion minors of Ω that, by hypothesis, are
group expansions. This contradiction demonstrates that β cannot be twisted. �

Problem 7.3. Can the list of order-four expansion minors in the hypotheses of
Theorem 7.2 or Lemma 7.1 be further reduced?

8. Thin expansions

We now examine the case of small multiplicity.

Theorem 8.1. Let ∆ be a finite graph and Ω = γ · ∆ a γ-fold biased expansion.
Then Ω = 〈±∆〉 if γ = 2 and Ω = 〈Z3∆〉 if γ = 3.

Proof. First we observe that γ · Cn+1 is isomorphic to ZγCn+1. The proof is
simplified if we think of γ · Cn+1 as a Latin hypercube, i.e., as the operation table
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of q : {1, . . . , γ}n → γ. The lemma amounts to saying that the hypercube is isotopic
to the iterated addition table of Zγ . That can be proved readily by induction on
n. (The case γ = 3 is mentioned in [17, proof of Corollary, p. 142]; also, it is [25,
Exercise 13.15].4)

It remains to solve the case in which ∆ is 2-connected but not a circle. Let
Ω = γ · ∆. By the preceding case and Theorem 6.3, Ω is the expanded edge
amalgamation and sum of various Zγ-expansions. By Corollary 5.5, Ω is a Zγ-
expansion. �

There are two reasons why the theorem is limited to multiplicities below four.
The simpler is that in each order γ > 3 there exists a (binary) quasigroup that
is not isotopic to a group. The other is that, for many graphs, one can combine
expansions by the same group of order at least four so as to make a nongroup
expansion (Corollary 6.7). Still, all such counterexamples are 2-separable since it
is impossible to have a nongroup biased expansion, exept of K3, that is 3-connected
(Theorem 4.1).

9. Factorization and construction of multiary quasigroups

Let us discuss the consequences of our results for multiary quasigroups. From
an n-ary quasigroup Q with operation f (which we shall sometimes denote by Qf )
construct the factorization graph ∆(Q); recall that this is the circle graph Cn+1

on node set {v0, v1, . . . , vn}, whose edges ei = ei−1,i = vi−1vi we call the sides of
∆(Q), together with a chord eij = vivj whenever f has a factorization

f(x1, . . . , xn) = g(x1, . . . , h(xi+1, . . . , xj), . . . , xn). (9.1)

Clearly, ∆(Q) = Kn+1 if Q is isotopic to an iterated group, and the converse has
long been known (Lemma 4.2). A stronger converse follows from Theorem 4.1; that
is Theorem 9.2. From Theorem 6.2 we further deduce a structural description of
multiary quasigroups (Corollary 9.4) due to Belousov.

To obtain our results we need the connection between the factorization graph
and the maximal extension of 〈QCn+1〉.

Theorem 9.1. The unique maximal extension Ω(Q) of the biased graph 〈QCn+1〉
corresponding to an n-ary quasigroup Q is a biased expansion of the factorization
graph ∆(Q).

Proof. By the theorems of Section 3 it suffices to prove the last part of Proposition
1.1: 〈QCn+1〉 extends to every chord in ∆(Q) but to no other chord of Cn+1. (The
uniqueness of the extension to each chord is obvious.)

Suppose 〈QCn+1〉 extends to a chord eij . Call the extension Ω. Let C ′ and C ′′

be the circles formed by the chord, with e0 ∈ C ′. Then Ω′ = Ω
∣

∣

C′
and Ω′′ = Ω

∣

∣

C′′

define operations g and h satisfying (9.1) by the construction described in Section
1.2. Thus, eij belongs to ∆(Q).

4I thank a referee for the references.



Associativity in Multiary Quasigroups 59

Suppose on the other hand that f factors as in (9.1). Then 〈QgC
′〉∪eij ,β 〈QhC

′′〉,
which we call Ω, is a biased expansion of Cn+1∪eij , where we take the amalgamating

mapping β : p′
−1

(eij) → p′′
−1

(eij) to be the identity function β(xeij) = xeij . A
circle {x0e0, x1e1, . . . , xnen} is balanced in Ω if there is an edge xeij that makes
{xeij , xi+1ei+1, . . . , xjej} and
{xeij , x0e0, x1e1, . . . , xiei, xj+1ej+1, . . . , xnen} both balanced. In terms of g and h,
this means that

x = h(xi+1, . . . , xj)

and

x0 = g(x1, . . . , xi, x, xj+1, . . . , xn).

It follows that x0 = f(x1, . . . , xn), so Ω
∣

∣

Cn+1
= 〈QCn+1〉. Thus, 〈QCn+1〉 extends

to every chord eij in ∆(Q). �

We see in the proof of Theorem 9.1 that expanded edge amalgamation is the
analog of functional composition.

We immediately obtain from Theorem 4.1 the promised strong characterization
of iterated group isotopes.

Theorem 9.2. Let Q be an n-ary quasigroup with n ≥ 3. Q is isotopic to an
iterated group if and only if ∆(Q) is 3-connected. �

Therefore, if ∆(Q) is 3-connected it is complete. We mentioned at Lemma
4.2 the long-known fact that completeness of ∆(Q) implies that Q is an iterated
group isotope. The new result amounts to saying that one need not know ∆(Q)
completely to arrive at the same conclusion.

Example 9.1 (Left vs. Right). Suppose 2n−2 binary quasigroups satisfy the identity

fn−1(fn−2(· · · (f2(f1(x1, x2), x3), . . . , xn−1), xn) = g1(x1, g2(x2, . . . , gn−1(xn−1, xn) · · · )).

We see immediately that the n-ary operation defined by either side of this equation
has 3-connected factorization graph. Therefore, all fi and gi are isotopic to one
group.

Example 9.2 (Multiary Groups). A good illustration of Theorem 9.2 is its appli-
cation to n-ary groups (with n ≥ 3), which are quasigroups where Equation (1.6)

holds. Let Q̂ be the (2n−1)-ary quasigroup with operation f̂ defined by (1.6). Mul-

tiary associativity means that ∆(Q̂) contains diameters ei,i+n for i = 0, 1, . . . , n−1,

so it is 3-connected. By Theorem 9.2, Q̂ is an iterated group isotope. It follows
that Q is an iterated group isotope, either by an easy algebraic argument or by

combinatorial reasoning: 〈QCn+1〉 is a subgraph of 〈Q̂C2n〉 extended to the chords
(Fig. 9.2); the latter is a group expansion; therefore the former is a group expan-
sion; therefore Q is isotopic to an iterated group. This is the easy part of the
Post–Hosszú–Gluskin theorem, as promised in the introduction.
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v0

v1

vn−1

vn

v2n−2

v2n−1

e0

e1 en−2

en−1

e2n−1

ek−1,2n−1

Figure 24. The sides and diametric chords of ∆(Q̂), showing the
embedded Cn+1 corresponding to Q (solid lines).

To get the same conclusion the various appearances of f need not represent the
same operation; it is only necessary that for n-ary quasigroups f1, g1, . . . , fn, gn the
n compositions

fi(x1, . . . , gi(xi, . . . , xi+n−1), . . . , x2n−1)

should be independent of i. Then each of the 2n operations is isotopic to the
n − 1-fold iteration of a single group operation; this is part of a theorem of Ušan
[36].

The basis for Theorem 9.2 is that the factorization graph of any multiary quasi-
group is theta-complete. (This is the quasigroup version of Theorem 3.17.) We are
able to characterize factorization graphs completely.

Theorem 9.3. For a simple graph ∆ to be the factorization graph of a multiary
quasigroup, a necessary and sufficient condition is that ∆ be theta-complete and
have a Hamiltonian circle. A second necessary and sufficient condition is that
∆ be obtained by edge amalgamations of circles and complete graphs and have a
Hamiltonian circle.

Proof. Apply Theorem 6.2 in view of Theorem 9.1. �

The amalgamation in Theorem 6.2 corresponds to a decomposition of f into
iterated group isotopes, irreducible multiary quasigroups of arity greater than 2,
and nongroup binary quasigroups. Furthermore, the decomposition of f is unique
because the 3-constituents of Ω(Q) are unique. Thus we have:
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Corollary 9.4 (Belousov; see [6, Section V.4]). Every multiary quasigroup is in
a unique way (up to isotopy) the composition of iterated group isotopes and irre-
ducible, nongroup multiary quasigroups.

Belousov deduces this through the algebra of multiary quasigroup composition.
His key result about such composition, the solution of Equation (1.5), is our next
corollary, which we prove by another application of theta completeness. The corol-
lary treats the three possible relationships between the two chords vivk and vjvl

of Cn+1 that represent h and h′ in the factorization graph. In Case (a) the second
chord lies between the endpoints of the first chord. In Case (b) the first chord pre-
cedes the second. Case (c), where the chords cross, gives the strongest conclusion.

Bear in mind that a unary quasigroup is merely a permutation of the set Q.

Corollary 9.5 ([5, Theorem 2.1], [6, Chapter IV]). Suppose an n-ary quasigroup
Q has an (i+ 1, k)-factorization,

f(x1, . . . , xn) = g(x1, . . . , xi, h(xi+1, . . . , xk), . . . , xn),

and a (j + 1, l)-factorization,

f(x1, . . . , xn) = g′(x1, . . . , xj , h
′(xj+1, . . . , xl), . . . , xn),

where i < k, j < l, and i ≤ j (and k < l if i = j), and g, h, g′, h′ are multiary
quasigroups.

(a) If k ≥ l, then

f(x1, . . . , xn) = g(x1, . . . , a(xi+1, . . . , h
′(xj+1, . . . , xl), . . . , xk), . . . , xn),

where a is a multiary quasigroup such that

h(xi+1, . . . , xk) = a(xi+1, . . . , h
′(xj+1, . . . , xl), . . . , xk).

(b) If k ≤ j, then

f(x1, . . . , xn) = b(x1, . . . , h(xi+1, . . . , xk), xk+1, . . . , h
′(xj+1, . . . , xl), . . . , xn),

where b is a multiary quasigroup.
(c) If i < j < k < l, then

f(x1, . . . , xn) = c(x1, . . . , d(xi+1, . . . , xj)◦d′(xj+1, . . . , xk)◦d′′(xk+1, . . . , xl), . . . , xn),

where c, d, d′, d′′ are multiary quasigroups, ◦ is a group multiplication, and

h(xi+1, . . . , xk) = a′(d(xi+1, . . . , xj) ◦ d′(xj+1, . . . , xk)),

h′(xj+1, . . . , xl) = a′′(d′(xj+1, . . . , xk) ◦ d′′(xk+1, . . . , xl)),

in which a′, a′′ denote unary quasigroups.

Proof. Parts (a) and (b) are immediate from Theorem 9.1. Part (c) is from that
theorem, Theorem 9.3, and the case of order four in Lemma 4.2. �
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Corollary 9.5 shows that reductive associativity is related to non-crossing parti-
tions [27]. This connection is not surprising; it is known that non-crossing partitions
correspond to parenthesizations of a string of n+ 1 letters (i.e., v0, v1, . . . , vn). De-
fine an equivalence relation on N = {v0, v1, . . . , vn} by extension of vi ∼ vj if there
is a chord vivj in ∆(Q), i.e., if there is an (i+1, j)-factorization of f . The corollary
states that the equivalence classes are the blocks of a non-crossing partition of N ,
because crossing chords put their nodes into the same equivalence class. Theorem
9.3 tells us that each block of the partition supports a complete subgraph of ∆(Q).

Other of our results on biased expansions have quasigroup interpretations. Corol-
lary 5.5 applied to multiary quasigroups is the following statement:

Corollary 9.6. A composition of multiary quasigroups, all isotopic to iterates of
a group G, is necessarily isotopic to an iteration of G if G = Zγ for γ ≤ 3 or
G = V4, but otherwise need not be isotopic to any iterated group.

By “need not be isotopic”, I mean that by appropriate choices in the process of
composition, one can make the composition not isotopic to any iterated group.

The quasigroup version of Corollary 5.6 requires a definition. Take an n-ary
quasigroup Q. Lemma 2.5(a) implies that expansion minors of 〈QCn+1〉 of order
r+ 1 correspond to r-ary retracts. Apply Construction XM, taking S ∪T = Cn+1.

The choice of lift T̃ signifies fixing the values of the variables corresponding to edges
of T . The variables of the retract are the variables that correspond to edges of S.
Thus, expansion minors that contain the edge e0 correspond to principal retracts
of Q.

Corollary 9.7. It is possible to have an n-ary quasigroup of any order γ ≥ 4 and
any arity n ≥ 3 that is not isotopic to an iterated group but whose binary principal
retracts are all isotopic to the same arbitrary group of order γ, except when the
group is V4.

But raising the arity of the retract yields quite a different result. The quasigroup
interpretation of Lemma 7.1 is:

Theorem 9.8. If every ternary principal retract of an n-ary quasigroup Q with
arity n ≥ 3 is isotopic to an iterated group (not necessarily the same group), then
Q is an iterated group isotope.

10. Postscript

10.1. Nontopological homotopy? There is a perceptible flavor of homotopy
about our combinatorial arguments. We treat balanced circles in a manner reminis-
cent of contractible circles in a topological space. A way of making this similarity
exact is to embed the underlying graph in a topological space so that the bal-
anced circles are precisely the graph circles that are contractible. That is possible
if and only if the graph has gains, so it cannot be used to justify our reasoning.
Nevertheless the analogy is suggestive. One has to wonder what lies behind it.
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10.2. Formulas and bijections. In characterizing multiary groups and in Ušan’s
generalization (Example 9.2) our method yields a description up to circular paratopy,
and this is typical of our results. Post’s (Hosszú–Gluskin) and Ušan’s theorems,
however, give exact formulas for the multiary operations. I believe their formulae
and some of the many other generalizations of the Post–Hosszú–Gluskin theorem
can be reproduced and extended by the expansion-graph method when it is sup-
plemented by attention to the exact bijections between the set Q and the edge
fibers.

10.3. Infinitary quasigroups. For biased expansion graphs we obtained an in-
finitary result, Theorem 4.1. It is not immediately obvious how to apply this to
infinitary quasigroups. Difficulties arise in defining a factorization graph, an infin-
itely iterated group, and even an infinitary operation.

Making sense of reductive associativity in the infinitary case seems to require
that an infinitary operation be a function f : QI → Q whose index set I is totally
ordered. In order to define a factorization graph as in the introduction, it is neces-
sary to assume that I has a minimum element 0̂ and a maximum element 1̂ and that
every element other than 0̂ has a predecessor and every element other than 1̂ has a
successor. The reason is that, in our definition for a finite set I = {1, 2, . . . , k}, the
nodes of the factorization graph (except for v0 and vk) correspond to the covering
pairs i < j, i.e., pairs where there is no index l such that i < l < j. Then one can
define reductive associativity by Equation (1.4). To treat all possible ordered index
sets, however, the factorization graph may need additional nodes corresponding to
elements of I without predecessors or successors and to infinite covering sequences
i1 < i2 < · · · and · · · < i2 < i1. The exact definition awaits further study.

10.4. Multivalued quasigroups. One is inspired by the design interpretation
(Section 1.4) to wonder about generalizing to larger values of λ. In terms of biased

expansions, suppose for each lift P̃ of C \ e there are exactly λ edges ẽ that make
a balanced circle, where λ > 1. Do our theorems generalize to this situation?

The operational view of this generalization is that we have a λ-valued n-ary
operation, each of whose n inverse operations is also λ-valued. One has to modify
the definition of biased expansion: B need no longer be a linear class; instead,
only each separate lift of a base theta subgraph would be subject to the linearity
condition that its number of balanced circles be different from two. The value
of λ cannot be a constant, because, in operational language, the composition of
λ1-valued and λ2-valued operations is λ1λ2-valued.
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