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A biased graph £ consists of a graph I' and a class of circles in I" (edge sets of
simple, closed paths), called balanced, such that no theta subgraph contains exactly
two balanced circles. An edge set is balanced if (simplifying slightly) every circle in
it is balanced. Biased graphs generalize ordinary graphs, which behave like biased
graphs in which every circle is balanced. We define and study the chromatic,
dichromatic, and Whitney number polynomials of a biased graph. which generalize
those of an ordinary graph. We employ an algebraic definition since not all biased
graphs can be colored. We show that the polynomials enjoy many properties that
are familiar in ordinary graph theory, such as convolutional and partition expan-
sions, close connections with the bias and lift matroids of €2, and deletion—contrac-
tion invariance of the dichromatic polynomial. They also have the novel feature of
being reducible to more readily computable related polynomials that have no
analogs in ordinary graph theory. We apply our results to evaluate Whitney num-
bers and other invariants of the bias and lift matroids, to characterize the biased
graphs which have an unbalanced edge at every node and whose bias matroid is a
series—parallel network, and to calculate the invariants of some types of biased
graphs, such as those where no circle is balanced and some which are similar to
Dowling lattices and classical root systems. For the latter we also characterize
supersolvability, a matroid property which implies the characteristic polynomial
has positive integral roots. € 1995 Academic Press. Inc.

INTRODUCTION

In the coloring theory of ordinary graphs three polynomials naturally arise.
G. D. Birkhoff’s chromatic polynomial y ~(A) counts the proper colorings of
I' in 1 colors, when the value of 4 is a nonnegative integer. The dichromatic
polynomial Qr(u, v) is a modified generating function of all colorings in 4
colors by the number of improperly colored edges {both endpoints the
same color): if we normalize by defining @, (uv, v) = v"Q(u, v), where I
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has n nodes, then Q,(4, w—1)=3Y w*"" summed over all colorings f,
where I(f) is the set of improper edges. The Whitney number polynomial
i1s the generating function of A-colorings by connected components:
we(x, )= x" <UD where (K f)) is the number of components into
which the improper edges connect the n nodes.

These polynomials have interesting algebraic and combinatorial proper-
ties. They are invariant, depending only on the isomorphism type of I
They have algebraic formulas expressing them as sums of monomials
attached to edge subsets of I, and these formulas depend essentially only
on the polygon matroid (“cycle” or “graphic” matroid) of I"; thus they can
be used to study the matroid. They are “multiplicative”; the value on I is
the product of the values on the connected components of I". The dichro-
matic polynomial is “additive”: Q, = Q,\,+ @, if ¢ is a link (a nonloop
edge), where I"\e is I" with e deleted and /e is I" with e contracted to a
point, and it is (subject to a certain reservation) the most general additive
and multiplicative invariant, as Tutte has shown [19,20]—a result
generalized to matroids by Brylawski [2]. All three polynomials satisfy a
convolution identity of the form

Qr(A+uv)= Z Or x4 0) Qp pnxlp, v), (*)
XeN
where N is the node set of I" and I': X denotes the subgraph induced on
X (see [20, Eq.(14)]). Also, they have expansions in terms of partitions
of N and falling factorials (A1), =A(A—1)-.- (4 —k+ 1), in terms of chains
of node sets, and in terms of connected subgraphs.

All these properties generalize from ordinary to biased graphs. A biased
graph Q2 consists of an underlying graph I" and a linear subclass # of the
circles of I” (edge sets of simple, closed paths); that is, if the union of two
circles in 4 is a theta graph, then the third circle in the union belongs to
4. We call an edge set balanced if every circle in it belongs to # (and it
does not contain certain special edges—see Section 1). Biased graphs were
introduced in Part I of this series [33]. An ordinary graph can be treated
as a balanced biased graph. A biased graph is a combinatorial abstraction
of a gain graph, a graph whose edges are labelled by elements of a group.
If the group is the sign group we have a signed graph. We cannot define
coloring of biased graphs in general, but we can provide analogs of the
algebraic definitions of the chromatic, dichromatic, and Whitney number
polynomials, and they enjoy all the properties listed above. For instance,
they are essentially definable through the “bias matroid” of Q introduced
in Part II [34] and are closely related to invariants of the “lift matroid,”
also treated in Part II; each matroid generalizes in a different way the
ordinary graphic matroid. There is even an extension of coloring theory if
we restrict to gain graphs with finite group.
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Actually, a biased graph has not one but two versions of each polyno-
mial. One is defined by sums of monomials over all edge subsets; this one
gives us invariants of the bias and lift matroids but it is relatively hard to
compute. The other is defined by sums over balanced edge sets and is easier
to compute (sometimes very easy indeed, as in the case of Dowling lattices;
see Example 6.7). This leads to the really novel feature of biased-graph
invariant theory: the balanced expansion formulas by which one is enabled
to calculate the unrestricted polynomials in terms of the easier, balanced
ones. We have already exploited this phenomenon in studying examples of
signed graphs in [30] and plan to generalize that work to various kinds
of gain graphs and their associated geometric lattices in future articles
(of which [36] is a forerunner).

In this article we develop a wide variety of formulas. In part this is to
show how many properties of ordinary graph polynomials generalize to
biased graphs, in line with our belief that biased graphs are a natural
domain for doing much of graph theory. But we are also interested in
applications to geometry. Suppose, for instance, we dissect Euclidean space
by means of finitely many hyperplanes having equations of the forms x,=0
and x; = ax;. Then there is a biased graph that (through the bias matroid)
represents the intersection structure of the hyperplanes and by means of
whose Whitney number polynomial we can enumerate the cells of each
dimension formed by the dissection. This and other examples will be
treated in Part IV [35]. (For special cases see [27,31].)

An outline: After preliminary definitions (Section 1) we examine
invariants of biased graphs satisfying a key convolution property anal-
ogous to (*) above. Although our real interest is in biased graphs, indeed
mainly in gain graphs, we find it clearer and more natural to develop the
convolution theory for a further generalization we call a “two-ideal graph,”
of which a biased graph is a special type. This is done in Section 2. In
Section 3 we define the polynomials in which we are chiefly interested and
also certain convenient four-variable polynomials g, and ¢%, of which all
the polynomials of interest are evaluations. We also demonstrate that the
dichromatic polynomial (and its balanced counterpart) of a biased graph
is a universal additive and multiplicative invariant, as for ordinary graphs.
{We actually generalize slightly to “linear” invariants, since that is more
natural for the polynomials of greatest interest.) We apply linearity of the
normalized dichromatic polynomial in Section 4 to prove that in a gain
graph with finite gain group one has exact analogs of the coloring
interpretations of the chromatic, dichromatic, and Whitney number poly-
nomials of an ordinary graph. In Section 5 we show exactly how the
biased-graph polynomials permit one to calculate invariants of the bias and
lift matroids and the related complete lift matroid. These two sections are
intended to justify studying biased graphs and their polynomials, especially
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(for Section 5) in conjunction with the matroidal geometry to be discussed
in Part IV.

The heart of this paper is the first half of Section 6, in which by special-
izing the convolutions of Section 2 we reduce the computation of the
unrestricted polynomials to that of balanced ones. In most of the remaining
sections we apply convolution and balanced expansion to deduce various
kinds of identities. In Sections 9 and, particularly, 10 we employ our results
to obtain expressions for the Whitney numbers, and some other invarants,
of the matroids, especially the bias matroid. Then we give in Section 11 a
brief discussion of “full” biased graphs, in which every node carries an
unbalanced edge. By evaluating the beta invariant we characterize those
full graphs whose bias matroid is a series—parallel network.

We carry through most of the paper several examples (introduced in
Section 3) to illustrate the theory. Simple ones are a forest, a balanced
circle, an unbalanced circle, and a balanced complete graph. A more sub-
stantial example is an arbitrary contrabalanced graph, in which no circle is
balanced. Still more substantial is a family of gain graphs (and nongain
analogs) whose matroid lattices include Dowling’s lattices and two kinds
of generalizations; among these lattices are the intersection lattices of
arrangements of hyperplanes dual to the root systems B, and D,. These are
Examples 1 to 8 in Sections 3 through 10. (Although every example does
not appear in every section, each one keeps the same number throughout.)
We conclude with two last general examples in Section 12, briefly treated,
and in Section 13 all seven biased graphs based on K.

1. PRELIMINARIES

In this article, all graphs and matroids are finite. We assume some
acquaintance with matroid invariant theory as in [6, 23]. Although this is
Part III of a series, we include enough definitions that the reader will not
have to refer back to Parts I and II in order to understand the statements
of the results (with one exception involving contraction of a biased graph;
see Part 1). But in the proofs we assume familiarity with Parts I and II. We
define some new things: two-ideal graphs and (in Section 3) various poly-
nomials associated with a biased graph. In referring to earlier parts we
employ a prefixed Roman numeral in the style “Theorem I1.2.5.”

If N is a set, fT, is the set of partitions of N and I}, is that of partial
partitions of N, that is, partitions of subsets of N (including the empty set,
whose only partition is the null partition ¥). The support supp = of ne IT},
is the union of its blocks. We write n = # N, the cardinality of N, and 17,
for 11,

The falling factorial (A), is (A —1)---(A—k+1)if k>0and 1 if k=0.
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The Stirling numbers of the first and second kinds are denoted by s(n, k)
and S(m, k). We interpret them to be zero if £ >n or £ <0.

By I" we always mean a graph (N, E)} with node set N = N(I") and edge
set E=FE(I'). We always let n=#N. If XS N and ScE, we write
X“=N\X and S°= E\S. Edges are of four kinds: a /ink has two distinct
endpoints, a loop has two coincident endpoints, a half edge has one
endpoint, and a loose edge has no endpoints. We write w(e) for the multiset
of endpoints of an edge e. An ordinary graph has no half or loose edges. A
circle is the edge set of a simple closed walk of positive length. (A loose or
half edge cannot belong to a circle.) If X< N, I X is the subgraph induced
by X; it equals (X, E:X), where E:X consists of all edges, except loose
edges, having all their endpoints in X. We call X stable if EEX=. I
nellly,, I'n=\J) {(I""B): Ben}. By II(I') we mean the set of those ne T,
such that I':B is connected for each Ben. By ¢(I") we mean the number of
connected components of I, excluding loose edges, which we regard as
belonging to no component. (We should perhaps say “node component” to
exclude loose edges, but we omit the modifier because we need no other
concept of component.) For SS E, ¢(S) is the number of components of
the spanning subgraph (N, S). But if S<E:X, where X< N, then ¢(S)
means c(X, S). (The context will make clear which is meant.)

A particular graph is K,, the complete (simple) graph on n nodes.
Another is the n-node circle graph C,. If I' is an ordinary graph, I"* means
I" with a half edge at every node. The complement of a simple graph I’
is I'“.

A biased graph Q = (I, #) consists of a graph "= ||| and a linear sub-
class B = B(82) of the circles of I A subgraph or edge set in £ is called
balanced if every circle in it belongs to # and it contains no half edge. It
is contrabalanced if no circle in it belongs to # and it contains no loose
edge. We always let 2 denote a biased graph whose underlying graph is I';
thus € has n nodes, edge set E, ¢(Q) = ¢(I") components, etc. An unbiased
graph I” becomes biased if we declare every circle balanced; this biased
graph is denoted by [I"]. If @ is a biased graph, 2° means £ with a half
edge or unbalanced loop added at every node not already supporting one.
We call Q° full.

A generalization of a biased graph is a ¢tweo-ideal graph Q. This consists
of an underlying graph I'= ||| and two order ideals of edge sets,
Iy = F(82) and S, = £ () (that is, S < T € .4 implies S € .£), subject to the
following conditions: e S, < .4, {e} € 4 for each edge e and {/, .} € 4
for each loose edge /. (nontriviality conditions), and the multiplicative
property that, if S< E has all its connected components in .%, then Se.7.
We call an edge set balanced if it belongs to 4. A biased graph Q clearly
determines a two-ideal graph Q by letting S, = #(E) and .# consist of the
balanced edge sets in 2. Conversely,  determines # and, hence, Q. So we
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may regard a biased graph as a particular kind of two-ideal graph. We
know from the work of Dowling and Kelly [9] that a biased graph is
characterized as a two-ideal graph in which %, = 2(E) and .4, is a modular
ideal of sets: if S, Te# and (S)+c(T)=c(SUT)+c(SAT), then
SuTeld.

If Q is a two-ideal graph, for instance a biased graph, we write

7,(Q)={B< N: B is the node set of a balanced component of Q},
b(Q) = #n,(Q).

A subgraph (X, S), or an edge set S (regarded as a spanning subgraph),
supports a two-ideal structure ¥ by % (¥)={R< S: Re #}. Thus induced
subgraphs £:X and partition-induced subgraphs :x are defined on I": X or
I'z. By #:X we mean .%,(:X). Also, b(S) means the number of balanced
components of the two-ideal subgraph on (N, S). If e is a balanced edge of
Q, the contraction Q/e equals (I'/e, % /e, # /e), where SLje={S\e:Se S,
and ee S}. We do not define other contractions of two-ideal graphs.

Suppose that a biased graph €2 is the union of subgraphs @2, and Q,. We
call Q their disjoint union (written Q= Q, v Q,) if they are disjoint, their
one-point union at a node v (written @ = 2, U, Q,) if their intersection con-
sists only of the node v. These definitions apply equally well to unbiased
graphs. For two-ideal graphs we must specify more. A two-ideal graph Q
is the disjoint union of ; and Q, if Q| =|Q,| v |Q,] and #(Q)=
{S,US,:8,€4(R,) and S, € £(Q,)} for i=0, 1. (The one-point union is
similar, but we do not need it.)

An isomorphism of graphs I'| and I', is a mapping f: N,V E, >N,V E,
such that f|y, and f|z are bijections to N, and E,, respectively, and for
each edge ec £, we have f(set of endpoints of e with multiplicity ) = the set
of endpoints of f(e) with multiplicity. (We always assume N and E are
disjoint sets.) An isomorphism of two-ideal graphs £, and £, is an
isomorphism f: I} — I, under which f(S) e I.(,) if and only if S€7.(£2,).

2. MULTIPLICATIVE FUNCTIONS OF Two-IDEAL GRAPHS

Let O be a hereditary class of two-ideal graphs; that is, ¢ is nonempty
and any subgraph of a member of ¢’ is again in ¢. A function on @ is an
invariant on O if it takes the same value on isomorphic graphs. A function
F from @ to a commutative ring with unity .« is multiplicative if F(Zf)#0
and

Q) =FQ,) F(Q,)
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whenever 2 € @ is the disjoint union of £, and €2,. Since we do not forbid
Q, or Q, to be the null graph, the subring generated by the values of a
multiplicative invariant F has multiplicative identity element F({7).

A function of pairs on O is a function f(£2, S) defined for all pairs (€2, S),
where Qe and Se S(Q). It is invariant if it takes the same value on
isomorphic pairs, where (£2,, S;) and (£2,, S,) are considered isomorphic if
there is an isomorphism of 2, with £, under which S, corresponds with
S,. A function from pairs into a commutative ring is multiplicative if

[, 8)=f(Q,, SNE,) f(Q,, SN E;)

whenever Q € 0 is the disjoint union of Q, and Q,. Observe that f{F, &)
is the identity in the subring generated by the image of a multiplicative
invariant f of pairs. Given a function f of pairs, let

f@:0=7Y f(Q,8)i  for i=0,1.

Se .S
Evidently, f; and f, are invariant if f is invariant and multiplicative if f is
multiplicative.

Let f be a multiplicative invariant of pairs on ¢, a hereditary class of
two-ideal graphs. If @ =Q, v Q,, obviously

(5 1) = F(Q5 1) fi(Q,; 2) (2.1)

for i=0, 1. Let 1 denote the two-ideal graph consisting of just a loose
edge /.. Then

F(Q; A =[fl,, {l}) +11% fAQ\E..; ) (2.2)

for i=0, 1, if Q has ¢, loose edges and E_ is the set of loose edges.
Now suppose that £ has no loose edges. Then

F: =Y fUW;A—p) f (W ) (2.3)

WeN

for i=0, 1. (This formula does not require f to be invariant.) To prove
(2.3) we evaluate f,(2; 1). It equals

Y Y SQW,SW) f(QWE, S WYL —p) eyt *e

Se Sf;i oS m(S)
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where W =supp w,

=3 Y SW,SHA-w) Y WS, S,) ",

WeN Siesf: W Sre S WS

which is the right-hand side of (2.3).
Observe that, if 4 =0 in (2.3), then W need only range over node subsets
for which W°¢ belongs to

UQ)={Z<=N:b(Q:Z)=0}.

Incidentally, f, satisfies a convolution identity as well. To prove this,
simply look at the two-ideal graph Q' on ||| in which £{ = ¢ =4 and
apply (2.3). (The same trick, with £, =.#{ =4, derives (2.3) for i=1 from
the mixed convolution, where /=0. Thus we may regard the latter as
fundamental.)

Equation (2.3) is best understood in terms of the incidence algebra of the
set of induced subgraphs of £ or, equivalently, of 2(N). (For the incidence
algebra of a partially ordered set see [16, Section 3]. I am indebted to
Richard Stanley for suggesting its use.) The incidence algebra, call it
IA(N), consists of all functions a: #(N)x #(N) — o such that a(X, Y)=0
if X' ¢ Y. Its multiplication is by convolution:

(ax )X, Y)= 3 ofX, W) (W, Y)

XeWwes

The Kronecker delta §(X, Y) is the multiplicative identity. An ae IA(N)
also multiplies a function F: Z(N)— o on the right or left:

(ax FY(X)= ) olX, W)F(W),
Wax

(Fra)(Y)= Y FW)a«W,Y)

weY

Given a fixed two-ideal graph , we define functions a4(4): #(N) — o and
o, (A) e IA(N) by

ag( (W) = fo(SuW; 4),

SQ(Y\X); ) if XcY,

a(A)X, Y)= {0 if XgvY.
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Then (2.3) becomes a pair of product rules:

ao(A) =0, (A —pt) * ao(p) = oo p) * &y (4 —p), (2.4a)
a(A) = oy (A —p) * ay(p). (2.4b)

In particular, o, (2)*=a,(kd) if k=1,2,3,.; o« (0)=d=a,(4)% and
ay(A) o ( —A) =a,(0) =4, whence a;(4) ' =a,(—4). Thus {a,(A): Ae .} is
a one-parameter subgroup of IA(N)* which is a homomorphic image
of /.

3. INVARIANTS OF BIASED GRAPHS

The main objects of our study are certain polynomials associated with a
biased graph Q. The most general is the four-variable polynomial

golw, x, 2, v)= Y Y W * Ryt = B(R) J0(S)), #(S\R)
R ScE

which we call the polychromatic polynomial (briefly, polychromial) of .
The balanced polychromatic polynomial is

q?)(w, X, 2’ v) = ZZ w#Rxn—htR)AhlS)v#(S\R).
ReScE
balanced
The (balanced) polychromial of an unbiased graph I is defined to be that
of [ I'], with similar definitions for other polynomials.

All our polynomials occur in pairs, an unrestricted (or “unbalanced”)
one and a balanced one. In order to combine parallel definitions and
statements about them we employ a bracket shorthand. For example, we
define the [balanced] dichromatic polynomial to be

QE)b](”’ v)= Z ublS)U#s7n+h(S);
ScE
[balacnoed]

this defines two polynomials, Q, and Q%, where Q, equals the sum
without the bracketed restriction to balanced sets S and Q% equals the sum
over balanced S. The dichromatic polynomials Q, and Q% generalize the
dichromatic polynomial of an ordinary graph I', which equals Q,(u, v).
(This was defined by Tutte [20] and studied earlier by Whitney [24, 25]
in terms of the coefficients m,, of the terms u'v/.) It is more convenient for
us to work with the normalized [ balanced] dichromatic polynomial

04 v)=gBU0, x, A v) =0"QP . 0) = Y, AW,

ScE
[ balanced ]
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where A =uv (a convention we preserve throughout this paper). Here the
value of x is immaterial. There are other evaluations of g that reduce to
Q.. For example,

gt (w, 1, 4, v) = QLPY(A, w + ). (3.1a)

Thus if x =1, w and v are essentially equivalent variables. This trick will be
of use in many places. Other examples are

_ 1 )
qg(w,x,1,v)=x"(v+l)#EQQ<;,vil>, (3.1b)

which will be of great help in Theorem 6.1 and Example 8.5, and

~ A
g w, x, 2,0)=x"QL (;, w>. (3.1¢)
Also,
g w, x, Av)= Y wHRxrMRQIN(A, v) (3.1d)
[bzﬁa%:lid]

and, as a special case of some interest in Example 8.5,

golw, x, 1, =1)=w*Ex" — 06 (3.1e)
Still another formula of this type is (3.9) below.
Other polynomials are gL>l(w, x, 4, —1), which we call the [zero-free
or balanced] coloration generating polynomial because of its role in
Theorem 4.1, the [ balanced] chromatic polynomial

XE)b](j') = Q—g[')b](ﬁ-s - 1 )’
and the [balanced] Whitney number polynomial
wr})b](x’ Aﬂ') = q})b]( ls X, ;“a - 1 )

The [balanced] Whitney numbers of Q (of the first kind) are the coefficients
of the latter polynomials. The simply indexed number wt®!() is the coef-
ficient of A"~/ in y{PN4). The doubly indexed number wi*1(Q) is the
coefficient of x‘A"~/ in wll(x, ). It will follow from Theorem 5.1 that
the simply indexed numbers are zero if 2 has a loose edge or balanced
loop, and otherwise w{1(£2)=w[>1(2); also that (—1)/~'wl*1(2)>0 if
0<i<j<n—b(Q) (for wy) or <n—c(Q) (for wy). The simply indexed

Whitney numbers of the second kind of Q are W*1(Q2)=wiPY(Q).
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In applications the most important polynomials are the balanced
and unbalanced chromatic, dichromatic, and Whitney number polyno-
mials. Each is a specialization of the coloration generating polynomial
qtol(w, x, 4, —1). This would therefore be sufficient for our needs. Further-
more, its unbalanced version is usually much easier to evaluate than
the full polychromial, as we shall see in Theorem 6.1 and elsewhere.
Nevertheless we do not restrict ourselves to v= —1. One reason is the
convenience of the evaluation QLPI(4, v) =¢!®)(0, x, 4, v); another is that,
especially in doing balanced polynomials, there is rarely much to be gained
by holding v= — 1. Philosophically, moreover, since the —1 in the colora-
tion generating polynomial is inescapable, we get more satisfactory (as well
as stronger) results by letting it be a variable v. Whether or not the
polychromial will turn out to be significant in its own right is not yet
possible to say.

A multiplicative invariant of biased graphs, or of pairs (Q, S), where Q2 is
a biased graph and S < E(Q), is a multiplicative invariant F, or f, as in
Section 2 on (?=the class of biased graphs. Since edge contractions of
biased graphs exist, we can define two more properties of a function F from
biased graphs to a commutative ring. We call F linear if

F(2)=aoF(Q\e) + fF(Q/e) (3.2)

for every edge e, and balance-linear if (3.2) holds for every balanced edge
e, where « and B are constants connected with F. We call F strongly
balance-linear if it is balance-linear and F(£2) is unaffected by deleting the
unbalanced edges from 2. We want to classify all invariants of biased
graphs that are linear (or, strongly balance-linear) and multiplicative.

But first we observe how by an appropriate choice of function f of pairs
(Q, S) we can make f, and f, be the unbalanced and balanced versions of
the normalized or unnormalized dichromatic polynomial, the Whitney
number polynomial, etc. We get

QLA v) = f(Q: 4) if flR,8)=0*° (3.3)

(where by Q!®) = f, we mean to abbreviate Q= f, and Q°= f,),

Oy, v)= fi(Q ) if f(Q,S)y=v*5", (3.4)
RN =fAQ: ) i f(2,8)=(-1)*S. (3.5)

In these cases f([/,. ], {/..})=v, v, and —1, respectively, where [/, ] is the
graph of a loose edge. We also get

gPlow, x, A, 0)=f(Q;4)  if flQ;8)= Y wHRynHRyp#S\R(36)

RS
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with f([1. ], {{.})=v+w+1; and
wiPl(x, )= f(2;4) if w=1 and v=—1 in the preceding, (3.7)

with f([/.], {I.}) =1

THEOREM 3.1. Oy(4, v) is a linear, multiplicative invariant of biased
graphs. Q%(A,v) is a strongly balance-linear, multiplicative invariant of
biased graphs. In both cases a =1 and f=v.

Proof. Multiplicative invariance follows from (3.3). For linearity we
split the defining sum in half:

Q_Ezb](}“’ p) = Z FLEINE Z JESU el #S
S< E\e S E\e
[ balanced ] [{Su {e} balanced ]

The former sum equals QX1(4, v). To handle the latter we observe that, by
Lemma 1.4.3, bo(Su {e}) = by, (S). Therefore, the second sum equals

b ‘e N ~ -
Y e = Gl o |

S < E(§2/e)
[ balanced ]

COROLLARY 3.2. Q, and QB are multiplicative invariants of biased
graphs. If Q is a biased graph, then Q,, satisfies (3.2) for e a link or unbalan-
ced edge and QF, satisfies (3.2) for e a link, in both cases with a=f=1.

COROLLARY 3.3. For an edge e in a biased graph Q we have

sz('{)z}(g\e(/l)_)(n/e(i),
WD) = [w(Q2\e)| + |w, _(Q/e)],

and if e is balanced,

X?)( A)= X?z\e(’“ - X?}/p(;l)’
Iw2(2)| = [w(2\e)| + [wy _,(Q/e)].

Now we come to the main results. An arbitrary balance-linear, multi-
plicative invariant F of biased graphs is determined by «, f, and its values
on the one-node graphs 4,, having p half edges and ¢ unbalanced
loops, where p, ¢ = 0. If F is linear, it is determined by a, 8, and F(K,).
If F(£2) is strongly balance-linear it is also determined by the same three
quantities.
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THEOREM 34. Let F be a linear, multiplicative invariant of biased graphs
with values in an integral domain and with linearity constants a and B in
(3.2). Assume that F is not identically zero. If « #£0, then

F(Q)=a*E0Q (4, Bla),

where A=F(K|). We have a+B=F({1_]) and ia+ f=FK3). If a=0,
then F(Q)=A*PB*E where i = F(K,). We have = F([e]), where [e] is
any one-edge biased graph except for the graph of a balanced loop.

THEOREM 3.5. Let F be a strongly balance-linear, multiplicative invariant
of biased graphs with values in an integral domain and with linearity
constants « and f. Assume that F is not identically zero. Define A= F(K)).
If « #£0, then

F(2)=a*EQ% 0, /o).

We have a+ = F([1,.]) and A(la+ B)=F([K;]). If =0, then f=1 and
F(R2)=A“Y; or B=0 and F(Q)=0, except for F(Z)=1 and F(K)=1"; or
else B=F([l.]) and F(2)=0 if n>0, but F(Q)=B*F if n=0.

Proofs. Ifa#0, then the function G(Q2)=a*“Q (4, f/x) or a**Q5( 4, /)
agrees with F on K|, is a multiplicative invariant, and is linear or strongly
balance-linear with the same linearity constants as F. Therefore, F=G.

If x =0 in Theorem 3.4, a similar argument succeeds.

If a=0 in Theorem 3.5, we evaluate § by considering a biased graph Q
with underlying graph 3K,, having parallel edges e, f, g and the one
balanced digon {e, f}. Then F(Q)=BF(Q/e)= p*F(Q/ef)=p*F(K,), since
Q/ef i1s the graph of an unbalanced loop. On the other hand, F(Q)=
BF(2/g)=BF(K,), since §2/g is one node supporting two unbalanced
loops. If F(K,)#0, then =0 or f=1. If =0, then F(2)=0 if 2 has an
edge and F(2)= F(K,)" if 2 has no edges. If f =1, then F()= F(K )",
If (K,)=0, then F(Q2)=0if n>0 and F(Q2)=8*Fif n=0. It is clear that
each of these cases yields a valid invariant. I

The most important case of each theorem is a = 1, since that is the value
associated with the dichromatic and chromatic polynomials. We treat o # 1
as well in order not to be too arbitrarily specialized in defining linearity. If
a#0, 1, we may think of S/« as calculated in the field of quotients of the
integral domain in which F takes values. Then we may reduce to the case
a=1 by scaling F to a*£F(Q), which satisfies (3.2) with constants o’ =1,
B’ = B/a. This explains in terms of the principal case « =1 the forms of the
invariants. The case « =0 is included for completeness.
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COROLLARY 3.6. A function F on biased graphs is a multiplicative and
linear (respectively, strongly balance-linear) invariant of biased graphs whose
value on a loose edge (equivalently, provided a0, on a balanced loop)
is zero if, and only if, F(Q)=a*Ey,(F(K,)) (respectively, F(Q)=
o Ex D(F(K ).

A simple case of (3.2) is
F(2)=F(Q2\e) + F(2/e). (3.8)

We call F additive if it satisfies (3.8) for each link and unbalanced edge. We
call F balance-additive if it satisfies (3.8) for each link and strongly balance-
additive if, furthermore, F() is unaltered by deletion from Q of the
unbalanced edges. Corollary 3.2 says that Q. is a multiplicative and
additive invariant; also, Qb is multiplicative and strongly balance-additive.
Both invariants also have the property that converting a balanced loop in
2 to a loose edge does not affect their values. There are converses to these
statements.

THEOREM 3.7. Let F be a multiplicative and additive (or, strongly
balance-additive) invariant of biased graphs, such that if Q has a balanced
loop e and £, is the same but with e changed to a loose edge then
F(Q)=F(Q,). Then F is the evaluation of Qu(4,v) (or, Q%(4,v)) in which
A=F(K,) and v = F(loose edge) — 1.

Proof. Clearly, F is determined by its values on K, X}, and [/_],
according to the same rules as is the [ balanced ] dichromatic polynomial.
The theorem follows. |

Theorem 3.7 is weaker than Theorems 3.4 and 3.5 insofar as the
hypothesis of additivity is stronger than that of linearity (since it has no
adjustable constants « and f). Note that additivity does not require every
edge to satisfy the additive equation; on the other hand, we are forced in
the theorem to assume that balanced loops and loose edges are equivalent.
We state Theorem 3.7 because it is customary in ordinary graph theory
(and matroid theory) to treat additive rather than linear invariants.

Although the polychromatic polynomials are not linear, they do have
multiplicative properties which can be valuable in computations.

PrROPOSITION 3.8. Suppose that Q=,9Q,. Then qo=qq,qq,, and
90=190,90,

Proof. These are special cases of Eq. (2.1). |

PROPOSITION 3.9. Suppose that Q=Q, U, RQ,. Then q3=1""9% 4%, If
Q, or 2, is balanced, then also q,=1""qg qq,.
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Proof. Foraset SCE, let S,=5SnE, and S,=5n E,. The key point
in proving both formulas is the observation that b(S)=5(S,)+ b(S,)—1
if §; or S, is balanced. To prove this, let S:B, and S;:B;,, be the
components of S and of €,|S; in which v lies. The components of .S are
those of 2,18, and ©,|S,, in the same state of balance, except that
S:By=S,:B,yu S,:B,,, which is balanced if and only if both S,:B,, are
balanced. |1

PropoSITION 3.10. Let 2, be a biased graph and let Q be 2, with ¢
balanced loops andjor loose edges adjoined. We have

giow, x, 4, v) = (w+ v+ 1)* g (w, x, 1, v),
wil(x, 1) =wll(x, 1),

22I(2) = 05 L A).

Another useful formula expresses the polychromial in terms of the
dichromatic polynomials of subgraphs:

1w
g iw, x, L, vy=x" Y. OD% (— >/1"‘S’U*S (3.9)
SSE v
[ balanced ]

This is a stronger form of (3.1b) in that A need not be 1, but the expression
is correspondingly less simple. Specializing to the Whitney number polyno-
mial gives the interesting formula

W};’](x, /1)= Z ( )#Sib(S)x X[b] (,Xil) (310)
[b;lgl;;ncEed]

Equation (3.9) enables us to compute some simple examples.

EXAMPLE 3.1 (Forests). Let F, ,, denote a forest of order n with m edges
and, consequently, ¢ =n—m components (all balanced, of course, so we
are really talking about an ordinary forest graph). Directly from the
definition we have

QR4 0)=A"""(A+v)™.
Substitution in (3.9) yields
g, x, A, 0) =A"TM(A+ v+ wx)"

This example is continued in Sections 4, 5, and 6.

SR2b16471-3
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ExampLE 3.2 (Balanced circles). Here we have
Ol (4, ) =(A+v)"+v"(A-1),
qE'}]"](w, X, A0 =(A+v+wx)"+(A—1D(v+wx)"+ iw'x" (1 —x)

for n > 1. The former is a standard result, easily proved by induction on n
using deletion and contraction. The latter follows from (3.9). We also have

Wi (o, A) = (x + A— 1)+ (A— D)(x = 1) — Ax" " '(x = 1),

For more on this example see Sections 4, 5, and 6.

ExaMpLE 3.3 (Unbalanced circles). The formulas

Q:)C"‘Q)('{v U) = (j' + U)" - vn:
Qe v) =(A+0)",
q‘(’q’g)(w, x, A, v)=(A+v+wx)"—(v+wx)",

9ico, (W5 X, 4, 0) = (A + v+ wx)",

valid for n> 1, are established as follows: the first by deducting from Q. ,
the term Av” corresponding to S = E(C,), the second by adding to the first
the term v" corresponding to S = E(C,) (now unbalanced), the fourth from
the second by (3.9) and the observation that #S=n—5b(S) for all
S<c E(C,, &), and the third by then subtracting the term for S= E(C,,).
We then obtain

Wi, on(% A)=(A+x—1)"—(x—1)"= Q0 (4 x—1),
Wie,on(% A)=(A+x—1)"= 0, g{d x—1).

{The coincidence of the Whitney-number and normalized dichromatic
polynomials is due to the fact that the bias matroid (Section S5) of (C,,, &)
is a free matroid. The same holds true in Example 3.1.)

This example continues in Sections 4-7, 9, and 10.

ExaMPLE 3.4 (Example 1.6.2) (Contrabalanced graphs). This example is
(I, &). For convenience we here take I" to be an ordinary graph. The
balanced sets are the edge sets of spanning forests. Let f;(I") be the number
of i-tree spanning forests and #(7”) the number of tree components in I
(Note that fo(I")=0if N+ & and f,(I")=1 if N= J.) Some invariants of
(I, &) were calculated in [31], but there our main interest was in the
lattice of flats of the bias matroid; so there is much left to be done here.
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The definition of the balanced polychromial implies that

‘I?r.g)(W, x, A, v)=Y Awx+v)y" ' f(T),

i=0
because H(R)=c(R) =n— # R when R is a forest. Consequently,

n

Q?r,g)(u, v) = Z uifi(r),
i=0
in which v does not appear at all (because Lat®(I, &¥) is an ideal in a
Boolean algebra; see Section 5).
This example demonstrates well that the unbalanced polychromial may
be evaluated from its definition only with difficulty. Anticipating
Theorem 6.1, we have the formula

#* W
Qrgw,x, o)=Y Y (A-1)(wx+o)*" !

WeN i=0

X fi(T:W)y x* ¥ (p+ 1) *EPS

w4 o+ 1\ *EFAD
( v+1 )

E () () e

2

Zo Wwe

v+ 1

and, more simply,

# W
dir.onw, x, 4, —1)= Z Z (A—1) (wx —1)*%—
WeN i=0

x f;(]" W) W#E:Wrx#ﬂ"—l(l‘:w");

hence, for instance,

W
ng,(l, v)= Z (v+ 1y#*EW Z (l—l)iv*w_’f,(F:W),

Wa N i=0
W _ ‘
Wing(X, A= Y, x#*WTHIWYY () #W I G 1) f(TW).
WeN i=0

Furthermore,

n

XA =2 (=1 f(ry Al

i=0
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and, again anticipating Theorem 6.1,

Xiro(d)=Y (A=1)" Y (=D*" i f(Irw).
i=0 WeN
W< stable
One of the more interesting contrabalanced examples is (K, &), the
contrabalanced complete graph. Since # W=m implies that KW =K,
and «(K,:W)=4,,,_,, we have, for instance,

dxoW. X, b —1)= YT <”> W3

O<ism<n m
X fi( K )wx — 1)~ (A—1)*

n—1

—n{x—1) Z Sil K, _wx —1)" (A —1)

Pi=

It is worthwhile recalling the formula of Rényi ([15]; see [14,
Theorem 4.1]):

£ W _lji o (m—),
f"“”‘(f)" ,.go( 2> (1')““) W

Alas, this evaluation leads to no simplification of the contrabalanced
formulas.

We continue Example 3.4 in Sections 4-7, 9, and 10.

ExXAMPLE 3.5 (Balanced complete graphs). In Section 8 we shall derive
formulas for polynomials of K, (i.e, [K,])} for reference in Examples 3.7
and 6.7 and Section 13.

ExaMpPLE 3.6 (Example 1.6.7) (Group expansions). The expansion ®4 of
an ordinary graph 4 by a group ®, or more briefly the G-expansion of A,
is the gain graph (see Section 4) with gain group ® whose node set is N(A)
and whose edge set is ® x £(4). An edge (g, e) has the same endpoints as
e and has gain g. More precisely, one arbitrarily chooses an orientation
{e; v, w) of e and defines the gain of (g, ¢; v, w) as g; thus the gain of the
reversed edge (g, e;w,v) will be g='. (On the other hand, the edge
(g7 ', e;v,w) is a different edge of ®4 if g g~'; its gain is g~' in the
direction from v to w, g from w to v.) The full ®-expansion of 4 is (G4)".
For simplicity we shall write N = N(4), n= # N(4), ge for (g, ), and G4"
for (®4)". Intermediate between G4 and ®A" are the partially filled
®-expansions G4, where H < N, which consist of B4 and a half edge
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(or unbalanced loop) at each node ve H. We shall lose no essential
generality by supposing henceforth that A is simple.

The fundamental fact about a group expansion is that any balanced edge
set S in ®4 is obtained by taking 7 < E(4) and assigning balanced gains
to 7. The number of ways to put balanced gains on T is y" <", where
y= #®. Thus,

qu(w, X, j., U)= Z lb(S] Z W#Rxn—b(R)U#(S\R)
S balanced RS
- Z Ac'(T)yn—c(T) Z W#Rxn—c(R)v#lT\R)’
T< E(4) ReT

whence the fundamental formula

A
g5, (w, x, 2, v)=y"g, (w,x,;,v). (3.11)

This means that the balanced polynomials of a group expansion are
determined in a trivial way by those of 4. For instance,

Xt()fm('l) =y"x4(A]7).

(For a nice combinatorial proof see Example 4.6.) It is notable that the
polynomials of a group expansion are independent of the structure of the
group, as Dowling first discovered in connection with Dowling lattices [ 8].
Of course, the balanced polynomials of &4 equal those of B4.
A variety of other examples based on a group and a graph and not
dissimilar to group expansions are treated in [36].

For further treatment of group expansions see Sections 4-6 and 10.
EXAMPLE 3.7 ( Dowling lattices and their relatives). These lattices, to be
defined in Example 5.7, are based on the gain graph @ =G®K'”, that is,

®GK' " where # H=p. To illustrate the balanced polynomials, we have
{from Example 3.6)

W n 2’
o3 =7 (;) A=) G Tn =117,
since y (A)=(4),, and
w’g‘)K"(x’ l) = y"W'K,, <X’ §>'

(For wg_ see Example 8.5.)

These examples will be further developed in Sections 4-6 and 10.
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ExAMPLE 3.8 (Biased expansions). Example 3.6 has a combinatorial
generalization. A y-fold biased expansion of an ordinary graph 4, which we
write 2=1y-4, has node set N=N(d4), edge set E=[y]x E(4) with
endpoint mapping @, 4, e)=w,(e), and balanced circle class # to be
described in a moment. Let p: y- 4 — A be the natural projection. A /ift of
S' € E(A) is any S< E such that p|s is a bijection onto S'. # may be any
class of circles such that (i) no circle of the form {(i, ), (j, e)} is balanced,
(ii) for each circle C'e%(4), edge e C’, and lift P of C’'\e, there is a
balanced lift C of C’ which contains P; and (iii) & satisfies the theta-graph
requirement of biased graphs.

Biased expansions include the biased graphs [ 4] of group expansions
but also nongroup expansions of some base graphs 4. For instance, every
quasigroup of order y, or equivalently, every Latin square of order y, gives
rise to a y-K,;, which is a group expansion—and, indeed, has a gain
function at all—if and only if the quasigroup is isotopic to a group—that
is, the Latin square is, up to rearranging rows and columns, a group multi-
plication table. A similar construction applies to C, with n>4. On the
other hand, Kahn and Kung have proved that a biased expansion of X, for
nz=4 must be a group expansion. (See the argument of [12, Section 7,
pp- 490-4927.) It is not known exactly which graphs have a nongroup
biased expansion.

Our concern here is with the invariants of biased expansions (and in
Section 6 their supersolvability). It suffices to say that all formulas and all
proofs we give for group expansions, except those which explicitly involve
coloring, remain valid for biased expansions. The only point that needs a
separate proof is that the number of balanced lifts S of T'c E(d) equals
y" ~ <7 Any such lift S is obtained by lifting a maximal forest in 7 to, say,
Fc E and taking S= p~'(T)nbcl(F), which is balanced by Proposition
L3.1.

For additional remarks on biased expansions see Examples 5.8 and 6.8.

4. GAIN GrRAPH COLORING

A gain graph @ consists of a graph I', a gain group ®, and a gain
mapping, a function ¢: E— & from the oriented edges of I into ® (but
undefined on half and loose edges) such that (e ')=¢(e) ', where e '
denotes e with reversed orientation. We call ¢(e) the gain of e. We consider
only finite gain graphs and groups, letting y= #®. A gain graph deter-
mines a biased graph [@]=(I, Z(®)} by the rule: a circle is balanced
when the product of its edge gains taken in cyclic order equals 1, the group
identity. To keep the notation simple we write G(@), y (1), etc., instead of
the more precise G([ D]), x[»3(4), etc.
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One can define coloring of gain graphs so as to generalize ordinary
graph coloring (where y =1); then standard counting theorems generalize
as well. This was shown in [29] for signed graphs (where y=2) and
indicated therein for general gain graphs.

For a nonnegative integer & let [k]={l,2,..,k}, so that #[k]=k.
Define

Cr=[k]x®, C,=Cru{0}.

A coloring of & in k colors is a mapping f: N— C.; it is a zero-free
coloring if it maps into C;*. An edge is improper or satisfied under f if it
is a loose edge or a balanced loop, a half edge or an unbalanced loop at
a node whose color is 0, or a link ¢ whose endpoints v and w are colored
so that either

flv)= f(w)=0, or f(v)=(i,a) and f(w)= (i, aple)),

where @(e) is computed with e oriented from v to w. The set of improper
edges of f is denoted by I(f). A coloring is proper if it has no improper
edges. Note that I(f) is closed in G(®) and is balanced if f'is zero-free.

LeMMA 4.1.  Let f be a coloring of ®@ and let T< I( f). Assume that every
edge in each balanced component of T has gain 1. Let fr be the function on
n,(T) defined by fr (V)= f(v) for ve Veny(T). Then f is a well-defined
coloring of ®T, zero-free if f is, and I f+) = {fI\T.

Proof. In an unbalanced component of /( /), every node is colored 0 by
/- Hence, this holds true in any unbalanced component of 7. In a balanced
component of 7, all nodes have the same color. Therefore £ is well defined.
If f was zero-free, so is f; also, {(f) and, therefore, T are balanced.

Consider an edge e of @/T. If e is a loose edge, either it was loose in @
or its nodes were colored 0. Hence e is improper both for fand f;. If e 1s
a balanced loop, in @ it was a balanced loop or a link with gain 1 inside
a balanced component of 7. Thus it is improper for fand for f;. If e is a
half edge at V, it was a half edge at v in @ or it was a link vw with f(w)=0.
It is improper for f < f(v)=0< f(V)=0<> it is improper for f. If e is
a link VW in @/T, it was a link vw in @ with ve V' and we W; also, both
Vand Wen,(T). The gain of e is the same in &/T as in @. Evidently e is
improper for f; precisely when it is improper for f. |

THEOREM 4.2. Let @ be a gain graph with no loose edges and let k be a
nonnegative integer. Then the number of proper colorings of @ in k colors
equals y4(yk+ 1) and the number of zero-free proper colorings equals

x5 (7k).
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Proof. We give a proof by induction on the number of links in &. We
may assume that @ has no balanced loops or balanced digons. Let p(®) be
the number of proper colorings and let p*(®) be the number that are
zero-free.

If @ has no links, let i be the number of isolated nodes. Then
xo(A) =24 —1)""" and y5(4) = 4", directly from the definitions. On the
other hand, p(®)=(yk+ 1) (yk)*~' and p*(®)=(yk)". So the theorem is
verified.

Now let @ have a link e with endpoints » and w. Assume that the
theorem is correct for every gain graph with fewer links than &. We may
assume by adequate switching that e has gain 1. Every proper (zero-free)
coloring of @ is obviously proper for @\e. We consider a (zero-free)
coloring f of @ which is proper on @ \e. If it is proper for &, it is counted
in p(®) (or, p*(®)). But if it is improper for @, then I{f)={e} and, by
Lemma 4.1, we have a proper (zero-free) coloring f, of @/e derived from f.
A different coloring g, proper on @\e and improper on e, vields g, # f..
Contrariwise, given A that properly colors @/e (and is zero-free) there is a
unique (zero-free) coloring f of @ for which I( /) = {e} and £, = A. It follows
that

p(P\e)=p(P)+ p(Dle),  p*(D\e)=p*(P)+ p*(Ple).

Since these are, by Corollary 3.3, the same relationships satisfied by the
unbalanced and balanced chromatic polynomials, the theorem is valid for
@ by the induction hypothesis. [

A proof of this theorem by Mdbius inversion, for the case y =2, appears
in [29, Section 2.4]. That method also works for general y.

THEOREM 4.3. Let @ be a gain graph. For k=0, 1, 2, ... we have

Y w0y PN = g (w, x, ki + 1, — 1),
-
Z w#l(f)xn~h(l(f)):qgj(w, X, yk,—l),

[ zero-free
where [ ranges over colorings of @ in k colors.

Proof. For a fixed set T< E, the coefficient of w*7x” =% on the left is
the number of (zero-free) colorings f for which I(f)=T; on the right it is
Xreyr(vk+1) (or )(‘[’d,] ,r(7k)). (The latter assertion may be derived easily;
or see Eq. (8.1b) with v = —1.) We may assume, switching as necessary,
that all edges in balanced components of 7 have gain 1. We know from
Theorem 1.5.4 that [@]/T=[®/T]. Therefore, the coefficient on the right
is the number of proper (zero-free) colorings of @/T. By Lemma 4.1 this
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number equals the number of (zero-free) colorings of @ whose set of
improper edges is 7. Thus we have the theorem. |}

COROLLARY 4.4. The generating functions of k-colorings and zero-free
k-colorings of @ by the number of improper edges are

Tw* = 0plrk +1,w—1),
s

Z w#l(f):Q“;(yk’ w—1).

f zero-free

These formulas generalize Tutte’s formula [19, Theorem X] for an
ordinary (in effect, a balanced) graph, in which y = 1. They can be read in
reverse as giving a combinatorial interpretation of Q4(4, v) or Q%(4, v) for
certain values of A, by setting w=14v.

It is particularly interesting to set k=1. Then we are, in effect, talking
about functions from N to & U {0} (assuming that 0 ¢ &), or equivalently,
partial functions from N to ®. (A partial function on N is a function whose
domain is a subset of N.) We may think of these as partial group-colorings
of @. Given a partial function /2 N — ®, call an edge improper or satisfied
if either no endpoint is in the domain of £, or both ends are and (if the edge
is e:vw) f(w) = f(v) p(e). (Thus a loose edge is always satisfied. A half edge
e:v is satisfied only if v¢ dom f) Let i(f) be the number of satisfied edges.
Then we have the generating functions

0516, )= (1+v)", (4.1)
!
summed over functions fon N, and
0,16+ 1,0)=Y (1 +0)"", (4.2)
7
summed over partial functions.
COROLLARY 4.5. The generating functions of k-colorings and zero-free

k-colorings by the number of balanced components of the improper edge
set are

3 xR = (x, vk + 1),
!
Y xnO < b (x k),

[ zero-free
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This corollary generalizes a result that is implicit in [29, Section 2],
which concerns signed graphs (y =2).

EXAMPLE 4.1 (Forests). Here any group ® can be the gain group and
any labelling ¢: E — ® can be the gain mapping. We apply (4.1) and (4.2).
Extracting the coefficient of w' in Q% (y,w—1)and Qf (y+1,w—1), we
find that F, ,, has (") y" " "(y— 1)” =" node G-colorings in which exactly i
edges are satisfied and (7)(y+ 1)"~" y” " such partial colorings.

EXAMPLE 4.2 (Balanced circles). Again any gain group is possible but
the gain function is slightly constrained by the need for balance. From (4.1)
and (4.2) we see that [C,] has (7) [(y—1)"""+(—=1)"""(y—~1)] group-
colorings with exactly i satisfied edges and (%) [y" "'+ (—1)"""y] such
partial colorings. To get the number of (partial) group-colorings whose
satisfied edges form b components in the domain of the coloring, replace i
by n—5 and, if =0 or 1, respectively deduct or add y (or, y+ 1) for
group-colorings (partial group-colorings). This follows from Corollary 4.5
with k=1 and Example 3.2.

ExaMPLE 4.3 (Unbalanced circles). Any nontrivial gain group is possible.
(C,, &) has (?)[(y—1)""'—(—1)"""] group-colorings with just / satisfied
edges and (7)y" ' such partial colorings. Counted by the number b of
components of satisfied edges in the domain of the coloring, there are
(N[ (y—1)"—(—1)"] group-colorings and (/) y* partial group-colorings.

EXAMPLE 4.4 (Contrabalanced graphs). A gain function that works well
for contrabalance i1s @(¢) = e with gain group ® equal to the direct sum of
groups Z e, each isomorphic to the g-element cyclic group, for any fixed
g =2. (This gain is taken from [31, p. 495], where g was chosen to be 2.)
Thus y=g*% One could shrink the group slightly by setting ¢ =1 on a
maximal forest and omitting its edges from the direct sum.

Given a gain group & of order y, the number of group-colorings with
exactly k satisfied edges is

= n—k—i n—i i
> (—1) )y
=0

the number of similar partial colorings equals

# W
2 Z (_1)#W‘i7k—#E:W‘

WaeN i=0

( #W—i

. #E:W(>f,~(F:W) Y,
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since this is the coefficient of w* in Q. g\(y+ 1, w—1). The Whitney
number polynomials show that the number of group-colorings whose
satisfied edges form b balanced components is 32_,(72}) f(I)'; the
number of such partial colorings is

Z #Z:W(__l)bmi—l(E:W‘)

We N i=0

#W—i 4
(W)
(b—i—z(E:W“))f’( )y
ExAMPLE 4.6 (Group expansions). A good illustration of the use of
coloring is a simple combinatorial proof of the formula

A
Koald)=7"24 <;> (43)

proved algebraically in Example 3.6. To evaluate y% (1) we set A=ky and
count zero-free proper colorings of 4 in k colors. No two nodes which
are adjacent in 4 can be colored by the same number because they are
adjacent by every possible gain: if we colored f(v) = (i, &) and f(w)={(i, ),
then the edge (x '8, e,.,), whose gain is « '8 in the direction from » to w,
would be improper. On the other hand, if two nodes have different color
numbers i and j, no edge between them can be satisfied. Therefore we
obtain a proper coloring of G4 by coloring 4 properly with the color set
[k], which is possible in y (k) ways, and assigning an arbitrary group
element to each node, which can be done in y” ways. So x§ (ky) =" 4(k).
Since this is a polynomial equation valid for all nonnegative integers k, it
is an identity; consequently we have proved (4.3).

Similar reasoning suffices to prove (3.11) combinatorically in the case
v=—1.

ExaMpLE 4.7 (Dowling lattices and their relatives). Let us employ
coloring to obtain the chromatic polynomial of & = GK”’ without relying
on any formulas except Theorem 4.2. We use the color set C,, so A=
|Ci] =1+ yk. Because each two distinct nodes are joined by edges of every
possible gain, none of the numerical colors 0, 1, .., k can be used twice.
That is, no two nodes can have colors with the same numerical part
(counting 0 as the numerical part of the group-labelled color 0). Once this
condition is satisfied, the group part of the color of a node can be anything.
There is one other restriction on proper coloring: 0 cannot color a node
which supports an unbalanced edge.

Now let us color @. Let H be the set of nodes supporting unbalanced
edges. First, let us use the color 0. It can be assigned to any node not in
H, so there are n— |H|=n— p ways to assign 0. Then to each remaining
node we assign a distinct number from 1 to k—there are (k), _, ways to
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do so—and an arbitrary group element—there are 3" ' ways to do that.
So there are (n— p)(k),_, y"~! ways to color using 0. But if we do not use
0, we assign distinct numbers from 1 to k and arbitrary group elements to
all nodes: there are (k), y" ways to do so.

The total number of proper colorings is thus (n—p)(k),_,y" "'+
(k), y". Eliminating & in favor of A =ky + 1, we deduce that

"

A—1

X¢(/1)=7""< ) [(A-(n—1)}y—1)—p]. (4.4)

An algebraic proof of the same formula appears, with a discussion of the
integrality of the roots, in Example 6.7.

5. THE MATROID CONNECTION

We can express several invariants of the bias, lift, and complete lift
matroids of a biased graph in terms of polynomials of the graph. (These
matroids were introduced in Part Il and are characterized by their rank
functions later in this section.) First we define the relevant matroid
polynomials.

Let M be a matroid on the ground set E. We denote by Lat M the set
of flats (closed sets) of M, by rk =rk,, the rank function, and by clos the
closure operator. An ideal in M is a nonempty subset .# of 2(FE) such that
ScTe.# implies that Se.# and clos Te £ If Se.f we set #/S=
{T\S:Te.# and T=2S}. Let Lat # =4 nLat M. Let r=rk M. The rank
generating polynomial is

RM,.;«(U,U): Z y Tk Sy S —1kS
Sef

It is convenient for us to normalize this to

R’M_J(/L U) = erM..f(u’ v): Z )\'r—rksv#s,

Se.f

where as usual A =uv. The (normalized)} double rank generating polynomial
is

Rt (W, %, 4, 0)= 3 wPEX™ER,p o p( 4, 0)
Re.s

_ ZZ w,#erkRir——rkSv#(S\R).
Rc Sesf



BIASED GRAPHS. ITI. INVARIANTS 43

The characteristic polynomial is

pM,J(l)z Z u(s, S) AT

Selats

where 4 is the Mobius function in Lat .# (or Lat M) supplemented by
taking u(R, S)=0 if R is not closed but S is. By the Boolean expansion
formula for u (a special case of [ 22, Eq. (15)]; see [ 32, Proposition 7.1.4]),

Pr.s(A) =Ry, ,(4, —1). The Whitney number polynomial is

W (X, A)= Z x'kRpM/R_J/R(A)=%M_J(1, x, A, —1).
Re s

The doubly indexed Whitney numbers (of the first kind) of # are
w,;(F) =coefficient of x4~/ in w,, ,(x, 2). The simply indexed Whitney
numbers are (the first kind) w,(.#) = coefficient of "~/ in p,, ,(A) and (the
second kind) W,(.#) = w (¥ ) = the number of rank-; flats in .#. We should
point out that

wi(#)= LY uRS)
R,Selats
rkR=irtkS=j

The polynomials and Whitney numbers of M itself are those of
J =P(E); we write R ,,, w, (M), etc. In particular, the Mdbius invariant of
M is

M) =p(D, E)=w. (M)

We note that the Tutte polynomial of M, t,,(x, y), equals R,,(x~1, y—1)
[5]. Crapo’s invariant S(M) is (—1)*™~1(d/d) p,.(1); it is nonnegative
[4].

The bias matroid G(Q) of a biased graph Q can be defined as follows: its
points are the edges of Q and the rank of an edge set Sis rk; S=n—b(S).
The lift matroid L(2) has the same points; its rank function is
tk; S=n—¢(8) if S is balanced, n+1—¢(S) if not. The complete lift
matroid Ly(€) has for points the edges and an extra point e, which is not
in Q; the rank rk, S agrees with that in L(Q) if SSE and equals
n+1—c¢(S) if ege S. (All this is taken from Part I1.) The polygon matroid
G(I') of an unbiased graph I is defined to be G([7]); its rank function 1s
rk,S=n—¢(S) if § has no half edges. If I" has no half or loose edges, this
is the usual polygon (or “cycle,” or “graphic”) matroid. Note that a
balanced edge set has the same rank in all four matroids. An unbalanced
edge set has rk,; S=1+r1k, S, provided S contains no half edges. Calling
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a set SSEu{e,} balanced if it is a balanced edge set (so that ey ¢ S), we
define
Lat® Q= {Se Lat G(Q2): S is balanced}
={SeLat L(Q): S is balanced }
= {SeLat Ly(2): S is balanced}.
THEOREM 5.1. Let Q be a biased graph. For the bias matroid G(2) we
have
Rgan(w, x, A, 0) =1~ g (w, x, 4, )
and similar formulas obtained by substitution or denormalizing, for instance,
Reiaf4 v)= 27" 0a(4, v),
R\ v) =u~"DQg(u, v),
WX, A) = A" w(x, 1),
Paa(A) = A7 Dy o(2).

Proof. The second formula is immediate from the definitions and the
rank function in G(£2). The first is similarly immediate, since G()/T=
G(Q/T) by Theorem I11.2.5. |}

The normalization factor is explained by the fact that the lowest power
of A or u appearing in the matroid polynomials is the zeroth while in the
graph polynomials it is the A(Q)th.

THEOREM 5.2. Let Q be a biased graph with no half edges, having under-
lying graph ||Q|| = I". For the lift matroid L(Q2) we have, if 2 is unbalanced,

A DRy a(w, x, 2, v) =(A—1) g4(w, x, 4, v) + xq (W, x, 4, v)

—(x-1) Z W#erkSQr/s(l; v)
batanced

and other formulas derived from this, such as
A'C(r]'%L(Q)(wy X, )., - 1) = ()' - 1) q?z(W, X, A-a - 1 ) +x‘Ir(W, xa A’s _1)

—(x—1) Z W#AxrkAXr/A(l)a

AelLlatl”
balanced

ADR )4, v) =(A—=1) Q5(4, v) + O r(4, v),
Praf Ay =27 "{(A=1) x5 +xr (1)}
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For the complete lift matroid Ly(Q) we have
Ar(r)'%Lo(ﬂ)(w’ X, j’s U) = ()' - ])qlf))(w’ X, )'7 U) + (W +v+ I)X‘Ir(wa X, Av U)

—(v+1)(x-1) Z W#erkSQr/s(la v)

ScE
balanced

and derived formulas such as
A DR (W, x, A, — 1) =(A—1) g5 (w, x, A, — 1) + wxq (w, x, A, — 1),
A DRy 4, 0)=(A—1) Qg(4, v)+(v+1) @r(4,v),
Praa(A) =A7A=1) x3(4),
B(Ly(2)) = (—1)" "7 xg(1).

Proof. We prove the first formula of each group; the others follow by
substituting w=0, v= —1, and A=1 in the appropriate places. In the first
part, let L= L(2). We have

'%L(Wv x, /1, U)= Z w#erkS Z lrkL—rkTv#(T\S)
=25
balanced balanced

+ z w#erkS Z ArkL—rkLTU#ir\S)
N T=5

balanced unbalanced

+ Z w#erkLS Z ArkL—‘rkLTv#(T\S)
S

T=S
unbalanced

= A1 Mgg(w, x, 2, v)

+ l—-c([‘) Z w#erkS {QF/S(L U) — z )l"_rk TU#(T\S)}
S

T=S
balanced balanced
+A7 M T wASSQ(A v),

S unbalanced

which reduces to the desired expression.

To prove the first formula for the complete lift we treat the extra point
e, as an extra unbalanced loop at some node of 2. We let 2,=Q v {e,}
and Io=TIu{ey}, so that c(Ig)=c(I') and Ly(R2)=L(RQ,), and we
calculate A°7V% o, in terms of Q. In the first term, g% =¢5. In the
second term, g, = (w+v + 1) g, because e, is a loop in I';,. As for the third
term, e, is a loop in I,/S; consequently, Qr,,s=(v+ 1) Q. This gives
the result. J
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Note that the formulas for L{Q) do not give the correct results if 2 is
balanced or has half edges. We get the right answers in the latter case by
treating half edges as if they were unbalanced loops. If Q is balanced,
L(£2)=G(I') so biased-graph formulas are superfluous.

THEOREM 5.3. Let # ={S<E: S is balanced} be the ideal of balanced
sets in a biased graph Q. Then

go(w, x, A, v) =" DR 0 (W, x, A, 0)=AD IR, o (W, x, 4, D).
This also equals 2% 'R, o, ,(w, x, A, v) if Q is unbalanced. In particular,
Xlz)('{) — AMQ)P(;(Q)'J(/{) - 1(-(!J)~ lpLO(.r)),J(A)’

and this equals 1V~ 'p, o (X) if Q is unbalanced.

Proof. Similar to that of Theorem 5.1. |

COROLLARY 5.4. The Whitney numbers satisfy w;(G(Q))=w;(2) and
wi () =wi(Q), where F is the ideal of balanced sets.

Theorem 5.1 implies by standard matroid theory that

Oolx—1Ly—-1)=(x— 1)[)(9) t(;(g)(x’ »)

but that is not all we can say about Tutte polynomials. Define the balanced
Tutte polynomial of Q to be

t}’)(x, y)= Z xH T)ye( )
T

where T ranges over maximal forests of Q and i(7) and e(T) are the
number of edges in clos 7 which are, respectively, internally and externally
active with respect to a fixed linear ordering of E. (See [2, Section 6; 5,
Section 4; or 23, p. 271, Exercise 2] for the necessary definitions.)

THEOREM 5.5. We have
O%(x—1,p—1)=(x=1DD13(x, y).

Proof. This is a special case of a general matroid theorem. The Turte
polynomial of a matroid M with a modular ideal # of sets is

L a(x, y)= Z XA T,
T
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where T ranges over semibases (maximal independent sets 7 whose closure
lies in .#) and i T) and e(T) are the internal and external activities of T in
its own closure, with respect to an arbitrary linear ordering of the elements
of M. Then

Ry (x—1Ly—=1)=(x—1)t, ,(x, ) (5.1

One can prove (5.1) by induction on the number of elements, using a
deletion—contraction recurrence in the usual fashion (as in the proof of
Theorems 3.4 and 3.5 for a #0 or that of Theorem 4.2). Theorem 5.5 then
follows from Theorem 5.3 and Eq. (5.1) with M = Ly(2). |

The definition of geometric semilattices, due to [21], implies a corre-
sponding definition of “semimatroids,” related to the former as matroids
are to geometric lattices. Then ¢,, , is the Tutte polynomial of the semi-
matroid on E corresponding to Lat® Q, just as ¢,, is that of G(£2).

ExampPLE 5.1 (Forests). Since a forest has no circles, G(F,,, )=
L(F,,)=the free matroid U,, on m points and LyF,,)=the free
matroid on m+ 1 points, U, . 1,41

ExXAMPLE 5.2 (Balanced circles). G([ C,])= L([ C,]) = the circuit matroid
on n points, that is, the uniform matroid U, ,_, of size n and rank n— 1.
L[C,H=U,,_,®U,,, in which e, is an isthmus.

ExaMrPLE 5.3 (Unbalanced circles). G(C,, &)=L(C,, &)=U,, and
LO(Cn’ ®)= Un+1,n'

ExaMPLE 54 (Contrabalanced graphs). G(I', J) is the bicircular
matroid of I' [ 13, 17]. In it the rank of an edge set §'is n— #(S). S is inde-
pendent if every component is a tree or a tree with one added edge which
forms an unbalanced circle. (Remember, we assume that I” is ordinary.) It
is a balanced flat if it is the edge set of a forest. Other cryptomorphic
descriptions of the bias matroid can be found in [31, Theorem 1].

In Lo(7I, &), S has rank #S if it is a forest; otherwise its rank is
n—c(S\eg) + 1. It is independent if it is a forest or a forest with one extra
element, either e, or an edge forming an unbalanced circle. It is a flat in
LI, &) if it is either a forest, or else a flat of G(I") together with e,. In
L(T, (&), rank and independence are the same as in Ly(/, (J); a flat is a
forest or a flat of G(I").

The thing to note now about the invariants is that

wi(l, @) =(-1)/"" @ Ja i)

582b'64/1-4
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This is clear from Corollary 54 and the fact that u(F', F/)=(—1)/""if
F'c F/, where F* denotes a k-edge spanning forest.

We computed the chromatic polynomials in Example 3.4 (using
Theorem 6.1). Thus we have

— (I

pG(I‘.Q)()")Z;L X(I".@)(;")!

Prir oA =(A=1) Y (=)= f(r) A=<,
i=0

and, provided that I is not a forest,
PurgfAy=A"" {(i—l) Y (=) fuUn) }»’+Xr()»)}-
i=0

ExXAMPLE 5.6 (Group expansions). The results here and in Example 3.6
of course imply that the various polynomials of the bias, lift, and complete
lift matroids of a group expansion ®4'”' are computable from the polyno-
mials of 4. In Example 6.6 we first use the machinery of Section 6 to
calculate the unrestricted polynomials of group expansions and then the
results of this section to evaluate polynomials of the three matroids.

This is the place to mention that, when ® is the trivial group {1}, then
G(GA'™)y=G(A4 +,,v,), where 4 +,, v, means 4 with a new node v, joined
by an edge to each node in A but no other node. (This is rather obvious.
A proof appears in [28, Section 7A].) Furthermore, L(®4)= G(4) and
Ly(®A4)=G(A4) B e,, where ¢, is a point of rank 1. Thus when y =1 we are
really dealing with ordinary graphs and their polygon matroids.

ExaMPLE 5.7 (Dowling lattices and their relatives). The Dowling lattices
of a group ® are the lattices Q! = Q[(®) = Lat G(GK ;) for n> 0. Dowling
introduced them in [8] in a nongraphic definition, abstracting and
generalizing the geometrical development of [7]. (But he has told me he
was aware of the graphic approach, which is clearly equivalent to his.) By
analogy we call Q!  =Lat G(®K!”) a near-Dowling lattice and Q%=
Lat L(®K,) and Q} = Lat Ly(®K,) =~ Lat L(®K ) the incomplete and com-
plete Dowling lift lattices. Dowling computed the characteristic polynomials
and both kinds of simply indexed Whitney numbers of his lattices. Using
the results of this section we can easily do the same for all related lattices.
The results are in Examples 4.7, 6.7, and 10.7.

When #G =2, Q! is the lattice of subspaces generated by the root
system B, or C, (or the dual arrangement of hyperplanes), Q! , is that of
D, (or its dual), and the Q] , are those of intermediate systems.
Lat G(G4'%} is the lattice of what in [27] was called a “sign-symmetric”
root-system subarrangement.
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We should mention that in the case that y=1, Q] is isomorphic to the
partition lattice 77, ,.

ExaMPLE 5.8 (Biased expansions). As Dowling noted [8, pp. 78-79],
letting & in Example 5.7 be a quasigroup gives a Dowling lattice Q}(®)
which need not be the Dowling lattice of a group. (Indeed, K, is a biased
expansion y - K;, where y = # ®, and every biased expansion y - K; arises in
this way.) Dowling also mentioned that when »n >4, ® must be isotopic to
a group for a lattice Q7(®) to be constructible. (This is because G X, does
not exist, a fact that is an immediate consequence of Kahn and Kung’s
calculation cited in Example 3.8.)

6. BALANCED ExPANSIONS, CHAIN SUMS, AND
OTHER CONVOLUTIONAL IDENTITIES

The fundamental formula of biased-graph polynomials is the convolution
identity (2.3), which takes the forms

qEIb](w’ 'x’ )" +lu’ U) = Z q?]:u"(w’ x’ )” U) q[Qb:g‘Vf("" X, .uv U) (613)

We N

and various specializations, for instance,

a2V A+m =Y xow(A) Dk n) (6.1b)

WeN

{There 1s also a convolution like (6.1), where all polynomials are unres-
tricted; see the remark on f,-convolution in Section 2.) By holding u
constant in the unbalanced version of (6.1) we obtain expressions for
unrestricted polynomials in terms of their balanced counterparts. The
most important such expressions are those in which x4 is chosen to make
g u(w, x, u, v) simple. That almost always means taking u = 1.

THeOREM 6.1 (First balanced expansion). For a biased graph  with no
loose edges we have

galw, x, A, v)="Y g%, (w, x, A=1,0) ggu(w,x,1,v) {6.2a)

We N

= Z q?z;w(wa x,A—1,v)

We N

X Z "’.#TX#W"—h(Tl(D_F1)#IE:W"')*#T (62b)
TS EWS
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= Z qz:w(w’x”{—lav)x#""(u+1)#lE:W")

W< N
W INFERND ) w
MR 2==1,—1, (.
L) e ) e

dolw, x, 2, —1)=Y % p(w, x, A—1, — 1) wHEWI# W b2 W) (6 9)
W N

and various specializations such as

Xe()=3%  x5w(i—1),
WaeiN
W@ stable

Q_'Q(A"‘, U) = Z Q?):W'()‘ - 17 U)(U + 1)#(53'4”),

WenN

wolx, A)="Y wh(x, A—1)x*W -b@w
WeN

Proof. In (6.1a) we set u = 1. That yields the first and second forms of
q,- For the third we simplify ¢, ,(w, x, 1, v) by means of (3.1b), apply
(6.2a) to Qg y(1/x, w/(v+1)) to get a sum over Z< W*, and simplify
Qawozdl, w/v+1)) by (3.1b).

The expression (6.2d) follows from (6.2a) and (3.1e). |

Combinatorial Proof (For chromatic polynomials of gain graphs). (This
proof, for the case y =2, appeared in [30, Theorem 1.1].) Suppose that
Q2 =[], where @ is a gain graph with finite gain group %. We count the
ways to color @ properly in k colors. Let A=ky + 1. First, some subset X
of N receives the color 0. Clearly, X can be any stable set. Then @:X° is
properly colored in k zero-free colors; there are y%, ,.(A—1) ways to do
that. It follows that

Xo(2)= Y xgxli—1),

XeN
stable

which is the formula of Theorem 6.1. Since it is a polynomial identity that
is true for infinitely many A (taking A=yk+ 1 and k=0, 1, 2, ...), it is true
for all values of 1. ||

The formula for g4(w, x, 4, —1), when & is a gain graph whose
gain group is finite, has a similar proof. We omit the details. See [30,
Theorem 1.1] for the case w=1 and y=2.
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Theorem 6.1 generalizes the balanced expansion formulas for signed
graphs that are proved and employed in [30]. Note that in this and the
following theorem we must first eliminate loose edges by means of Proposi-
tion 3.10.

Other balanced expansions can be generated by choosing other values of
4 in (2.3). An interesting one is obtained by taking u =0.

THEOREM 6.2 (Second balanced expansion). For a biased graph Q with
no loose edges we have

golw,x, A,v)= Y gb(w, x, 4, 0)ggudw, x,0,0) (6.3a)
B2 W0

= Z q?);W(w’ x; i9 U)
We N
(R WH=0

x YT wESx#HHS KIS (63p)

and such evaluations as
Xald)= Z X5 (A) u(G(Q:W)),
oy

QoA v)=) O%(4,v) ) v,

W T EWe
B(T) =0
# W

Wolx, A) =Y wou(x, 2) Y, x'W, ,u(Q:W),
w r=0

in all of which the range of W is all W< N such that b(2:W°)=0.

Proof. We rely for the chromatic polynomial on the conclusion from
Theorem 5.1 that

w(G@) if b(R)=0,

w,(2)=yo(0)= {0 otherwise.

The proofs of the other formulas are routine. [}

The trouble with the second balanced expansion is the difficulty of
evaluating ¢, at A=0 in most situations. A pretty expression, although



52 THOMAS ZASLAVSKY

complicated by comparison with the first balanced expansion, is given in
Proposition 6.3. We state it and most other results in this section in the
generality of a two-ideal graph Q, assumed to have no loose edges, and a
multiplicative function f of pairs.

ProOPOSITION 6.3.  For a two-ideal graph §2 without loose edges,

p+1

A n Jid
Jumor= 3 fusxein ¥ -1y (77

XeN

)fl(ﬂtX;r),

where p can be any integer =|X|, such as p=n or p=|X|.

If f, is the polychromial of a biased graph, or an evaluation of it, then
7o(§2:X<; 1) can be simplified as in the proof of (6.2¢c).

We postpone the proof of Proposition 6.3 in order to prepare the ground
by a series of formulas leading to an explicit evaluation of (1) ™', where
a,(4) is the incidence-algebra function defined in Section 2. To begin,

iterating (2.3) yields the chain-sum formula

S+ - +4)= % [T /(ax,; %), (64)
F=Xpc ---=X,=N j=1
where A4X; is shorthand for X j\Xj_l and r>=1. We can, therefore, by
reversing (6.4) evaluate a sum over weakly ordered chains in #(N).
Sums over strictly ordered chains are harder. Let [r]={1,2,..,r}. We
have

Yy ﬂ Fu:ax; 1)

F=Xoc - cX,=N j=1

= 2 (—U"’“ﬁ(ﬂ;le>+(—1)’5(®,N), (6.5)

FAI=[r] JjeJ

where r >0 and (X, Y)=1 if X=7Y and 0 otherwise. To prove (6.5) we
use the incidence algebra, in which (6.4) is the equation a,(2,)*
o (Ay) x-- xa(A)y=a (A + 4,4+ -+ +4,) for r>0. Since a,(A)(X, X)=1,
we have

lay(A) =81 % [a(3)—31= 3, (=D "* [Ta(d)

Jer] jeJ
- 3 (—1)'*’a.(2 A,)+(—1)'a.
el [r] jeJ

This is the statement of (6.5) in the incidence algebra.
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Now we can invert a,(A). Since o,(A)(X, X) =1, we know that a,(4) !
exists. Equation (6.5) implies that [6 —a,(1)]7*'=0 in IA(N) if p>n.
Multiplying this out and multiplying by «,(4) ', we find that

2 1
)= 8 =1 (27 Naiar

r=

Applying convolution to a,(1)" and evaluating at (&, N), we get

o L4 1
A =3 (—1y (’” )f,m ), (66)

where p > n is arbitrary. This is the desired inversion.

Proof of Proposition 6.3. More generally, we prove that

@)= T QXA+ Y (- (”+ )fl(ﬂx righ  (67)

XN r=0

where, again, p is any number >|X]. Substituting (6.6) into (2.3) with
u=Ai+4, gives (6.7). Taking i=0, A=0, and A,=1, we have Proposi-
tion 6.3. |}

As examples of (6.7) we have, for a biased graph £ without loose edges,

X|+1
= Y3 xwu)z( (' I+ )xzz,{(r) (68)

XcsWeN r= r+ 1
W\ X stable

(where we expanded y,. (4 + 1) by Theorem 6.1) and, if 5(2)=0,

" 1
ue@n= ¥ Y% —)(”) b elr). (6.9)

XeN r=0
X ¢ stable

EXAMPLES 6.1 AND 6.2 (Forests and balanced circles). Because € is
balanced the first balanced expansion gives only more complicated for-
mulas than those we know from Examples 3.1 and 3.2. The second
balanced expansion reduces to g, =¢%, also already known.

ExaMPLE 6.3 (Unbalanced circles). Here also the balanced expansions
are no simpler than the formulas of Example 3.3, but we develop them
nonetheless as a simple illustration. To evaluate the first balanced expan-
sion of g, ), we should treat separately the cases W= N and W< N. The
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contribution of the first is q}’cn_g)(w, x, A—1, v), which was calculated in
Example 3.3. That of the second is (1 — 1) &™) (A —1+4wx +0)*5¥ x
(wx +v+ 1)*E% because W and W° both satisfy #X=5b(E:X)+ #E:X
(for one reason, since G(C,: X, (¥) is a free matroid). Combining these con-
tributions gives

q(C",g)(an X, A, U)

— Z (}L_ l)b(E:W) (l_ 14+wx+ v)*E:W(wx+ v+ 1)#E:W“_(wx + v)n.
We N
This is no great improvement on Example3.3 but it illustrates
Theorem 6.1. It specializes, for instance, to

X(C"‘Q](A) = Z (A— l)b(E:W) (1_2)#5::4/_(_1),.'
Wpt"sfa}lgle

In the second balanced expansion there are only two terms: W= N gives
q:’C”‘Q,)( w, x, 4, v) and W= (J contributes (after simplification and since T
can only equal E) (wx 4+ v)". Their sum is precisely the form of g,z in
Example 3.3.

EXAMPLE 6.4 (Contrabalanced graphs). Here balanced expansion comes
into its own. Recall that we employed Theorem 6.1 already in Example 3.4
to calculate g , o, and x(, - If I has no tree components, pg,. (1) =
Xir.o5(4) by Theorem 5.1 so that

WG, gN= Y (=)*¥f(r:w),
W‘s?a}lrle

where f, (I") denotes the total number of spanning forests in I, of no matter
how many edges. Thus Theorem 6.2 gives the rather complicated expression

# X°

XrgD)= Y% fALW) Y (=1)*X+#P=1 f(rxe) A,
i=0

W XN

in which X and W are restricted to node subsets for which #(7:X) =0 and
X\W is stable. Formulas (6.8) and (6.9) yield complicated expressions for
X oAy and u(G(I, ) that, after some algebra involving the identity
SUNIN=8U,j—DU-D'+ - £8(,0) 0! =1, simplify to the same
expressions just given.
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ExAMPLE 6.6 (Group expansions). (a) Invariants. The first balanced
expansions give nice expressions for the unrestricted polynomials of a
group expansion ® = G4, Some of the results (based upon Example 3.6)
are

2-_1 0 7y 7
q¢(w’, X, A’ U)= Z qd:W<w9x! y ,v>y#Wx#W(v+1))’|Eld).Wl+!H\W|

We N
N Z *25 <l—x w )
ZgW(y 4Z xy ,U+1

>

W o4 1\7 EDFNZL+ H\W L 2)]
< v+1 )

XolA)= % y*WxA;w(é———l),

HsWcSN Y
W€ stable in 4

Golht)= X 7" Gy (Fmo0) (o 1y o,

WeN

If y>2, then b(P:Z)=i,(4:Z), the number of isolated nodes of 4:2Z
which are not in H. Consequently, when y>2 the coloration generating
polynomial is

q{b(vv, X, A’ _1)

=¥ y*%, W(W ¥ -1 _1>wy|E(A):W‘|+|H\W1x#Wf—i,,(4:Wf)
M k] b bl .
WeN b4

This specializes to wg(x, 1) by setting w=1.

All these formulas translate directly into expressions for polynomials of
the bias matroids as explained in Theorem 5.1 or the remark following,
bearing in mind that 5(®)=1i,(4) and, in particular, b(®*) =0.

Some formulas become substantially simpler for the full group expansion
&= ®4". Notably, we have

Ai—1
p(;(dr)(l) =XolA)=7"x4 <T>’

. A—1
WG(d:-)(x’/l):Wda-(X, A= Z Y#WX#WWA:W <X, )

W< N Y
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For the polychromials of the lift and complete lift matroids we employ
Theorem 5.2. For this we must evaluate ¢,, where I'=||G4|. Let
y: E(I') - E(A4) be the projection map ge > e. Thus #y ~'(e) =y for every
edge of 4. Consequently,

Gr= ZZ )"('(S’)X"*t‘(R') Z Z w#Rv#lS\R)
R

RS cE4) =5
WIR)=R y(S)=S"

— Z Z Ar(S')xn—t'(R') H z Z wy#Rev#(Se\Re)

RcS eeR PR, =S.cy Ye)

<1 % e

eeS\R GcS.cye)

= A Ixn =R (W p 4 1) —(v+ 1) ]#F
RS

X [(v+1)7 = 1]*™
=g w+v+1) —(v+1), x4 (0+1) - 1).

The sum in the third term in the main formulas of Theorem 5.2 equals
g (wv” "1 xy, A, (v+ 1) —1). To prove this we observe first that, as usual,
S is obtained by assigning balanced gains to an S’ < E(4). There are y™5’
ways to do that. Then ¢(S)=¢(S'), #S= #S8’, and I/S is the same (up
to isomorphism) for all §; it consists of [[®(4/S')| with (y— 1) # S’ loops
attached. Therefore

Qr/s =@~ H*¥ Q_u@m/s‘)n =@ H*¥ Q‘A/S'(;Ls (v+1)"—1)
by the previous evaluation of g, applied to ||®(4/S’)|. The evaluation of

the sum follows routinely.
The result of all this is the formulas

A
ARy o= (A= 1) 1" (W’ By "’>

txg(wtv+ 1Y —(+1), x4 (o+1)—1)
—(x =1y g we" = xy, A, (v+ 1) = 1)

and
" Py H }'
A"(A)‘%Lo((ﬁd) = (;\,— 1) y qd (w,’ X, ;’ U>

+(wt+v+Dxg{(w+rv+ 1) —(v+ 1), x, 4 (v+1)'~1)
—(v+ D(x—D g wo’ " xp, A, (v+1)"—1).
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When v = —1 these simplify well. For example, the characteristic polyno-
mials are

A
PL((M)=’17£M) {(/1_ D) y"x4 (;) +XA(’1)}

if y=22 and E(4)# & (so that B4 is unbalanced) and

A
Pryessn= AT =1) Y4 <;>,

and for the Whitney number polynomials we get
—c(d) n A .
Wea(X A) =2 (A=1) y"w, | x, ; +xw4(x, 4)
—(x—=1) g4((=1Y"", x, 4, —1)},

bl
WiealX A) =A@ {(;{ —1)y"w, (x, ;) + xw 4(x, i)}-

(b) Integral roots and supersolvability. It follows from formulas in (a)
that, if the roots of x (1) are integers, so are those of y¢,.(4) = p;ea(4)
and p, 4(4), and if the former has nonnegative roots, so do the latter.
(Even the converse is true, since a rational root of a monic integral polyno-
mial is an integer.) One would also like to understand directly why the
characteristic polynomials of these bias and complete lift matroids have
integral roots and, in general, when one can expect integrality of the roots.
One property that implies integrality is supersolvability of the associated
matroid (or its lattice of flats). This property, introduced by Stanley [ 18]
for a matroid (or geometric lattice) means having a complete chain of
modular flats [18, Corollary 2.3]. Supersolvability implies a simple com-
binatorial interpretation of the roots of the characteristic polynomial {18,
Theorem 4.1] which in turn entails that they are positive integers. Stanley
noted that G(4) is supersolvable precisely when 4 is a chordal graph (also
called a “triangulated” or “rigid circuit” graph) [ 18, Proposition 2.8].
Dowling showed that all Dowling lattices Q%(n, n) are supersolvable and
Whittle in {26, Theorem 3.10] showed that, at the opposite extreme, the
near-Dowling lattice Q'(n, 0) is never supersolvable unless y=1, n <2, or
both n=3 and y=2. (Despite this, it has integral roots, as Whittle
observed and as we shall see in Example 6.7.) We can easly generalize these
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results to a characterization of all group expansions @ = ®4‘” which have
supersolvable bias, lift, or complete lift matroids.
A vertex of 4 is simplicial if its neighbors form a clique.

THEOREM 6.4. Assume that A is connected and y > 2. Then G(GA™) is
supersolvable if and only if A is chordal and either n <2, or H¢ is a stable
set of simplicial vertices, or y=2 and 4 =K, and H= (.

It suffices to assume that A is connected because G(Q2, v Q, w.-.)=
G(2,)DG(2,)® --- (Proposition 11.2.3) and a direct sum of matroids is
supersolvable just when all summands are. It is interesting that even in the
generality of Theorem 6.4 the only exception is the one noted already by
Whittle, since 0} , = Lat(®K,).

THEOREM 6.5. (a) Assuming that y=2, L(®4) is supersolvable if and
only if A is chordal.

(b) Assuming that y=2 and A has no isolated vertices, L{(®A4) is
supersolvable if and only if either n<2, or both y=2 and 4=Kj;.

The proofs depend on [3, Corollary 3.4 and Proposition 3.5] and the
explicit descriptions of copoints and lines in Theorems I1.2.1 and I1.3.1. We
omit the details, since a complete characterization of biased graphs whose
matroids are supersolvable will appear in [37].

ExaMPLE 6.7 (Dowling lattices and their relatives). Let us begin
with the near-Dowling lattices QF ,, p<n From Theorem 5.1 and
either Theorem 6.1 or Example 6.6 applied to & =G6GK!" we obtain
algebraic evaluations of the polynomials of these lattices. For instance, by
Theorem 5.1 pQZP(/l)=x¢(l), except that it =y,(A)/A if p=0 and »n or
y=1, and we have

A—1
Xo(A)=y" ! <T> [A-1+((n—p)—(n-1)y],
n—1

since yg(A)=(4),. (This formula appears implicitly in [27, Theorem 7]
for y =2, explicitly in [36], and independently, for p =0, in [26, p. 89].
For a combinatorial proof see Example 4.7. Hanlon, also working inde-
pendently, obtained a different proof for y =2 which raises interesting ques-
tions about possible generalizations, some of which are explored in the
final version of his work [11].)
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Assuming that y > 2, the coloration generating polynomial of @ is

n “_l
q(P(w" X, la ~_1): z quK/<w’a xaA y B '_1>

i=0
i
1! pyfh—Pp )'("271)+[17i
o ,g()(l)(l_l)w
B i-1
—(X— 1)(n_p) yn qK,,,l w, X, Ta—'l W,IJ’

where gy, can be found in Example 85. This comes directly from
Example 6.6 by summing separately over sets W of size / for each /=
0,1, ..,n and computing the number of such W with {Wn H| =i for all
possible i. Here i,{K,: W) =0, except that it is 1 if W = N\v, where v¢ H.
One obtains the normalized dichromatic polynomial by the evaluation

Q_d’('{’ U) =CI¢(U+ 1, 1, '{’ _1)

from (3.1a) and the Whitney number polynomial by setting w =1, noting
that wy (x, A) =gg(1, x, 4, —1) 1s relatively simple (Example 8.5). The
polynomials of the near-Dowling lattices Q] ,, by Theorem 5.1, equal the
corresponding ones of @ (that is, go =Ry , O,= RQ' s We=wgy , and

. .. . f np np np
X=X Qf-,p) with the trivial exception of Q7 ,.

The chromatic polynomial of ®K ”’ has the roots
Ll4+y, 142y, 1+(n=2)y, p+(n—1)(y—1)

if n 22, but just p if n=1; all are nonnegative integers. Consequently the
roots of the characteristic polynomial of Q] , are positive integers. This
property of the roots of QF was of course known already, since Dowling
found the roots; he even showed that Q! is supersolvable. Whittle then
showed that Q , is not supersolvable if n>3 (unless n=3 and y=2),
although, as he also noted, its roots are positive integers. A generalization,
apparently first noted independently by H. Terao and by P. Hanlon, is the

following corollary of Theorem 6.4.

COROLLARY 6.6. The near-Dowling lattice Q] » of a group © is super-
solvable if and only if p=norn—1,0r y=1,0r n<2, or n=3 and p=0
and y=2.

The near-Dowling lattices are therefore a large class of geometric lattices
having positive integral characteristic roots which are not accounted for by
supersolvability, larger than the class of Q) , noted by Whittle. We can,
however, account for them combinatorially by the coloring process of
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Example 4.7, in which the factor y"~H(A=1)/y), _,=(A—1}A—=1—9) -
(A—1—[n—2]y) appears naturally.

Now let us look at the Dowling hft lattices and their matroids. The
characteristic polynomials,

poi(A)=(A=1)(A—yNA—=2y) - (A—[n—1]y)
and, if y, n =2,
pos(A)=0UA-DA—-p)(A=2p) - (A=[n-11p)+(A-1),_,,

follow directly from Example 6.6. Crapo’s invariant of the complete
Dowling lift has the simple expression

AR =(y—D(2y—=1)---([n=17y=1).

The Whitney number polynomials are specializations of those given in
Example 6.6; the only real simplifications are that c(4) =¢(K,) =1 and w,
has a relatively simple formula (Example 8.5).

The roots of st(/l) are positive integers and indeed Q% is obviously
supersolvable because the sets & and A,=E: {vy, . v} u{ey} for i=
0,1,2,..,n where {v,,v,,..,0,} =N, form a complete chain of modular
flats (by [3, Corollary 3.4 and Proposition 3.5]). On the other hand, by
Theorem 6.5, Q% is supersolvable only when n<2, or y=1, or
{n, ¥)=1(3, 2). In all other cases there is not even a modular copoint. What
is more, it seems impossible that the roots of p Qa(/l) can all be integers or
even real numbers in most cases. (They are integers if # =3, but they are
not all real if n=4 and y>0.)

ExXAMPLE 6.8 (Biased expansions). All the results of Examples 6.6 and
6.7 remain true of biased expansions y-4, including the identities, the
integrality properties of roots of chromatic and characteristic polynomials,
and the supersolvability theorems, because all these depend only on the
combinatorial properties of y-4 and not on any group structure. Of
course, in Example 6.7 there are nongroup expansions y - K,, only for n=3.

7. PARTITION IDENTITIES

By adapting chain formulas like (6.4) we get formulas involving sums
over partitions. Again in this section we assume that the two-ideal graph Q
has no loose edges.
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THEOREM 7.1. Let Q be a two-ideal graph without loose edges and let [
be a multiplicative function of pairs, with value ring </ a field of charac-
teristic zero, which is defined on all subgraphs of §. Then

H@udy="F (A) u fi( Qi ).
nelly

Proof. In (64) let A, =..-=4,=u Let n=n(X, X;,...X,)=
{4X;: 4X,;# &}. Then 7 is a partition of N into at most r parts. On the
other hand, given n and r, a weakly ordered chain (X, X, .., X,) can be
reconstructed by labelling the blocks of = with distinct numbers from 1 to
r. There are (r) ,, ways of doing so. Thus a particular z e ITy occurs (r) .,
times as a chain-induced partition n(X,, X, ..., X,). This proves the
proposition when A=r. Since it is a polynomial equation valid for all
positive integral 4, it is a polynomial identity. ||

COROLLARY 7.2. Let Q and f be as in Theorem 7.1. Then

A=Y (D) g HlQm 1),

rnelly

ol )= Y (2) . [i(im; 1) fo(Q(supp 7)55 0).

nenr.‘,

Proof. For the first formula take ¢ =1 in Theorem 7.1. For the second,
substitute the first into (2.3) with u=0. |

These formulas are significant because they evaluate a multiplicative
function at all values of 4 in terms of its values at A =1, with the variable
A appearing only in a way independent of the particular graph €. Thus
they generalize Tutte’s expression [20, Eq. (12)] for the dichromatic poly-
nomial of a graph. In the case of a biased graph with no loose edges we
have, for example,

Q_?)(A's U): Z (A)#n Z U#Ss (71)

which reduces to Tutte’s formula if 2 is balanced, and

nelly

COROLLARY 7.3. Let & and f be as in Theorem 7.1, with n > 0. Then

A0 =Y X, 3h) fu:x4 LA,

XN
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Proof. In Theorem 7.1 let A =2. Then changing notation slightly,

A=Y 2/ 1),

nelly
#rL2

Either n={N}, corresponding to X=N or J in the corollary, or
={Y, Z}, corresponding to X=Y and X=2Z. ||

For a gain graph @ (Section 4) we can set 4 =y in Theorem 7.1. Then
we have the formula

= Y (k) pn 250 (7.3)

nelly

which has a combinatorial interpretation: to color @ properly in k& colors
without using 0, we should choose a partition 7, give each block a distinct
color (of the & permitted) ignoring gains, and then color each block as a
gain graph using one color, i.e., coloring only with group elements. One can
prove (7.3) for gain graphs by means of this combinatorial interpretation.

Now let us return to «,(4) and its reciprocal, calculated in Section 6.
From (2.4) we have

a0 (A) =ay(Ao) T w oA+ o)=Y [F—ay(Ag)]" * a;(A+ o).

r=0

Evaluating at N if i=0 or (&, N) if i =1, we deduce that

FUD=F (=1y T FX A+ i) [[ (4K 1)

r=0 F=Xyc - - =X, Jj=1

where 4X,=X\X,; . We can regard this as a sum over partial partitions
of V:

Fl =Y (#n) (=1)*" fQu(supp 7); A+ Ao) f1(Qim; Ao).  (7.4)

neﬂf

An example is the following identity for the chromatic polynomial of a
biased graph Q without any loose edges:

n

XoD)= 2 r'(=1) X Xawuwp oA =1 xga(—1). (7.5)

r=0 neﬂ?
#n=r
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EXAMPLE 7.3 (Unbalanced circles). For (C,, &), (7.1) becomes

O oA 0)= Y (A 0+ D*E A (0 4+ 1)" =
nne;énlN
and, if we let 6, be the number of partitions of N into i stable sets, (7.2)
reduces to

X:)Cn.@iu* v)+ A)G (=12

||M-

i

ExaMPLE 7.4 (Contrabalanced graphs). Here (7.1) becomes
Qrolhv)= 3 (A 2, fillim)yv"
mellx i=0
upon setting v = —1 one has
/(1rg)(/ Z (A) gn Z (—=1)"~ ' (L m),

nelly

which is what one gets from (7.2).

8. EXPANSIONS IN TERMS OF CHROMATIC POLYNOMIALS

We can write expressions for the polychromials in which the variable 4
is 1solated in chromatic polynomials. For a biased graph Q2 we have

gl wox, vy = Y AR qo Hw, X, p, 0 (8.1a)
A< E
[ balanced ]

hence, by setting u=1,

g lw, x, 2, 0)= Y fPA) Y wARe P Rp 4 1) #NR (81b)
R= A

AcE
[ balanced ]
Note that one may restrict 4 to be a flat of G(£2), since otherwise
7823(4)=0. The formula obtained by setting v= -1 in (8.1b) was
employed in the proof of Theorem 4.3 on gain graph coloring.
These are really matroidal formulas. We prove them at that level of
generality.

SR2h 64 1.5
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ProprosITioN 8.1, Let M be a matroid of rank r and let .# be an ideal in
M. Then

Ao o0 X 0= Y P A T AR, O ). (8.2)

Ae.d

Proof. The right-hand side of (8.2) equals

ZZ ‘_1)#(7‘\,11)’,- ka, rk ZZ o * Ry |kR rk 471kbl#(s\R)

Az Tes ReSsca

Z Z Z xl\ R " rk .S‘Ar—rk ’l'v#lS\R) Z ( —~1 )#{'I'\Ai’

ReSsTes ScAcT
which reduces to #,, ,On, x, 2u.v). 1§
In particular, for example,
O v)="Y (v+1)*" g0 (7). (8.3)
AecLathQ

A different kind of formula employs the chromatic polynomial of the
underlying graph I It is

o X g ) = T Ll gl X 0), (8.4)

A€ Lat /’

where we assume that I is ordinary (no half edges). This formula can be
proved for two-ideal graphs.

PrOPOSITION 8.2, Let f(2. S) be a multiplicative function of pairs on
two-ideal graphs which depends only on Q|S; that is, f(€2, §)=f(]S).
Then

Ay = S 2l [ A )

Adelbat !’
if I'=1|Q| has no half edges.
Proof. The right-hand side equals

Z ;{l‘y“A(;“).fl(QlA:# ZZZA(”)( #(T\/H/‘(QIS)#MSD

ASE S=A=sT
Se &

_ZZ/(QIS h(S)M(f) Z ‘_1)#(T\Ai4

ScAacsT
bE/}
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The inner sum vanishes upless S =T. Because S is balanced, then ¢(T) =
(S)y="5(S). Thus we get f,(Q; 4u). 1]

Formula (8.4) follows because the f which yields the polychromial, in
Eq. (3.6), has the required property. As an example, we have

Wolx, A= Y xpa M) Wi (x ). (8.5)

Adelat I’

This partially generalizes [ 30, Theorem 2.37, in which x4 =2 and Q is sign-
biased. Equation (8.4) is the same as the balanced case of (8.1a), except
that one sums over A€ Lat/ and the chromatic polynomial is y, (A1),
rather than x3, ,(2). Why there should be such a resemblance is a puzzie.
It is no surprise, however, that (84), or rather its generalization in
Proposition 8.2, should resemble Theorem 7.1, for when I"is complete they
are identical: a flat 4 of " is then the same as £:n for nme /Ty, whence
QIA=Q:x and y () =(A),,.

ExaMPLE 8.5 (Balanced complete graphs). A flat of G(K,,) is precisely a
set E:m, where me I1,,. Let us call the type of n the sequence v= (v, v, ..),
where v; is the number of i-element blocks of . Write v - » to mean that
r is a sequence (v,,v,,..) of nonnegative integers with n=1v, +2v,+
3v;+ -+, If vn, then the number of mell, whose type is v equals
7270 SR RERTRE US RUS B

By appropriately specializing (8.1b) applied to 2 =[ K, ]. we obtain

n!

QKM(A“ v)= Z 1 20ve,

Ve ..v)!yz!...

i 2y sl 4
X()")\'|+v:+---(l"+ 1)"'(3)*"3(2)+”(3)

To express the entire polychromial we note that, by (3.1b),
gr (w,x, 1, v)=1i!0;, where

o -~

. 0 1 l
0,=x'(v+1) Z 1120, ! < >
: ] 4+

g bt \x
w+v+1 n(2) ee(z)s
X | ——— ,
< v+ 1 )
but if v = —1 then (3.1e) gives
w(é) i1



66 THOMAS ZASLAVSKY

Consequently, (8.1b) yields
/M

G, (w, X, 2, 0)=n" Y (A iy .. ‘
Sy,
v i=1 "t

[}

5
(")vl+v2+
120y Tyt

gr,(w. x, A, —1)=n! Y

vion

(b))

R L ARSI

X " x

The Whitney number polynomial is much simpler. Because £2/4 = K, ,,
if one neglects multiple edges, the term of 4 depends only on the rank of
A in Lat G(K,). The number of flats of rank n—k is the Stirling number
S(n, k). Therefore,

n

Wkﬂ(.\', )= Z S(n, k )(A)A X"k

k=0

9. ForMULAS BASED ON CONNECTED SUBGRAPHS

Any function f, on two-ideal graphs, derived from a multiplicative
function f of pairs, can be expressed explicitly in terms of the values of fon
connected subgraphs.

ProrosiTiON 9.1.  Ler Q be a two-ideal graph with no loose edges, having
underlying graph I'. Then

a

fol =% H{ Y AQBT)+(A-1) Y f(Q:B,S)},

nellil'y Ben “Te.#y:B Se.f 1B
o(TY=1 oSy =1

fun=Y i* [ Y JIQBS)

rnellily Ben Se #1:B
aS)=1

Proof. For the first formula we apply (2.3). Thus,

fol =Y fol@Xxa1) fux; i1

XenN

:§< 2 f(Q:X";T)>< Y f(Q:X,S)(,i_l)f"S’>

Te . fuX* Se X
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=§< y ¥ Hf(ﬂ:B,T:B))

te (X)) TeSfpt Ber
mT)=r1

X( )Y H(A—l)f(n:B,S:B)>,

cel(I''X) SeSio Beo
a(S)y=a

which simplifies to the desired expression when we set r=c Ut
We derive the second formula by applying the first to €', where ;=
F1=4 and || is ||€2] with all unbalanced edges removed. §

From now on let 2 be a biased graph without loose or half edges
and I'=|Q|. Choose f (as in Section 3) so that f0=qﬂ and f,zq‘;).
Let C; p(1) denote the coefficient of ' in the polynomial p(u). From
Proposition 9.1 we get

qD(W,x; 2, U)= Z n { ZZ w#Rx#B-b(R]v#(T\R)

nelIKI'Yy Ben \R=T<cE:B
c(Ty=1
+(i—1)C,’,q?):B(w,x,u,v)} (9.1)
and
golw,x, ,o)="3 A" [] C,q5.5(w, x, u, v). (9.2)
nell{I) Ben

When x =1, (9.1) simplifies nicely; for instance,

Qﬂ(}ﬂ U) = Z H {C;]l Q_r:B(”) U) + ('1 - 1) C/l; Q?):B(ﬂ’ U)} >

nell(lI’) Ben

which we will further simplify shortly. In particular,

)= 3 [l [wes TBY+(A=Dwh, (2:B)],  (9.3)

ne I(I') Ben

from which, by expanding the product, we obtain

wl(2)= Y wi_ L (Q2:X)

XenN

x Y [T [Wys_oT:B)—w’ 5_,(2:B)], 9.4)

ogell(I''X) Beo

582b/64/1-6
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since for Y= X we have

Y At I whe @B)= Y ATu(@ T) =y, (),
teINT:Y) Bert TeLlat®(2:Y)
u(&, T) being the Mébius function in Lat®(Q:Y).
Let 5,(I") be the number of connected, spanning subgraphs of I" having
k edges. Let 52(£2) be the number which are balanced. Note that s, (') =
s°_(Q)=1(I), the number of spanning trees in I". If I" is connected,

C.Or(pv)= Y sdI)o*

kzn—-1
and
C,O%umuv)= 3 s~
kzn—1
Therefore,

Qoli,v)y="% I {r(F:B) Ap*E-l

rnellll’') Ben

+ ¥ [sk(F:B)+(/1—l)si(Q:B)]v"’}, (9.5)

k= #B
O%hoy= Y 2*[] Y sAQ2:B)* (9.6)
nell(I'} Ben kz #B—1

The characteristic polynomial of the dual bias matroid G*(£2) satisfies
Porav)=(— 1)#57"”)(9) R — Lv)=(-1)**"" Uﬁ"QQ( -, v).
Consequently,

Porafv)

=(=D*F % 1 {—T(F:B)

nell(I'y Ben

+ Y [sdI:B)—(v+1)s)2:B)] vk—#B}.
kz#B

(9.7)

In particular, the dual MJbius invariant is obtained by setting v =0:

p(GHR) =(=1)*27" % [T [548(IB) =55 4(2:B) ~1(I":B)].
nefl(I') Ben
(9.8)
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ExaMpLE 9.3 (Unbalanced circles). Let us evaluate (9.7) in this simple
example. The term for n=11is —2(C,) + [s,(C,) — (v + 1) s2(C,, &)]v° +
(terms equal to 0)= —n+1. The factor for a block Bemx<l1 is
—17(C,:B) +higher terms; since C,:B is a path, 7(C,:B)=1 and the
higher terms are zero. So the term of = is (—1)*". A nontrivial partition
ne Il(C,) is obtained by deleting any #n edges from C,; hence, there are
(%) such partitions having & blocks. Thus

n n )
PercoV)=—n+1+Y <k> (—D¥=0.
k=2
This is correct because G*(C,, ¥} is the n-point matroid of rank 0.
EXAMPLE 9.4 (Contrabalanced graphs). Formulas (9.5) and especially

{9.6) simplify markedly in this case. Since the only balanced, connected,
spanning edge sets of (I, ) are the spanning trees,

Oir.z)4, vy =" z H{ FB) + Y s FB)L"#B}

nell(I') Ben k= #8
and
— IN*B
O gdv)=0" <;) [T «I:B).
nell{l) Ben

In (93) and (94), w%,_,(2:B) becomes (—1)*#~'t¢(IB) and
wr_ 4 x(€2:X°) becomes (—1)*~*¥f, _(I"X), but the formulas do not
simplify notably.

The dual characteristic polynomial of the bicircular matroid is

Porrg(®)=(=D""" 5 ] {—r(r:3)+ ) Sk(I":B)vk’*”}.

nelI') Ben k=#B

Thus
WG, ) =(=1*E7" % [] {—tI:B)+s,4T:B)}.

rne (") Ben

10. MATROID WHITNEY NUMBERS AND MOBIUS INVARIANT

Many invariants of the bias, lift, and complete lift matroids can be
evaluated by the results in Sections 5 to 9: the Mdbius invariant, Crapo’s
beta invariant, the number of bases, the dual characteristic polynomial (but
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not the dual Whitney number polynomial), and so on. We saw some
evaluations in Section 9. Here as a further illustration we show how to
express the Whitney numbers of the three matroids in terms of the
balanced Whitney numbers of induced subgraphs. (This supplements the
bias-matroid Mobius invariant formula (6.9) and the Whitney number
identity (9.4).)

CorOLLARY 10.1.  The Whitney numbers of the bias matroid of a biased
graph Q are given by

WG = ¥ (- 1)”‘“’2( ".’)iw;-”,m#xm:r)l,

XCN, #X<j = J
bRX) < j— 7

where iy =i+ b(Q:X). In particular,

j J —
Iw;(G(£2))] Z (-n'y <';_’7> Y Iwe,_,(82:X¢)|,
= m=1 ngélﬁ;‘,_l

except that |w,(G(£2))| =0 if Q2 has any loose edges or balanced loops.

Proof. Note that w,, =0 by definition if p <0 or p > ¢. By Corollary 5.4
and the first balanced expansion (Theorem 6.1),

Woany(X, A) =wg(x, 1) = Z w?):xf(xa A—1) x*X—b@x
XN

= Z ZZ W;q(Q:Xr)xp(,l_1)"—1—qx14b(f):X)
1

=0 XN O<psg<n-—1
#X=/
n—1! n—! n—i-gq

z":;z Yy wh@ix

1=0 p=0 g=p r=0

Xxp+lb(.(2:m,1r(_1),,I,q_r<n—1—q>.

r

Extracting the coefficient of x’A”~/, we have r=n—j, p=i,—1/ and

n n—1 I . n_]_q
wi(G(Q)) =Y. Yoo (=1 awl  (R:X9) ).
=0 XeN g=iy—1| n—Jj
#X=!
Setting m = g +/ and taking account of the sign law |wio1] =(—1)¢=7 wit]

(proved in [16]), the restriction n—m>n—j from the binomial coef-
ficient, and iy<m from the balanced Whitney number, we have the
resuit. |
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Corollary 10.1 incorporates as the case i =j a formula for the number of
rank j flats:

W(GR)N= Y Wb, (2:X). (10.1)

XeN
b(£2:X)=0

This can be proved directly by observing that a flat of G(£2) consists of
E. X, where b(2:X)=0, and a balanced flat of G(£:X¢) (Theorem
11.2.1(b)).

It is especially interesting to compute the M&bius invariant directly from
the first balanced expansion of the chromatic polynomial. The formula is

WGQ)=Y, xhw(—1) (10.2)
W”/‘Vs‘%a}t:]le

if b(2)=0.
From the second balanced expansion we get a different formula for the
same Whitney numbers.

CoROLLARY 10.2. The Whitney numbers of the bias matroid satisfy

i r+j—i
W (G(2) =3 3, > Wb, (2:X)) - |w, (2:X)).
r=0 l=r XN ﬁ’ !

H#EX =
HR2:X)=0

Proof. From Theorem 6.2 we have

Woa(x, A} = ) ( Yy .x-ﬂfl"—“vwgq(g:Xf)>

Xec N O<p<gqgsxn
b2 X)y=0
X
X Z X'w, 4 x(82:X)
r=0
— ZZ x[’-f-rlnfl‘q
O<r<i/<n Ogspsgsn-1
x Y wh(2:X) w,(2:X).
XN #X=1
b(2:X)=0

Comparing the coefficients of x‘A"~/ gives p=i—r, q=j—1 Since a
nonzero Whitney number w(P! has sign (—1)7~7, the result follows. ||
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We deduce a formula for the Whitney numbers of the first kind when Q
has no loose edges. Setting i =0 and noting that w,(2:X) = u(G(2:X)), we
get

J
wAG@N=Y Y MGRX)] WS (X)) (103)
I=0 XS N #Xx=1
M2 X)=0
By the generating function method we can prove the following.
COROLLARY 10.3. The Whitney numbers of the lift matroid of an

unbalanced biased graph § without half edges, whose underlying graph is T,
are given by

Wy (L(Q)] = [wi( )] + [wg, - ()] +w, ()]

ij—1
- Z ij—lArkS(r/S)I'
Selat G(I')

balanced
rtk S=i—leri

Those of the complete lift of any biased graph Q without half edges are
given by

Wy (Lo(@D] = wi(2)] + w?,_ ()] + |w;_y (D).

Proof. The proofs are by calculations, based on Theorem 5.2, similar to
that in the proof of Corollary 10.1. |

In particular, for any biased graph we have
Iﬂ(LO(Q))lz |W:7‘»(Q)(g)|' (10.4)
If € is unbalanced, then

Wh_ Q)] —u(G(N))] if €2 has no unbalanced edges,
wh_ () otherwise.

lu(L(£2))] ={
(10.5)

More generally, for unbalanced £ without half or loose edges or balanced
loops we have

[, (L(2))] = WP ()] + [w]_ (2)] = |w, (I \loops)], (10.6)

Jj—1

and for any biased graph we have

I (Lo(2))] = [W2()] + [w?_(2)]. (10.7)



BIASED GRAPHS. III. INVARIANTS 73

ExamPLE 10.3 (Unbalanced circles). We illustrate the formulas by
applying them to (C,, ). This will show how our results can generate
combinatorial identities. Since G=G(C,, J) is a free matroid, |w,(G)|
= (7). Corollary 10.1 gives

Iwn(G(Cn’ Q))l = Z (——l)l Z Z lw'?n_l(cn:Xcs @)l
=0 X#S,{?"Zl,e m=1

The absolute balanced Whitney numbers equal (*%7%"), except that

°(C,, @) =0. Thus the innermost sum totals to 2" — 1 if /=0. When />0,
smcc # E:X° =n — 21, the absolute balanced Whitney number is (* %) and,
consequently, the innermost sum equals 2"~ % The number of different

possible X, when />0, is ("7/)+ (", /7"). Therefore,

Ln/2 ] e
|wn(G(Cns g))|_2n_l+ Z (_1) 2" 21[<nl l>+<n l_l_l 1)}

=1

We may conclude that the right-hand side, despite appearances, equals 1
for all n>0.
As for j < n, there the corollary yields

IwAG(C,, &)
ai(n _qufn—m n—21>[<n—l> <n——1—l>]
=2 <j>+1s;s§<j( b (n—j><m—[ ! + 1—1 ’

since |wS(C,, @)| =(2) (this is needed for /=0). The right-hand side must
equal (), since that is the value of [w,(U, ).

In Eq. (10.3) for @ =(C,, &), X can only be ¢J or N. The formula there-
fore reduces to |w,(G(C,, @) = [w(C,, @) + |w,(C,, @)l ]nj NEZ It
j<n, the last factor is zero; hence [w;(G( C,,,Q))I—lw (Co DI =(})
which is expected because all flats of rank j<n are balanced If j=n, the
first term is zero and we obtain the value 1.

For j<n, Eq. (10.6) yields [w,(L(C,, SN =)+ (")~ (;")=(7), as
we expect from the free matroid on »n points. For j=n, from the same
formula |w (L(C,, @) =0+(,",)—(n—1)=1, also as expected.

From (10.7) we get |w(Lo(C,, @NI=(D+(,")=("%") if j<n and
",)=n if j=n. These are the correct numbers for the umform matroid

n—1

U,. .., which Ly(C,, &) is.

n
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ExaMpLE 10.4 (Contrabalanced graphs). Recall Example 5.4, where
w‘,;.(l“, &) 1s evaluated. Corollary 10.1 gives for the bicircular matroid of I’
the formula

IW,-j(G(F, Q))i= Z Z (_l)rtr:X)
=0

n—m m—1 _
m=i+l(1‘:X)<n_j><i+t(r:X)‘l> f#X‘—mH(r'X )

and, especially,

o, (GUT, @D = 3 (1) 3, ( _"’) S L 1),

=0 m=t \B =) yengx=i
stable

From (10.1), the number of flats of rank j in the bicircular matroid is

n

WAGT, &)= 3. Y SexeATXC).
I=0 XS N, #X=I
HIX)y=0

Let f(I') be the number of spanning forests of I. From (10.2) we have

WG =(=1)" Y (=)*" Ar:w)
We N
W stable

if 7" has no tree components; in particular,
(G, &) = (= 1)" f(I).
Corollary 10.3 tells us formulas for the lift and complete lift matroids:
el @0 = (1) 1 1+ (U5 ) s
=2 Wy T/ = 3 Iwy o (TF ),

(F1) (F'=1)

in which ¥ ., means a sum over all i-edge forests of which each com-
ponent tree is an induced subgraph, and

i—1
(wi(Lo(T, &)) l-< )f,, j (Ji )f,,,-+l(r)+|w,._l,,-ﬁl(r)|.

The Moébius invariants are (up to sign)

lt(Lo( T, @I = fe(r (D)
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and, provided I is not a forest,

Jar(I) if I" has a loop,

I,u(L(r,@))|={f((r)(r)_|ﬂ(g(r))| if not.

EXAMPLE 10.6 (Group expansions). The key to these examples is a few
simple facts. First, the balanced Whitney numbers of 4 are nicely related
to those of 4 by the formula

wp(®d) =yp/w,(4).

This is so because wj =3 {u(R, S): R<S in Lat® ®4}. Each SeLat® G4
of rank j is obtained by taking a flat S of G(4) and assigning balanced
gains, which there are y/ ways to do. Since the interval [ ¢4, S] in Lat® G4
is isomorphic to [{J,S'] in Lat G(4), the formula for w:; follows
immediately. (The formula also follows easily from (3.11}.)

One should recall that, for a group expansion @ = G4 in which y > 2,
we have b(D:X)=i,{4:X), the number of nodes of 4:X which are isolated
and not in H.

In using Corollary 10.3 one needs to know that the Whitney numbers
of I'=|®4| equal those of 4 because Lat G(I')=Lat G(4) by the
isomorphism induced by mapping gerse for gee E(I"). Furthermore,
assuming that y>2 and 4 is simple (so it has no loops), the only flat
S e Lat G(I') which is balanced is S = (¥; thus

0, if i=2,
|w,»,-(L(®A))|=|w,-,-(Lo<®A))|—{,WH(A),, it o0l

ExampLE 10.7 (Dowling lattices and their relatives). Taking 4=K,
and y>2 in the preceding example we get marvelously explicit results,
due to the equation wy(K,)=S(n,n—i)s(n—i,n—j) and the fact that
ig(K,:X)=0, except when X is a singleton not contained in H.

Thus Corollary 10.1 gives the formula

lwi (05,

3 <n> i <n_n.7>ymIs(n_]’n_i)|s(n—i,n"m)|
1=0 ! m=1

—(n—p) i ('L:'}T)y'"“ {Sn—1,n—1—i)|stn—1—i,n—m)|

m=1

+8n—1,n—i}|s(n—i,n—m)|}
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when 0 < i< j. Special cases of significance are the simply indexed Whitney
numbers, which Dowling computed in [8] for the case p=n. For any p,
they are

Q3= 2 (0"} st n =)l = (1= p) lon = 1, =),
m=0

J
WA, )= (',’)yf"S(n—l,n—j)—(n—p)yf"(sm—l,n—j).

=0

Since Q:‘p has rank n (if p>0 or y, n>2) its Mdbius invariant is w,; we
can also obtain it from (10.2), but it is easiest to deduce it from the
chromatic polynomial in Example 6.7. It is the signed product of the roots,

MO ==+ 2y+ 1) ([n=2]y+ I)[n—-11[y— 1]+ p),
unless p=0 and y or n=1.
Corollary 10.3 gives the Whitney numbers of the Dowling lift lattices.

Assuming that n>2 and y > 2, we get

Iw (O =p/Sn,n—i)|stn—i,n— )|+ 'S(n,n—i) [s(tn—i,n—j+1)]
+Smon—i+ 1) |s(n—i+1,n—j+1)],

0 if =2
(OS] = lw (O — 3 )
QI =ty ={ ) e

Consequently, the Mobius invariants are

Q) =nty" 1,
w(O®) | =n!(y"~'=1),

and the simply indexed Whitney numbers are

Iw (@D =y Is(n,n— j)] + 3~V s(n,n— j+1)],

W O™ =y Istn,n— )|+ ("' =) s(n,n—j+ 1)),
and, finally,
W(Q5)=W(Q%)=y/S(n,n—j)+S(n,n—j+1),

except that W (Q%) =y(5) =W, (Q%)— 1.
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11. FuLL BIASED GRAPHS

A biased graph is full when every node supports an unbalanced edge.
Then many of our formulas simplify. There are three reasons: The only
stable node set is the null set. All induced subgraphs satisfy 5(2:X)=0.
Provided that n#0, L(£2) differs only trivially from Ly(£2), namely by dele-
tion of the one point e, from the multipoint atom clos, (¢,); hence, L(£2)
and L,(£2) have the same lattices of flats.

For instance, due to the first reason we have the very simple expression

xalA)=xa(A—1). (11.1)

From this we obtain the simple formulas
wG(R)) = xa(—1), (11.2)
BG(Q)) = |wp_ (2)]. (11.3)

Let a multitree be a tree graph with multiple edges allowed. In other
words, it is a connected graph in which any circle has length two. A
series—parallel matroid is the polygon matroid of a series—parallel network
(see [23, Section 14.27]). Brylawski [1] proved that a maitroid M is
series—parallel if and only if S(M)=1.

THEOREM 11.1. Let Q be a full biased graph. Its bias matroid G(£2) is
series—parallel if and only if Q consists of a balanced multitree, together with
one or more unbalanced edges at each node.

Proof. By (11.3) we see that G(Q) is series—parallel if and only if
[wP ()] = 1. Thus G(£) has exactly one balanced copoint. Consequently,
€2 consists of a balanced graph 4 with unbalanced edges adjoined, and
|u(G(4))| = |we_ ()| = 1. Therefore, 4 has no loose edges or balanced
loops and, by the slimness theorem of Dowling and Wilson [ 10], G(4) has
n—1 atoms. Thus 4 is a multitree. J

It seems a nontrivial problem to generalize this result to all biased
graphs.

12. Two EXAMPLES

To illustrate once again the point of the balanced polynomials—which is,
in part, that they are relatively easy to calculate and that the unrestricted
polynomials can be deduced from them by balanced expansion formulas
{Section 6)-—we calculate invariants of two last general examples.
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ExampLE 12.1 (Example 1.6.3) (Parity bias). Let I' be an ordinary
graph. If all edges are signed negative we have a signed graph —TI
whose balanced circles are those of even length. We will evaluate
qt[’_,.](w, x, A, —1), thereby extending [ 30, Theorem 2.5]. Let a cut set of
I be the set of links between two complementary node sets; in this
definition J is a cut set. From (8.1) we know that

qiil‘(W, X, 2, ——1): Z X[Hr]/s(z)w#s n— b(S)
Se Latb[ -I)
The chromatic polynomial here equals 277 if —((—17")/S) is balanced and

0 otherwise [30, Lemma 247. In the proof of [30, Theorem 5.2] it is
shown that —((—17")/S) is balanced precisely when S is a cut set.
Therefore,

g% Hw, x, 2, =)= ) 24y #Sxn—hS), (*)

S cut set

Now let us apply (8.5). We get

A
qb,r(W,X,}n_l)= Z Xl‘/A <5>qb_r|,4(W,X,2’ —1)’

AeLlatl”

which from (*) applied to I' |4 is

= Y 2“"“1”"(%) Y owHSxr ke, (12.1)

Aelat I’ S cut set
inI'|A

where 5(S) here equals the number of bipartite components of S including
1solated nodes.

Recalling the interpretation of g% at v= —1 from Theorem 4.3, we see
that (12.1) implies a formula for the number of zero-free signed colorings
of —I' in k colors in terms of the size and rank (=»n—b(S)) of the set S
of improper edges.

ExampLE 12.2 (Hamiltonian bias). Any set # of Hamiltonian circles
in I" forms a linear subclass. We call (I, #) a Hamiltonian bias of I'. It is
very close to the contrabalanced bias (I, &) (Example 3.4), the only
difference being that He % is balanced in (I, #). Thus from the definition
of the balanced polychromial we have

b _ b FER n—b(RY1H(H), #(H\R)
9ra =49t ZZ WX Ay >
RcHeR
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which simplifies readily to

—1
q}’r'g,)(w, x, A, 0) =q}’m5)(w, X, A, v) + hA [(wx + 1) — (wx)” i;—} , (12.2)

where h=|4%|.

We calculate the polychromial from (6.2a). The terms with ¢f# Wc N
are the same as in g, »,, 5o after simplification we get
qu‘,gi)(W, X, Z’ U)

=q(r.z)(wa X, Aa U)

+h {(/1— D{wx+1)"—[A—-14+(v+1)" "} wx)" i—;—l} (12.3)

Specializing the variables leads to further simplifications. For instance,

q([‘,g)(w’ X, /1, “1)=Q(r,g)(wa X, )-s - 1)

+h(l—l){(wx+1)"—(wx)"x;l}

if I'# C,, and in general we have

Orafd v) =014 0) +h(A-1),

Wira(% A = Wirg(x A +h(A-D{(x+ D" —x"+x" "},
Xira(4) =X r.e(A) + h(A—1),
Xir.a(A) = X(r.g(A) + hd,

and so on.
The method of building on contrabalanced bias will be used again in the
very last examples, the “seven dwarves.”

13. SEVEN DWARVES: POLYNOMIALS OF THE BIASED K’S

In Sections 1.7 and I1.6 we found the seven nonisomorphic biasings of X,
and their possible gain groups and the three matroids of each. As a final
and utterly concrete illustration of our results we calculate polynomials of
both the graphs and their matroids. Since it is the chromatic, dichromatic,
and Whitney number polynomials (and the corresponding matroid polyno-
mials) that are significant, all of which are easy to obtain from the balanced
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and unbalanced coloration generating polynomials gf®Y(w, x, 4, —1), it
would be sufficiently general if we were to calculate polychromials holding
v= —1 throughout our calculation. This is, indeed, quite advantageous for
the unrestricted polynomials, but for the balanced polychromial it is of no
particular help, so we shall obtain the full balanced polychromials
g°(w, x, 4, v) and, thence (by the first balanced expansion), the unbalanced

polychromials just for v= —1. We shall state as well some of the polyno-
mials of real interest (which, of course, are just specializations of the
polychromials).

Even for such a small graph as K, there is no easy way to do the com-
putations and the hazard of error is considerable (unless one uses computer
algebra). Nontheless, in this very special situation where we have many
biasings of a single underlying graph, there is a method that can reduce the
labor and increase one’s insight considerably. To explain our procedure is
our first task (Subsection 13a). Then, after setting out certain very small
examples (Subsection 13b), we calculate the polynomials we want (Sub-
section 13c¢).

13a. Qutline of the Procedure

The central fact about our situation is that we have biased graphs, say
Q=(I,#) and Q,= (I, #,), which have not only the same base graph I
but even comparability of bias, that is, # < %,. (We say that 2 is more
biased, or less balanced, than (2,.) Better yet, in our seven examples we can
take € to be contrabalanced (Example 3.4), which makes its balanced
polynomials extremely simple, but that is not essential to the general
method. So in this subsection we shall assume no more than that |Q2| =
12,]=TI and Z<4,.

That immediately suggests using (3.9) for the balanced polychromial,
because q;l includes all the terms of ¢5,. Let us be precise. Define

4g5(w, x, 4, 0) = g (w, x, 4, 0) — g 1w, x, A, v).

Then

_ /1
Aql-’:Zi”‘S’X”v“Qms(— E>, (13.1)

bl
S X v

where the range of S is all subsets of £ which are balanced in Q; but
not in Q. If we know ¢2, we need only compute 4q® which depends
on evaluating the Q5. The best way to obtain g, is from (6.2d)
(which is why we hold v= —1; otherwise (6.2a)—(6.2c) would be needed
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and the analysis would be far too complicated). Again we focus on the
difference,

4q,(w,x, A, —1)=Y g% (w,x,A—1,—1)

We N

#(E:W‘)[xn—b(ﬂ,:W‘)___ n—th:W'r]]

Xw X

+ Y Agbw,x, A— 1, — 1) wHEW k@A (13 9)

WeN

where Aq?, means g9, —qn.u- (The proof is immediate from (6.2d)
upon replacing q"’,,:W by gg. + 4q° ) Evidently, to use (13.2) successfully
requires not only knowing go(w, x, 4, —1), but also knowing the 447, and
any of the g%, for which b(Q,W<)#b(Q2:W°). Fortunately, one can
generally expect the latter two quantities to be equal (because both equal
# W) if W< is at all large. At the same time, dq}, =0 if # W <2 and
frequently also if # W=3.

13b. A Tool Kit

Here are the normalized dichromatic polynomials of graphs we will need
for the seven dwarves. Three easy examples are

04, V=4, Qx4 V)=AA+V),
Dar( A, V)= A(A— 1)+ AV +1)*,

where 4K, denotes a quadruple link. From Example 3.2 we get
O A N=(A+ VY +(A-1)V> QA V)=(A+ V) + (4~
and Q, (4, V); consequently, by Propositions 2.8 and 2.9,

Ocyo 4, V) =0k, Q= AA+ VP + A4 -1V,

Ocro, el V)= (0’

=~/1«i A+ +2A=-1) VHA+ V) +(A—-1)2 V],
0ol A, V) =(A+ V) + (A=) VI A+ V),

where P is the graph consisting of a triangle and one edge connecting it to
a fourth node, that is, K, with two adjacent edges removed.
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Writing @ for K \edge, let ¢ be the edge whose endpoints are trivalent.
Apply Theorem 3.1 with 2=[O1]:

—Q_G(A, V)= QC4+ VQ_CzupCz
=%(A+ VP +A4-1)v*

+2(1 =AYV A+ VY +A(1—A"1)2 V5,

The same theorem implies that Oy, = Qg+ VQx, .. Let f be the edge not
adjacent to e in K,. Then K,/e consists of C,u, C, with the extra edge f
linking the two divalent nodes. We deduce from Theorem 3.1 again (by
deleting and contracting f/ in K,/e) that

QK4(A, V) = Q_e + VQC; Up €2 + V2Q4K2

.__1_ 5 K 4 _ 4
—A(A+V) +A(A+V) +A-DV

+41—A"H V¥ A+ V)?
240 =AYV V54 AA=D V2 AVHV +1)%

13¢. Return to the Seven Dwarves

We call these seven biased graphs 2,=,(K,) for i=1,2, .., 7. Briefly
recalling their definitions from Part I: At the two extremes are the balanced
Q,=[K,] and the contrabalanced Q2,=(K,, &). For j=1,2,3,Q, ;is
the same as Q,, except for having exactly j balanced quadrilaterals. 2, is
the parity-biased graph [ —K,]. £25 is like £,, except for having one
balanced triangle. £2, has two balanced triangles and, therefore, must have
just one balanced quadrilateral—the one contained in the union of the two
triangles.

We write ¢; and x; for the numbers of balanced triangles and quadri-
laterals in £,.

We compute the polynomials of the §2; by the method of Section 13a.
The obvious choice for Q, no matter which Q, we treat, is £,, mainly
because it is by far the easiest to solve (by Example 3.4). Then a number
of nice things happen. In (13.1), each balanced triangle S, < E gives rise to
four terms of 4q%: one for S= S, (so that K,|S=(N, S)=C, v K,) and
three for each S =S5, u e (isomorphic to P). The total of these four terms
is precisely 4q%. Thus part of 4q® is &, 4¢%. The rest is terms arising from
balanced subgraphs isomorphic to C,, @, or K.

In computing Agq, for i # 1 there are other simplifications. (In the excep-
tional case we have ¢, = q}’zl so there is nothing to discuss.) First,
B WY=b(Q, W)= #W°, unless Q. W°=[C(,]. Consequently, the
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first term in (13.2) reduces to &,(A — 1) w¥(x? — x*). In the second term the
only W for which Aq}, #0 are W=N and tripletons W supporting
balanced triangles. For the latter we have

- 1
2o w(w, x, A—1,0)=(A—1) x"'Q, <;’ %)

=(A-DF+ (A= w3 x?—x%,

where s =wx +v.
Thus the general solutions, expressed in terms of Aq®, are

gl (w, x, 4, v) =g w, x, 4, v) + ¢t (w, x, 4, v) (13.3)
for all i, and

Ag;(w, x, 4, ~1)=&(A—D)[s* +2wx* (1 —x)] + 4q°(w, x, A — 1, —1)
(13.4)

if i# 1, where s=wx — 1. Other polynomials are obtained by specializing
the variables as in Section 3; for instance, the balanced and unrestricted
normalized dichromatic polynomials are g3 (0, 1, 4, v) by definition and
go(v+1,1,4, —1) by (3.1a); for the chromatic polynomials the arguments
are (0,1, 4, —1).

As for the matroids, the polynomials of the bias matroid G(£2,) equal the
corresponding polynomials of 2, (as shown in Theorem 5.1), except for
division by 2 in the case i= 1. The lift-matroid polynomials of Q; equal
those of the bias matroid, since L(Q;) = G(£2,) because there are no two
node-disjoint unbalanced circles. (One could also use Theorem 5.2, if i # 1.)
For the complete lift matroid L,(£2;) we have

Rrgon(w, 8, 4 —1) =47 (A—=1) g (w, x, A, — 1)+ A7 "wxqg,(w, x, 4, —1)
and specializations. The quantity qK4=q‘[’K4] is written out explicitly in
Example 13.1. Thus, again, everything depends on Aq®.

Now we are ready to find 4¢(™) for every i. The most natural order of

presentation, odd though it may seem, is to begin with €, and proceed in
reverse subscript order, for that is roughly the order of increasing balance.

ExampLE 13.7. Since 2,=(K,, &), Example 3.4 gives
g%, (w, x, 4, v) =A%+ 64%s + 154%s% + 1657,

582b/64/1-7
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where s =wx + v, and

Gaw, x, b =) =(A=1)*+[6s+4T(A— 1>+ [ 1557 + 125 + 6wx?](A —1)2

+ [ 165+ 1257 + 6wx?s + 4w x3 (4 — 1) + wox*,
where s = wx — 1. The chromatic polynomials are, therefore,

Aon(A) = 24— 627 + 1522 — 160 = (1) + 4(1), — 6(2),
and
HofA)=(A—1)*=2(A—1)*+3(A-1)?—4(1-1)

= (A= 1)+ 4A—1);+20(A— 1), + 142 —1),.

Evidently y,(4) >0 for all integral 2> 1. As for x5.(2), it is negative if
A=1 or 2, but positive for integral 4>3. (This fact has a combinatorial
interpretation: Theorem 4.2 (with k=1) implies that in a gain graph @
for which [@]=(K,, J) the group must have order 3 at least. This is
consistent with what we know from Example 1.7.7, but weaker; actually,
the gain group must be a group of order at least four, but not Z, x Z,).

ExampLES 134-13.6. In Q, for i=4,5, 6 there are respectively exactly
k;=13,2, 1 balanced quadrilaterals but no other balanced circles, so £,=0.
Consequently, the only balanced sets S which are not forests are the balanced
quadrilaterals. (So this is a case of Hamiltonian bias, Example 12.2). It
follows that

1 b3
AgP(w, x, A, v) =Kk, Ax*v*Q (;, %) =k AL+ wix (1 —x)],

where s = wx + v, and, by (13.4),
Aq; (w, x, 4, —1)=Ag>(w, x, A —1, —1).
Specializing to the chromatic polynomials (w =20, s=v= —1) yields

2%,(A) =A% =647+ 152 — (16 —x,) 4,

Ao W)= =1 =21 =1 +3(A-1)* = (4 =k )i~ 1)
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ExaMPLE 13.3. Since the only balanced circle is one triangle (so that
&3 =1, k;=0), the balanced sets which are not forests are one triangle and
three sets isomorphic to P. From (13.1) we see that

Ag5(w, x, 4, 1) =x*v*’0 ., «, (%, %) +3x**0, <§, %)
= (A2 +34)[ P + wixH(1 —x)],
where s =wx + v. Thus (13.4) gives
Agyw, x, 4, —1) = (A—1)2 [s* + wix2(1 = x}]
+(A=D[3s*+ 53+ wxX (1 —x)(3s+2)],

where s = wx — 1. The chromatic polynomials are

X (A)=A*— 617+ 1447 — 134,
XA =(A—1)*=2(A-1+2(A-1)*=2(A—1).
ExaMpLE 13.2. Here &, =2 and x, = 1. The nonforest balanced subsets

S are the two triangles and six associated P’s, one C,, and the @ which is
the union of the two balanced triangles. Thus from (13.1) we get

1 ! l ;
4q5(w, x, 2, v) =24q5 + Ax*v*Qc, <;’ %) +4x%0’ Qe <;’ %)

=2A7[s* + wx3(1 —x)]
+A[SS+ T+ (252 + 65 +wx(v+w+ 1)) wix?(1 —x) ]
and
Ag(w, x, 4, —1)=2(A—1)? [s* +wx}(1 —x)]
+(A-D[s*+7s* +5°
+ (282 + 6s+wx(v+w+ D+ 2y wix¥ (1 —x)].
For the chromatic polynomials we have
Ao (A)=A* =64+ 1327~ 104,
T ) =(A—1*=2A=1)+(A-1)+(A-1).
ExaMmpLE 13.1. This is the balanced graph, Q,=[K,], where the
balanced and unrestricted polynomials coincide. Therefore we need only

find 4¢% and apply (13.3). On the other hand, we could call upon
Example 8.5. Let us do both, since they yield different expressions.
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In Example 8.5 let us take v= —1 for simplicity. Thus 9,=xi_1w(é)/i!
and we get

gl (w, x, A, —1) = (A)4 + 12wx( 1) + 4w(w + 3) x2(1), + wox3(2),.

Now we calculate A¢% from (13.1). We have ¢, =4 and x, = 3. There are
four triangles and 12 associated P’s, three C,’s, six ©’s, and one K,. So

1 1
Aq%(w, x, A, v) =445 + 3ix*v*Q., (;, %) +6Ax*° Qg <;, %)

1 b
+ A0, (—, 1)
X U

=4[ s+ wix* (1 —x)]
+ A[(6+0)s® + 155* + wixH (1 — x){12ws* + 4(3 + v) ws
+3wix((v+ 1)2 + 2w)
+ vt + (w4 o) x +2owx(1 —x)} ]

From this and yg, (4) we deduce that
Hixa(B) =1k (A) = A4 — 643 + 1132 — 64 = (4),,

which agrees with the calculation from Example 8.5 and, of course, is
correct because y(x,; =¥,
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