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A biased graph is a graph together with a class of circles (simple closed paths),
called balanced, such that no theta subgraph contains exactly two balanced circles.
A gain graph is a graph in which each edge has a gair (a label from a group so that
reversing the direction inverts the gain); a circle is balanced if its edge gain product
is 1; this defines a biased graph. We initiate a series devoted to biased graphs and
their matroids. Here we study properties of balance and also subgraphs and con-
tractions of biased and gain graphs. © 1989 Academic Press, Inc.

INTRODUCTION

Perhaps the way to introduce biased graphs is through an example. Take
a graph I and a group ®. Orient the edges of I'; to each edge assign a
value in ®, the gain of the edge. If e has gain g, the gain of e ™! (e traversed
in the opposite direction) is g~'. Let e e, ---¢, be a circle (the edge set of
a closed walk with no repeated nodes or edges). Its gain value is g,g, -+ - g4
if this equals 1 the circle is balanced. Call the set of balanced circles #. The
pair (I, #) is a biased graph.

In full generality, a biased graph is a graph I' with a designated linear
subclass of “balanced” circles: a subclass of the circles of I having the
property that, whenever the union of two balanced circles is a theta graph,
the third circle in the union is also balanced.' It so happens that the
balanced circles of any gain graph (graph with group gains) are a linear
class; indeed, this is the principal source of examples. But not all biased
graphs arise from gains and several that do are more conveniently studied
directly as biased graphs.

The theory of biased graphs is a combinatorial abstraction of the notion
of balance in a gain graph. It grew out of an attempt to understand certain

* Research substantially assisted by a grant from the National Science Foundation in
1976-1977.
! The definition in the introduction of [207, which differs from that above, is incorrect.
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matroids and to calculate their invariants; these matroids turned out to be
those of certain signed graphs [137]. (A signed graph is a gain graph where
the gain group has order 2.) It turned out to be easy and, from the
axiomatic standpoint, natural to generalize many results to biased graphs,
although the proofs are sometimes more complicated.

The matroids- of biased graphs can be described with more precision
than can most matroids. In this series we develop the general structural
and enumerative theory of biased-graphic matroids, including the
fundamentals of balance and minors (subgraphs and contractions) for
biased and gain graphs (in Part I, the present article) and of the bias and
lift matroids (in Part II [18]), and formulas for invariants like the Whitney
numbers and the characteristic and Tutte polynomials (Part 111 [197]). We
plan in later parts to treat general examples and representations and to
characterize modular flats of the matroids.

The series lays the foundation for separate treatments of some of the
interesting examples. Among them are: Signed graphs, introduced along
with the notion of balance by Harary in [5, 6]. Their bias matroids were
treated in [15-17], where many of the results of this series appear, restric-
ted to the simpler case of signed graphs. The bicircular matroid, introduced
by Simdes-Pereira. It is based on the bias in which no circle is balanced.
Dowling’s lattices of a group [4], which for the two-clement group are
related to the classical root systems [13]. Matthews’ two digraph matroids.
Networks with gains, also known as “generalized networks,” They are gain
graphs with gain group the multiplicative (and usually, positive) reals,
having an associated optimal flow problem and side conditions like costs
and capacities. See for instance [97].

In this first article we concentrate on the clementary theory presupposed
by later parts. In Section 2 we define the fundamental concepts of biased
graphs and balance: Section 3 develops technical lemmas, In Section 4 we
define minors of biased graphs and show that, formally, they behave like
minors of ordinary graphs. Section 5 concerns gain graphs, their minors,
and their relationship to biased graphs. In the catalog of Section 6 we
describe some of the more interesting gencral types of biased and gain
graphs and in Section 7 we thoroughly examine seven small examples.

1. DEFINITIONS WITHOUT BIAS

Underlying every biased or gain graph is a graph /" Throughout this
work I" will be a graph with node set N = N(I") of cardinality n = #N (the
order of I'), edge set E= E(I'), and endpoint mapping v,., which assigns to
each edge e a multiset of at most two nodes, not necessarily distinet. (This
definition allows multiple edges and loops.) We may say “(N, E) is a
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matroids and to calculate their invariants; these matroids turned out to be
those of certain signed graphs [13]. (A signed graph is a gain graph where
the gain group has order 2.) It turned out to be easy and, from the
axiomatic standpoint, natural to generalize many results to biased graphs,
although the proofs are sometimes more complicated.

The matroids of biased graphs can be described with more precision
than can most matroids. In this series we develop the general structural
and enumerative theory of biased-graphic matroids, including the
fundamentals of balance and minors (subgraphs and contractions) for
biased and gain graphs (in Part I, the present article) and of the bias and
lift matroids (in Part IT [18]), and formulas for invariants like the Whitney
numbers and the characteristic and Tutte polynomials (Part ITT [197). We
plan in later parts to treat general examples and representations and to
characterize modular flats of the matroids.

The series lays the foundation for separate treatments of some of the
interesting examples. Among them are: Signed graphs, iitroduced along
with the notion of balance by Harary in [5, 6]. Their bias matroids were
treated in [15-17], where many of the results of this scries appear, restric-
ted to the simpler case of signed graphs. The bicircular matroid, introduced
by Simdes-Pereira. It is based on the bias in which no circle is balanced.
Dowling’s lattices of a group [4], which for the two-clement group are
related to the classical root systems [ 13]. Matthews’ two digraph matroids.
Networks with gains, also known as “gencralized networks.” They are gain
graphs with gain group the multiplicative (and usually, positive) reals,
having an associated optimal flow problem and side conditions like costs
and capacities. See for instance [9].

In this first article we concentrate on the elementary theory presupposed
by later parts. In Section 2 we define the fundamental concepts of biased
graphs and balance. Section 3 develops technical lemmas. In Section 4 we
define minors of biased graphs and show that, formally, they behave like
minors of ordinary graphs. Section 5 concerns gain graphs, their minors,
and their relationship to biased graphs. In the catalog of Section 6 we
describe some of the more interesting general types of biased and gain
graphs and in Section 7 we thoroughly examine seven small examples.

1. DEFINITIONS WITHOUT BIAS

Underlying every biased or gain graph is a graph /. Throughout this
work I" will be a graph with node set N = N(I') of cardinality n = #N (the
order of I'), edge set E= E(I"), and endpoint mapping v,, which assigns to
each edge e a multiset of at most two nodes, not necessarily distinct. (This
definition allows multiple edges and loops.) We may say “(N, E) is a
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graph”; this means N is the node set and E is the edge set of the graph. An
edge is a link if it has two distinct endpoints, a loop if two coincident
endpoints, a half edge if one endpoint, a loose edge (“free loop” in [15])
if no endpoints. A loop or link is an ordinary edge; an ordinary graph has
only ordinary edges. The set of ordinary edges of I"is E .

We digress for some definitions about sets and partitions. The power set
P(X) of a set X is a group under the operation of symmetric difference or
“set sum,” denoted by +. The disjoint union of sets is denoted by X wY.

A partition T is a class of pairwise-disjoint, nonempty sets, called the
blocks or parts of m. The support is supp n=n=J{B: Ben}. We write
n(v) = the block of m containing v, if v € supp =; 7(v) is otherwise undefined.
A partition of X is a partition whose support is X; the set of partitions of
X is IT,, and that of an n-element set is IT,. A partial partition of X is a par-
tition whose support is a subset of X; the set of partial partitions of X is
IT}, and that of an n-element set is I7},. Two partitions 7 and 7, possibly of
different sets, are ordered by n < 1 (% refines t) if supp = 2 supp 7 and every
block of = is either disjoint from supp t or lies within a block of 7. Under
the refinement partial ordering the least element of IT, and of IT} is the
total partition 0y = {{x}: xe X}, the greatest element of ITy is the trivial
partition 1,={X} (if X# ), and that of IT}; is 0, = . Notice that
Hj; = Hn +1-

Returning to graphs, let X< N and S<E in what follows. We write
X¢=MN\X and S°=E\S. By N(S) we mean the set v(S) of all endpoints
of edges in S. By 4 =" we mean 4 is a subgraph of I'; by (X, S)= I we
mean (X,S) is a subgraph of I. The union of subgraphs (X, S;),
(X5, S,),... of a graph is the subgraph (X, UX,uU.., S;US,U..). A sub-
graph 4 spans I' if its node set N(4)=N. We shall frequently use S as
shorthand for the spanning subgraph (N, S) (and never for the subgraph
(N(S), S)), relying on context to clarify the meaning. A component of 4 is
a maximal connected subgraph which is not a loose edge; thus every com-
ponent has at least one node, although it need have no edges. By n(4) we
mean {N(D): D is a component of 4}; according to our shorthand there-
fore 7(S) = n(N, S) is a partition of N. We let

()= {n(S): SS E},
()= {n(X, S): (X, S)=I'}.

Particular subgraphs of I" are the induced subgraph on a subset X of N,
which is X = (X, E:X) where

EX={ecEv{e)cX and v (e)# T},
and the subgraph induced by a partial partition ¢ of &, which is
't=U{(IB): Bet}.




BIASED GRAPHS. I. BALANCE 35

We call X stable if E:X = (J. The node deletion I'\X has node set X and
edge set {ee Ev (e)n X=}. Thus I'\X = (J:X*) U {loose edges}. For a
single-node deletion I'\{v} we write I"\v.

For edges and walks we employ some further shorthand. To indicate
that an edge e has endpoints v and w, or v only, or is a loose edge, we may
refer to it as e:vw, e, or e:(J, respectively. If we are concerned about direc-
tion we write e:v — w. A walk is a chain of nodes and edges,

P= (UO? €1, Ul) eZ) reey ela U/)a

where v,€ N, e,€ E, and v {(e;) = {v;,_y, v;}; its length is . To indicate its
endpoints we may write P: v, — v, With minor exceptions, P is determined
by its edge sequence, so it may be written as a word

P=81€2-~-€,

in the free group F(E) generated by E. Then we regard ¢~ ! as not merely
a formal inverse but as the edge e traversed in the opposite direction. A
walk is a path if it has no repeated nodes except possibly for v,=v, if />0
(then it is closed, otherwise open). A circle is the edge set of a closed path.
(The widely used term “circuit” we reserve for matroid circuits; “cycle” we
prefer to reserve for coherently oriented circles.) The set of all circles in I
is written € =%(I).

A cutpoint of I' is a node whose removal topologically disconnects a
component of I'. In particular, a node which supports a loop or half edge
is a cutpoint. A block graph is a graph with no cutpoints. A block of I' is
a maximal block graph contained in I. A node incident to a loop, half
edge, or isthmus is a cutpoint and a loose edge, loop, half edge, or isthmus
is a block of I, for example. The block/cutpoint graph of I" has as nodes all
the cutpoints and blocks; an edge joins a block B and a cutpoint p when-
ever p is a node of B. This graph is a tree if I is connected.

A theta graph is a subdivision of a triple link, that is, three open paths
meeting only at their endpoints. A handcuff consists of a pair of edge sets,
C, and C,, each of which is a circle or a half-edge singleton set, and the
edge set of a connecting open path P:u; — u, such that P meets C, at u,
and nowhere else and C, meets C, only at {u,} n {u,}. If P has positive
length the handcuff is loose. Otherwise it is tight. Thetas and handcuffs
(excluding half edges) are called bicircular graphs by Simdes-Pereira (and
“bicycles” by some other authors).

The complete graph on vertex set X is denoted by K. It is simple: all
edges are links and there are no multiple edges. In particular K, denotes
Ky.

Coalescing I' by a partial partition 7 of N means coalescing each block
of m to a single node and discarding the nodes outside the support of =,
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We call X stable if E:X= (. The node deletion I'\X has node set X¢ and
edge set {ee E:v, (e)n X = }. Thus I'\X = (I:X*°) U {loose edges}. For a
single-node deletion I'\{v} we write I'\v.

For edges and walks we employ some further shorthand. To indicate
that an edge e has endpoints v and w, or v only, or is a loose edge, we may
refer to it as ervw, ew, or e:(, respectively. If we are concerned about direc-
tion we write e:v » w. A walk is a chain of nodes and edges,

P= (v05 els 1;17 eZ’ jdt) e[a U[),

where v,e N, e, e E, and v (e,)={v;_,, v,}; its length is [ To indicate its
endpoints we may write P: v, — v,. With minor exceptions, P is determined
by its edge sequence, so it may be written as a word

P=c,e,---¢

in the free group &(E) generated by E. Then we regard e~ as not merely
a formal inverse but as the edge e traversed in the opposite direction. A
walk is a path if it has no repeated nodes except possibly for v,=1v, if />0
(then it is closed, otherwise open). A circle is the edge set of a closed path.
(The widely used term “circuit” we reserve for matroid circuits; “cycle” we
prefer to reserve for coherently oriented circles.) The set of all circles in I”
is written € =€ (I).

A cutpoint of I' is a node whose removal topologically disconnects a
component of I". In particular, a node which supports a loop or half edge
is a cutpoint. A block graph is a graph with no cutpoints. A block of I is
a maximal block graph contained in I. A node incident to a loop, half
edge, or isthmus is a cutpoint and a loose edge, loop, half edge, or isthmus
is a block of I, for example. The block/cutpoint graph of I" has as nodes all
the cutpoints and blocks; an edge joins a block B and a cutpoint p when-
ever p is a node -of B. This graph is a tree if I" is connected.

A theta graph is a subdivision of a triple link, that is, three open paths
meeting only at their endpoints. A handcuff consists of a pair of edge sets,
C, and C,, each of which is a circle or a half-edge singleton set, and the
edge set of a connecting open path P:u;, — u, such that P meets C,; at u,
and nowhere else and C, meets C, only at {u,} n {u,}. If P has positive
length the handcuff is loose. Otherwise it is tight. Thetas and handcuffs
(excluding half edges) are called bicircular graphs by Sim&es-Pereira (and
“bicycles” by some other authors).

The complete graph on vertex set X is denoted by K. It is simple: all
edges are links and there are no multiple edges. In particular K, denotes
Ky.

Coalescing I' by a partial partition = of N means coalescing each block
of = to a single node and discarding the nodes outside the support of =,
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while retaining all the edges. The coalesced graph is written //n. Formally,
N(I'/n)==, E(I'/r)=E, and the new endpoints are given by v ,(e)=
{n(v): vev{(e)}, where we recall that n(v) is undefined if v ¢ supp 7.

The restriction of I" to an edge set S< E is just the spanning subgraph
(N, S). We sometimes write I'| S for the restriction. The deletion of S is
I'\S= (N, §°). The contraction of I by an edge set 4 is

TJA = (I A)\A.

A minor of I' is any graph resulting from a sequence of contractions and
taking of subgraphs. A proper minor is any minor except I itself.

It is a well-known theorem that any minor of I" is a contraction of a sub-
graph; but to justify this, given our definitions, requires some discussion.
Suppose n <t in II,,. We want to be able to say that I'/t=(I/n)/t. But
technically, T cannot coalesce I/n because it is not a partial partition of
N(I'/m) =n. Let us agree that ¢ acts as a partition of 7 in the following way
(we call it 7, e IT! if we need to stress the distinction between its actions on
N and on 7): the blocks of 7, are the sets C, = {Ben: B= C} for Cen.
Then N(I/t)=1 and N((J/=)/t,)=r, can be considered identical, so several
successive coalescences or contractions may be combined into a single one.
This suffices to justify the statement that any minor is a contraction of
a subgraph, or a subgraph of a contraction (these two being obviously
equivalent).

2. DEFINITIONS ABOUT Bias

A class # of circles of a graph is a linear (sub)class if it has the property:
If C, and C,e % and C, v C, is a theta graph, then C,+ C,e 2.

In other words, in no theta subgraph do exactly two circles belong to 4.
A biased graph Q consists of an underlying graph ||| and a linear subclass
B(2) of circles of |Q|, called balanced circles. We will always let
Q=(I,#B)= (N, E, #) denote a biased graph with underlying graph
I'=(N, E) and balanced circle class %.

A subgraph or edge set of I'is balanced if it has no half edges and every
circle in it is balanced. It is contrabalanced if it has no balanced circles and
no loose edges. An unbalanced figure is an unbalanced circle or a half edge.
(In using the term “balance” I follow Harary, whose study [5] of criteria
for balance in signed graphs foreshadowed the theory of gains and bias. I
consider “bias” to be complementary to balance: the less balanced a graph
is, the more biased.)

A stronger property than linearity of a subclass of circles of I" is additivity
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(“circle additivity” in [14]): in any theta subgraph, an odd number of
circles belong to the subclass. An additively biased graph is a pair (I, %)
where 4 is an additive subclass of circles of I

A subgraph 4 of ||Q]| is biased in the obvious way: with balanced circle
class B(2)N%(4). Particular subgraphs are Q:X, Q|S, etc, with the
obvious meanings. Any subgraph 4 is a union of balanced and unbalanced
components and loose edges. Its balanced partial partition is

n,(4) = {Bemn(d). (4:B) is balanced },
its balanced component number is
b(4) = #my(4),
and its unbalanced node set is

No(d)=\J{Ben(4): (4:B) is unbalanced }.

Its balanced part is

A:No(4)° = union of the balanced components of 4.

In particular for S<E we have (regarding S as a spanning subgraph of
Q) 7, (S), b(S), and No(S).

A bias circuit in @ is a balanced circle, a loose edge (considered as a
singleton set), or a contrabalanced theta or handcuff. A [ift circuit is a
balanced circle, a loose edge, a contrabalanced theta or tight handcuff, or
the union of two nodedisjoint unbalanced figures.

A full biased graph has an unbalanced edge (a half edge or unbalanced
loop) at every node. If Q is a biased graph, €' denotes 2 made full: 2 with
a half edge or unbalanced loop added to every node not already carrying
one.

An unbiased graph 4 can be regarded as a biased graph in which every
circle is balanced; then it is denoted by [4].

Suppose Q, and £, are biased graphs. Their biased union 2,112, is the
biased graph with vertex set Ny U N,, edge set E; v E, (disjoint union),
and balanced circle class %, W %,.

Let 4 be an edge set in Q. The contraction of 2 by A4 is the biased graph
Q/A4 whose underlying graph is 1Q2/A| = (I'/ny(A))\A4 and whose balanced
circle class %(Q/A) consists of all circles

C=eie;---e,€6(]Q/4])

such that C=C'\4 for some balanced circle C’ of Q. We will see in the
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(“circle additivity” in [14]): in any theta subgraph, an odd number of
circles belong to the subclass. An additively biased graph is a pair (I, %)
where 4 is an additive subclass of circles of I

A subgraph 4 of Q]| is biased in the obvious way: with balanced circle
class #(Q)N%(4). Particular subgraphs are 2.X, Q|S, etc, with the
obvious meanings. Any subgraph 4 is a union of balanced and unbalanced
components and loose edges. Its balanced partial partition is

ny(4) = {Ben(4): (4:B) is balanced },
its balanced component number is
b(4) = #ny(4),
and its unbalanced node set is

No(4y=U{Benr(4): (4:B) is unbalanced }.

Its balanced part is

A:Ny(4)¢ =union of the balanced components of 4.

In particular for S< E we have (regarding S as a spanning subgraph of
Q) n,(S), b(S), and Ny(S).

A bias circuit in £ is a balanced circle, a loose edge (considered as a
singleton set), or a contrabalanced theta or handcuff. A [ift circuit is a
balanced circle, a loose edge, a contrabalanced theta or tight handcuff, or
the union of two nodedisjoint unbalanced figures.

A full biased graph has an unbalanced edge (a half edge or unbalanced
loop) at every node. If Q is a biased graph, 2" denotes 2 made full: Q with
a half edge or unbalanced loop added to every node not already carrying
one.

An unbiased graph 4 can be regarded as a biased graph in which every
circle is balanced; then it is denoted by [4].

Suppose 2, and 2, are biased graphs. Their biased union 2,118, is the
biased graph with vertex set N, U N,, edge set E; v E, (disjoint union),
and balanced circle class %4, v 4%,.

Let 4 be an edge set in Q. The contraction of Q by A is the biased graph
/A whose underlying graph is ||Q/A4]| = (I'/r,(A))\A and whose balanced
circle class %(£2/A) consists of all circles

C=eie; e, e%(|2/A])

such that C= C'\A4 for some balanced circle C' of Q. We will see in the
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next section that Q/4 is really a biased graph. A minor of Q is any biased
graph obtained from Q by taking subgraphs and contractions. We will see
in the next section that any minor is a subgraph of a contraction of 2, or
(what is obviously equivalent) a contraction of a subgraph.

Contraction of a biased graph is sufficiently complicated that it seems

"worthwhile to describe contraction by a single edge. £2/e is described by the

following rules:

If e:pq is not a loop, delete e and coalesce p and ¢. A balanced circle
C % e remains balanced if it remains a circle; if C3 e is a balanced circle of
Q, C\e is a balanced circle of Q/e. There are no other balanced circles.

If e is a balanced loop or loose edge, 2/e = \e.

If e is an unbalanced loop or half edge at p, delete e and p. Every loop
or half edge at p (except e) becomes a loose edge. Every edge f:pg is
replaced by a half edge at g. Any balanced circle not passing through p
remains balanced. There are no other balanced circles.

A special kind of minor (but which is not, technically, a minor of Q) is
the unbalanced coalescence Q/n of 2 by a partial partition = of N. The
underlying graph is I/m; the balanced circle class is #(Q/rn)=
G(IIn) N B(R). Tt is easy to see directly that Q/m is a biased graph.
It is also easy to see that Q/n=(Q u VY)/E(¥) where ¥=[K,:n]u
LK :(supp 7)]. «

Let S < E. The balance-closure of S is

bcl S=Su {ee S there is a balanced circle C such thatee C= Su {e}}
U {loose edges }.

An edge set is balance-closed if it is its own balance-closure.

Two biased graphs 2, and 2, are isomorphic when there are bijections
v:N,— N, and &: E, —» E, which are a graph isomorphism and such that
B, = {&(C,): C,e B, }. We call the pair (v, &) an isomorphism @, — £,.

Finally, a subdivision of Q is a biased graph whose underlying graph is
a subdivision of ||Q|| and whose balanced circles are the subdivisions of
those of Q. Biased graphs Q, and Q, are homeomorphic if they are both
isomorphic to subdivisions of the same biased graph.

3. Basics OF BALANCE
In certain circumstances it is not necessary to test every circle to find out

that a biased graph is balanced. In this section we discuss some criteria for
balance.
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PrOPOSITION 3.1. Let B be an edge set in a biased graph. Then bcl B is
balanced if and only if B is balanced.

Proof. 'We prove the nontrivial half (the “if”) by means of Tutte’s path
theorem (see [2, p. 15.2] or [12, Theorem 4.34]), which for graphs says
that if % is a linear class of circles and C,, C are circles such that C¢ %,
then there is a “path of circles”

Co, Cl""? Ck=C (*)

such that C,u C,, C, U C,, ... are theta graphs and C,, .., C,_ ¢ Z.

Let C be a hypothetical unbalanced circle in bel B. In order to guarantee
finiteness we will shrink the example. Write C\B = {ey, ..., €,, }. By defini-
tion each e, belongs to a balanced circle C,< Bu {e;}. Discard all of B
except (BN C)u | J;(C\e,), leaving a new set B which is finite, and let
A=BuC.

Now we can proceed by induction on the size of 4. The induction
assumption is that B,= A\e, is balanced. We also know that e, belongs to
a balanced circle Co < BuU {e, }. The linear class .# we need is that consist-
ing of all circles in B,. By hypothesis every C'€.# is balanced. By Tutte’s
theorem, there is a path (x) such that each C;2 ¢,. But then C, |+ C,is
a circle in B,, so it is balanced. From the axiom of bias, Coe % and
Co+ C,e % imply C, € #; continuing in this fashion we find that C, = C is
balanced, contrary to the assumption. Therefore By U {e,} is balanced, if B
is balanced and finite. Since we have already reduced the problem to the
finite case, the proposition is proved. §

COROLLARY 3.2.  Let Q be a biased ordinary graph and T a maximal
forest in Q. For Q to be balanced, it is necessary and sufficient that the
unique circle C,= T U {e} be balanced, for every edge e ¢ T.

Proof. Necessity is obvious. For sufficiency note that the hypothesis
implies bcl T'= E. Then Q is balanced by Proposition 3.1. §

A class @2<c¥%(I') spans if every vcircle is representable as
Ci+Cy+ - +C,for Cy, C,, ..., C, in the class. A basis of circles is a min-
imal spanning class of circles. Given T as in Corollary 3.2, the circles
C,,e¢ T, are a basis. But not every basis is of this form and it is not true
of an arbitrary basis of circles in a biased ordinary graph € that, if all its
circles are balanced, so is 2. For example, let 2 = (K,,, ) where 5 is the
set of Hamiltonian circles and » is odd and at least 5. Then  is a biased
ordinary graph and 4 spans, so there is a basis of balanced circles (con-
tained in #). But  is unbalanced. On the other hand, any biasing of K,
which has a balanced basis is balanced, and I suspect this may be true for
any even-order K,. This suggests
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ProrosiTION 3.1.  Let B be an edge set in a biased graph. Then bel B is
balanced if and only if B is balanced.

Proof. We prove the nontrivial half (the “if”) by means of Tutte’s path
theorem (see [2,p. 1527 or [12, Theorem 4.347), which for graphs says
that if & is a linear class of circles and C,, C are circles such that C¢ &,
then there is a “path of circles”

Co, C1y oy Co=C (%)

such that Cou C,, C,u C,, ... are theta graphs and C, .., C,_, ¢ .%.

Let C be a hypothetical unbalanced circle in bel B. In order to guarantee
finiteness we will shrink the example. Write C\B = {e, .., ¢,,}. By defini-
tion each e, belongs to a balanced circle C;= Bu {e;}. Discard all of B
except (BN C)ulJ,(C\e;), leaving a new set B which is finite, and let
A=BuC.

Now we can proceed by induction on the size of 4. The induction
assumption is that B, = A\e, is balanced. We also know that ¢, belongs to
a balanced circle Co < BU {e, }. The linear class & we need is that consist-
ing of all circles in B,. By hypothesis every C’e€.% is balanced. By Tutte’s
theorem, there is a path () such that each C;> ¢,. But then C,_,+ C; is
a circle in By, so it is balanced. From the axiom of bias, C,e # and
Co+ C, e imply C, € %; continuing in this fashion we find that C, = C is
balanced, contrary to the assumption. Therefore By U {e,} is balanced, if B
is balanced and finite. Since we have already reduced the problem to the
finite case, the proposition is proved. |

COROLLARY 3.2. Let Q be a biased ordinary graph and T a maximal
forest in L. For & to be balanced, it is necessary and sufficient that the
unique circle C,= Tw {e} be balanced, for every edge e ¢ T.

Proof. Necessity is obvious. For sufficiency note that the hypothesis
implies bel T=E. Then Q is balanced by Proposition 3.1.

A class 2<¥(I") spans if every circle is representable as
Ci+Cy+ --- +C, for Cy, Cy, .., C, in the class. A basis of circles is a min-
imal spanning class of circles. Given T as in Corollary 3.2, the circles
C,.,e¢ T, arc a basis. But not every basis is of this form and it is not true
of an arbitrary basis of circles in a biased ordinary graph  that, if all its
circles are balanced, so is Q2. For example, let Q = (K, #) where J is the
set of Hamiltonian circles and n is odd and at least 5. Then © is a biased
ordinary graph and s spans, so there is a basis of balanced circles (con-
tained in ). But Q is unbalanced. On the other hand, any biasing of K,
which has a balanced basis is balanced, and I suspect this may be true for
any even-order K,. This suggests

40 THOMAS ZASLAVSKY

Problem 3.3. Find necessary and/or sufficient conditions on a graph I”
for it to have no other spanning lincar subclass of circles than €(I).

COROLLARY 3.4. In a biased graph Q2 let B, and B, be balanced edge sets
Sfor which X =N(B) " N(B,) has #X <2 If # X< 1, or if X={u, v} where
u and v are distinct nodes and there exist paths P;:u— v in B, for i=1 and
2 such that P, v P, is balanced, then B, u B, is balanced.

Proof. If #X <1 the result is obvious.

If #X =2, suppose u is not a cut node of B, and let B’ = B, U (B,\u).
Then B’ is balanced by the case #X< ! with B,\u instead of B,.
Since P,<bcl B, B'uU P, is balanced. Since B, < bcl(B U P,), B,u B, is
balanced.

If u is a cut node, let B¥ be the part of B, separated by u and containing
v. Then B, u B¥ is balanced by the above argument and B, U B, is
balanced by the case #X<1. §

PROPOSITION 3.5. Let S be an edge set in a biased graph . If S is
balanced, then bcl S is balance-closed. But if' S is unbalanced, bel S may
not be balance-closed.

Proof. Suppose S is balanced. Let T be a maximal forest in S.
Obviously, it is a maximal forest in bcl(bcl S), which is balanced by
Proposition 3.1. Therefore,

bel(bel S) = bel T< bel S,

from which the desired result is immediate.
We present an example of a biased graph @ and an unbalanced set S

. whose second balance-closure is larger than bel S. Let N= {v, uy, u,, w)

and E={e;vu;, fi:vw, g;uw, hw,v,}, where i=1,2. The balanced
circles ‘are e, f,g;, e,f;g;h (where j#1i), and g,g,h For the set S take
{ey, e, f1,f2}. Then bel S=Su {g,,g,} and bel(bcl S)=E. §

We see from this proposition that balance-closure is not an abstract
closure operation [1].
- A different way of stating the positive half of Proposition 3.5 is

COROLLARY 3.6. Let S be a balanced edge set in Q. The balance-closure
bel S is characterized as the largest balanced edge set containing S in
Q.7 (S).

Two more easy consequences of Proposition 3.1 are the following criteria

for balance.

COROLLARY 3.7. Let B be a balanced, connected edge set and let S be a
balanced edge set with connected components S;, i€ I. Then B S is balanced
if and only if all the B S, such that N(B) n N(S;) # & are balanced.
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Proof. The nontrivial part is the “if.” We may assume Bu S is con-
nected. Let T be a spanning tree of B and extend it to a spanning tree
T, of each Bu S;. Let T be the union of all 7,. Then T is a spanning tree
of Bu S. Since all Bu S,cbcl T;=bcl T, Bu S is balanced. |

COROLLARY 3.8. Let B, and B, be balanced edge sets such that
N(B,) " N(B,) is connected in By B,. Then B, L B, is balanced.

Proof. Choose a spanning tree of B, n B, and extend it to maximal
forests T, of B, and T, of B,. Then T,u T, is a maximal forest in
B, U B,. Since B,=bcl T,, we have B, uB,cbcl(T,uT,). So B,uUB, is
balanced. |

We conclude with a simple result that will be useful later in this series.

PROPOSITION 3.9. Let Q be a biased graph whose underlying graph is a
block graph. Either Q is balanced or else every edge belongs to an unbalanced
figure (unbalanced circle or half edge).

Proof. We need treat only the case where €2 has at least two edges.
Suppose € is unbalanced, C is an unbalanced circle, and e is an edge not
in C. By Menger’s theorem, we can join the endpoints of e by paths to
nodes of C so as to form a theta graph H. Since C is unbalanced and the
balanced circles are a linear class, at least one of the circles in H on e is
unbalanced. ||

4, BALANCE AND MINORS

Now we can show that a contraction of a biased graph is biased and that
all minors are obtained by one contraction of a subgraph, as well as other
good things about the relationship between balance and contraction.

LemMMa 4.1. Let Q be a biased graph, A< E, and Ce€(£2/A4). For C to
be balanced in Q/A it is necessary and sufficient that Cu (A:Ny(A)°) be
balanced in Q.

Proof. The sufficiency is obvious from the definition of contraction. The
necessity follows as follows. Let C be balanced in £2/4; hence by definition,
there is a balanced circle C* of © such that C=C*=Cu 4,, where
Ay, = A:Ny(A4)°, the balanced part of 4. Let A,, ie I, be the balanced com-
ponents of 4. By Corollary 3.4, each 4, U C* is balanced. Then 4, U C* is
balanced, by Corollary 3.7 applied to S=4,, B=C*. |

THEOREM 4.2. A contraction of a biased graph is a biased graph.
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Proof. The nontrivial part is the “if.” We may assume Bu S is con-
nected. Let T be a spanning tree of B and extend it to a spanning tree
T, of each Bu S;. Let T be the union of all T,. Then T is a spanning tree
of BuUS. Since all Bu S;Sbcl T,=bcl T, Bu S is balanced. ||

COROLLARY 3.8. Let B; and B, be balanced edge sets such that
N(B,)n N(B,) is connected in B, n B,. Then B, U B, is balanced.

Proof. Choose a spanning tree of B; n B, and extend it to maximal
forests Ty of B, and T, of B,. Then T, uT, is a maximal forest in
B, UB,. Since B;=bcl T, we have B,u B, <bcl(T,uT,). So B,uUB, is
balanced. |

We conclude with a simple result that will be useful later in this series.

PROPOSITION 3.9. Let 2 be a biased graph whose underlying graph is a
block graph. Either  is balanced or else every edge belongs to an unbalanced
figure (unbalanced circle or half edge).

Proof. We need treat only the case where 2 has at least two edges.
Suppose 2 is unbalanced, C is an unbalanced circle, and e is an edge not
in C. By Menger’s theorem, we can join the endpoints of ¢ by paths to
nodes of C so as to form a theta graph H. Since C is unbalanced and the
balanced circles are a linear class, at least one of the circles in H on e is
unbalanced. |}

4. BALANCE AND MINORS

Now we can show that a contraction of a biased graph is biased and that
all minors are obtained by one contraction of a subgraph, as well as other
good things about the relationship between balance and contraction.

LemMma 4.1, Let £ be a biased graph, A< E, and Ce 4(2/A4). For C to
be balanced in /A it is necessary and sufficient that C U (A:Ny(A)°) be
balanced in £2.

Proof. The sufficiency is obvious from the definition of contraction. The
necessity follows as follows. Let C be balanced in Q/4; hence by definition,
there is a balanced circle C* of Q such that C=C*=Cu4,, where
Ay =A:Ny(A4)¢, the balanced part of 4. Let 4,, i I, be the balanced com-
ponents of 4. By Corollary 3.4, each 4, U C* is balanced. Then 4, U C* is
balanced, by Corollary 3.7 applied to S=4,, B=C*. |

THEOREM 4.2. A contraction of a biased graph is a biased graph.
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Proof. We need consider only contraction by a balanced edge set 4. Let
C, C,, C;5 be the three circles of a theta graph in /4 and suppose C, C,
are balanced. According to the lemma, ', u A and C,uU 4 are balanced.
Let B, consist of the component of C;u A that contains C,, for i=1, 2, 3.
Then B, n B, consists of the common edges of ¢, and C, and the incident
components of A4, whence N(B,n B,)=N(B,)n N(B,) is connected by
B, nB,. By Corollary 3.8, B, u B, is balanced. Thus B, is balanced; it
follows that C;e Z(Q/A4). 1|

The next results indicate how balance interacts with contraction. It is
convenient to let S/4 denote S\A4 considered as an edge set in /4, for
ScE ‘

LemMa 4.3. Let A be a balanced edge set of 2 and let S< E\A. Then S
is balanced in Q/A if and only if SU A is balanced in .

Proof. If S/A is unbalanced, then either it contains a half edge, which
must have been a half edge in S, or it contains an unbalanced circle C, in
which case Cu 4 is unbalanced by Lemma 4.1. In either case Su 4 is
unbalanced.

Suppose S/A is balanced. Let T, be a maximal forest of 4 and extend
it to a maximal forest T'in S 4. Then T/A is a maximal forest of S/A4. Let
eeS\(AuT). The fundamental circle C,=Tu {e} is balanced; for
C,/A=(T/A) v {e} = S/A, which is balanced, and C,/4 is a circle, so C,
is balanced by Lemma 4.1. By Corollary 3.2, S A4 is balanced. |

LEmMMA 4.4. Let Q be a biased graph and let A, S be disjoint edge sets
of Q. Then

No(AU S)=Ny(d) Ul ) {Xem,(4): Xe No(S/4)}.

Proof. Let A, = A:Ny(A)°, the balanced part of 4.

First we prove the left-hand side contains the right. Obviously,
No(A)= No(A U S). Suppose C/4 is an unbalanced circle in S/4. Then
Cu A, is unbalanced, by Lemma 4.1. Therefore, the component of Su A4
containing C is unbalanced. Suppose X e 7,(A4) carries a half edge e of S/A4.
Then either e is a haif edge in S or it joins X to an unbalanced component
of 4. In any case, if Xeny(4) is a node of an unbalanced component of
S/A, then it is contained in Ny(4 U S).

To prove the right-hand side contains the left, let v be a vertex of
No(A U S\Ny(A) and let veXeny,(4) and XcYen(4uS). Thus,
(A S):Y is an unbalanced component of 4 U S. If ¥ meets Ny(A4), then X
is connected in S/A4 to a half edge which (in ) was an edge of S linking
Y\Ny(4) to Y n Ny(A). Consequently, the component of S/4 containing X
is unbalanced; that is, X € No(S/A4). If on the other hand Y does not meet
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No(A), then A:Y is balanced and (S:Y)/A4 is a component of S/4. By
Lemma 4.3 applied to 4:Y and S:7, (S:Y)/A4 is unbalanced. It follows that
Xe Ny(S/4). 1

PROPOSITION 4.5. Let Q2 be a biased graph and A< E. For an edge set
S < E(Q/A) the following properties are equivalent:

(1) S is balanced in Q/A.
(ii) (SUA):Ny(A) is balanced (in Q) and no edge of S links Ny(A)
to No(A).
(iii) No(Sw A)=Ny(A) in Q.
Proof. The equivalence of (i) and (ii) follows from Lemma 4.4. That (ii)
and (iil) are equivalent is obvious from the definitions. |

PrOPOSITION 4.6. In a biased graph Q, let A and S be disjoint edge sets
such that A is balanced and S is balanced in Q/A. Then bclg 4(S)=
belo(A4 U SN\A.

Proof. Let B=bclga(AuS) and B'=Aubclg 4(S), so that B'/A=
belg, 4(S). We rely on Lemma 4.3 and Corollary 3.6.

Since B is balanced, so is B/A. By definition, n,(B)=mn,(4 v S); thus
ny(B/A) =, (S/A). Tt follows from Corollary 3.6 that B/4 < B'/A.

Since B’/A4 is balanced, B’ is balanced. Also, n,(B'/4)=n,(S/A} implies
(B )=7n(Su A4). It follows that B'< B.

Combining these deductions, we have B=B". |

THEOREM 4.7. Let Q be a biased graph. If A, and A, are disjoint edge
sets of Q, then (2/A)/A,=Q/(A; 0 A,). If TE€ S< E(Q), then (Q2|S)|T=
QT and (21S)/T = (Q/T)|(S\T).

Proof. The latter two equations are clear. The former, we note,
implicitly identifies the partial partition n,(4,; £2/4,) of N(Q/A4;)=mn,(4,)
with a partial partition of N as discussed in Section 1.

Consider (2/4,)/4, and Q/(4, U A,). It is clear that n(A4,;2/4,)=
(A, uAd,; 2) According to Lemma 4.4, we can further state that
7y (As; Q/A ) =7p(A4, v A,; Q). (All this assumes the standard identifica-
tions.) Thus one can see that ||(£2/4,)/4,] = 12/(4, U 4,)]|. We have to
show that the two biased graphs have the same balance. Let
ScE\(4,u4,). Then S is balanced in 2/(4,UA4,) if and only if
Su(d,UA,) is balanced in Q. At the same time, S is balanced in
(2/4,)/A,< S U A, is balanced in /4, < (Su 4,) U 4, is balanced in Q.
Evidently, balance in (2/4,)/4, and in Q/(A4, U 4,) do agree. |
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Ny(A4), then A:Y is balanced and (S:Y)/4 is a component of S/A4. By
Lemma 4.3 applied to 4:Y and S:7, (S:Y)/A4 is unbalanced. It follows that
XeNy(S/4). 1

ProPOSITION 4.5. Let Q2 be a biased graph and A < E. For an edge set
S < E(Q/A) the following properties are equivalent:

(i) S is balanced in Q/A.
(il) (SO A):NA) is balanced (in Q) and no edge of S links No(A)
to No(4).
(iil) No(Swd)=Ny(4) in Q.

Proof. The equivalence of (i) and (ii) follows from Lemma 4.4. That (ii)
and (iii) are equivalent is obvious from the definitions. ||

ProrosITION 4.6.  In a biased graph Q, let A and S be disjoint edge sets
such that A is balanced and S is balanced in Q[A. Then bclg ,(S)=
belo (A4 L SH\A.

Proof. Let B=bclo(4uS) and B'=A4ubclg (S), so that B/4d=
bely,4(S). We rely on Lemma 4.3 and Corollary 3.6.

Since B is balanced, so is B/A. By definition, 7n,(B)=n,{(4 U S); thus
wo(B/A) =7, (S/A). It follows from Corollary 3.6 that B/4 < B'/A.

Since B'/A is balanced, B’ is balanced. Also, n,(B'/A4)=n,(S/A) implies
(B =71, (S U 4). It follows that B'< B.

Combining these deductions, we have B=B'. }

THEOREM 4.7. Let 2 be a biased graph. If A, and A, are disjoint edge
sets of 82, then (2/A,)/A,=8Q/(A, U A,). If TS S< E(RQ), then (Q|9)|T=
Q|T and (2|8)/T = (Q/T)|(S\T).

Proof. The latter two equations are clear. The former, we note,
implicitly identifies the partial partition n,(A,; Q/A4,) of N(Q/4,)=7,(A4;)
with a partial partition of N as discussed in Section 1.

Consider (2/4,)/4, and Q2/(A, U A4,). It is clear that n(4,;R2/4,)=
n(d, U A4,;2). According to Lemma 4.4, we can further state that
(A Q/A)) =7 (A4, w 4,; Q). (All this assumes the standard identifica-
tions.) Thus one can see that ||(2/4,)/A,| = 2/(4,u 4,)||. We have to
show that the two Dbiased graphs have the same balance. Let
ScE\(A; U A4,). Then S is balanced in Q/(4,uU4,) if and only if
Su(A,UA4,) is balanced in Q. At the same time, S is balanced in
(£2/4,)/4, <= SU A4, is balanced in /4, < (SU A4,) U A4, is balanced in £.
Evidently, balance in (2/4,)/4, and in Q/(A4, U 4,) do agree. |
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COROLLARY 4.8. Any minor of a biased graph is a subgraph of a contrac-
tion and is also a contraction of a subgraph.

5. Bias FrROM GAINS

A gain graph (also known as “voltage graph”) & = (I, ¢) consists of an
underlying graph |@| =I'= (N, E) and a gain mapping ¢: E, - ® from the
ordinary edges of I into a gain group ®. To be precise we may call @ a
®-gain graph. It is understood that ¢(e ') =¢(e) ', where e~ means e
with its orientation reversed. (This applies to loops as well as links.) Thus
#(e) depends on the orientation of ¢ but neither orientation is preferred.

Formally, we may say that ¢ defines a homomorphism §(E,)— & from
the free group on E, into the gain group. A walk P=e e, --¢, thus has
the gain value ¢(P)=d(e,) ¢(e,)--- d(e, ) under ¢. If P is a circle, its value
depends on the starting point and direction, but whether or not the value
equals the identity element 1 is an absolute. A circle whose value is 1 is
called balanced; the class of balanced circles is #(P). We write
[@]= (], B(P)). In what follows, @ will always be a gain graph on under-
lying graph I', with gain mapping ¢ and group ®.

ProrosiTION 5.1.  If @ is a gain graph, [®] is a biased graph.

Proof. 1In a theta graph with two balanced circles, all three constituent
paths have the same gain value. As a consequence, the third circle is also
balanced. J

So every gain graph is a biased graph; but the converse is false: see
Example 5.8.

Let A: N — ® be any function. Switching & by 1 means replacing ¢(e) by
#*(e) = A(v) ~'d(e) A(w), where e is oriented from v to w. The switched
graph, ®* = (I, ¢*). is called switching equivalent to ®.

LemMMa 52. [@*]=[®] 1

Since our interest is in the bias rather than the particular gains, from
now on we will consider switching-equivalent gain graphs to be essentially
the same. The fundamental lemma on switching (for our purpose) is

LemMmA 5.3. @ is balanced if and only if it has no half edges and ¢
switches to the identity gain.

Proof. We may assume @ is connected. Let T be a spanning tree and
u a root node. For v, we N, let T, be the unique path in 7 from v to w.

oW
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Switching by A(v)=¢(T,,) reduces the gains on T to 1, and no other
switching function will achieve this reduction. Considering the fundamental
circles C, of ordinary edges e ¢ T, it is clear that @* is balanced if and only

ifpr=1. |

A subgraph of & is a subgraph of I with the same gain mapping,
restricted of course to the subgraph’s edges. In particular the restriction
@|S, where S E, is a spanning subgraph. The contraction @/A by an edge
set A is defined as follows. Let B be the union of the balanced components
of A and switch so ¢*|;=1. Coalesce ||@| by 7,(4) and delete all edges
in A. The gain of an ordinary edge e in the resulting graph is ¢*(e). This
defines the contracted gain graph @/4. Of course, the gain mapping of &/4
is only determined up to switching by this construction, but that is quite
satisfactory here. A minor of @ is any gain graph resulting from switching,
contracting, and taking subgraphs as often as desired.

THEOREM 5.4. Let @ be a gain graph and let S, A< E(D). Then
[@US=[D|ST] and [D]/A=[D/A].

Proof. The former statement is obvious. As for the latter, from the
construction clearly [[@/A4| ={|[@]/A4]|l. Suppose ¢ switched so ¢|z=1,
where B is the balanced part of 4. Consider a circle C=e e, --¢, in the
contracted graph. There is a circle D in @ of the form e, Pie, P, ---€, Py,
where P; is a path in a component of B. We have ¢4,,(C)=¢(D) since
¢|p=1. We know that C is balanced in [@]/4 precisely when D is, by
definition of biased contraction. Therefore @/4 and [@]/4 have the saime
balanced circles. §

COROLLARY 5.5. Any minor of a gain graph @ is (up to switching) a
subgraph of a contraction and also a contraction of a subgraph.

Proof. Let ¥ be the minor. We know the corresponding minor of [@]
is [¥], which is a subgraph 4 of a contraction [@]/4. So ¥ has the same
underlying graph as the corresponding subgraph (®/4)|4 of &/A4, by
Theorem 5.4. It is easy to see that, by switching ¢ beforehand to be 1 on
the balanced part of 4, we have the same gains on ¥ and on (®/4)/4. 1|

We call a biased graph gain biased, or more precisely ®-biased, if it
equals [@] for some gain graph, or ®-gain graph, @. A result that will be
useful later is

LeMMA 5.6. If Q, and Q, are gain-biased graphs, then so is their biased
union Q, L1 Q,.

Proof. Suppose Q;=[®@,]. First, enlarge ®, to &} =6, x F(N). Define
AMv)=(1,v)e® for ve N, treat ¢, as mapping into &, x {1} =G}, and
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Switching by A(v) =¢(T,,) reduces the gains on T to 1, and no other
switching function will achieve this reduction. Considering the fundamental
circles C, of ordinary edges e ¢ T, it is clear that @* is balanced if and only

if g*=1. |

A subgraph of @ is a subgraph of I' with the same gain mapping,
restricted of course to the subgraph’s edges. In particular the restriction
@15, where S< E, is a spanning subgraph. The contraction ®/A by an edge
set 4 is defined as follows. Let B be the union of the balanced components
of 4 and switch so ¢*|;=1. Coalesce ||@| by n,(4) and delete all edges
in A. The gain of an ordinary edge e in the resulting graph is ¢*(e). This
defines the contracted gain graph &/A4. Of course, the gain mapping of &/4
is only determined up to switching by this construction, but that is quite
satisfactory here. A minor of @ is any gain graph resulting from switching,
contracting, and taking subgraphs as often as desired.

THEOREM 54. Let & be a gain graph and let S, A< E(D). Then
[@]|S=[D|S] and [®]/A=[D/A].

Proof. The former statement is obvious. As for the latter, from the
construction clearly ||®/A4| =|[®]/A|. Suppose ¢ switched so ¢|,=1,
where B is the balanced part of 4. Consider a circle C=e,e,---¢, in the
contracted graph. There is a circle D in @ of the form e, P,e,P,---¢, P,,
where P, is a path in a component of B. We have ¢4,,(C)=¢(D) since
dls=1. We know that C is balanced in [@]/4 precisely when D is, by
definition of biased contraction. Therefore /4 and [P ]/4 have the same
balanced circles. §

COROLLARY 5.5. Any minor of a gain graph @ is {(up to switching) a
subgraph of a contraction and also a contraction of a subgraph.

Proof. Let ¥ be the minor. We know the corresponding minor of [@]
is [ ¥], which is a subgraph 4 of a contraction [©]/4. So ¥ has the same
underlying graph as the corresponding subgraph (&/4)[4 of ®/A, by
Theorem 5.4. It is easy to see that, by switching ¢ beforehand to be 1 on
the balanced part of 4, we have the same gains on ¥ and on (®/4)/4. |

We call a biased graph gain biased, or more precisely ®-biased, if it
equals [@] for some gain graph, or G-gain graph, &@. A result that will be
useful later is

LEMMA 5.6. If Q, and 2, are gain-biased graphs, then so is their biased
union £, 11 Q,.

Proof. Suppose Q,=[®;]. First, enlarge ®, to =G, x F(N). Define
AMv)=(1,v)e®] for ve N, treat ¢, as mapping into &, x {1} =}, and
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switch ¢, to ¢7. Next, let & = ® x &, and redefine ¢7 and ¢, to map into
® in the obvious way. Then ¢, defined by ¢| ., = ¢1 and ¢!z, = ¢,, is a gain
for Q,u 2,. §

COROLLARY 5.7. The class of gain-biased graphs, and the class of
®-biased graphs for any group ®, are closed under taking of minors. |

Corollary 5.7 shows that the class of gain-biased graphs or of G-biased
graphs can be characterized by finding the minor-minimal biased graphs
not in the class. This theme will be developed in a future article. For now
we merely show by example that there are indeed biased graphs which are
not gain biased.

ExaMPLE 5.8. Let Q, have node set {v,, v,, v3,v4} and parallel edge
pairs e,_; 4, fi_y, for i=1, 2, 3, 4, where the subscripts indicate the
endpoints and are taken modulo 4. Let the balanced circles be e,e,5€35€4;,
1285334 a1, a0d f15 faz€3aeq,. Then Q, is a biased graph which is not gain
biased. However, every proper minor is gain biased.

Proof. Q. is obviously a biased graph. Suppose it were gain-biased. We
may use the edge names to denote gain values, with edges oriented in sub-
script order (e, from v, to v,, etc.), and we may switch so all e;= 1. Then
all f;# 1, fiafos =1, faafar =1, and [}, f53 f3af4, # 1. This is a contradiction.

The symmetry of , implies that every proper subgraph is gain-biased
if Q,\e, and Q,\f1, are. Note that ¥=Q,\{e,,, e,3} is gain-biased
and that Q,\e, =¥ U ey. Also, ¥'=Q,\ {12, fo3} is sign-biased and
QN\fi2= %' U fr;. So, by Lemma 5.6, we are done with subgraphs.

A similar approach works for contractions. Here we note that Q,/e,, is,

‘aside from the loop f),, the biased union of (2,/e,)\{f12,/23} and fos.

The former is sign-biased. Moreover, Q,/f}, is, neglecting the loop e,,, the
biased union of (2,/f1;)\{€12, €23} and e,;. The former is gain-biased
(although not with group Z,).

We conclude that every proper minor of @, is gain-biased. |

6. A CATALOG OF EXAMPLES

We list some biased graphs of particular interest. Most have been studied
in the literature for the sake of their bias or lift matroids; hence we mention
the matroids although we do not define them until Part II. We plan to
treat many of these examples in detail in future articles.

EXAMPLE 6.1. Balanced graphs. These have the form [I'] for a graph I”
without half edges. For most purposes they behave exactly like ordinary
graphs.
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ExampLE 6.2. Contrabalanced graphs. These were introduced by Simdes-
Pereira in the form of the bias matroid G(I, (J), which he christened the
bicircular matroid of I [ 10, 117].

EXAMPLE 6.3. Parity bias. Parity-biased graphs are (I, %,) where %, is
the set of evén-length circles in I. They are the biased graphs of all-
negative signed graphs (next example). The bias matroid, sometimes called
the even-circle matroid of I', arose in Doob’s study [3] of the eigenspace
of —2 of a line graph. The lift matroid appeared in recent work of Lovasz
and Schrijver [7] concerning graphs with no two vertex-disjoint odd
cycles.

ExXAMPLE 6.4. Sign bias. A signed graph is a gain graph whose gain
group has order two. It was proved in [14] that a biased graph is sign
biased if and only if its bias is additive (see Section 2).

ExXAMPLE 6.5. Poise bias. In a directed graph D let # be the linear class
consisting of all circles with the same number of edges directed each way.
We call such a circle poised and the resulting bias the poise bias of D. The
poise bias matroid was discovered by Matthews [8]. Observe that the
poised circles are the balanced circles in the Z-gain graph which assigns
gain +1 to an edge when oriented as in D, so —1 in the opposite orienta-
tion.

If M is a positive integer we can define poise modulo M of a circle: it
means that the numbers of edges directed either way around the circle
differ by a multiple of M. Matthews also discussed the bias matroids of
modular poise. Notice that modular poise derives from the gains above
with group Z,,. If M =1 we get #=%(I"); if M =2 we get the parity bias,
regardless of the orientations in D. If M > n, poise modulo M is the same
as nonmodular poise.

Poise generalizes to mixed graphs, which have directed and undirected
edges. In determining whether a circle is poised we ignore undirected edges.
 Mixed poise is also a gain bias: a directed edge has gain as above, and the
gain of an undirected edge is zero. Mixed-graph poise modulo 2 or 3 is
equivalent to having gains with gain group Z, or Z,, respectively.

EXAMPLE 6.6. Antidirection bias. Let # consist of all circles in a digraph
D which are antidirected, that is, no two consecutive edges are directed the
same way. Then 4 is a linear class. Matthews discovered the antidirection
bias matroid. We observe that antidirection is a gain bias. Let ® be the free
abelian group generated by the nodes and let the gain of an edge e, directed
from v to w in D, be ¢(e)=v+w when oriented from v to w. We may
instead take ® to be the free Z,,~-module generated by N, where M > 3.
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EXAMPLE 6.2. Contrabalanced graphs. These were introduced by Simdes-
Pereira in the form of the bias matroid G(I', ¢f), which he christened the
bicircular matroid of I" [10, 117.

ExXAMPLE 6.3. Parity bias. Parity-biased graphs are (I, 4,) where %, is
the set of even-length circles in I. They are the biased graphs of all-
negative signed graphs (next example). The bias matroid, sometimes called
the even-circle matroid of I', arose in Doob’s study [3] of the eigenspace
of —2 of a line graph. The lift matroid appeared in recent work of Lovasz
and Schrijver [7] concerning graphs with no two vertex-disjoint odd
cycles.

EXAMPLE 6.4. Sign bias. A signed graph is a gain graph whose gain
group has order two. It was proved in [14] that a biased graph is sign
biased if and only if its bias is additive (see Section 2).

EXAMPLE 6.5. Poise bias. In a directed graph D let # be the linear class
consisting of all circles with the same number of edges directed each way.
We call such a circle poised and the resulting bias the poise bias of D. The
poise bias matroid was discovered by Matthews [87]. Observe that the
poised circles are the balanced circles in the Z-gain graph which assigns
gain +1 to an edge when oriented as in D, so —1 in the opposite orienta-
tion.

If M is a positive integer we can define poise modulo M of a circle: it
means that the numbers of edges directed either way around the circle
differ by a multiple of M. Matthews also discussed the bias matroids of
modular poise. Notice that modular poise derives from the gains above
with group Z,,. If M =1 we get Z=%("); if M =2 we get the parity bias,
regardless of the orientations in D. If M > #n, poise modulo M is the same
as nonmodular poise.

Poise generalizes to mixed graphs, which have directed and undirected
edges. In determining whether a circle is poised we ignore undirected edges.
 Mixed poise is also a gain bias: a directed edge has gain as above, and the
gain of an undirected edge is zero. Mixed-graph poise modulo 2 or 3 is
equivalent to having gains with gain group Z, or Z,, respectively.

ExXAMPLE 6.6. Antidirection bias. Let % consist of all circles in a digraph
D which are antidirected, that is, no two consecutive edges are directed the
same way. Then £ is a linear class. Matthews discovered the antidirection
bias matroid. We observe that antidirection is a gain bias. Let ® be the free
abelian group generated by the nodes and let the gain of an edge e, directed
from v to w in D, be ¢(e)=v+w when oriented from v to w. We may
instead take ® to be the free Z,,-module generated by N, where M > 3.
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A bidirected graph has two direction arrows on each edge, one at each
end. (This generalization of digraphs originated with Edmonds.) The
antidirected circles of a bidirected graph form a linear class. This is a gain
‘bias since we can assign gains ¢(e)=&(w) w—¢(v) v in the same group as
before, where g(v) = +1 if the arrow at the v end of e points toward v, —1
otherwise. -

ExampLE 6.7. Group expansions. Let ['= (N, E) be an ordinary graph
and ® a group. By ®I" we mean the gain graph derived from I” by replac-
ing each edge of I' by # ® new edges, one bearing each possible gain value.
We call 1" the G-expansion of I' and the corresponding full graph G/ the

Sfull ®-expansion. The matroid and invariant theory of these is particularly

elegant. Dowling initiated it with his article on the bias matroid of 6K,
whose lattice of closed sets is known as the rank » Dowling lattice of ®. In
[13] we studied the signed expansions of arbitrary graphs.

ExAMPLE 6.8. k-gon-Generated bias. Suppose we take the class # of
circles in I” generated under set sum by a fixed class 9, say all k-gons. Then
(I,4) is a gain-biased graph. Let #(£) be the binary vector space
generated by the edges and V' the vector subspace spanned by 2. Thus
#B=VnE). Let G be the additive group #(E)/V. The natural mapping
¢: E— ® is a gain mapping for the bias.

For instance, the class of triangle-generated circles is a linear class. So is
the class of circles that are generated by Hamiltonian circles.

ExampLE 6.9. Bias from matroids. Suppose I" is a graph and M is a
matroid on E. Let #={Ce®: C is dependent in M}. If every forest is
independent in M, and any connected subgraph with cyclomatic number
one whose sole.circle is independent is also independent, then £ is a linear
class.

Proof. If not, then I contains a theta subgraph that is the union of
dependent circles C and D but whose third circle is independent. Let
ee CnD. Then (Cu D)\{e} is dependent by circuit exchange but inde-
pendent by the hypothesis on M. ||

7. SEVEN DwaARVES: THE B1aseD K,’s

To illustrate our theory we examine K,. There are, up to isomorphism,
seven different biased graphs based on K,. All are gain biased and most are
also derivable from poise and antidirection bias. We call these examples
24K,), briefly Q,, for i=1,2, .., 7. Each Q(K,) is defined in Example 7.1
below.
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To show there are seven biasings of K, we study the balance of tri-
angles. If every triangle is balanced, so is the whole graph. (See Example
7.1.) If three triangles are balanced it is easy to deduce that the fourth is.
If only two are balanced, then the quadrilateral contained in their union is
balanced but that is the only balanced quadrilateral (Example 7.2). If just
one triangle is balanced, no quadrilateral can be balanced (Example 7.3).
If no triangle is balanced, any number of quadrilaterals can be balanced
(Examples 7.4-7.7).

To facilitate the analysis of the possible gain groups of each example we
switch so the edges at a particular node v, have the identity gain. We
let N(K,)={v,,0,,vs5,04}. If ¢ is a gain mapping, we let a=4(v,03),
b= ¢(v;v,), and ¢ = ¢(v,v,), where v,v, denotes an edge oriented, for gain
calculations, from v; to v;,.

ExaMpLE 7.1. The balanced graph Q,=[K,]. It is gain biased with
gains in any group, since a gain mapping is the constant function ¢=1.Up
to switching this is the only gain mapping (Lemma 5.3).

ExaMpLE 7.2. The biased union Q,=[4] e, where ec E(K,) and
A=K,\e. As a gain group we can take any nontrivial group; we let
#(fy=11if fe E(4) and ¢(e) # 1.

Exampii 7.3. Let the balanced triangle be v 0,050, so a=1.
Imbalance of the other three triangles implies that 1, b, ¢ must all be
different group elements. This is enough to make every quadrilateral
unbalanced. Therefore any group having order at least 3 can be a gain
group, but Z, cannot. This example is ;.

ExampLE 7.4. If no triangles are balanced but all quadrilaterals are, we
have the parity bias on K,. Since that is the bias derived from the all-
negative edge signing, this example may be called [ —K,]. Switching v,
gives signs ¢’(v;v;)= +and o¢'(v,v,)= —if i,j# 1. Now let ¢ be any gain
mapping for [ —K,] (switched so ¢(v,v,)=1) and ©® its gain group. The
imbalance of triangles entails a, b, c# 1 and ¢ #ab. From the balance of
quadrilaterals we obtain ab=1 and a=c¢=b5. Therefore a*=1, so ® can
only be a group containing Z,. The gain mapping is essentially unique in
the sense that it must switch to a composition yoo where o: E(K,) = Z,
maps every edge to the nonidentity element and y is a monomorphism
Z,— .

ExaMmpLE 7.5. If just two quadrilaterals and no triangles are balanced,
say v,0,030,0, and v;v,v,v;v, are the balanced quadrilaterals, then
a—'=b=c. The imbalance of the triangles entails ¢#1 and that of the
third quadrilateral implies @ ~'c # 1, that is, ¢* # 1. Therefore we may take
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To show there are seven biasings of K, we study the balance of tri-
angles. If every triangle is balanced, so is the whole graph. (See Example
7.1.) If three triangles are balanced it is easy to deduce that the fourth is.
If only two are balanced, then the quadrilateral contained in their union is
balanced but that is the only balanced quadrilateral (Example 7.2). If just
one triangle is balanced, no quadrilateral can be balanced (Example 7.3).
If no triangle is balanced, any number of quadrilaterals can be balanced
(Examples 7.4-7.7).

To facilitate the analysis of the possible gain groups of each example we
switch so the edges at a particular node v, have the identity gain. We
let N(K,)={vy,v,,05,0,}. If ¢ is a gain mapping, we let a=@(v,0;),
b= ¢(v3v,), and ¢ = ¢(v,v,), where v,v; denotes an edge oriented, for gain
calculations, from v; to v,.

ExaMpLE 7.1. The balanced graph Q,=[K,] It is gain biased with
gains in any group, since a gain mapping is the constant function ¢ = 1. Up
to switching this is the only gain mapping (Lemma 5.3).

ExampLE 7.2. The biased union Q,=[A4711e, where ec E(K,) and
A=K,\e. As a gain group we can take any nontrivial group; we let
$(f)=11if fe E(4) and ¢(e) # 1.

ExampLE 7.3. Let the balanced triangle be v,v,v5v;,, so a=1.
Imbalance of the other three triangles implies that 1, b, ¢ must all be
different group elements. This is enough to make every quadrilateral
unbalanced. Therefore any group having order at least 3 can be a gain
group, but Z, cannot. This example is Q5.

ExampLE 7.4. If no triangles are balanced but all quadrilaterals are, we
have the parity bias on K,. Since that is the bias derived from the all-
negative edge signing, this example may be called [ —K,]. Switching v,
gives signs ¢'(v,v;)= +and o'(v,v;)= —if i, j# 1. Now let ¢ be any gain
mapping for [ —K,] (switched so ¢(v,v;)=1) and ® its gain group. The
imbalance of triangles entails a, b, ¢c# 1 and ¢ # ab. From the balance of
quadrilaterals we obtain ab=1 and a=c=b. Therefore a*>=1, so ® can
only be a group containing Z,. The gain mapping is essentially unique in
the sense that it must switch to a composition yoo where ¢: E(K,) —> Z,
maps every edge to the nonidentity element and y is a monomorphism
Z,—®.

ExampLE 7.5. If just two quadrilaterals and no triangles are balanced,
say v,v,0;0,0, and v,v,04v;v; are the balanced quadrilaterals, then
a~'=b=c. The imbalance of the triangles entails ¢#1 and that of the
third quadrilateral implies @ ~'c # 1, that is, ¢? # 1. Therefore we may take
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for gain group any group containing an clement of order at least three, but
not any group of involutions.

ExampLE 7.6. If the only balanced circle is a quadrilateral, say

v, U,030,0, then we have [4] L {v,v;, 0,04} Where 4= K,\{v,03, v50,4}.

From the balanced quadrilateral we deduce « = b; then we need a, c#1 to
make the triangles unbalanced and ¢ «, « ' to make the other two quad-
rilaterals unbalanced. Consider a potential gain group. Clearly, it cannot be
Z, or Z,. If it has an element of order at least 4, take that to be a and let
c=a? If it has an element of order 2 or 3, take that to be 4 and let ¢ be
any element not a power of a. Thus, any group of four or more elements
can be a gain group for this example, but Z, and Z, cannot.

ExampLE 7.7. The contrabalanced graph (K,, &), in which every circle
is unbalanced. We deduce that a#1; b1, a~'; and c#1, a, b, ab. Tt
follows that a gain group requires at least four elements. If a group ® has
an element of order at least 4, let that be a, let b=gq, and let c=4>. If G

TABLE 7.1

The Biases of K, which Are Obtained from Gains, Poise,
Modular Poise, and Antidirection

Example

Type of bias 2, 2, 2, Q, Q Q2 0,

Gain group: {1} G X X X X X X
Z, G 6] X G X X X

Zy G G G X G X X

Z,x7, G. G G G X G X

Any other group G G G G G G G

Poise (mod M), 5< M <@ M M M X D D* D
Poise (mod 4) M M M M D M D
Poise {(mod 3) M D D X D X X
Poise (mod 2) M M X D X X X
Antidirection B B B X X D D

Note. Key to the first part: the bias is obtainable from: (G) gains in any group of the
specified kind, (G?) gains in a group having an involutory element, (G?) gains in a group
having a nonidentity element which is not an involution, (X) no gains in any group of the
specified kind. Key to the second part: the bias is obtainable from: (D) a digraph and also
from a strictly mixed graph (if poise) or strictly bidirected graph (if antidirection), (D*) a
digraph but not from any strictly mixed graph, (M) a mixed graph but not from a digraph,
(B) a bidirected graph but not from a digraph; or (X) it is not obtainable from any mixed
graph (if poise) or bidirected graph (if antidirection). (A mixed or bidirected graph is strict
if it is not a digraph. Poise (mod co) means nonmodular poise.)
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has an element of order 3, but is not Z;, let a be that element and b=a
and let ¢ be any element not a power of a. But suppose every nonidentity
element of ® has order 2. Then b cannot equal a, so 1, a, b, ab are four
distinct elements. For ¢ we need a fifth element. Therefore Z, x Z, is not a
possible gain group for (K,, &), but every other group of order four or
more is.

These results are summarized in Table 7.1.

The biases on K, that arise from poise, modular poise, and antidirection
are also displayed in Table 7.1. The proofs are easy. For instance, to find
out where to place D’s in the table one examines the three essentially dif-
ferent orientations of K,. (Converse orientations are equivalent because
they produce the same bias.) To handle mixed-graph poise modulo 2 and
3 one treats the directed edges as having gain 1 in Z, and Z;. We omit the
details.
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has an element of order 3, but is not Z,, let a be that element and b=a
and let ¢ be any element not a power of a. But suppose every nonidentity
element of & has order 2. Then b cannot equal a, so 1, a, b, ab are four
distinct elements. For ¢ we need a fifth element. Therefore Z, x Z, is not a
possible gain group for (K,, &J), but every other group of order four or
more is.

These results are summarized in Table 7.1.

The biases on K, that arise from poise, modular poise, and antidirection
are also displayed in Table 7.1. The proofs are easy. For instance, to find
out where to place D’s in the table one examines the three essentiaily dif-
ferent orientations of K,. (Converse orientations are equivalent because
they produce the same bias.) To handle mixed-graph poise modulo 2 and
3 one treats the directed edges as having gain 1 in Z, and Z,. We omit the
details.
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