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Abstract. A gain graph is a graph whose oriented edges are labelled invertibly from a
group G, the gain group. A gain graph determines a biased graph and therefore has three
natural matroids (as shown in Parts I–II): the bias matroid G has connected circuits; the
complete lift matroid L0 and its restriction to the edge set, the lift matroid L, have circuits
not necessarily connected. We investigate representations of these matroids. Each has a
canonical vector representation over any skew field F such that G ⊆ F ∗ (in the case of G)
or G ⊆ F+ (in the case of L and L0). The representation of G is unique up to change of
gains when the gain graph is full, but not in general. The representation of G or L is unique
or semi-unique (up to changing the gains) for ‘thick’ biased graphs. The lift representations
are unique (up to change of gains) for L0 but not for L. The bias matroid is representable
also in other ways by points and hyperplanes; one of these representations dualizes the
vector representation, while two, in projective space, strongly generalize the theorems of
Menelaus and Ceva. (The latter specialize to properties of the geometry of midpoints and
farpoints, and of median and edge-parallel hyperplanes, in an affine simplex.) The dual hy-
perplane representation can be abstracted away from fields to a kind of equational logic and
permutation geometry that exist for every gain group. The lift matroids are representable
by orthographic points and by linear, projective, and affinographic hyperplanes. L0 also has
a metric hyperplanar representation that depends on the Pythagorean theorem. Incidental
results are that Whitney’s 2-isomorphism operations preserve gains and, to an extent, ma-
troids; and new definitions of the bias and lift matroids based on extremal properties of the
rank functions.
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Introduction

This article concerns a meeting point of graph theory, matroid theory, and geometry: the
geometrical and equational representation theory of matroids of gain graphs. A gain graph
Φ is a graph together with a mapping (the gain function) from the edge set E to a group
(the gain group), such that reversing the direction of an edge inverts the gain. We call a
circle (edge set of a simple closed path) balanced if its edge gains, taken in circular order,
multiply to the identity. This gives a biased graph: a graph together with a subclass of its
circles, called the ‘balanced’ circles, such that if the union of two balanced circles is a theta
graph, the third circle in their union is also balanced. The matroids we investigate are three
matroids associated with any biased graph, and in particular with any gain graph Φ. Say
a subgraph is balanced if every circle in it is balanced (and it contains no half edges—see
Section 1). For an edge set S let b(S) denote the number of balanced components and c(S)
the total number of components of (N,S), where N is the node set of Φ; and let n = #N .
The bias rank of S is

rkG S = n− b(S)

(provided n is finite; in general see Section 1); it is the rank function of the bias matroid
G(Φ), whose point set is E. Let e0 be an extra or ideal point not in E and define the lift
rank

rkL S =

{
n− c(S) if S ⊆ E is balanced,

n+ 1− c(S) if S is unbalanced or e0 ∈ S

(again, provided n is finite). This is the rank function of the complete lift matroid L0(Φ),
whose ground set is E ∪ {e0}; its restriction to E is the lift matroid. Our fundamental
results (in Sections 2 and 4) are the construction of ‘canonical’ representations of each of
these matroids as linear dependence matroids of vectors over a skew field which contains the
gain group as (in the bias case) a multiplicative subgroup or (in the lift case) an additive
subgroup. For any gain group we also give a vector-like permutation representation of G(Φ)
and a closely related but purely logical representation as a system of two-term equations
(Section 3).

We also demonstrate various refinements of the basic vector representations. For instance,
dualizing gives a representation by hyperplanes whose equations are (in the bias case) of the
form xi = αxj or xi = 0 or (in the lift case) of the form xj −xi = αx0 or x0 = 0; we give real
and complex examples of hyperplanar bias representations, with the number of regions in the
real case and the Betti numbers of the complement in the latter. (A further duality, which
we omit, would give zonotopal representations and related enumerations.) Projecting the
vector representation of G(Φ) yields an extension of the theorem of Menelaus, more general
than the higher-dimensional Menelaus theorems of [7, 10, 23]. Dually, we have a very general
Ceva theorem. In these results we take an affine basis B and arbitrary points, called apices,
on the lines generated by B in projective space. A Cevian or apical hyperplane is the span
of an apex and the basis elements not on its line. The Menelaus theorem describes the
projective dependencies of the apices. The Ceva theorem describes the intersection pattern
of the apical hyperplanes. Our theorems seem to be ultimate of this type because the apices
are subject to no restriction. (However, there do appear to be other generalizations, at least
of Ceva: see Boldescu [7]. It would be interesting to see a gain-graphic formulation and
a Menelæan analog of Boldescu’s theorem.) In order to understand these representations
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and several examples involving midpoints and medians of edges, as well as infinite points
on and parallel hyperplanes to edge lines, we are forced to develop some tools of projective
geometry that appear to be obscure or maybe new. For the lift and complete lift matroids
there are an affine variant of canonical representation of L(Φ), which we call an ‘orthographic’
representation, and a ‘Pythagorean’ representation of L0(Φ) by Euclidean hyperplanes. In a
subsequent paper (Part VI) we give a different presentation of some of these representations
in the style of synthetic geometry.

We consider the possibility of uniqueness theorems, asserting that any linear representation
of a gain-graphic or biased-graphic matroid is of canonical type. That is not true in general.
We prove it true for natural large, though specialized, classes of gain and biased graphs (see
especially Theorem 7.1); but we do not solve the important problem of determining the gain
or biased graphs having only canonical representations.

Section 5 on Whitney operations and separable graphs casts light on some simple aspects
of geometric representation. Remarkably, although the bias matroid is not invariant under
Whitney’s 2-isomorphism operations, the existence of a canonical representation over a given
skew field is. Section 6 on alternative definitions of the lift and bias matroids, required here
for the proof of Theorem 7.1, is most interesting as a continuation of Part II. Section 8
concludes the treatment of the biased K4’s in Parts I, II, and III. Section 9 suggest some
final research questions.

The main questions raised by this work are based on our concept of canonical represen-
tation. We ask: which biased graphs have noncanonical representations, and in which skew
fields does a biased graph Ω have additive or multiplicative gains. We collect some remarks
about these properties in Section 9. I hope these and other gaps in our understanding
of biased graphs will be taken as a challenge to discover answers—and, no doubt, further
questions.

The numerous examples, some illustrated, include the spikes, swirls, and whirls of ma-
troid representation theory, Menelæan and Cevian corollaries about the affine geometry of
a simplex, and many others intended to illuminate the main results. In subsequent parts
[48] we fill out the theory with a much wider variety of examples. Dowling geometries in
their gain-graphical aspect, and various generalizations, have interesting features related to
unique and semi-unique representability and isomorphism (Part V). We have a good deal to
say about contrabalanced graphs (Part VII), where no circle is balanced; to mention only one
of many questions, we are led to speculate about a contrabalanced analog of Tutte’s theory
of nowhere-zero flows. Part VII is a grab-bag of investigations of other special types of bias.
About balanced graphs, simple as they are, there is a little to say. On additively biased
graphs—equivalently, signed graphs—we review some representation results that are known,
but not all well known, looking in particular at antibalanced biased graphs (equivalently, all-
negative signed graphs). We study two kinds of bias based on orientation of the graph: bias
from poise, where a balanced circle has no majority direction, and antidirection bias, where
directions reverse at every step around a balanced circle. Bias from Hamiltonian circles gives
us an excellent opportunity to explore the relationship between gain groups and ‘canonical’
matroid representations, although we can say little about noncanonical representations.

If the gain graph is finite and the scalar field is an ordered one, say the real numbers, we
can define hyperplane separations of a point representation and faces (k-dimensional cells for
any k) of a hyperplane representation. Basic geometric theorems and the chromatic theory
of Part III enable us to express the number of hyperplane separations and the numbers of
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k-dimensional faces in terms of chromatic invariants of the gain graph. In the infinite case
one cannot count, but one can still ask the basic question: what is the abstract structure of
the hyperplane separations of a vector representation, or dually of the faces of a hyperplanar
representation, for a gain graph with ordered gain group, and more generally for a biased
graph? That means finding the correct definition of orientation of a biased graph so as
to be compatible with the oriented matroid [6, 5] of the canonical vector and hyperplanar
representations of a real multiplicative or additive gain graph—that is, of G(Φ) when G ⊆ R∗

or L(Φ) when G ⊆ R+ (Theorems 2.1 and 4.1 and Corollary 2.2). The definition should be
compatible with that of signed-graph orientation in [43]. In the first version of this article, in
1986, I could only speculate on a possible approach. Recently Slilaty solved and generalized
the first half of this problem, finding the correct definition of oriented-matroid cycles of the
bias matroid of a biased graph with signed edges; that and more will be found in his doctoral
dissertation [31].

This article is a continuation of the theory of biased graphs in Parts I–III [41]. Nevertheless
it should be possible to read it without being familiar with the previous parts. For still more
work on gain and biased graphs the reader may peruse [45].

Since this part is long, some guidance to the reader may be appropriate. The core is
Sections 2.1 and 4.1, followed by Section 7. After these in importance are Sections 2.5, 2.6,
and 4.5, and then the remainder of the paper.

1. Preliminaries

In principle we assume that the reader is acquainted with relevant definitions from Parts I–
III, but in practice that will not usually be necessary. Here we re-emphasize some standard
notation and introduce some new notation and concepts. We cite earlier and later parts
[41, 48] in the style ‘Section I.2’, ‘Theorem III.5.1’.

Always, Γ is a graph (N,E); n = #N , which may be infinite; Ω is a biased graph (Γ,B)
(Section I.1); G is a group; and Φ is a gain graph (Γ, ϕ,G), meaning that it has underlying
graph Γ, gain group G, and gain function ϕ (Section I.5). We may leave the group implicit,
writing Φ = (Γ, ϕ). We sometimes write ‖Ω‖ or ‖Φ‖ for the underlying graph Γ. E∗ is
the set of ordinary edges (links and loops). Other edges are half edges (one endpoint) and
loose edges (no endpoints, but we shall have little use for them here). E0 is E ∪ {e0},
where the extra point e0 /∈ E. For the gain of an edge e with endpoints v and w (written
νΓ(e) = {v, w}, a multiset since v and w may be equal) we usually write ϕ(e; v, w) in order to
indicate the sense in which the gain is measured; thus ϕ(e;w, v) = ϕ(e; v, w)−1. The biased
graph determined by Φ is denoted by 〈Φ〉 (Section I.5; the former notation [Φ] was an error
and should be reserved for switching classes). If Ω has the form 〈Φ〉 and G is the gain group
of Φ, we say that Ω has gains in G. The bias, lift, or complete lift matroid of Φ is that of
〈Φ〉; we write G(Φ) for G(〈Φ〉), etc. These matroids are defined by the rank functions stated
in the introduction when the biased graph has finite order; in general we define the rank of
S in terms of the edge-induced subgraph Ω:S, which is the biased subgraph consisting of S
and its incident node set N(S); then the rank functions are:

rkG S = #N(S)− b(Ω:S)
5



for the bias matroid and

rkL S =

{
#N(S)− c(Ω:S) if S ⊆ E is balanced,

#N(S) + 1− c(Ω:S) if S is unbalanced or e0 ∈ S

for the lift and complete lift matroids, with the proviso that balanced loops are to be ignored
in calculating N(S) and Ω:S. (These definitions coincide with those in the introduction when
n is finite. We interpret both ranks as ∞ when N(S) is infinite.) An unbalanced figure is an
unbalanced circle or a half edge.

The restriction Φ|(W,S) or Ω|(W,S) of a gain or biased graph to a subgraph (W,S) is
the subgraph with gains restricted to S or with balanced circles equal to those contained in
S. Restriction to S, as in Ω|S, means restriction to (N,S) (as opposed to an edge-induced
subgraph Ω:S, which is the restriction to (N(S), S)). The edge set induced by a node set
W is E:W = {e ∈ E : ∅ 6= N(e) ⊆ W}; the subgraph induced by W is Ω:W = Ω|(W,E:W )
and similarly for graphs and gain graphs.

A switching function η is any function N → G. The switching of Φ by η is Φη whose gain
function is ϕη(e; v, w) = η(v)−1ϕ(e; v, w)η(w). Two gain graphs are switching equivalent if
one is a switching of the other. The switching equivalence class, or switching class, of Φ is
denoted by [Φ]. Since the balanced circle class of a gain graph is unaltered by switching, the
various matroids of the gain graph are also unchanged.

A potential for a balanced gain graph Φ is a function θ : N → G such that ϕ(e; v, w) =
θ(v)−1θ(w) for each edge e:vw. (A potential cannot exist if Φ has an unbalanced circle.) The
reciprocal θ−1, defined by θ−1(v) = (θ(v))−1, is a switching function that switches Φ to the
identity gain graph (‖Φ‖, 1). Conversely, any such switching function is the reciprocal of a
potential. An example of a potential in a connected gain graph is obtained by choosing a
root node v and defining θ(w) = ϕ(Pvw) if Pvw is a vw-path.

If X is a subset of a linear, affine, or projective space Λ over some skew field, we write
spanX for the subspace (= flat) spanned by X. We write M(X) for the matroid of X
under the appropriate dependence relation. (Note that we distinguish between Λ and its
matroid M(Λ).) If H is a family of hyperplanes in Λ, a flat of H is a subspace formed by
intersecting members of H, for example the whole space, which is

⋂
∅; but we exclude the

empty subspace in the affine case. In a projective space an affine flat is a flat not contained
in the ideal hyperplane h∞.

Let M be a matroid on ground set E. M is a line if it has rank 2. LatM is the lattice of
flats. Latb Φ is the semilattice of balanced flats in G(Φ) or L(Φ).

Now, let F be a skew field. A linear (i.e., vector) representation of M over F is a mapping
f of E into the point set of a linear space Λ over F (with F , if not commutative, acting on
the left unless otherwise stated) such that, for each S ⊆ E, f(S) is dependent exactly when
S is. An affine [or, projective] representation of M is a mapping f of E \ {loops} into the
point set of an affine [or, projective] space Λ such that, for each S ⊆ E, f(S) is dependent
exactly when S is. Λ need not be coordinatizable, but if it has coordinates in a skew field
F we say f is an affine [or, projective] representation of M over F . Similarly, a hyperplane
representation of M is a mapping from E to a family of hyperplanes in Λ which preserves
dependence and independence. (For an affine hyperplane representation this definition is
not quite correct, but it is correct to think of it as a projective hyperplane representation,
not using the ideal hyperplane, which is then restricted to affine space.) Our definition of
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projective space is broad: we admit a line (of order at least 2); we consider it desarguesian
when it is coordinatized by a skew field.

Two representations of a matroid M in a linear or projective space Λ are projectively
equivalent if they are related by a projective automorphism of Λ. In a linear space or
a coordinatized projective space a projective automorphism is a linear operator combined
with a field automorphism and scaling of vectors (multiplication by a nonzero scalar). In
a projective space of dimension 2 or higher, a projective automorphism is a collineation.
(We do not define projective equivalence in a noncoordinatized projective line.) We say M
has (projectively) unique representation in Λ if it has only one representation in Λ up to
projective equivalence. All graphic matroids have projectively unique representation [9].

Suppose E is a nonempty set of points in a real linear or affine space and M is its linear
dependence matroid. A hyperplane separation of E is a partition of E into at most two
parts that are separable by a hyperplane. The number of hyperplane separations of E is
1
2
|pM(−1)|, where pM(λ) is the characteristic polynomial of M (Section III.5). This is known

by [36, Corollaries 6.1 and 6.2], also by [26, Theorem 3.1 and note on p. 243] (and see [25]).
An arrangement of hyperplanes is a finite family of hyperplanes in d-dimensional lin-

ear, affine, or projective space over some skew field. The characteristic polynomial of H is
pH(λ) =

∑
t µ(∅, t)λdim t, where t ranges over all intersections (nonvoid, except in the pro-

jective case) of members of H and µ is the Möbius function of the semilattice of intersections
(see [36]). If H is linear and M is the matroid of H, then pH(λ) = λd−rk MpM(λ); if H is
projective, then pH(λ) = λd+1−rk MpM(λ); there is a similar formula for affine arrangements.

Suppose H is a real hyperplane arrangement. H decomposes the space into cells of various
dimensions, called the faces of H. Let fk be the number of k-dimensional faces. The face
generating polynomial is fH(x) =

∑
k x

d−kfk. It is known from [36, Theorems A and B]
that fH(x) = (−1)rk MwM(−x,−1) in the linear case, 1

2

[
(−1)rk MwM(−x,−1) + xrk M

]
in

the projective case, where wM(x, λ) is the Whitney-number polynomial of M (Section III.5).
There are similar formulas in the real affine case both for all faces and for bounded faces [36,
Theorems A and C].

If H is a complex hyperplane arrangement in the affine space Ad(C), its complement X
has complicated topology, but the Poincaré polynomial of X, PH(y) =

∑
i≥0 rkH i(X,Z)yi,

is computable from H: it equals (−y)dpH(−1/y) ([28], or see [29, Theorem 5.93]).
Thus when we can calculate the characteristic polynomial of a gain-graphic or biased-

graphic matroid we can find the number of hyperplane separations, or of d-faces, of a real
representation; if we can calculate the Whitney-number polynomial we can find the number
of faces of each dimension of a hyperplane representation. Moreover, the individual coeffi-
cients of these polynomials have geometrical interpretations, both in the complex (as above)
and real [18] cases. In Part III we discussed methods of evaluating the polynomials and
applied them to several interesting types of examples. In this and future parts we apply
the conclusions herein to study the geometry of many of those examples and interpret their
numbers.

2. Geometry of the bias matroid

A bias representation of Ω is a vector, affine, or projective representation ofG(Ω). Amongst
all possible bias representations we single out one type that is canonical for a gain graph.
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2.1. Canonical representations.
Suppose the gain group G of Φ is a multiplicative subgroup of F . (We write G ≤ F ∗.) Let

Λ be an F -vector space and N → Λ (written v 7→ v̂) a bijection of N onto an independent

subset N̂ of Λ. For each edge we define a vector xΦ(e), or simply x(e), ∈ Λ by

xΦ(e) =


−v̂ + ϕ(e; v, w)ŵ if νΓ(e) = {v, w},
v̂ if e is a half edge at v,

0 if e is a loose edge or balanced loop.

This definition for a link or loop corresponds to orienting e from v to w; the opposite
orientation would yield x(e) = ϕ(e;w, v)v̂ − ŵ. But the latter is a non-zero multiple of
the former; consequently x(e) is well defined up to non-zero scalar multiplication and it
is completely well defined if every link and loop of Γ is given a direction. For notational
convenience we define x(S) = {x(e) : e ∈ S} (which may be a multiset) if S ⊆ E and

Ŵ = {ŵ : w ∈ W} for W ⊆ N . We call xΦ a standard bias representation of Φ.
The reader may now go directly to part (a) of Theorem 2.1. The next paragraphs prepare

for part (b).
Let I(Φ) be the N × E matrix whose columns are the vectors x(e) ∈ FN ; we call this an

incidence matrix of Φ (associated with the particular orientation used to define x; thus I(Φ)
is well defined up to nonzero scalar multiplication of columns).

We call a mapping f : E → Λ a canonical bias representation of Φ (in full, a canonical
linear, or vector, bias representation over F ) if there exists a mapping N → Λ of N onto

an independent set N̂ under which each f(e) is a non-zero multiple of x(e), or if Λ can
be enlarged so that such a mapping exists. From the projective viewpoint (anticipating
Theorem 2.1(a)), f is an embedding of G(Φ) in the projective space P = (Λ \ {0})/F ∗

that is completely determined once N̂ is chosen. (We must remember that a balanced
loop or loose edge, which in a vector representation corresponds to the zero vector, in a
projective or affine representation is represented by no point at all.) If Λ = span N̂ we
can regard Λ as the coordinatized vector space FN and P as the particular projective space
PN−1 = (FN \ {0})/F ∗, with coordinates xv for v ∈ N . (Although N is not a number, we
write a superscript N − 1 to suggest the dimension and coordinate system of the space. If
N is finite, the dimension equals n− 1.)

Suppose Λ and N̂ as in the preceding paragraph. Scaling Λ by a switching function
η : N → F ∗ means multiplying each vector û ∈ N̂ by the arbitrary nonzero scalar η(u).
This has the effect of transforming a vector ξ =

∑
u∈N ξuû to ξη =

∑
u∈N ξuη(u)û; thus,

(ξη)u = ξuη(u). Scaling is defined only for vectors spanned by N̂ . If f : E → Λ is any

function whose image lies in span N̂ , we define fη by fη(e) = f(e)η; i.e., fη(e)u = f(e)uη(u)
for each u ∈ N .

We call f : E → Λ a canonical bias representation of the switching class [Φ] if f is
a canonical bias representation of a gain graph Φη ∈ [Φ]. In terms of linear algebra, f is
virtually any function obtained from xΦ through scaling Λ. Any canonical bias representation
of [Φ] is identical to a scaling of a switching of a canonical bias representation of Φ. This is
the meaning of the relationship

xΦη(e; v, w) = η(v)−1(xΦ)η(e; v, w). (2.1)
8



Thus switching gains gives a new but projectively equivalent representation; so a switching
class [Φ] has a unique canonical bias representation up to projective equivalence. (The
converse is not true; see Section 2.3.)

We have so far defined a canonical bias representation of a gain graph and a switching
class. A definition for biased graphs will appear later.

A function f : E → FN and subset S ⊆ E determine functions f
∣∣
S
, the restriction of f

to S, and in a complicated way f/S : Sc → F πb(S), defined on Sc = E \ S. To define f/S,
let S = S0 ∪ S1 ∪ · · · ∪ Sk where S0 is the union of all unbalanced components of S and
the other Si are the balanced components of S. Let η be a switching function under which
ϕη

∣∣
Si
≡ 1 for each i > 0. For e ∈ Sc and V ∈ πb(S), set (f/S)(e)V =

∑
u∈V f

η(e)u. This

definition of f/S is unique up to switching of Φ/S so it is well defined on [Φ/S]. In fact,

f/S is the image of f under a vector space homomorphism. In F πb(S) let
ˆ̂
V be the unit

vector in the V -direction, and let ˆ̂πb(S) be the basis composed of all such unit vectors. The

homomorphism sends û ∈ N̂ to
ˆ̂
V ∈ ˆ̂πb(S) if u ∈ V ∈ πb(S) and to 0 if no such V exists.

Theorem 2.1. Let Φ = (Γ, ϕ,G) be a gain graph and F a skew field containing G as a
multiplicative subgroup.

(a) The linear dependence matroid of the vectors xΦ(e) is isomorphic, under the mapping
xΦ, to the bias matroid G(Φ).

(b) For any canonical bias representation f and any S ⊆ E, f
∣∣
S

is a canonical bias
representation of Φ|S and f/S is a canonical bias representation of [Φ/S].

Proof of (a). We may treat a half edge as an unbalanced loop (with gain zero, say).
It is easy to show by trimming pendant edges that x(S) is independent if S is a forest.
Suppose S is a circle, say S = e1e2 · · · ek with ei oriented from vi−1 to vi. (We take

subscripts modulo k.) A linear relation
∑k

1 αix(ei) = 0 requires that αj+1 = αjϕ(ej) for
each j. Therefore, α1 ≡ αk+1 = αkϕ(ek) = · · · = α1ϕ(e1) · · ·ϕ(ek) = α1ϕ(S). We have
α1(1− ϕ(S)) = 0; so either S is balanced and its vectors are dependent, or it is unbalanced
and they are independent.

In the latter case, letting α1 = 1 and αj = ϕ(e1) · · ·ϕ(ej−1) for 2 ≤ j ≤ k, we have∑k
1 αix(ei) = (ϕ(S) − 1)v̂k. Therefore v̂k and consequently all v̂i, i ≤ k, are in spanx(S).

That is, span x(S) = span N̂(T ). If we enlarge S to a connected edge set T , we have

spanx(T ) = span N̂(T ).
One can easily deduce that, if R is an edge set each of whose components has cyclomatic

number at most one and contains no balanced circle, then R is independent. But if a
component of R contains a balanced circle or has cyclomatic number at least two, R is
dependent. It follows that the linear dependence matroid of x(E) is G(Φ). �

Proof of (b). The statement for f
∣∣
S

is trivial.
For f/S it suffices to consider the possible types of edge e ∈ E(Φ \ S).
First, e may have two endpoints (not necessarily different) in balanced components (not

necessarily different) of Φ/S. Say the endpoints are v and w and v ∈ V , w ∈ W , with V,W ∈
πb(S). We have f(e) = αexΦ(e), whence fη(e) = αeη(v)xΦη(e) = αeη(v)[−v̂ + ϕη(e; v, w)ŵ],
so that

(f/S)(e) = αeη(v)[− ˆ̂
V + ϕη(e; v, w)

ˆ̂
W ] = αeη(v)xΦη/S(e).
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Second, emay have two endpoints of which only one, or neither, is in a balanced component
of S. Thus e becomes a half or loose edge, respectively, in Φ/S. Or, e may be a half or loose
edge in Φ. All these cases are easy to verify.

The conclusion is that f/S is a canonical bias representation of Φη/S. �

In the case of a commutative field we can say more. Let C be a circle in Φ; let I(Φ) be
an incidence matrix of Φ in which the edges of C are all oriented the same way around C,
and let M be the square submatrix of I(Φ) indexed by N(C) and C (that is, an incidence
matrix of Φ:N(C)|C). Then

detM = ±(1− ϕ(C)). (2.2)

We omit the proof.
Dowling [13, Theorem 10] gave a proof of Theorem 2.1(a) for Φ = GK

•

n (the full G-
expansion of Kn, defined in Examples I.6.7 and III.3.7 and Part V) along with a strong
converse for that example ([13, Theorem 9], generalized in our Proposition 2.4). His result
implies Theorem 2.1(a) for finite order, since the bias matroid of any gain graph of finite
order is essentially a submatroid of G(GK

•

n). His proof is based on a presentation of G(GK
•

n)
as a kind of partition lattice; our proof, based on a graphical presentation, is much simpler.
Special cases have appeared as well. Proofs for G = R∗ have appeared in the literature of
networks with gains; cf. [27]. A detailed proof for #G = 2 in [37, Section 8A] is based on
Equation (2.2); it adapts readily to the general commutative case.

Example 2.1. In Figure 2.1(a) we see a gain graph Φ of order n = 3 with gains in Q∗, the
multiplicative group of rational numbers. We adopt the simplified notation geij for an edge
vivj with gain ϕ(geij; vi, vj) = g. (Then for instance 2e13 = 2−1e31.) The balanced circles are
C1 = {3e12, 1e23, 3e13} and C2 = {1e12, 2e23, 2e31}, since their gains are ϕ(C1) = 3 ·1 ·3−1 = 1
and ϕ(C2) = 1 · 2 · 2−1 = 1. (The digon {3e12, 3e21} has gain 3 · 3 6= 1 so it is unbalanced.)
Therefore, 〈Φ〉 = (‖Φ‖, {C1, C2}).

The vectors that canonically represent G(Φ) in R3,

x(h1) = b1 = (1, 0, 0), x((−1)e22) = −b2 + (−1)b2 = (0,−2, 0),

x(1e12) = (−1, 1, 0), x(3e12) = (−1, 3, 0), x(3e21) = (3,−1, 0),

x(1e23) = (0,−1, 1), x(2e23) = (0,−1, 2),

x(2e13) = (−1, 0, 2), x(3e13) = (−1, 0, 3),

are shown in Figure 2.1(b), and the corresponding canonical hyperplane representation (see
Corollary 2.2) is in Figure 2.1(c). The vectors span R3 since rkG(Φ) = 3. An incidence
matrix of Φ (with edges in the same order as above) is

I(Φ) =

1 0 −1 −1 3 0 0 −1 −1
0 −2 1 3 −1 −1 −1 0 0
0 0 0 0 0 1 2 2 3

 .
The gain group, G = Q∗, embeds in several ways as a subgroup of R∗. Each different

embedding gives a different canonical bias representation of Φ and none of these are pro-
jectively equivalent (by Proposition 2.9). Still other canonical bias representations of G(Φ)
may result from other gains for 〈Φ〉, switching inequivalent to Φ, in gain group R∗. Indeed,

10
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Figure 2.1. A Q∗-gain graph Φ, a canonical real vector bias representation
(b), and a canonical real hyperplanar representation (c). Arrows by the edges
of Φ indicate the direction in which the gain is calculated; the superfluous
arrows by identity-gain edges are omitted.

up to switching, gains for 〈Φ〉 are any of these:

ϕ(1e12; v1v2) = 1, ϕ(3e12; v1, v2) = α, ϕ(3e21; v1, v2) = β,
ϕ(1e23; v2, v3) = γ, ϕ(2e23; v2, v3) = 1,
ϕ(2e13; v1, v3) = 1, ϕ(3e13; v1, v3) = αγ,
ϕ((−1)e22) = δ,

12



where α, β, γ, δ 6= 1, α 6= β, αγ 6= 1, αβ 6= 1. Even ignoring δ, which does not materially
affect the representation, this leaves three nearly independent choices α, β, γ ∈ R∗ leading
to different, projectively inequivalent canonical bias representations.

However, since every link is multiple and G(Φ) 6= L(Φ), by Theorem 7.1 every real repre-
sentation of G(Φ) is a canonical bias representation with respect to some R∗-gains for 〈Φ〉.
We may therefore say that the inequivalent real representations of G(Φ) form a 3-parameter
family. Similar remarks apply for any choice of scalar skew field F , keeping in mind that F
must be large enough for α, β, γ to be choosable, that is, #F ≥ 5. One must also remember
that parameters (α, β, γ) and (α′, β′, γ′) give projectively equivalent representations if they
are related by AutF ; and only if, because of Proposition 2.9.

Example 2.2 (Swirls). A swirl is a matroid G(2Cn,B) where n ≥ 3 and B is a linear
class of Hamiltonian circles. (This is a special case of Hamiltonian bias, Examples I.6.8 and
III.12.2. By the definition of a linear class, no two circles in B can differ in only one edge.)
Swirls (along with spikes, Example 4.2) are crucial examples for representability over finite
fields [15, 30, 35].

A free swirl is a bicircular matroid G(2Cn,∅) with n ≥ 3. Arbitrary swirls differ from free
ones in having circuit hyperplanes corresponding to the balanced circles. From amongst the
great variety of swirls [35] singles out three: the free swirls (see [30, Section 5], whose matroids
Mr are free swirls), swirls with one balanced circle, and those with two complementary
balanced circles. Each has its own representabilities, which we shall not go into here; we
content ourselves with two observations.

First, we describe representations. The free swirl G(2Cn,∅), like any bicircular matroid,
is representable over every sufficiently large field. Here is how: Choose n independent base
points p1, . . . , pn (in projective space, say) and two points xi, yi on each line span{pi−1, pi}
(with p0 = pn) so that no n of x1, y1, . . . , xn, yn are dependent; these represent the free
swirl. Other swirls are obtained by specializing the xi and yi to form the required circuit
hyperplanes while maintaining the independence of the base points and the unbalanced
circles. (This is the definition of a swirl in [35].) Theorem 7.1 tells us there are no other
ways to represent a swirl if n ≥ 4. (We shall say a little more about sufficient largeness in
Part VII.)

Second, the swirl G(2Cn,B) is F -representable if and only if (2Cn,B) has gains in F ∗.
Also, if (2Cn,B) happens to have no gains in any group, then its swirl G(2Cn,B) is not
representable over any skew field. All this is also a consequence of Theorem 7.1. One
example of a nongainable biased 2Cn with n = 4 is given in Example I.5.8; it yields a
nonrepresentable swirl of rank 4.

There is a dual representation by hyperplanes. In FN let xv be the coordinate correspond-
ing to node v. Let h(e) be the hyperplane specified by xv = ϕ(e; v, w)xw if e has endpoints
v and w, by xv = 0 if e is a half edge at v, and let h(e) = FN (the ‘degenerate hyperplane’ )
if e is a loose edge or balanced loop. Let H(Φ) be the set (or multiset) {h(e) : e ∈ E}. We
call this the canonical linear hyperplane bias representation of Φ.

Corollary 2.2. The set L(H(Φ)) of flats of H(Φ), ordered by reverse inclusion, is iso-
morphic to LatG(Φ) under the mutually inverse mappings

A ∈ LatG(Φ) 7→
⋂
e∈A

h(e), t ∈ L 7→ {e : h(e) ⊇ t}.
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For S ⊆ E, we have L(H)(Φ|S)) ∼= LatG(Φ|S), and if s =
⋂

e∈S h(e), then H(Φ/S) ∼=
{h(e) ∩ s : e /∈ S} and L(H(Φ/S)) ∼= {t ∈ L(H(Φ)) : t ⊆ s} ∼= LatG(Φ/S). �

Corollary 2.3. Let Φ be finite.
(a) Suppose F = R. Then the set x(E) has 1

2
|χΦ(−1)| hyperplane separations. H(Φ) has

(−1)nχΦ(−1) regions; its face generating polynomial equals (−1)nwΦ(−x,−1).
(b) Suppose F = C. Then the complement Cn \

⋃
H(Φ) has Poincaré polynomial equal to

(−y)nχΦ(−1/y).

Proof. (a) By Theorem 2.1(a) and Corollary 2.2, respectively, theorems of [36] cited in Section
1, and Theorem III.5.1.

(b) By Corollary 2.2, [28], and Theorem III.5.1. �

Several real and complex hyperplanar representations related to root systems and complex
generalizations, with enumerative formulas, are given in Section V.8. Here we present a
different kind of example (that will show up again in Menelæan and Cevian versions in
Examples 2.10 and especially 2.12).

Example 2.3 (Some real and complex hyperplanes). Think of the canonical hyperplanar
bias representations of −Kn and −K•

n. The hyperplanes are xi + xj = 0 in the former and
in the latter also xi = 0. The chromatic polynomials (from [38, Equations (1.1) and (5.7)])
are

χ−K
•
n
(λ) =

n∑
i=1

S(n, i)2i

(
λ− 1

2

)
i

,

χ−Kn(λ) = χ−K
•
n
(λ) + nχ−K

•
n−1

(λ)

=
n∑

i=1

[
S(n, i) + nS(n− 1, i)

]
2i

(
λ− 1

2

)
i

,

where (λ)n is the falling factorial λ(λ− 1) · · · (λ− n+ 1) and S(n, i) is the Stirling number
of the second kind, the number of partitions of an n-element set into i parts; so the numbers
of regions of the corresponding real arrangements are

r(HR(−K•

n)) =
d+1∑
i=1

S(d+ 1, i)2ii!(−1)d+1−i,

r(HR(−Kn)) =
d+1∑
i=1

[
S(d+ 1, i) + (d+ 1)S(d, i)

]
2ii!(−1)d+1−i.

From the Poincaré polynomials given by Corollary 2.3(b) we obtain the Betti numbers of
the complements

X = Cn \
⋃

HC(−Kn) and X
•

= Cn \
⋃

HC(−K•

n)

of the complex hyperplane arrangements: they are

βk(X
•
) =

k∑
i=0

(−1)i

(
n− i

n− k

)
t(n, n− i),

βk(X) =
k∑

i=0

(−1)i

(
n− i

n− k

)
[t(n, n− i) + nt(n− 1, n− i)] ,
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where

t(n, n− i) =
i∑

j=0

2i−jS(n, n− j)s(n− j, n− i);

here s(n, k) is the Stirling number of the first kind, or (−1)n−k times the number of permu-
tations of {1, 2, . . . , n} having k cycles.

One might hope that, conversely to Theorem 2.1(a), any linear representation of the bias
matroid of a biased graph Ω is a canonical bias representation of a gain graph whose biased
graph is Ω. But this is not always so.

Example 2.4. Consider G(±K3), where ±K3 is the signed expansion of K3; that is, it has all
possible positive and negative links. By [37, Section 5] G(±K3) ∼= G(K4). Although G(K4)
is binary, 〈±K3〉 has no canonical bias representation over F2. The reason is that 〈±K3〉 can
only have a gain group in which some element has order 2 and there is no such element in
F ∗

2 . See Example 7.5 for more about this example and for representation diagrams.

There is, however, a partial converse to the theorem.

Proposition 2.4. Let Ω = (Γ,B) be a full biased graph and F a skew field. Let f be an
F -linear representation of G(Ω). Then there is a gain graph Φ such that 〈Φ〉 = Ω and f is
a canonical bias representation of Φ.

Proof. Suppose f : E → Λ is the representation of G(Ω). Since a set EN consisting of one
unbalanced edge ev at each node v is a basis for G(Ω), f(EN) is independent. Let us fix EN

and set v̂ = f(ev). Then for an edge e with νΓ(e) = {v, w}, f(e) lies in span{v̂, ŵ} so it is a
scalar multiple of v̂ − αŵ for some α 6= 0. We take ϕ(e; v, w) = α. Now let Φ = (Γ, ϕ, F ∗).
Since f is a canonical bias representation of Φ and a representation of G(Ω), the identity
mapping on E is an isomorphism of G(Φ) with G(Ω). It follows that 〈Φ〉 = Ω. �

Proposition 2.4 generalizes the vectorial portion of the unique representation theorem for
Dowling lattices [13, Theorem 9]. Dowling proved that, for n ≥ 3 and #G ≥ 2, any vector
representation f of G(GK

•

n) is a canonical bias representation. We can deduce this through
the following argument. (1) By Proposition 2.4, f is a canonical bias representation of some
gain graph Ψ with 〈Ψ〉 = 〈GK•

n〉. (2) If 〈Ψ〉 = 〈GK•

n〉, where n ≥ 3, then Ψ is switching
equivalent to GK

•

n. (We must assume Ψ has no isolated or monovalent nodes and we must
treat all unbalanced edges as if they were half edges. The gain group of Ψ may be larger
than G but it can be cut down after switching.) This is easily proved (or see Theorem
V.2.1). (3) Since Ψ and GK

•

n are switching equivalent, their canonical bias representations
are projectively equivalent (see the remark near Equation (2.1)). Combining (1)–(3) yields
Dowling’s theorem.

Define a canonical bias representation (over F ) of the biased graph Ω to be any canonical
bias representation over F of a gain graph Φ whose biased graph is Ω. (This is by definition
a vector representation.) Different choices of Φ, although they have the same biased graph,
need not have any other relation to each other; e.g., they may have different gain groups.
By Proposition 2.4, we could equivalently define a canonical bias representation of Ω as the
restriction to E of any linear representation of G(Ω

•
).

Thus, we define a canonical projective [or, affine] bias representation of a biased graph Ω to
be the restriction to E(Ω) of any projective [affine] representation of G(Ω

•
). This definition is

compatible with that of a canonical linear bias representation of Ω. To see why, suppose G(Ω)
15



represented in a projective space P that has coordinates in F . P is therefore a quotient of an
F -vector space Λ: to be precise, the points of P are the lines of Λ. If we pull back the point
ê that represents e ∈ E•

to a nonzero vector f(e) in the line corresponding to ê, then f will
be a canonical bias representation of some Φ

•
for which 〈Φ•〉 = Ω

•
. Restricting f to E gives

a linear canonical bias representation of Ω. That is, coordinatizable canonical projective
representations are equivalent to linear canonical representations. If we were content to
have canonical bias representations only in coordinatizable projective spaces, we could have
defined a projective bias representation of Ω to be the projective image of a linear bias
representation. However, that would have been unnecessarily confining. Noncoordinatizable
projective representations (by Desargues’ theorem, necessarily in rank ≤ 3) are in some ways
just as good as coordinatizable ones—an example is in the proof of Theorem 7.1, where we
can apply the modular law instead of relying on coordinates—and they give added power
that becomes interesting in connection with quasigroup expansions and nondesarguesian
representations in Parts V and VI.

Example 2.5 (Balanced). If Φ is balanced (i.e., if Φ = 〈Γ〉 so for instance Φ = {1}Γ),
then a canonical bias representation is any representation, because G(Φ) = G(Γ), which has
projectively unique representation.

Example 2.5A (Near-regular). The near-regular and 6
√

1-matroid of maximum size of [30a],
Tr, is gain graphic. Let Φr consist of Kr+1 with identity gains, on node set {v0, v1, . . . , vr},
and additional edges f0i with gain ϕ(f0i) = α 6= 1 for i = 1, . . . , r. It follows from the
description of Tr in [30a, bottom of p. 166] that Tr = G(Φ

•

r), no matter the value of α.
Hence, Tr is (canonically) representable over every skew field of order at least 3. By Propo-
sition 2.4 and Eq. (2.1) there is one representation (up to projective equivalence) for each
automorphism-equivalence class of elements of F\{0, 1}, and all these different representa-
tions are projectively inequivalent.

Interestingly noncanonical representations of bias matroids of biased graphs seem to be
hard to find and I hardly know any. One noncanonical bias representation is the binary
representation of ±K3 just mentioned in Example 2.4; but this is of the type where any two
unbalanced circles have a common node so that G(Φ) = L(Φ); thus the noncanonical bias
representation is a canonical lift representation. For another example of the same kind:

Example 2.6. By [42] G(−K5) = R10, Bixby’s regular matroid, so it has a binary represen-
tation, but this cannot be a canonical bias representation for the same reason as applies to
±K3: the only possible gains (up to switching) are all negative, and Z2 6≤ F ∗

2 . However, this
is a canonical lift representation. Since Z2 = F+

2 , L(−K5) has a canonical binary representa-
tion. A regular matroid has projectively unique representation, so the binary representation
of G(−K5) can only be the canonical representation of L(−K5).

Example 2.7 (Too thick). A more interesting way to get noncanonical bias representations
is to make the space too narrow. Suppose Ω has a k-fold link with no balanced digons. Then
in G(Ω) there is a k-point line that represents only links. In G(Ω

•
) this line will have k + 2

points. G(Ω) might be representable over Fq where q = k−1 or k (if these are prime powers),
but the representation is noncanonical for bias because it cannot extend to G(Ω

•
). Such an

example is Ωk, a tree with one edge thickened to k parallel edges and with no balanced
digons. Then G(Ωk) = U2,k ⊕Un−2,n−2, the direct sum of a line and a free matroid, which is
obviously Fq-representable for any q ≥ k − 1.
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This kind of noncanonicality is still rather superficial, in that the representation becomes
canonical upon extending the coordinate field.

Problem 2.5 (Fundamental representation questions). (a) Characterize the biased graphs
for which the conclusion of Proposition 2.4 does not hold: that is, they have a noncanonical
bias representation (not counting canonical lift representations when G(Ω) = L(Ω)); most
especially, one that is not binary. (b) What kinds of noncanonical representation can exist
in these cases?

2.2. Right canonical representations.
The previous work is valid if F acts on Λ on the left. If the action is on the right (and F

is noncommutative), certain modifications are necessary.
Define x′Φ(e) = v̂ϕ(e; v, w) − ŵ. We call a mapping f : E → Λ a right canonical bias

representation of Φ if there exists a mapping N → Λ of N onto an independent set under
which each f(e) is a non-zero multiple of x′Φ(e). (The previous representations would in
this context be called left canonical. When F is commutative, left and right canonical
representations are not the same.)

Theorem 2.6. Let Φ = (Γ, ϕ,G) be a gain graph and F a skew field containing G as
a multiplicative subgroup. Then the right-linear dependence matroid of the vectors x′Φ(e) is
naturally isomorphic to the bias matroid G(Φ).

First Proof. Consider a walkW = (v0, e1, v1, e2, . . . , el, vl) with gain ϕ(W ) = ϕ(e1)ϕ(e2) · · ·ϕ(el).
It is clear that

l∑
i=1

x′(ei)αi = v̂0ϕ(W )− v̂l

if we take αi = ϕ(ei+1) · · ·ϕ(el). Thus a proof like that of Theorem 2.1(a) goes through. �

Second Proof. The left and right canonical representations differ when F is a field. The
true relationship is rather complex. First, note that −x′Φ(e)ϕ(e)−1 = −v̂ + ŵϕ(e; v, w)−1.
This suggests an equivalence between left and right representations through Gop and F op,
the opposite group and skew field with multiplications ◦ defined by g ◦ h = h · g, where
the dot is multiplication in G or F . The right F -vector space Λ has a corresponding left
F op-vector space Λop. Let Φop = (‖Φ‖, ϕop,Gop) where ϕop(e) = ϕ(e)−1 ∈ Gop. Then
ϕop(e1e2 · · · el) = ϕ(e1e2 · · · el)

−1, so Φop has the same balance as Φ, whence G(Φop) = G(Φ).
Now,

[−x′Φ(e)ϕ(e)−1]
op

= −v̂ + ϕ(e; v, w)−1ŵ

= −v̂ + ϕop(e; v, w)ŵ = xΦop(e).

Thus the natural reversal mapping Λ → Λop maps a scalar multiple of x′Φ(e) to xΦop(e). This
establishes that x′Φ and xΦop represent the same matroid; by Theorem 2.1(a) it is G(Φop),
which equals G(Φ). �

Right canonical representations and the opposite gain graph give us extra flexibility in
defining hyperplane representations. Regarding FN as a right F -vector space, let h′(e) be
the hyperplane specified by xw = xvϕ(e; v, w). I usually prefer h′ to h as a hyperplane
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representation of G(Φ),1 but it needs justification. Let H′(Φ) = {h′(e) : e ∈ E}. The analog
of Corollary 2.2 is

Corollary 2.7. Corollary 2.2 remains valid if H and h are replaced by H′ and h′.

Proof. First proof: h′ is dual to x′. Second proof: apply Φop as in the second proof of
Theorem 2.6. �

2.3. Switching and projective equivalence.
At Equation (2.1) we noted that the canonical bias representations of members of a switch-

ing class are projectively equivalent. The converse is not true for two reasons. Suppose Φ
is an F ∗-gain graph. First of all, we need to allow both switching and field automorphisms:
for a switching function η and an α ∈ AutF , and writing ≈ for projective equivalence, we
have xΦηα ≈ xΦ. Secondly, sometimes Φ′ and Φ on the same underlying graph can have
xΦ′ ≈ xΦ (so G(Φ′) = G(Φ), whence 〈Φ′〉 = 〈Φ〉) but Φ′ 6= Φηα; this is certainly possible for
a contrabalanced circle or theta graph. Those may be essentially the only such examples.

Conjecture 2.8. Suppose Φ and Φ′ are unbalanced F ∗-gain graphs of finite order with
‖Φ′‖ = ‖Φ‖ and with G(Φ) connected. If G(Φ) has a U2,4 minor, and if xΦ′ ≈ xΦ, then Φ′

is obtained from Φ by switching and a field automorphism. If G(Φ) has no U2,4 minor and
xΦ′ ≈ xΦ, then Φ′ need not be so obtained.

I propose the sufficiency of a U2,4 minor because a quadruple of points on a projective
line coordinatized by F is projective to another such quadruple if and only if they have the
same cross ratio, and the matroid of a quadruple is U2,4. (The cross ratio in a skew field is a
conjugacy class; see [3, p. 72, Proposition 1].) This leads me to think that it is sufficient for
the conjecture if every element of G(Φ) belongs to a U2,4 minor. By a result of Bixby [4], if
G(Φ) is connected and has a U2,4 minor, every element belongs to a U2,4 minor; therefore we
may replace the hypothesis of multielement U2,4’s by the assumption that G(Φ) is connected
(this is characterized in Theorem II.2.8) and nonbinary (characterized in [40, Theorem 3]).

2.4. Abstract gains and nonunique representation.
We should emphasize that in Theorem 2.1 G is a specific subgroup of F ∗ leading to a

specific canonical bias representation. If G is known only as an abstract group, it may
embed as a subgroup of F ∗ in several ways that are not equivalent under automorphisms of
F .2 Since the question of projectively unique representability of a matroid is an important
one, we need a theorem to tell us how that uniqueness is affected by existence of multiple
embeddings of the gain group.

To that end we define a canonical bias representation of a gain graph Φ with abstract gain
group G to be a canonical bias representation of Φ over F , as in Theorem 2.1, obtained by
choosing any embedding ε : G ↪→ F ∗.

Proposition 2.9. Suppose Φ is a loopless gain graph whose gain group G is generated by
ϕ(E∗). The canonical bias representations of Φ induced by different embeddings ε1, ε2 : G ↪→

1The choice between h and h′ in work with hyperplane representations is so arbitrary that one should
just choose one and then forget the special notation.

2For instance, Z ↪→ Q∗ in infinitely many ways, but Q has no nontrivial automorphisms. A different kind
of example is where F has automorphisms but G has more; thus when γ ≥ 5, Zγ ↪→ C∗ in inequivalent ways.
One more example: if k > 2 and p ≥ 5, then Zk ↪→ F ∗

pd both by 1 7→ 2 and by −1 7→ 2 but 2 and 2−1 are
not automorphic.
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F ∗ are projectively equivalent if and only if ε1 and ε2 are equivalent under an automorphism
of F .

Proof. Let fi be a canonical bias representation in FN induced by εi: that is, with respect
to some basis N̂i, fi(e) is a scalar multiple of xi(e) = −v̂i + εi(ϕ(e))ŵi. By linear transfor-
mation of FN we may assume v̂1 = v̂2 for all v ∈ N . By scaling we may assume fi = xi.
Consequently,

x2(e) = x1(e)
α = −v̂ + ε1(ϕ(e))αŵ

for some automorphism α of F , from which it follows that ε2(ϕ(e)) = ε1(ϕ(e))α (since v 6= w).
We conclude that ε2 is the composition of ε1 and α. �

In light of this result, unique representation has multiple levels of interpretation. One
interpretation takes account of the gain-group embedding. We say that Φ has projectively
unique bias representation up to gain-group embedding if every bias representation is projec-
tively equivalent to a canonical bias representation with respect to some embedding of G in
F ∗.

2.5. Menelaus.
A third pair of dual representations of the bias matroid generalizes the theorems of

Menelaus and Ceva3 to arbitrarily high dimensions and complicated configurations. Let
Φ be a gain graph with gain group contained in F ∗, where F is a field. (We may as well take
the gain group to be F ∗ itself.) Let h∞ be the ideal hyperplane in P = PN−1, so that P \ h∞
is the affine space A = AN−1. Choose an affine basis NP = {vP : v ∈ N} (which is also a
projective basis), define lvw = span{vP, wP}, and let WP = {wP : w ∈ W} for W ⊆ N . We
represent e ∈ E by a ‘Menelæan’ point and (Section 2.6) a ‘Cevian’ hyperplane. (To keep
things simple we assume Φ has no loose edges or balanced loops; they would not correspond
to any points.)

If e is a half edge or unbalanced loop at v, take p(e) = pΦ(e) = vP. If e is a link whose
endpoints are v and w, let

p(e) = pΦ(e) =

{
1

1−α
(vP − αwP) if α = ϕ(e; v, w) 6= 1,

h∞ ∧ lvw if α = 1.
(2.3)

Let M(Φ) = {p(e) : e ∈ E}. This is the projective Menelæan representation of G(Φ). If
we want an affine representation we can have no identity-gain links; then M(Φ) ⊆ A is the
affine Menelæan representation.

Let us play with the first line of (2.3) using arithmetic with infinity, where 1/∞ = 0, etc.
If we substitute α = 0, then p(e) = vP. With α = ∞, p(e) = wP. If α = 1, p(e) is infinite,
which we interpret as the point h∞ ∧ lvw. Thus, if we define

ϕ(hv; v, w) = 0 and ϕ(hv;w, v) = ∞
for an unbalanced edge hv at v and for w 6= v, we can dispense with the second line of (2.3)
and the special rule for unbalanced edges, and still p(e) will always be the correct Menelæan
point.

Theorem 2.10 (Generalized Theorem of Menelaus). The set of flats spanned by M(Φ)
is isomorphic to LatG(Φ) under the natural isomorphism induced by e 7→ p(e). Moreover,

3For which see, for example, [1, 11]; the latter was known in the eleventh century in Moorish Spain [21]
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if S ⊆ E and W ⊆ N , the flat generated by the points p(e) for e ∈ S contains span(WP) if
and only if W ⊆ N0(S).

Proof. Let F 1+N = {(x0, x) : x0 ∈ F, x ∈ FN} and re-embed FN in F 1+N as the subspace
x0 =

∑
v xv. (This is valid for x with finite support, which is enough for us because both

G(Φ) and the projective dependence matroid of M(Φ) are finitary.) We project the embedded
FN to P by taking homogeneous coordinates and to A by taking h∞ to be where x0 = 0. Let
b = (1, 0, 0, . . . , 0) ∈ F 1+N and let v̄ be the unit basis vector of F 1+N in the v-direction for

v ∈ N . Let v̂ = b+ v̄ for v ∈ N . Then v̂ projects to vP ∈ P. Also, N̂ is a basis for FN in its
special embedding. Now, let x(e) be the standard representation of e in FN as embedded.
It projects to p(e). Since the projective relations of the projected vectors are the same as
the linear relations of the vectors, we have the first part of the theorem.

To prove the second part we should augment Φ to a full gain graph Φ
•
. Let s be the flat

generated by {p(e) : e ∈ S}. We may as well take S to be as large as possible. Since s
is a flat of M(Φ

•
) as well, let S

•
= {e ∈ E

•
: p(e) ∈ s}. Now, p(w) ∈ s if and only if an

unbalanced edge at w lies in S
•
; and that occurs if and only if w ∈ N0(S

•
) = N0(S). �

Theorem 2.10 is an extension to more varied point configurations of the multidimensional
Menelaus theorem found in [7, 10, 23]. The latter result concerns only the case in which ‖Φ‖
is a circle. (But this case is fundamental.)

In order to make our Menelaus theorem fully geometrical we have to know how to construct
Φ from a configuration of points. Suppose we have an affine basis B and a set P of points
lying on the projective lines determined by pairs of basis elements. We define Φ to have node
set N = B and edge set E = P . A point p ∈ P ∩ B becomes a half edge. Any other point
p ∈ lvw = span{v, w}, where v, w ∈ B, becomes a link with endpoints v and w and with gain
determined as follows. If p ∈ h∞, ϕ(e) = 1. Otherwise, if we express p = (1 − λ)v + λw,
then ϕ(e; v, w) = 1/(1 − λ−1). If we express v = p + α(w − v) and w = p + β(w − v),
then β = α + 1 = 1 − λ and ϕ(e; v, w) = α/β. If there is a metric in the affine space,
then ϕ(e; v, w) = d(p, v)/d(p, w) where we orient lvw and d represents the signed distance
measured along the oriented line. Now, knowing Φ, we can apply Theorem 2.10 to deduce
the matroid of the configuration. (We continue this line of study in Part VI, where we make
it coordinate-free, or synthetic.)

If e and f are links between v and w (and if F is a field), the cross ratio of their Menelæan
points with respect to vP and wP has the simple expression

(vP, wP; p(e), p(f)) = ϕ(e; v, w)/ϕ(f ; v, w). (2.4)

Thus p(e) and p(f) are harmonic conjugates with respect to vP and wP precisely when the
edge gains sum to zero. We can interpret this fact as a harmonic relationship between Φ and
−Φ = (Γ,−ϕ): for each link e, pΦ(e) and p−Φ(e) are harmonically conjugate with respect to
the appropriate points of NP.

Example 2.8. Take a 3-simplex with vertices v1, . . . , v4 in A3(R). Choose some points:
p12, one-third of the way from v1 to v2; p13, one-third of the way from v1 to v3; and p14,
three-fourths of the way from v1 to v4. The points p1j determine a plane h that intersects
the other lines lij at points pij. Let us determine these points. Their Menelæan gain graph
Φ is balanced because they are coplanar. The gains ϕ(e12; v1, v2) = −1

2
, ϕ(e13; v1, v3) = −1

2
,

ϕ(e14; v1, v4) = −3, are calculated from the geometry; the others shown in Figure 2.2 are
obtained by balance of Φ. Reversing the geometrical calculation we find that p23 is the ideal
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Figure 2.2. A real multiplicative gain graph Φ and the corresponding
Menelæan points (which are coplanar, contained in h) of a tetrahedron in
A3(R), as in Example 2.8.

point on l23, which means that h ‖ l23, that p24 is the point on the extension of edge v2v4

through v4 at distance 1
5
d(v2, v4) past v4, and that p34 is similar with respect to v3 and v4.

Example 2.9 (Midpoints). Take the midpoints of some edges in a d-dimensional simplex
sd in Ad(R). (d is n− 1.) When are they contained in a hyperplane? For that matter, what
is the dimension of the subspace they span?

Corollary 2.11 (Midpoints). The matroid of all midpoints of a simplex sd in real affine
d-space is naturally isomorphic to G(−Kn) and the matroid of midpoints and vertices of sd

is isomorphic to G(−K•

n).
Choose the midpoints of an arbitrary set S of edges. The midpoints span a flat of dimension

d−b(S) where b(S) is the number of bipartite components of S treated as a spanning subgraph
of the 1-skeleton Kd+1 of sd. Furthermore, the midpoints span a flat that contains no vertex
if and only if S is bipartite. In particular, a maximal set of midpoints that is contained in a
hyperplane that does not contain a vertex corresponds to an edge cutset of Kd+1.

Proof. The matroid of all midpoints and vertices is G(−K•

n) by Theorem 2.10, since −Kn

is only a notational variant of {−1}Kn. The flat spanned by the midpoints from S has
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Figure 2.3. The midpoints of a cutset of a tetrahedron. The cutset separates
v1, v3 from v2, v4.

dimension d − b(S) where b(S) is the number of balanced components of S in −Kd+1. A
component is balanced in −Kn if and only if it is bipartite. The remainder of the proof is
straightforward. �

The last part of the corollary generalizes the well known fact that the midpoints of the
edges extending from one vertex are cohyperplanar. Figure 2.3 illustrates this. Moreover,
the hyperplane is parallel to the faces of the tetrahedron that it does not intersect; this is a
consequence of the more sophisticated Corollary 2.16 (as well as being clear from elementary
geometry).

Regard NP as sitting in affine space. Its convex hull is a simplex sN−1 of which the 1-
skeleton is KN . An arbitrary generic hyperplane h (that is, one disjoint from NP) intersects
each edge line lvw at a point that is either inside or outside the edge vPwP of the simplex.
We can easily decide which it is by examining the gain graph corresponding to the points
h ∧ lvw for all v 6= w ∈ N . Because h is generic, h meets every edge line in a point other
than a vertex of the simplex, so this gain graph is complete, having the form (KN , ϕ), and
it is balanced by Theorem 2.10.

Corollary 2.12. Take a generic hyperplane h, corresponding to the gain graph Φ =
(KN , ϕ). Then h intersects lvw inside the simplicial edge vPwP if and only if ϕ(evw) < 0.
The set of edges of sN−1 that are cut by h is either void or a cutset of KN .
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Proof. By formula (2.3), p(e) lies in an edge of the simplex if and only if ϕ(e) < 0. �

What we have done is to create a system of coordinates in the union of all edge lines,
L =

⋃
v 6=w lvw. We call these Menelæan coordinates : that is, the Menelæan coordinate of

a point p(e) ∈ L is ϕ(e), with due regard for the special values 0 and ∞ as explained just
above.4 The gain graph associated with the coordinate system on all of L is Φ = F ∗K

•

N . We
can think of the coordinates as the composition of the mapping p−1 : L→ E with the gain
function ϕ of F ∗K

•

N .
There is one difficulty: p is not intrinsically geometric but is determined by the choice of

homogeneous coordinate vectors vP for v ∈ N . We have implicitly assumed that the vP were
chosen so that each one has coordinate x0 = 1, as is the standard manner of embedding
AN−1 in FN . Associated with this choice is that the ideal points in L, identified by having
x0 = 0, are differences of base points.5 How, then, do Menelæan coordinates change if we
assign different homogeneous coordinates v′P to the base points, or if we choose a different
ideal hyperplane (we call this reaffinizing P)? To answer these questions we need a thorough
analysis of the process of setting up coordinates.

First of all, we write v̇P for a particular choice of homogeneous coordinate vector for vP,
perhaps the standard one with x0 = 1 or perhaps not. Since we want a coordinate system
in L, which is fixed, the set {vP}v∈N itself is determined, at least unless #N ≤ 2, which is
trivial. The only choice we can make is that of the homogeneous coordinate vectors v̇P for
v ∈ N ; that is, we can scale v̇P to v̇′P = a nonzero scalar multiple of v̇P. Any such choice
implies an ideal hyperplane h∞, namely that spanned by all the vectors ẇP − v̇P. (It is easy
to see that h∞ exists and is unique.) A Menelæan coordinate system on L is the system of
coordinates mvw(q) on L given by (2.3) with mvw(q) = ϕ(p−1(q); v, w); that is, we treat q
as p(e), and the coordinate of q is ϕ(e). (The coordinate depends on orienting lvw just as
the gain depends on orienting e.) Intrinsic to a Menelæan coordinate system is the bijection
p : E → L, which depends on the homogeneous coordinates of the base points.

Scaling the homogeneous base coordinates to {v̇′P}v∈N implies a change of p to p′ and hence
of m to m′, new Menelæan coordinates on L. We want to express m′ as a change of gains in
Φ. That is, we have ϕ = p ◦m = p′ ◦m′; but if we fix the correspondence p : E → L, how
is ϕ′(e) = m′(p(e)) related to ϕ(e) = m(p(e))? Having fixed p, we can consider the gains ϕ
and ϕ′ to be the old and new Menelæan coordinates, whence the statement of our lemma:

Lemma 2.13 (Change of Menelæan coordinates). Scaling the basis coordinate vectors v̇P
by γ : N → F ∗, from v̇P to v̇′P = γvvP, gives new Menelæan coordinates ϕ′ = ϕγ−1

, where
γ−1 is defined by γ−1(v) = γ(v)−1.

Proof. A Menelæan point q = p(e) given by

q = (1− λ)v̇P + λẇP,

4The Menelæan coordinate on a line is known in projective geometry, although not given much attention.
It is the inhomogeneous parametric coordinate of [34, Section 65, p. 182]. Our definition by a distance
formula, implying that ϕ(e) = 1 corresponds to infinity, is that of the parameter t in [24, p. 717]. (These
citations are not supposed to be original sources.) What seems to be new is the use of the coordinates on
a system of coordinate lines (that is, L), the systematic geometric interpretation, and the connection with
gain graphs.

5This observation is based on the treatment of parametric coordinates of a projective line in Hughes and
Piper [22, p. 33]. If we take their e1 = w−v and e2 = v, then their parametric coordinates are our Menelæan
coordinates; however, the geometric meaning of the coordinates is very different.

23



so ϕ(e) = (1− λ−1)−1, is expressed in terms of v̇′P and ẇ′P as

q = (1− λ)γ−1
v v̇′P + λγ−1

w ẇ′P.

The revised Menelæan coordinate is ϕ′(e) = (1−λ′−1)−1 where (1−λ′)v̇′P +λ′ẇ′P is a scaling
of q. A short calculation shows that

λ′ = [(1− λ)γ−1
v + λγ−1

w ]−1λγ−1
w = γv[λ

−1 − 1 + γ−1
w γv]

−1γ−1
w ,

so that
ϕ′(e) = (1− λ′

−1
)−1 = γv(1− λ−1)−1γ−1

w = γvϕ(e)γ−1
w .

Thus, ϕ′ = ϕγ−1
. �

If γ is constant, then although ϕ′ may not be ϕ, the ideal hyperplane is unchanged. This is
clear from the projective geometry, but it also reflects the fact that the ideal hyperplane cor-
responds to the subgraph {1}KN , whose gains are invariant. Conversely, if γ is nonconstant
the gains on {1}KN change so the ideal hyperplane moves.

Corollary 2.14. Assume #N ≥ 3 and a fixed embedding N → P. Any two Menelæan
coordinate systems for

⋃
v 6=w lvw are related by switching Φ = F ∗K

•

N , and any switching of Φ
gives a Menelæan coordinate system. Switching retains the ideal hyperplane in place if and
only if the switching function is constant. �

Now that we know the effect of basis scaling we can analyze reaffinization. Remember
that h∞ ∩ L is identified by having gains equal to 1.

Theorem 2.15 (Reaffinization). Given: the gain graph Φ = F ∗K
•

N , a bijection of N to
an affine basis NP ⊆ AN−1(F ) with associated ideal hyperplane h∞, and the corresponding
Menelæan representation p : E → L =

⋃
v 6=w lvw. Let h′ be a projective hyperplane disjoint

from NP and let H ′ = {e : p(e) ∈ h′}. To reaffinize PN−1(F ) so h′ becomes the ideal

hyperplane, one must switch Φ to Φ′ = Φπ−1
where π : N → F ∗ is any potential for Φ|H ′.

No other switching makes h′ into the ideal hyperplane.

Proof. Because h′ is a hyperplane and contains no point of NP, Φ|H ′ is balanced by Theorem

2.10. If π is a potential for Φ|H ′, then Φπ−1|H ′ = {1}KN , which is the edge set corresponding
to the new ideal hyperplane h′∞. Hence L ∩ h′ is contained in h′∞, and since it spans h′,
h′ = h′∞.

It is clear that only switching by π−1 for a potential π can give H ′ all identity gains. �

The value of the theorem is that it lets us treat any hyperplane in general position with
respect to NP as the ideal hyperplane. In other words, h∞ is a typical hyperplane.

Example 2.10 (Midpoints and farpoints). We shall call farpoints the ideal points of the
edge lines of a simplex. We want a generalization of Corollary 2.11 to include the farpoints.
The farpoints themselves, obviously, all belong to a hyperplane that contains no vertex; the
most interesting question concerns mixtures of midpoints and farpoints.

Corollary 2.16 (Midpoints and farpoints). The matroid of all vertices, midpoints, and
farpoints of an affine simplex sd in Ad(R) is naturally isomorphic to G(±K•

d+1), with vertices
corresponding to half edges, midpoints to negative edges, and farpoints to positive edges.

A maximal set of cohyperplanar midpoints and farpoints is one of four types:

(a) all farpoints of sd;
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(b) the midpoints of edges in a cutset of Kd+1, the 1-skeleton of sd, and the farpoints of
the edges not in the cutset;

(c) all midpoints and farpoints in a k-face of sd with 0 < k < d and all farpoints (if any)
of the opposite face;

(d) all midpoints and farpoints in a k-face of sd with 0 < k ≤ d − 2, all midpoints of a
cutset in the 1-skeleton Kd−k of the opposite face, and all farpoints of edges in the
opposite face but not in the cutset.

In cases (a) and (b) the hyperplane contains no vertices. In case (b) the hyperplane is
generated by its midpoints and is parallel to and equidistant from the faces of sd that it
separates.

Proof. The isomorphism is due to Theorem 2.10. The description of hyperplanes is an
application of the description of copoints in G(±Kn) implied by Theorem II.2.1(h) (or see
[37, Theorem 5.1(h)]). That the hyperplane in (b) is generated by its midpoints follows
because a cutset of −Kn is a balanced, connected, spanning subgraph of ±Kn, hence has
rank d. The parallelism follows from the farpoints contained in the hyperplane (and is
metrically obvious given the spanning set of midpoints). �

Evidently, (c) and (d) are degenerate versions of (a) and (b) where the interesting action
takes place within the opposite face and is governed there by (a) and (b). As a reminder
of the natural isomorphism: the vertices are v1, . . . , vd+1; +eij ↔ farpoint on lij, −eij ↔
midpoint on lij, and half edge hi ↔ vertex vi.

The last statement generalizes the well known fact that, if we take one facet of sd to be the
base, the hyperplane generated by the midpoints of edges to the opposite vertex is parallel
to the base.

We may look at (b) in a way that makes it more graphical. Take a spanning tree T in the
1-skeleton Kd+1 and choose a sign σ(e) for each edge. For each edge choose the midpoint if
the edge is negative, the farpoint if it is positive. These points span a hyperplane h(T, σ).
This hyperplane meets every edge line of sd in a midpoint or farpoint and we can say which.

Corollary 2.17. An edge line lij meets h(T, σ) in a midpoint or a farpoint according as
the path in T from vi to vj is negative or positive. �

Proof. Another application of Theorem 2.10, or of Corollary 2.16. �

In still another way of looking at Corollary 2.16(b) it is a variant and application of
(a). The farpoints are cohyperplanar by definition. If we take a hyperplane h spanned
by some midpoints and possibly farpoints, such as h(T, σ), since no vertex is in h nothing
prevents us from reaffinizing Pd(R) by throwing h to infinity. Reversing the process, we
can think of h as h∞ thrown by reaffinization to the ordinary hyperplane h. Let S be the
set of edges corresponding to the generating midpoints and farpoints. Before reaffinization,
when all these points were ideal, S had gain +1. Thus closS was a subgraph (Kd+1,+1),
corresponding to the previous farpoints. After reaffinization S has gains ±1, so the switching
is by a ±1-valued function; therefore (Kd+1,+1) becomes a balanced gain graph (Kd+1, ϕ)
where Im ϕ ⊆ {±1}. This means ϕ−1(−1) is a cutset of Kd+1. Therefore the midpoints and
farpoints in h, which are described by ϕ, are as in (b). Thus we can deduce (b) from (a)
by reaffinization, regarding any hyperplane spanned by midpoints and farpoints as a shifted
ideal hyperplane.
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2.6. Ceva.
Let

Φ∗ = (Γ, ϕ∗) where ϕ∗ = −1/ϕ.

and let p∗(e) = pΦ∗(e) be the point associated to e ∈ E(Φ∗) under the definition (2.3). That
is, p∗(e) = vP if e is an unbalanced edge at v, and for a link

p∗(e) =

{
1

1+α
(αvP + wP) if α = ϕ(e; v, w) 6= −1,

h∞ ∩ lvw if α = −1.
(2.5)

Let hP(e) = span(NP \ {vP}) if e is an unbalanced edge at v, and let

hP(e) = span
(
NP \ {vP, wP} ∪ {p∗(e)}

)
if e is a link between v and w. Let C(Φ) = {hP(e) : e ∈ E}. This is the Cevian representation
of G(Φ). We call ϕ(e) the Cevian coordinate of p∗(e). A hyperplane of the form hP(e) is
a Cevian hyperplane of NP; p

∗(e) is its apex. (Note that hP(e) is the median hyperplane of
edge vPwP when ϕ(e) = 1 and is parallel to lvw if ϕ(e) = −1.)

If (W,S) is a balanced subgraph of Φ∗, let f : W → F ∗ be a potential for Φ|(W,S) and
let f(W ) =

∑
w∈W f(w). Call Φ|(W,S) slim if f(W ) = 0. This property is independent of

the choice of f ; for example we may fix v ∈ W and let f(w) = ϕ(Pvw) as in [39, p. 509],
provided (W,S) is connected.

We call a subspace span(WP), where W ⊆ N , a facial subspace for the basis NP. It is the
projective subspace spanned by a face of the affine simplex whose vertex set is NP. If t is a
flat of C(Φ), let A(t) = {e ∈ E : h(e) ⊇ t}.

Theorem 2.18 (Generalized Ceva’s Theorem). The set of flats of the projective family
C(Φ), ordered by reverse inclusion, is naturally isomorphic to LatG(Φ).

A flat t lies in a facial subspace span(WP) if and only if W ⊆ N0(A(t)). It lies in h∞ if
and only if every balanced component of Φ|A(t) is slim.

Proof. The first statement is dual to the generalized Menelaus Theorem 2.10. If X ⊆ AN−1,
let X⊥ be the projective closure of the affine subspace {y ∈ AN−1 : x · y = 0 for all x ∈ X},
where x · y =

∑
v xvyv if (xv) and (yv) are the affine coordinates of x and y in the basis NP.

Then it is easily verified that {p(e)}⊥ = h(e). The desired result follows.
The second statement is a consequence of the first. Let us enlarge Φ to Φ

•
. Then

A
•
(spanWP) = E

•
:W , which is contained in A

•
(t) if and only if W ⊆ N0(A

•
(t)) = N0(A(t)).

The third part is established by the proof of [39, Theorem 13], which we reproduce here.
We ask when every point x of FN that projects into t lies in h0 :

∑
xv = 0. The equations

xw = ϕ(e; v, w)xv for a link e ∈ A(t) and xv = 0 if an unbalanced edge exists in A(t) at v
force xv = 0 for v ∈ N0(A(t)) and xw = xvϕ(Pvw) for v, w in a balanced component (W,S).
Thus ∑

w∈W

xw = xvf(W ).

If any f(W ) 6= 0, we can find x /∈ h0. So all x must be in h0 if, and only if, all f(W ) = 0. �

Theorem 2.18 is an extension of the higher-dimensional Ceva theorem published in [10, 23].
It is also a generalization of the barycentric representation of contrabalanced Φ treated in
[39, Section 3c].

In order to make our Cevian result completely geometrical we need to construct Φ from
a geometric configuration. This we do as after Theorem 2.10 but with ϕ∗ = −1/ϕ replacing
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ϕ there. Thus ϕ(e; v, w) = λ−1 − 1 = −β/α = d(p, w)/d(v, p). Then we can apply Theorem
2.10. (It was from the distance formula ϕ = d(p, w)/d(v, p) that I originally derived Theorem
2.18. This formula still seems the easiest way to construct Cevian coordinates. I then found
Theorem 2.10 by comparing the classical Menelaus and Ceva theorems. It may be worthwhile
to look for other theorems of plane geometry in which something significant happens when a
product around a triangle or polygon equals 1 (or −1), in the hope of finding new applications
of gain graphs. I have tried this by making a quick survey of [1] but without noticing anything
promising.)

If e and f are vw links, then from (2.4) the cross ratio of their Cevian points with respect
to vP and wP is

(vP, wP; p
∗(e), p∗(f)) =

ϕ∗(e; v, w)

ϕ∗(f ; v, w)
= (vP, wP; p(e), p(f))−1. (2.6)

(Here we assume F is a field.) In particular, then, p∗(e) and p∗(f) are harmonic conjugates
⇐⇒ p(e) and p(f) are harmonically conjugate ⇐⇒ the gains sum to zero (in either Φ or
Φ∗).

Example 2.11. Take the same 3-simplex as in Example 2.8 with the same points p1j.
The Cevian planes h1j = span{p1j, vk, vl} meet in a point q. The Cevian planes hij through
q (for j > i > 1) have apices pij. We locate them by noting that the Cevian graph Φ
determined by all the pij is balanced. The gains of the p1j are ϕ(e12; v1, v2) = ϕ(e13; v1, v3) =
2, ϕ(e14; v1, v4) = 1/3, so Φ is as in Figure 2.4. From this we locate p23 at the midpoint of
edge v1v3; and p24 and p34 are one-seventh of the way from v4 to v2 and v3, respectively.

By results of [36] and Theorem III.5.1, when F = R Theorem 2.10 implies that M(Φ) has
1
2
|χΦ(−1)| hyperplane separations. Dually, Theorem 2.18 implies a face enumeration formula

for projective space.

Corollary 2.19. Let F = R and let Φ be finite with at least one edge. The number
of regions of C(Φ) as a projective arrangement equals 1

2
(−1)nχΦ(−1). The face generating

polynomial of C(Φ) equals

1

2x

[
(−1)nwΦ(−x,−1) + xn−b(Φ)

]
. �

The theorem also should imply a formula for faces, as well as one for bounded faces,
applying to C(Φ) restricted to affine space, but it is not yet possible to write them down, I
believe because the true nature of slimness is not understood.

Problem 2.20. Axiomatize slimness.

One hopes for a graphically defined matroid G0(Φ) = G(Φ)∪{e0} that corresponds directly
to the projective arrangement CP(Φ) = C(Φ) ∪ {h∞}, in terms of whose characteristic and
Whitney-number polynomials we would have simple formulas for the face numbers of C(Φ) as
an affine arrangment. For a start, clearly {S ∈ Lat Φ : every balanced component of (N,S) is slim}
is a modular filter. Which modular filters are produced in this way?

Example 2.12 (Medians and parallels). Let d ≥ 2 and take a d-simplex sd in Ad(R) with
vertices N = {v1, . . . , vd, vd+1}. The median hyperplane mij is the Cevian hyperplane of the
midpoint of the segment vivj, that is, span

(
N \ {vi, vj} ∪ midpoint

)
. The Cevian parallel

or paracevian cij is the Cevian of the farpoint on lij, that is, it contains N \ {vi, vj} and is
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Figure 2.4. A real multiplicative gain graph Φ and the corresponding Cevian
apices and planes (concurrent at q) of a tetrahedron in A3(R), as in Example
2.11.

parallel to lij. We can describe the geometry of the arrangement P of all paracevians, that
of P

•
, the arrangement of all paracevian and facet hyperplanes, that of M, the arrangement

of all median hyperplanes, and that of their combination P
• ∪M.

Harary proved that a balanced signed graph Σ has a bipartition {X, Y } of its nodes such
that an edge is negative if and only if it has one end in X and the other in Y [19]. (X or Y
may be void.) This is a Harary bipartition of Σ. It is unique if Σ is connected. We say Σ is
evenly bipartitioned if #X = #Y .

Corollary 2.21. The intersection lattice L(P
• ∪ M) is LatG(±K•

d+1), with half edges
corresponding to facet hyperplanes, positive edges to median hyperplanes, and negative edges
to paracevians.

An intersection flat is contained in the ideal hyperplane if and only if it corresponds to an
edge set in which every balanced component is evenly bipartitioned.

Proof. The first part is a special case of Theorem 2.18. For the second we note that a potential
for a balanced signed graph Σ with Harary bipartition {X, Y } is f

∣∣
X
≡ +1, f

∣∣
Y
≡ −1. �
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The chromatic polynomials of some interesting subgraphs of ±K•

n are known. Mainly from
[38, Equations (1.1), (3.1), and (5.7)], we have:

χ+Kn(λ) = (λ)n, χ+K
•
n
(λ) = (λ− 1)n,

χ−Kn(λ) =
n∑

i=1

[
S(n, i) + nS(n− 1, i)

]
2i

(
λ− 1

2

)
i

,

χ−K
•
n
(λ) =

n∑
i=1

S(n, i)2i

(
λ− 1

2

)
i

,

χ±Kn(λ) = 2n−1

(
λ

2

)
n−1

[
λ− n+ 1

]
,

χ±K
•
n
(λ) = 2n

(
λ− 1

2

)
n

.

Here (λ)n and S(n, i) are as in Example 2.3. Therefore by Corollary 2.19 we can write down
rP, the number of regions of P

• ∪ M and various subarrangements, regarded as projective
arrangements. (We assume d ≥ 1 so Cevians exist.) The numbers are

rP(M) =
1

2
(d+ 1)!, rP(M

•
) =

1

2
(d+ 2)!,

rP(P) =
d+1∑
i=1

[
S(d+ 1, i) + (d+ 1)S(d, i)

]
2i−1i!(−1)d+1−i,

rP(P
•
) =

d+1∑
i=1

S(d+ 1, i)2i−1i!(−1)d+1−i,

rP(P ∪M) = 2d−1(d+ 1)!, rP(P
• ∪M) = 2d(d+ 1)!.

(The numbers for the all-negative complete graphs are similar to the numbers in Example 2.3,
for the very good reason that the gain graphs are the same.) The face numbers in projective
space can be obtained from formulas for Whitney-number polynomials in [38]: e.g., see [38,
(5.9)] (with [38, (1.2)]) for −Kn and −K•

n. I omit them because they are complicated, but
at least they are known.

The same cannot be said for the number of regions and faces in affine space. We cannot
apply formulas because we do not know enough. In principle, the numbers could be found
either by adding h∞ to the arrangement in projective space and applying [36, Theorem B]
(this is the approach suggested at Problem 2.20), or by deleting all ideal flats from L(C(Φ)),
leaving the semilattice of an affine arrangement to which one can apply [36, Theorem C]. The
latter only requires identifying the ideal flats, which are characterized in Corollary 2.21, and
removing them from the intersection lattice, leaving a lower ideal (a geometric semilattice,
in fact) whose characteristic polynomial is perhaps knowable.

Problem 2.22. Find the numbers of regions of P, P
•
, P

• ∪M, etc., as affine arrangements;
also, the number of k-faces for every k.

One cannot escape noticing that the intersection lattice of P
•∪M, LatG(±K•

n), is identical
to that of the root system arrangement B∗

n, which is merely the real canonical hyperplanar
bias representation H(±K•

n). In fact, P
• ∪M as a projective arrangement is isomorphic to

H(±K•

n) projected into Pn−1(R).
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The Menelæan representation leads to coordinates on the system of projective lines spanned
by a basis. The Cevian representation leads to a coordinate system for the whole set of pro-
jective points. Take Φ = F ∗K

•

N : then each point in PN−1 outside the hyperplanes spanned
by NP corresponds to a unique balanced copoint of G(Φ). The other projective points corre-
spond to the unbalanced copoints in G(Φ). Thus in principle a part of projective geometry
should be expressible through biased graphs. This line of thought, though a variant of the
usual theory of coordinatization by geometric nets, seems to have its own potential. I hope
to develop it elsewhere.

3. Abstract logic and geometry of the bias matroid

We can represent the bias matroid of any gain graph, regardless of what its gain group
may be, by abstracting from the hyperplane geometry of Corollary 2.2 the concept of formal
equations with at most two terms, briefly two-term equations. These are equations of the
forms xv = αxw, xv = 0, and (for completeness) βxv = αxw, in variables xv indexed by a set
N and with constants α, β, and 0 where α and β belong to a group G and 0 /∈ G. The rules
of implication amongst these equations are the usual rules of equality and, in addition,

(i) 1xv = xv, where 1 is the group identity,
(ii) xv = αxw ⇐⇒ βxv = (βα)xw for α, β ∈ G,
(iii) xv = αxv for α 6= 1 ⇐⇒ xv = 0.

Let EN be the set of all equations of the three types that involve variables xv for v ∈ N .
Suppose E ⊆ EN . We call a subset S ⊆ E logically closed in E if no equation in E \ S can
be deduced from S. (It is permissible to use equations not in E at intermediate steps in a
deduction.)

Suppose we have a set E ⊆ EN . We may represent it by a gain graph. We take N for the
node set, G for the gain group, and E for the edge set. An equation xv = 0 is represented by
a half edge at v. An equation βxv = αxw (where v may equal w) is represented by a link or
loop between v and w whose gain is ϕ(e; v, w) = β−1α. Let Λ(N,E) denote this gain graph.
Note that Λ(N,EN) is GK

•

N with multiple edges due to the several equivalent equations
βxv = βαxw, β ∈ G; we shall for simplicity treat these multiple edges as the same.

Theorem 3.1. Let E be a set of two-term equations in variables xv, v ∈ N . A subset
S ⊆ E is logically closed in E precisely when S is closed in G(Λ(N,E)).

Proof. Let closΛ(S) denote the logical closure in E. It is obvious that no deduction requires
any variables besides the xv for v ∈ N .

We show first that closΛ(S) ⊇ closG(S). In an unbalanced component of S we can obvi-
ously deduce xv = 0 for all nodes. Let e be a link between v and w, where we have already
deduced xv = 0 and xw = 0. Then xw = αxw for all α, so xv = 0 = xw = αxw implies
xv = αxw. Thus closΛ(S) ⊇ E:N0(S).

In a balanced component of S we have

closG(S) = bcl(S) = S ∪
{
e ∈ E : e ∈ C ⊆ S ∪ {e} for some balanced circle C

}
.

Let e in this statement be a link from v0 to vk and let C \e ⊆ S be the path e1e2 · · · ek where
ei links vi−1 to vi. We deduce xv0 = ϕ(e1 · · · ei)xvi

successively for i = 1, 2, . . . , k, arriving at
xv0 = ϕ(e)xvk

, which is the equation corresponding to e. If e was a balanced loop at v, the
corresponding equation xv = 1xv follows from (i).
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Now we show that closG(S) ⊇ closΛ(S). A deduction consists of a sequence of applica-
tions of Rules (i)–(iii) and the three laws of equivalence relations. We reinterpret each rule
graphically in GK

•

N . Rule (i) corresponds to the statement that a balanced loop is in any
G-closed set, which is true. Rule (iii) translates to say that, if one unbalanced edge at v is
in the G-closure, then all are; this is correct. The symmetric law, with Rule (ii), says that a
link or loop should have the inverse gain if its direction is reversed. The transitive law and
Rule (ii) say that, if the closure in GK

•

N contains edges e from v to w and f from w to x,
then it contains an edge g from v to x with gain ϕ(g) = ϕ(e)ϕ(f). This is true of G-closure
in GK

•

N . Thus, the logical closure L of S within EN lies in the bias closure T of S within
GK

•

N . Since closΛ(S) = E ∩ L and closG(S) = E ∩ T , we have the desired inclusion. �

A more concrete version of this idea, closer to the geometry in Corollary 2.2, was suggested
to me by Jay Sulzberger [32]. It is a kind of permutation gain graph, where the gain group
is a permutation group. Given Φ, let Z be a set, containing a special element 0̂, on which G
acts as a permutation group so that each group element leaves fixed only 0̂. (For example
F may be a skew field, Z = F , and G ⊆ F ∗.) Let

h(e) =


{x ∈ ZN : xv = ϕ(e; v, w)xw} if νΓ(e) = {v, w},
{x ∈ ZN : xv = 0̂} if e is a half edge at v,

ZN if e is a loose edge or balanced loop,

and let X(S) =
⋂
{h(e) : e ∈ S} if S ⊆ E. If Y ⊆ ZN , let E(Y ) = {e ∈ E : h(e) ⊇ Y }.

Theorem 3.2. The set {X(S) : S ⊆ E} ordered by reverse inclusion is isomorphic to
LatG(Φ). We have closG S = E(X(S)). �

4. Geometry of the lift matroid

A lift representation of Ω is a vector, affine, or projective representation of L(Ω). Amongst
all lift representations, one kind is canonical.

4.1. Canonical representations.
Suppose the gain group G of Φ is an additive subgroup of a skew field F (written G ≤ F+,

F+ being the additive group of F ). For each e ∈ E0 we define a vector zΦ(e), or simply z(e),
∈ F 1+N = {(x0, x) : x0 ∈ F, x ∈ FN} by

zΦ(e) =


(ϕ(e; v, w), ŵ − v̂) if νΓ(e) = {v, w},
(1, 0) if e is a half edge or the extra point e0,

(0, 0) if e is a loose edge or balanced loop,

where v̂ denotes the unit basis vector in the v direction. The vector z(e) is well defined up
to negation; that is enough for our theorem. We call any zΦ a standard lift representation of
Φ.

Take an F -vector space Λ that contains F 1+N or is extendible to contain it. We call any
function f : E → Λ such that each f(e) is a non-zero scalar multiple of z(e) a canonical lift
representation of Φ. If f : E0 → Λ is a function with the same property for each e ∈ E0,
f is a canonical complete-lift representation of Φ. (In full, we say, e.g., canonical linear (or
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vector) lift, or complete-lift, representation over F .) These terms are justified by the first
part of Theorem 4.1.6

For the second part, first we need to know the effect on zΦ of switching Φ by η. It is

zΦη =

[
1 ηT

0 IN

]
zΦ, (4.1)

where we regard z and η as column vectors (z ∈ F 1+N and η ∈ FN) and IN is the N × N
identity matrix. This follows from the expressions zΦη(e) =

(
−η(v)+ϕ(e; v, w)+η(w), ŵ−v̂

)
if e has endpoints v and w; and zΦη(e) = (1, 0) for a half edge, (0, 0) for a loose edge. We
conclude that the canonical lift representation of a switching class [Φ] is well defined up to
projective equivalence. (But not conversely; see Section 4.3.) A canonical [complete] lift
representation of a switching class [Φ] is any canonical [complete] lift representation of any
switching Φη.

Now we need to define the restriction f |S and contraction f/S of a canonical representation
of L0(Φ) (or L(Φ)). The restriction is elementary: merely restrict f to S ∪ {e0} (or S). The
definition of the contraction when S is balanced is based on the fact that f(e) = αezΦ(e)
where αe is an arbitrary nonzero scalar. f/S will be a function E0 \ S → F 1+πb(S). Choose
a switching function η for which ϕη|S ≡ 0. Write ξ0 for the leading coordinate of ξ ∈ F 1+N

or F 1+πb(S). The definition of f/S is

(f/S)(e)V =
∑
u∈V

f(e)u = αe

∑
u∈V

zΦ(e)u if V ∈ πb(S),

(f/S)(e)0 = αezΦη(e)0.

Thus (f/S)(e) = αe(zΦη/S)(e). By our definition, f/S is well defined on [Φ] up to projective
equivalence, though its exact value depends on the choice of η. Furthermore, it is clear that

(zΦη)/S = zΦη/S.

If S is unbalanced, then f/S is constructed by deleting the 0th coordinate and contracting
S as with the canonical bias representation of the identity-gain graph (Γ, 1).

Theorem 4.1. Let Φ = (Γ, ϕ,G) be a gain graph and F a skew field containing G as an
additive subgroup.

(a) The linear dependence matroid of the vectors zΦ(e) and zΦ(e0) ∈ F 1+N is isomorphic
under the mapping zΦ to the complete lift matroid L0(Φ).

(b) For any canonical lift [or, complete lift] representation f and any S ⊆ E, f
∣∣
S

is a
canonical lift [or, complete lift] representation of Φ|S and, if S is balanced, f/S is a
canonical lift [or, complete lift] representation of [Φ/S].

Proof of (a). We treat a half edge as an unbalanced loop. If we suppress the first coordinate,
what remains is the standard representation of the graphic matroid G(Γ) (neglecting the
extra point). Thus a linearly dependent set must contain a circle or the extra point. A set
{z(e) : e ∈ S}, where S ⊆ E contains a unique circle C, is linearly dependent if and only
if it is balanced, for in FN the only linear dependence among the elements of S is the sum
of the edges in C (suitably oriented), which in F 1+N has first coordinate

∑
C ϕ(e). If C is

6Our construction is a more precise version of a standard way to construct geometrical representations
of lifts (or “coextensions”) of a matroid. The best reference I can find is Figure 7.6 and the second part of
Proposition 7.4.17(3) in [8].
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unbalanced, the z(e) for e ∈ S span the vector (1, 0) = (
∑

C z(e))/(
∑

C ϕ(e)). Therefore,
a set T ⊆ E ∪ {e0} is dependent if it contains two unbalanced figures, or one such figure
and e0. But if it is a forest together with either e0 or one more edge forming an unbalanced
figure, it is obviously independent. This completes the proof. �

Proof of (b). The restriction is trivial. For contraction of a balanced set S, since (f/S)(e) =
αe(zΦη/S)(e) and (zΦη)/S = zΦη/S, f/S is a canonical lift representation of [Φ/S]. If S is
unbalanced then by Theorem 2.1(b) f/S represents G((Γ, 1)/S) = G(Γ/S). �

I do not know whether Theorem 4.1(a) has previously appeared as such. But the matrix
of the representation in the real case (without e0) is well known since it arises in network
flow problems with one linear side constraint; cf. [20]. The binary representation matrix
(with e0) of a signed graph was used by Gerards in important work on signed graphs [16].

Example 4.1. In Figure 4.1(a) is a gain graph of order n = 3 with gains in Z, the additive
group of integers. The balanced circles are C1 = {3e12, 0e23, 3e13}, C2 = {1e12, 2e23, 3e13},
and C3 = {0e12, 2e23, 2e13}, since, e.g., ϕ(C1) = 3+0+(−3) = 0. So, 〈Φ〉 = (‖Φ‖, {C1, C2, C3}).
(The notation for edges is as in Example 2.1 but, of course, additive. Thus for instance
2e13 = (−2)e31.)

The canonical representation vectors for L(Φ) (and L0(Φ)) in R1+3 are

z(h1) = z(e0) = b0 = (1; 0, 0, 0, ), z((−1)e22) = (−1)b0 + b2 − b2 = (−1; 0, 0, 0),

z(0e12) = (0;−1, 1, 0), z(1e12) = (1;−1, 1, 0), z(3e12) = (3;−1, 1, 0),

z(0e23) = (0; 0,−1, 1), z(2e23) = (2; 0,−1, 1),

z(2e13) = (2;−1, 0, 1), z(3e13) = (3;−1, 0, 1);

they are shown in Figure 4.1(b). The corresponding canonical hyperplanar lift representation
(see Corollary 4.5) is four-dimensional, which is awkward to display; nevertheless, because
(0; 1, 1, 1) lies in every hyperplane one could represent it by its faithful three-dimensional
cross section in R× s where s = {x ∈ R3 : x1 +x2 +x3 = 0}. (The representing vectors lie in
R× s and they span it because rkL(Φ) = 3.) However, we eschew this in favor of depicting
the affinographic representation (Corollary 4.5).

To illustrate the construction we treat 3e12. The dual hyperplane of z(3e12) = (3;−1, 1, 0)
is x2 − x1 = 3x0 in R1+3. (For duality see before Corollary 4.5.) Setting x0 = 1 gives the
affinographic hyperplane x2−x1 = 3 in the affine space {1}×R3. (An edge like h1 or (−1)e22
requires special consideration: z(h1) = (1; 0, 0, 0) dualizes to 0 = 1x0, and setting x0 = 1
gives an inconsistency. This means that the affinographic hyperplane is the ideal hyperplane
h∞ in the projective completion of {1} × R3.) Thus, the affinographic arrangement A(Φ)
consists of 2-dimensional hyperplanes; with h∞ we have its projectivization AP(Φ). But these
hyperplanes can be reduced further, for all contain the point (1; 1, 1, 1). Cross-sectioning by
s gives the affine planar arrangement As shown in Figure 4.1(c). A(Φ) itself is obtained by
coning on a point outside the plane of the figure. (That is, each line is raised to a plane by
joining it with the outside point.) With the addition of the ideal line l∞, the diagram shows
AP(Φ)s, that is, AP(Φ) sectioned by the plane of the figure. Again, one obtains AP(Φ) by
coning on a point outside the plane.

The gain group Z has many embeddings in R+, the additive group of real numbers, but all
are related by scaling the 0th coordinate. Thus any projectively inequivalent representations
of L(Φ) are either canonical lift representations of other gain graphs Φ′ for which 〈Φ′〉 = 〈Φ〉,
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Figure 4.1. A Z-gain graph Φ (a), a canonical real vector lift representation
(b), and (c) a generic planar cross section of the affinographic representation
(without l∞) or its projectivization (with l∞).
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of which there are many (by a discussion similar to that in Example 2.1), or are noncanonical.
In this example, though, where Φ has an unbalanced edge e, so that e0 ∈ closL e and L(Φ)
is essentially L0(Φ), all representations are canonical lift representations by Proposition 4.3.
(One can also deduce that conclusion from Theorem 7.1.)

Example 4.2 (Spikes; continuation of Example 2.2). We define a spike as a matroid
L(2Cn,B) where n ≥ 3 and B is a Hamiltonian bias; L0(2Cn,B) is a complete spike. A free
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spike is a bicircular lift matroid L(2Cn,∅) with n ≥ 3. Spikes, like swirls, are crucial exam-
ples in matroid representability (complete free spikes are the matroids Nr of [30, Section 5],
and [15, Section 7] employs two kinds of spikes, free ones and those with two complementary
circuit hyperplanes), but it is apparently a new observation that spikes are lift matroids that
arise from the same biased graphs as swirls, whence their properties are analogous.

We may visualize a spike as a matroid consisting of n 2-point lines, concurrent in a
base point p0 not part of the spike (but it is part of the complete spike!) but otherwise
independent; that is, the spike has rank n. There may in addition be circuit hyperplanes
involving one point from each 2-point line. This is the definition in [15]; we see immediately
that a spike is a lift matroid as we described.

A free spike, arising from a contrabalanced graph, is representable over any sufficiently
large field. Part VII has crude bounds on how large.

By Theorem 7.1 a spike L(2Cn,B) with n ≥ 4 is representable over F if and only if
(2Cn,B) has gains in F+. If (2Cn,B) has no gains at all, then its spike and its swirl are not
representable in any vector space over any field. By the same theorem any representation of a
spike is a canonical lift representation. (It is easy to convert the representation in [30, p. 340]
to canonical form by adding a new row and performing simple row operations.) The unique
binary spike is L(±Cn), which is the column-dependence matroid of the matrix (I | J − I),
where J is the square all-ones matrix (see [12a], [12b, p. 245]). Its uniqueness is obvious
from the fact that the only sign-biased spike is 〈±Cn〉.

Example 4.3 (Balanced). If Φ is balanced, as in Example 2.5, then L(Φ) is uniquely
representable so a canonical lift representation is any representation in a vector or projective
space.

Corollary 4.2. If Φ is finite and has no half edges, and if F = R, then the set Z = {z(e) :
e ∈ E} has |χb

Φ(−1) − 1
2
χΓ(−1)| hyperplane separations. The set Z ∪ {z(e0)} has |χb

Φ(−1)|
separations.

Proof. We rely on Theorem III.5.2 together with results on counting separations by hyper-
planes cited in Section 1. �

One cannot expect a complete converse to Theorem 4.1(a), saying that any representa-
tion of L(Φ) is canonical. For instance, L(±K3) = G(±K3) ∼= G(K4), which is linearly
representable over every field; but 〈±K3〉 has a canonical lift representation only in charac-
teristic 2. (This is the same example we used for Theorem 2.1’s converse. See Example 2.4.)
Nonetheless there is a converse for L0(Φ) and (which is equivalent) for L(Φ) if Φ contains
an unbalanced edge.

Proposition 4.3. Let Ω = (Γ,B) be a biased graph and f : E ∪ {e0} → Λ a vector
representation of L0(Ω) over a skew field F . Then there is a gain graph Φ = (Γ, ϕ, F+) such
that 〈Φ〉 = Ω and f is a canonical complete lift representation of Φ.

Proof. Again we treat a half edge like an unbalanced loop. We assume Λ is large enough to
contain F 1+N .

Let v̂0 = f(e0) and let f ′ = f ◦ g, where g : Λ → Λ0 = Λ/ span(v̂0) is the projection.
Then f ′ is a representation of G(Γ). Since such a representation is projectively unique,

we can find a coordinate system for Λ0 in which N̂ = {v̂ : v ∈ N} is part of a basis and
f ′(e) = α(e)(ŵ − v̂) if νΓ(e) = {v, w}.
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Now express Λ as the direct sum span(v̂0)⊕Λ0 in some way and let ϕ(e; v, w) be the value
α such that f(e)− αv̂0 ∈ Λ0. That defines Φ. Since f(e) = (α; ŵ − v̂), we have a canonical

complete lift representation of Φ in the subspace span(N̂∪v̂0). Since f is a canonical complete
lift representation of Φ and a representation of L0(Ω), the identity mapping of edges is an
isomorphism of the matroids. Since the underlying graphs are also the same, Φ and Ω must
have the same balanced circles. �

Due to Proposition 4.3 we can define a (linear) canonical complete lift representation of
Ω as either a canonical complete lift representation of any gain graph Φ for which 〈Φ〉 = Ω,
or equivalently as any linear representation at all of L0(Ω). A canonical lift representation
of Ω is either a canonical lift representation of any gain graph Φ whose bias is Ω, or equiv-
alently the restriction to E of any representation of L0(Ω). Based on this equivalence we
can give coordinate-free projective and affine definitions. A canonical projective [or, affine]
complete lift representation of Ω is a representation of L0(Ω) in any projective [affine] space,
including noncoordinatizable projective or affine planes, and a canonical projective [affine]
lift representation is the restriction to E of a projective [affine] representation of L0(Ω).

Problem 4.4 (Fundamental representation question). (a) Characterize the biased graphs
that have a noncanonical lift representation (not counting canonical bias representations
when L(Ω) = G(Ω)); most especially, one that is not binary. (b) What kinds of noncanonical
representation can exist in these cases?

Example 4.4 (Too thick; continuation of Example 2.7). A biased graph Ω as in Example 2.7
has no canonical lift representation over Fk−1 (assuming k − 1 = q, a prime power) because
L0(Ω) has a k + 1-point line and k + 1 > q + 1. Nonetheless, L(Ω) might be representable
over Fk−1: one such example is L(Ωk). As in Example 2.7, this noncanonicality is reparable
by extending the field.

There is also, of course, a hyperplane representation dualizing Theorem 4.1; indeed, there
are several. First, one can dualize the canonical [complete] lift representation in F 1+N , so
that e corresponds to z∗Φ(e) = the hyperplane xw−xv = ϕ(e; v, w)x0 and e0 or a half edge to
z∗Φ(e0) = the hyperplane x0 = 0; that gives a linear arrangement Ā(Φ). This is the canonical
linear (or homogeneous) hyperplanar [complete] lift representation of Φ. (Note that this
duality is abnormal because b0 dualizes to −x0. The ordinary dual hyperplane would be xw−
xv +ϕ(e; v, w)x0 = 0. Our duality is chosen for the sake of nice equations in the affinographic
representation.) Then, one can treat the equations as involving homogeneous coordinates in
the projective space PN(F ), with infinite hyperplane h∞ : x0 = 0 corresponding to e0; thus
we have a projective arrangement AP(Φ) (which contains h∞). Finally, by removing that
hyperplane we have a representation by an affine hyperplane arrangement A(Φ) in which the
hyperplane corresponding to e has equation xw − xv = ϕ(e; v, w). This is the affinographic
representation of Φ (for which see also the end of Section 4.5) and AP(Φ) is the projectivized
affinographic representation. Real affinographic representations of Z-gain graphs have lately
become popular; see Example 4.5.

Corollary 4.5. (a) Under the mutually inverse correspondences

A ∈ LatL0(Φ) 7→
⋂
e∈A

h(e) and t ∈ LatL0(Φ) 7→ {e ∈ E0 : h(e) ⊇ t}

37



(where h(e) denotes the hyperplane representing e in Ā(Φ), AP(Φ), or A(Φ) as appropriate,
for each e ∈ E0 or just e ∈ E in the affine case), the intersection lattices L(Ā(Φ)) and
L(AP(Φ)) are isomorphic to LatL0(Φ) and the intersection semilattice L(A(Φ)) is isomor-
phic to Latb Φ.

(b) Suppose Φ is finite and F = R. The numbers of regions, if Φ is unbalanced, are:
2|χb

Φ(−1)| of Ā(Φ), and |χb
Φ(−1)| of A(Φ) and AP(Φ).

(c) Suppose Φ is finite and F = C. The Poincaré polynomial of the complement Cn+1 \⋃
Ā(Φ) is equal to (y + 1)(−y)nχb

Φ(−1/y). That of the complement An(C) \
⋃

A(Φ) equals
(−y)nχb

Φ(−1/y).

Proof. (a) Mainly a straightforward dualization of Theorem 4.1. Note that Latb Φ corre-
sponds to the affine intersection flats of the projective arrangement. Thus the projective
arrangement representing LatL0(Φ) is, as the notation suggests, the projectivization of the
affine arrangement representing Latb Φ.

(b) A direct consequence of (a) and Theorem III.5.2.
(c) From (a), [28] (or [29, Theorem 5.93]), and Theorem III.5.2. �

Example 4.5 (Deformations of the braid arrangement). These real affine hyperplane
arrangements have recently been extensively studied. They are the affinographic represen-
tations A(Φ) of certain integral additive gain graphs. To describe them let ~Kn denote the
complete graph on node set {1, 2, . . . , n} with each edge oriented in the ascending direction.

For A ⊆ R+, A ~Kn is the gain graph having edges of the form (eij, α) for i < j and α ∈ A.

Arrangements A(A ~Kn), where A is a finite subset of Z, are called “deformations of the braid
arrangement”. Principal examples are the Shi arrangement, where A = {0, 1}, the Linial
arrangement, where A = {1}; their “extensions”, where A = {−l + 1,= l + 2, . . . , l − 1, l}
or A = {1, 2, . . . , l}, respectively, where l = 1, 2, 3, . . .; the composed partition arrange-
ment, where A = {0,±1}, and its extension the l-composed partition arrangement, where
A = {0,±1, . . . ,±l}. A rather weird case is our Example 4.6.

Athanasiadis [2] studied several arrangements of this type, epecially to compute their
characteristic polynomials—which (as implied by Corollary 4.5(a) and Theorem II.5.3) are
the balanced chromatic polynomials of the associated gain graphs. Athanasiadis’ methods
are generally based on gain graph coloring using a large cyclic gain group.

For a more thorough discussion of arrangements like these, with references, see [2] and
[47, Examples 3.2 and 10.5–8].

4.2. Characterization.
How do we recognize lift matroids L(Ω) or their canonical representations? We repeat

here a characterization of graphic lift matroids from the beginning of [46, Section 3].

Proposition 4.6. Let M0 be a finitary matroid on a point set E0. M0 contains a point
e0 such that M0/e0 is graphic if and only if M0 = L0(Ω) for some biased graph Ω with edge
set E0 \ {e0}.

Given M0 such that M0/e0 is graphic, Ω can be any (Γ,B) such that Γ is a graph with
G(Γ) ∼= M0/e0 and B consists of the circles whose closure does not contain e0, or equivalently
those that are dependent in M0.

Proof. As mentioned in [46], this is implicit in [14, Section 6] as amplified in our Section II.3
near Theorem II.3.1. That the closure of a circle’s containing e0 is equivalent to the circle’s
being independent in M0 follows from the representation of M0 as L0(Ω). �
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For recognizing canonical representations there is another simple criterion.

Proposition 4.7. A projective representation of L(Ω), f : E → P, is a canonical lift
representation of Ω if and only if ⋂

C 6∈B

f(C) 6⊆
⋃
T

f(T ),

where the range of C is all unbalanced circles, that of T is all maximal forests, and the
overbar denotes projective closure.

Proof. If f is canonical, then f(e0) ∈
⋂

C f(C) \
⋃

T f(T ).

If on the other hand p0 ∈
⋂

C f(C)\
⋃

T f(T ), then extend f to E0 via f(e0) = p0 and let M
be the matroid on E0 induced by f as extended. In P/p0, f induces a representation of M/e0.

Since p0 ∈ f(C) if C is unbalanced, in that case rkM/e0 C = rkM C − 1 = #C − 1. If C is

balanced, take e ∈ C; then f(e) ∈ f(C \ e) because f represents L(Ω), but also p0 6∈ f(C \ e)
because C\e extends to a maximal forest; hence, p0 6∈ f(C) and rkM/e0 C = rkM C = #C−1.

As p0 6∈ f(T ), f ′(T ) is independent in P/p0. We conclude that M/e0 = G(Γ), whence M is a

graphic lift L(Γ,B′) for some bias. Moreover, B′ ⊆ B because p0 ∈ f(C) for an unbalanced

circle C, and B ⊆ B′ since p0 6∈ f(C \ e) = f(C) for a balanced circle. M is finitary because
it is projective. Therefore M = L0(Ω); and the desired conclusion follows from Proposition
4.3. �

This proposition holds equally well for any representation f : E → E(M) of L(Ω) in any
matroid M (as long as M is assumed finitary if Ω has infinite order).

4.3. Switching and projective equivalence.
Canonical lift representations of switching-equivalent F+-gain graphs are projectively

equivalent (see Formula (4.1)). As with bias representations (Section 2.3), the converse
does not hold in general. Let Φ be an F+-gain graph. If η is a switching function and
α ∈ AutF , then zΦηα ≈ zΦ (that is, they are projectively equivalent). If 〈Φ〉 is a contra-
balanced circle or theta graph, we may have 〈Φ′〉 = 〈Φ〉 and zΦ′ ≈ zΦ but still Φ′ 6= Φηα. I
suggest a conjecture similar to that for bias representations.

Conjecture 4.8. Let Φ and Φ′ be unbalanced F+-gain graphs of finite order with ‖Φ′‖ = ‖Φ‖
and with L(Φ) connected. If L(Φ) has a U2,4 minor, and if xΦ′ ≈ xΦ, then Φ′ is obtained
from Φ by switching and a field automorphism. If L(Φ) has no U2,4 minor and xΦ′ ≈ xΦ,
then Φ′ need not be so obtained.

4.4. Abstract gains and nonunique representation.
As with Theorem 2.1, in Theorem 4.1 G is a particular subgroup of F+. If it is an abstract

group, there may be many ways for it to embed in F+. In order to understand projective
uniqueness of canonical lift representations we have to know how uniqueness is affected by
these different embeddings.

A canonical lift representation of a gain graph Φ with abstract gain group G is a canonical
lift representation of Φ over F , as in Theorem 4.1, obtained from any embedding ε : G ↪→ F+.

Proposition 4.9. Suppose Φ is a gain graph whose gain group G is generated by ϕ(E∗).
The canonical lift representations of Φ induced by different embeddings ε1, ε2 : G ↪→ F+ are
projectively equivalent if and only if ε1 and ε2 are equivalent under an automorphism of F .
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Proof. Similar to that of Proposition 2.9. �

To take account of embeddings of the gain group into the field, we define Φ to have
projectively unique lift representation up to gain-group embedding if every lift representation
is projectively equivalent to a canonical lift representation with respect to some embedding
of G in F+.

4.5. Orthography and affinography.
There is an affine version of the canonical lift representation of Φ. Take an affine space A

over a skew field F , a hyperplane A0, and a vector ξ ∦ A0. Represent G(Γ) in A0 arbitrarily
by e 7→ g(e) and add a certain multiple of ξ to get a vector f(e) so that f is a representation
of L(Φ). We call this an orthographic representation of L(Φ) because it begins with the
represented graphic matroid G(Γ) and adds a multiple of a transverse vector ξ (that we can
think of as orthogonal). There are two difficulties in the construction of f : first, to represent
G(Γ) in A0, and second, to find the right multiple of ξ for each edge.

The first difficulty, though real since not all graphic matroids may have an affine repre-
sentation over F , is understood. We know the conditions under which such a representation
exists.

Proposition 4.10 (Crapo and Rota [12, Theorem 2, p. 16.10]). Let Γ be a graph of finite
order and F a skew field. G(Γ) is representable in an affine space over F if and only if
#F ≥ χ(Γ), the chromatic number.

The second difficulty is our problem here. Assume that Γ is a link graph. (Loops and
unbalanced edges do not have affine orthographic representations.) We want f(e) to equal
g(e) + ϕ(e)βeξ where βe depends only on the representation of G(Γ) and the orientation
used to compute ϕ(e), but not on the gains themselves; thus we get a close analog of the lift
representation. Our task is to determine βe.

An orientation of a circle C is described in relation to a fixed orientation of Γ by the
function τC defined for e ∈ C by τC(e) = +1 if e agrees with the direction of C and −1 if e
opposes C. The two possible orientations of C give two choices for τC , which are negatives
of each other.

Theorem 4.11. Let Γ be a link graph. Suppose g : E → A0 represents G(Γ) in a
hyperplane A0 of an affine space A over F , a skew field, and suppose ξ is a vector in A not
parallel to A0. If charF 6= 2, fix an orientation of Γ. Then there exist scalars βe, e ∈ E, such
that for every gain graph Φ = (Γ, ϕ, F+) with gain group F+, f(e) = g(e) + ϕ(e)βeξ defines
a representation f of L(Φ) in A. (Here, except when charF = 2, ϕ(e) is to be calculated in
the fixed orientation of e and βe depends on the orientation.)

The coefficients βe can be calculated from g by choosing, for each circle C, affine depen-
dence coefficients λC(e) and an orientation τC of C so that for each edge e ∈ E, τC(e)/λC(e)
is independent of the circle C 3 e, and setting βe = τC(e)/λC(e).

By affine dependence coefficients we mean that the λC(e) sum to 0, are not all zero, and
satisfy

∑
e∈C λC(e)g(e) = 0.

Proof. First we set up machinery. The projective completion of A, call it P, is the projective
quotient of a vector space Λ. (This means P is the set of lines of Λ, or equivalently of
collinearity classes of nonzero vectors.) A0 corresponds to a hyperplane Λ0 in Λ and the
ideal hyperplane of P, h∞, corresponds to a hyperplane h0. Take a linear form α : Λ → F
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whose kernel is h0 and let h1 = {x ∈ Λ : α(x) = 1}. Then A is naturally isomorphic to h1,
with A0 corresponding to h1 ∩ Λ0. Thus the representation g can be regarded as a vector
representation in Λ0. The vector ξ in A, not parallel to A0, is a vector in h1, hence by
translation in h0, and ξ /∈ Λ0 because ξ ∦ A0.

It is clear that we may assume Λ = F 1+N with Λ0 = {0}×FN . All vector representations
of G(Γ) are projectively equivalent. Consequently, we may assume the coordinate system
chosen so that g represents G(Γ) canonically in Λ0: we mean that e is represented by
x(e) = ŵ − v̂ ∈ Λ0, where v and w are the endpoints of e and are labeled so that, in the
fixed orientation, e is directed from v to w, and that g(e) is the scalar multiple of x(e) that
lies in h1. (In characteristic 2, any orientation of Γ will do—or none is needed—because
ŵ − v̂ = v̂ − ŵ.)

Now we take the standard lift representation z(e) = ŵ − v̂ + ϕ(e)ξ, with ϕ(e) calculated
according to the fixed orientation, and project z(e) into h1. That is, we take f(e) = βez(e)
where βe is the multiplier that carries x(e) to g(e). Thus βe = 1/α(x(e)). Then f(e) =
g(e) + ϕ(e)βeξ and, by Theorem 4.1, f is the desired representation of L(Φ) in h1

∼= A.
We omitted to verify that α(x(e)) 6= 0. This is so because g is an affine representation: so

g(e) ∈ h1, and g(e) is a multiple of x(e).
That completes the proof of the first part of the theorem. What is missing is the ability

to calculate βe directly from the affine representation of G(Γ), completely without Λ and
h1. The solution to that problem is based on the minimal affine dependencies of the points
g(e). For each circle C = {e1, . . . , el} there are nonzero scalars λi such that

∑l
i=1 λig(ei) = 0

and
∑

i λi = 0. We need to choose βe, independent of any gain function, so that the vectors
f(e) = g(e) + ϕ(e)βeξ are affinely dependent if and only if C is balanced. The only possible
affine dependences of f(e1), . . . , f(el) have coefficients that are a fixed multiple of the λi.
Then

∑
i λif(ei) = 0 if and only if the coefficient of ξ is zero. That coefficient is

l∑
i=1

ϕ(ei)λiβei
.

Since ϕ(C) =
∑

i ϕ(ei)τC(ei), to make the coefficient of ξ zero for all balanced gains on C
we must take λiβei

to be a fixed nonzero multiple of τC(ei). That is, βei
= kCτC(ei)/λi. We

define λC(ei) = λi/kC . The only problem is that βei
appears to depend on C. By the first

part of the theorem, βe is well defined, so it is possible to choose the scalars kC so that, when
e ∈ C ∩ C ′, then τC(e)/λC(e) = τC′(e)/λC′(e). Thus we have proved the second half of the
theorem. �

Because βe depends only on g and the arbitrary orientation of Γ, not on Φ for parallel
edges e and f we have βe = βf if e and f are similarly oriented and βe = −βf otherwise.
Thus, if we choose to orient parallel edges in Γ similarly, βe will depend only on the endpoints
of e.

Corollary 4.12. Under the hypotheses of Theorem 4.11, let f(e0) be the ideal point in P,
the projective completion of A, that lies in the direction of ξ. This extension of f to E0 is a
projective representation of L0(Φ). �

This approach to orthographic representation is analytic. For a synthetic, coordinate-free
treatment, see Part VI.
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Example 4.6. Take Φ = {−1, 1, 2} ~K3 with gain group F+ (Figure 4.2(a)). This gain graph
has edges γeij for γ ∈ {−1, 1, 2} and eij ∈ E(K3) with i < j, the gain being ϕ(γeij) = γ;
that is, we assign gains in the upward orientation. We take this orientation for the arbitrary
one of Γ in Theorem 4.11. We define (−γ)eji = γeij but oppositely oriented. The balanced
circles,

C1 = {1e12, 1e23, 2e13}, C2 = {(−1)e12, 2e23, 1e13}, C3 = {2e12, (−1)e23, 1e13},

are the dependent triples in L(Φ) (assuming the characteristic is not too small), hence they
generate the only collinear triples of points in the orthographic representation.

The affine space of the representation is A = A2(F ); we take A0 = {(x1, x2) : x2 = 0}
and ξ = (0, 1). The representation of G(K3) in A0 consists of three distinct points with
coordinates, let us say, g(eij) = (πij, 0) for i < j. There is only one circle C in K3, so to
calculate the affine dependence coefficients λC(eij) we solve[

1 1 1
π12 π23 π13

]
λT

C = 0,

whose solution is

λC = (λC(e12), λC(e23), λC(e13)) = (π13 − π23, π12 − π13, π23 − π12)

or any nonzero scalar multiple thereof. Orienting C in the direction v1v2v3v1, we have
τC(e12) = τC(e23) = −τC(e13) = 1, so βij = τC(eij)/λC(eij) gives

β12 = (π13 − π23)
−1, β23 = (π12 − π13)

−1, β13 = (π12 − π23)
−1. (4.2)

(We may write βij = β(γeij), independent of γ, since parallel edges in Γ are similarly
oriented.) The embedding of Φ is f(γeij) = (πij, γβij), so

f(γe12) = (π12, γ(π13 − π23)
−1),

f(γe23) = (π23, γ(π12 − π13)
−1),

f(γe13) = (π13, γ(π12 − π23)
−1).

Now we choose a specific field, the finite field F53, so the gain group is F+
53 = Z53, and

a particular embedding of G(K3) by taking π12 = 0, π23 = 1, and π13 = 10. Thus the
orthographic points are:

γ = −1 γ = 1 γ = 2
f(γe12) (0,−6) (0, 6) (0, 12)
f(γe23) (1, 16) (1,−16) (1, 21)
f(γe13) (10, 1) (10,−1) (10,−2)

Figure 4.2(b) shows the orthographic representation with its three 3-point lines corresponding
to C1, C2, and C3.

The orientation given to Γ in the theorem is arbitrary, but there is something to say about
it when F is R, or any ordered field.

Proposition 4.13. If F is ordered, then there is a fixed orientation of Γ in Theorem
4.11 under which all βe have the same sign. This orientation is acyclic and is unique up to
reversal.
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Figure 4.2. (a) The gain graph {−1, 1, 2} ~K3 of Examples 4.6 and 4.7. (b)
The orthographic representation over F53 in Example 4.6. The hollow points
represent G(‖Φ‖), or G(K3), in A0 (the solid vertical line). The solid points
represent L(Φ) in A (the plane).

The proof is based on a series of reinterpretations, as in the proof of Theorem 4.11 but
further extended. The hyperplane h0 corresponds, in the dual space Λ∗

0, to a vector h∗0 in a
region of the hyperplane arrangement H[Γ] = {xi = xj : there is an edge ij ∈ E}. A region
of H[Γ] corresponds to an acyclic orientation of Γ (see [17] or [18, Lemma 7.1]); negating
the region corresponds to reversing the orientation. If we vary h∞ continuously in P without
passing over any point g(e) (we call this isotopy), h∗0 varies in a region of H[Γ]. Since h∞
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is not oriented, it corresponds to a pair of opposite vectors h∗0; therefore an isotopy class of
ideal hyperplanes corresponds to a converse pair of acyclic orientations of Γ. Furthermore,
isotopy of h∞ does not affect the combinatorial type of the affine representation of G(Γ); in
particular, the vertices of conv g(E) are unchanged.

If we choose one of the orientations corresponding to h∞ as the fixed orientation in Theo-
rem 4.11, we find that all α(x(e)) have the same sign, whence all βe have the same sign. The
reason is that, when Γ is oriented in accordance with the acyclic orientation corresponding
to the region that contains h∗0, α(x(e)) > 0 for all edges e. �

We can actually calculate the orientation in Proposition 4.13. If we calculate all βe with
respect to an arbitrary orientation and reverse the edges for which βe < 0, we obtain the
orientation with respect to which all βe > 0. This method is explicit but complicated. It
also seems to be using too much information about the representation. It is clear that the
region in which h∗0 lies is determined in principle (up to negation) by the extreme points of
conv g(E); but is this feasible in practice?

Problem 4.14. Is there a simple way to compute the acyclic orientations in Proposition
4.13 directly from the extreme points of conv g(E) in A or their oriented matroid?

Example 4.7. To illustrate Proposition 4.13 we take Example 4.6 in a different direction by
choosing an ordered field, F = R. The gain group is then R+. We use the same coordinates
to represent G(K3): π12 = 0, π23 = 1, π13 = 10. What orientation of Γ makes all βe > 0?
(Since we oriented parallel edges similarly, we are really talking about an orientation of
K3.) We can deduce these from the signs of the βij in Equations 4.2: because we chose
π12 < π23 < π13, the signs are +, −, and −. Therefore, we must reverse the orientations of
e23 and e13, as shown in Figure 4.3(a). The new orientation is, as it ought to be, acyclic.

The new values of βij are

β12 = 1/9, β32 = 1/10, β31 = 1

and the orthographic points are

f(γe12) =
(
0, 1

9
γ
)
, f((−γ)e32) =

(
1, 1

10
(−γ)

)
, f((−γ)e31) = (10, (−γ)).

Figure 4.3(b) shows these points and the three 3-point lines associated with the balanced
triangles C1, C2, and C3.

The duals of orthographic representations are the affinographic hyperplane arrangements
introduced at the end of Section 4.1. Under this duality, the dual of the orthographic
point f(e0) is the ideal hyperplane h∞, the lift vector ξ corresponds to the constant term
of an affinographic hyperplane, and the orthographic base hyperplane A0 corresponds to
the common line, span{(1, 1, . . .)}, of all homogeneous affinographic hyperplanes. In the
orthographic representation all lines f(E0:{u, v}) concur in f(e0) while in the projectivized
affinographic arrangement AP(Φ) all the colines

⋂ {
h(e) : e ∈ E0:{u, v}

}
are contained in

h∞.

4.6. Pythagorean representations.
In conclusion we state a curious hyperplane representation for the complete lift matroid

of Φ when Γ is a graph whose edges are links and the gain group is R+. We work in the
Euclidean space Ed of any positive dimension. Let N = {v1, . . . , vn} and let Q1, . . . , Qn be
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Figure 4.3. (a) The adjusted orientation of K3 to make all βij > 0 in Ex-
ample 4.7. (b) The real orthographic representation of L(Φ) from Example
4.7.

distinct points in Ed. For i 6= j and P ∈ Ed, the Pythagorean coordinate of P from Qi to Qj

is

ψij(P ) = dist(P,Qi)
2 − dist(P,Qj)

2.

For each edge e, with endpoints vi and vj, let

h(e) = {P : ψij(P ) = ϕ(e; vi, vj)}.
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The set H = {h(e) : e ∈ E} is a family of Euclidean hyperplanes; HP = H ∪ {h∞} is a
family of projective hyperplanes.

Theorem 4.15. Let n − c(Φ) ≥ d. For Q1, . . . , Qn in general position, the set of flats
of HP, ordered by reverse inclusion, is isomorphic to the poset of elements of rank ≤ d in
LatL0(Φ) with a top element added (unless n − c(Φ) = d and Φ is balanced). The set of
affine flats is isomorphic to the set of elements of rank ≤ d in Latb Φ.

A proof appears in [47] along with further structural information about H and HP and an
exploration of the exact meaning of ‘general position’.

The construction is metric: it can be carried out in any inner-product space F d for gain
graphs whose gain group is F+.

This Pythagorean representation generalizes the canonical affine hyperplane lift represen-
tation. One way to assure general position is to choose Q1, . . . , Qn affinely independent. (See
[47, Proposition 6.5] for a proof in the real case.) Let us take for Qi the point in F n whose
coordinate vector equals (1/

√
2)bi, where bi is the ith vector in an orthonormal basis B. A

simple calculation shows that, since all ‖Qi − Qj‖ = 1, ψij(P ) = c defines the hyperplane
h : xj − xi = c. Thus for this choice of Q1, . . . , Qn, the Pythagorean arrangement H is the
canonical affine hyperplane lift representation of Φ.
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5. Whitney operations and separable graphs

5.1. Whitney operations.
Whitney’s 2-isomorphism operations on a graph, which do not change the circles or, there-

fore, the polygon matroid, are:

(a) Identify two nodes in different components; and the inverse operation.
(b) Twist one side of a 2-separating node set.

Since these operations do not change circles or theta graphs regarded as edge sets, we can
treat them as acting on biased graphs. Specifically, if (Γ,B) is a biased graph and we apply
Whitney operations to Γ, resulting in Γ′, then (Γ′,B) is the resulting biased graph. It follows
that Whitney operations do not change the lift or complete lift matroid. They can change the
bias matroid; for instance, by a Whitney operation a contrabalanced handcuff can become
disconnected, so no longer a bias circuit. However:

Theorem 5.1. Let Ω′ be a biased graph obtained from Ω by Whitney 2-isomorphism
operations. Then Ω and Ω′ have gains in the same groups; G(Ω) and G(Ω′) are canonically
representable over the same skew fields; and L(Ω) = L(Ω′) and L0(Ω) = L0(Ω

′).

Proof. The second conclusion follows from the first.
Consider the effect on gains ϕ for Ω of a single Whitney operation. Operations of type

(a), retaining the same gains, obviously do not alter balance. Consider an operation (b)
on Γ, twisting Γ2 around the node pair u, v while leaving Γ1, the remainder of the graph,
untwisted, giving Γ′. We define ϕ′, gains on Γ′, by ϕ′(e;x, y) = ϕ(e;x, y) if e ∈ E1 and
ϕ(e;x, y)−1 if e ∈ E2. Now examine a circle C with edges in both halves of Γ. Say C is the
concatenation P1P2 in Γ, where Pi is the path of C in Γi. We know that ϕ(P1)ϕ(P2) = 1
and ϕ′(P2) = ϕ(P−1

2 ). Thus ϕ′(P1)ϕ
′(P−1

2 ) = 1. But in Γ2, C = P1P
−1
2 . Thus the gain of C

remains the same, whence B(Γ′,Φ′) = B(Γ,Φ). The theorem follows. �

The proof shows that we can think of Whitney operations as acting, not only on graphs
and biased graphs, but also on gain graphs. Thus, we define two biased graphs, or two gain
graphs, to be 2-isomorphic, or isomorphic up to Whitney operations, if by applying Whitney
operations they become isomorphic.

We can interpret the theorem as saying that, while G(Ω) is not determined by G(Γ) and B

alone, still the canonical representability of G(Ω) is so determined. If we know that G(Ω) has
only canonical representations—as is the case with full biased graphs (Proposition 2.4) and
thick biased graphs for which G(Ω) 6= L(Ω) (see the discussion following Theorem 7.1)—then
G(Γ) and B determine all representations of G(Ω); Γ itself is not needed. This is odd, as
gains of circles cannot even be defined directly on G(Γ); one needs the graph.

5.2. Separable biased graphs.
The matroids of a separable biased graph, when not themselves separable according to

Theorems II.2.8 and II.3.8, are 2-sums or parallel connections. Notation: Ω = Ω1 ∪v Ω2

means that Ω = Ω1 ∪ Ω2 and Ω1 ∩ Ω2 = {v}. The 2-sum of matroids is written M1 ⊕2 M2.

Theorem 5.2. Suppose Ω0 has a node v such that Ω0 = Ω1 ∪v Ω2. Let h be an additional
unbalanced edge at v and let Ωh

i = Ωi ∪ {h}. Then G(Ωh
0) is the parallel connection along h

of G(Ωh
1) and G(Ωh

2), and G(Ω0) = G(Ω1)⊕2 G(Ω2).
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Proof. The parallel connection along h of matroids M1 and M2 whose intersection is {h} has
for circuits the circuits of M1, those of M2, and the sets of the form C1 +C2 (this is set sum)
where Ci is a circuit of Mi and h ∈ C1∩C2. In Ωh

0 there are three kinds of bias circuit: those
of Ωh

1 , those of Ωh
2 , and those circuits C not contained in either Eh

1 or Eh
2 . Any such C has

v as a cutpoint and is therefore a contrabalanced handcuff composed of unbalanced figures
D1 ⊆ E1 and D2 ⊆ E2 and a connecting path P that contains v. Then C = C1 + C2 where
Ci = Di ∪ (P ∩ Ei) ∪ {h}, a bias circuit of Ωi.

Conversely, if Ci is a bias circuit of Ωh
i and h ∈ C1∩C2, then C2 and C2 are contrabalanced

handcuffs and so is C1 + C2. Therefore G(Ωh
0) is the parallel connection.

The second part of the theorem follows because the 2-sum is the parallel connection with
h deleted. �

Corollary 5.3. G(Ωh
0) is representable over F if and only if G(Ωh

1) and G(Ωh
2) are. Ω0

has a canonical bias representation over F if and only if Ω1 and Ω2 do.

Proof. The first is a general fact about parallel connection of matroids. The second is
trivial. �

Theorem 5.4. Suppose Ω = Ω1 ∪Ω2 where Ω1 ∩Ω2 is void or a node. Then L0(Ω) is the
parallel connection along e0 of L0(Ω1) and L0(Ω2), and L(Ω) = L(Ω1)⊕2 L(Ω2).

Proof. Again we need only examine circuits of L0(Ω) that do not lie in (E1)0 or (E2)0. By
Theorem 5.1 we may assume that every block of Ω is a connected component. A circuit C
not contained in (E1)0 or (E2)0 is therefore disconnected and consequently a union D1 ∪D2

where Di is an unbalanced circle in Ei. Since each Di ∪ {e0} is a circuit in L0(Ωi), C has
the form C1 +C2 where e0 ∈ C1 ∩C2 and Ci is a circuit in L0(Ωi). Conversely, any C1 +C2

of that form is a lift circuit of Ω. �

Corollary 5.5. L0(Ω) is representable over F if and only if L0(Ω1) and L0(Ω2) are. Ω
has a canonical lift representation over F if and only if Ω1 and Ω2 do. �

6. Our matroids redefined by restricted general position

For the ‘thick’ representation theorem of Section 7 we need a new way to describe the bias
and lift matroids. Suppose we have a biased graph Ω; let H = {hv : v ∈ N} consist of one
half edge at each node, with H disjoint from E. Let Ω

•
= Ω∪H and E

•
= E(Ω

•
) = E ∪H.

(This is a variation on the usual meaning of Ω
•
.) We write Svw as shorthand for S:{v, w} and

Sv as shorthand for S:{v}. We consider finitary matroids M on point set E
•

with various of
the following properties: the general properties

(a) rkM S ≤ #N(S) for every finite S ⊆ E
•

and rkM{loose edges} = 0;
(b) rkM S < #N(S) for every finite balanced S ⊆ E

•
that contains at least one ordinary

edge;

the more special properties

(a′) rkM E
•

vw ≤ 2, rkM E
•

v ≤ 1, and rkM{loose edges} = 0;
(b′) Every balanced circle is dependent;
(c) Every unbalanced circle or half edge in Ω is independent;

and the half-edge properties

(g) H is independent;
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(l) M |H is a uniform matroid of rank 1;
(s) M |H is simple.

Finally, we need the property of general position. M ′ ≥ M , for matroids on the same
points, means that every independent set of M is also independent in M ′. Equivalently,
rkM S ≤ rkM ′ S for every point set S. We say M ′ is weaker than M . Geometrically this
means that M has more special position than does M ′. The property we want is:

(w) M is the weakest matroid with whatever other properties are prescribed.

(It is not axiomatic that there is a unique such weakest matroid.)
The general properties are almost equivalent to the special ones.

Lemma 6.1. (a ′, g) =⇒ (a ′, s) =⇒ (a).

Proof. We prove (a′, s) =⇒ (a). Since rkM Hvw = 2 ≥ rkM E
•

vw by (a′), Evw ⊆ closM Hvw.
Thus E:X ⊆ closM(H:X) for all X ⊆ N of cardinality at least 2. For smaller X we apply
(a′) directly. �

Lemma 6.2. (b ′) ⇐⇒ (b).

Proof. We prove (b′) =⇒ (b). Let S be a connected, balanced edge set and T a basis for
M |S. If rkM S ≥ #N(S) > 0, then T contains a circle C. C is independent because it lies
in T but is dependent because S is balanced. This is a contradiction.

If S is balanced with components S1, . . . , Sk, then rkM S ≤ rkM S1 + · · · + rkM Sk <
#N(S1) + · · ·+ #N(Sk) = #N(S). �

Our main results are characterizations of G and L, mostly in terms of (w) but in one case
with (g) instead of (w).

Proposition 6.3. (a, b, l, w) ⇐⇒ M = L(Ω
•
). That is, there is a unique weakest

matroid satisfying (a, b, l), and it is L(Ω
•
).

Proof. Let M satisfy (a, b, l). Since M and L(Ω
•
) are finitary it suffices to treat finite

graphs. We write S1, . . . , Sk for the components of an edge set S ⊆ E
•
, the first j being the

unbalanced ones (so 0 ≤ j ≤ k), and ni = #N(Si). If S is balanced (j = 0), then

rkL S =
∑

i

rkL Si =
∑

i

(ni − 1)

and from (b),

rkM S ≤
∑

i

rkM Si ≤
∑

i

(ni − 1),

so that rkL S ≥ rkM S. If S is unbalanced, then

rkL S =
∑

i

(ni − 1) + 1 =
∑

i

ni − k + 1.

Let us consider an unbalanced component Si. Either rkM Si < ni, or Si spans E
•
:N(Si) (by

(a)) so has a basis Bi that includes a half edge hvi
where vi ∈ N(Si). Suppose the latter
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applies to components S1, . . . , Sl with l > 0. Then setting S ′i = Si ∪ {hvi
},

rkM(S ′1 ∪ · · · ∪ S ′l) = rkM(B1 ∪ · · · ∪Bl)

≤
l∑

i=1

rkM(Bi \H) + rkM{hv1 , . . . , hvl
}

=
l∑

i=1

(ni − 1) + 1.

Consequently,

rkM S ≤
l∑

i=1

(ni − 1) + 1 +

j∑
i=l+1

(ni − 1) +
k∑

i=j+1

(ni − 1)

= rkL S.

This formula applies as well when l = 0. We have shown that rkM ≤ rkL; this establishes
that L is the unique weakest matroid that satisfies (a, b, l). �

This proposition is really about L0(Ω). Since H is contained in an atom, identifying it to
a single point e0 converts L(Ω

•
) to L0(Ω).

Proposition 6.4. (a ′, b ′, s, w) ⇐⇒ (a, b, w) ⇐⇒ M = G(Ω
•
). That is, there is a

unique weakest matroid satisfying (a ′, b ′, s) or (a, b), and it is G(Ω
•
).

Proof. Again, it suffices to treat finite graphs. As in the preceding proof, but more simply,

rkM S ≤
k∑

i=1

rkM Si ≤ n1 + · · ·+ nj + (nj+1 − 1) + · · ·+ (nk − 1)

by (a, b), and this = rkG S. �

A different kind of characterization replaces (w) by an explicit prescription of M |H.

Proposition 6.5. (a ′, b ′, c, g) ⇐⇒ (a, b, c, g) ⇐⇒ M = G(Ω
•
). That is, G(Ω

•
) is

the unique matroid satisfying (a, b, c) in which H is independent.

Proof. (a′, g) imply that M is a frame matroid with special basis H. (See [44] for frame
matroids. The defining property is simply that the lines generated by H contain all points.)
By [44, Theorem 1], M = G(Ω′) where Ω′ is a biased graph on the edge set E

•
. Since (b′)

requires all Ω-balanced circles to be dependent in M , they are balanced in Ω′. That is,
B′ ⊇ B. Contrariwise, by (c) a circle C 6∈ B is independent, so C 6∈ B’. Therefore B′ = B,
and the result is proved. �

7. Thick biased graphs and intermediate-matroid representation

It is a difficult problem to characterize all bias and lift representations of a biased graph,
but multiple edges make it easier and for a graph with enough multiple edges we can give a
complete solution. We call a biased graph Ω thick if, whenever v and w are adjacent (written
v ∼ w), then E:{v, w} is unbalanced. (Equivalently, rk(E:{v, w}) = 2 in G(Ω) and L(Ω).)
For the matroids of thick biased graphs, there are no vector representations other than the
canonical lift and bias representations of gain graphs with the given bias.
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Our theorem treats more than bias and lift representations. An intermediate matroid on
Ω is a matroid M with point set E(Ω) such that G(Ω) ≥M ≥ L(Ω) (as defined at the start
of Section 6).

Theorem 7.1 (Thick representation). Let Ω be a biased graph of order at least 3 that
contains as a spanning subgraph a thick, 2-connected biased graph. Suppose M is a finitary
intermediate matroid on Ω which is representable in some projective space. Then M = L(Ω)
or G(Ω) and every representation of M , in any projective space, is a canonical lift or bias
representation. (If L(Ω) = G(Ω), M may have both kinds of representation.)

We might call this a ‘semi-unique representation’ theorem. We shall analyze its significance
after giving the proof.

Proof. We may assume that Ω is simply biased; that is, it has no loose edges, balanced loops
or digons, or pairs of unbalanced edges with the same supporting node. We also may replace
any unbalanced loops by half edges. We write Evw = E:{v, w}.

First we treat the case in which Ω itself is thick.
We suppose M represented in a projective space P by a mapping θ : E → P. Let ê = θ(e),

the projective point representing edge e; and for S ⊆ E, let Ŝ = {ê : e ∈ S}. When v ∼ w,

let Lvw be the line determined by Êvw. (Otherwise Lvw is undefined.) We write X for the

projective span of X ⊆ P; thus Lvw = Êvw. A frequently used fact is that, if rkG S = rkL S,
then rkM S = their common value.

First we note that Lvw ∩ Ê∗ ⊆ Êvw, because Evw has rank 2 in G and L, hence also in M ,
but adding any link raises the rank. For the same reason no two lines Lvw coincide.

Next, we show that node points are well defined. (It is here that we require n ≥ 3.)

Lemma 7.2. For each v ∈ N , there is a unique point pv ∈ P such that for any w ∼ v, pv ∈
Lvw. If v supports an unbalanced edge hv, then pv = ĥv; otherwise, pv 6∈ Ê. Furthermore,
for any two neighbors w, x of v, Lvw ∩ Lvx = {pv}.

Proof. Since rkM(Evw ∪ Evx) = 3, Lvw and Lvx are coplanar; therefore Lvw ∩ Lvx is a point

pwx. If hv exists, pwx = ĥv.
Now take y ∼ v. Since rkM(Evw ∪ Evx ∪ Evy) = 4, Lvw, Lvx, and Lvy are noncoplanar.

The only way pwx, pwy, and pxy can all exist is if they are equal. It follows that all pwx, for
w, x ∼ v, are the same point, which we call pv. �

Lemma 7.3. Let C be a circle in Ω of length at least 3. Either all pv for v ∈ N(C) are
equal, or all are projectively independent.

Proof. Let N(C) = (v1v2 · · · vl) in cyclic order around C. Let Li = Li−1,i (with subscripts
modulo l). Let us call Li loose if pi−1 = pi and stiff if pi−1 6= pi. If Li is loose, let qi ∈ Li \pi.
If Li is stiff, call i a core index ; let I be the set of core indices. If there are no core indices,
it is because all pi are equal.

Suppose a core index exists. Let S = E01 ∪E12 ∪ · · · ∪El−1,l. Since Li = pi−1pi if stiff and
piqi if loose, and since {pi : 1 ≤ i ≤ l} = {pi : i ∈ I}, we have

Ŝ ⊆ {pi : i ∈ I} ∪ {qj : j 6∈ I}.

The rank of Ŝ is rkM S = l, since S has rank l in G and L. The rank of the right-hand
subspace is at most l because it is generated by l points. Thus if all Li are stiff, p1, . . . , pl
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are independent. If there is a loose line, say L1, let T = E12 ∪ · · · ∪ El−1,l. Then rkM T = l.
But

T̂ ⊆ L2 ∪ L3 ∪ · · · ∪ Ll ⊆ {pi : i ∈ I} ∪ {qj : j 6∈ I and j 6= 1}.
The right-hand generating set has only l − 1 points, so its rank is less than l. This is a
contradiction. Hence all lines are stiff and all node points pi are projectively independent. �

Now let us consider the possibility that one circle, C0, has all node points equal and
another, C, has its node points independent. By Menger’s theorem we can embed C ∪ C0

in a 2-connected finite subgraph of Ω. By Tutte’s path theorem [33, Theorem 4.34] in that
subgraph, there is a chain of circles, C0, C1, . . . , Cm = C, such that Ci−1 and Ci share an
edge. This implies that Ci−1 and Ci both have all node points equal or both do not. The
contradiction is obvious.

Therefore two cases are possible: all node points pv for v ∈ N are equal, or they are not. In
the latter case, suppose there were a finite set X of nodes whose corresponding node points
had rank less than #X. Then X can be extended to a finite set Y such that Ω1 = Ω:Y is
2-connected and {pv : v ∈ Y } has rank less than #Y . However, in Ω1,

Ê1 ⊆
⋃
v∼w

Lvw ⊆ {pv : v ∈ Y }.

The ranks are, on the left, rkM(E1) = #Y because L(Ω1) and G(Ω1) have rank #Y , and on
the right, at most #Y because of the number of pv’s. Consequently, the points pv for v ∈ Y
are projectively independent. It follows that {pv : v ∈ N} is independent.

That concludes the first part of the proof. We now must show that if all pv = p0, then
M = L(Ω) and the representation is a canonical lift representation, while if the pv are
independent, then M = G(Ω) and the representation is a canonical bias representation.

Case 1: All pv = p0. That is, there is a point p0 ∈ P that lies on all lines Lvw. We must
prove that M = L. In fact, we prove more. Let M0 be the one-point extension of M on the
set E0 = E ∪ {e0}, such that M0 is represented by Ê ∪ {p0}, extending the representation of
M and with p0 representing e0. We show that M0 = L0(Ω).

First we demonstrate that M0 ≥ L0. An independent set in L0 \ e0 = L is necessarily
independent in M . A finite independent set in L0 that contains e0 is a forest F together

with e0. Let F0 = F ∪ {e0} = {e0, e1, . . . , ek}. Since ê0 = p0, F̂0 contains all the lines Lvw

for nodes v and w that are adjacent in F . Thus closM0(F0) contains all edges parallel to
those of F . The rank of this set of edges is k + 1 in L and therefore is no less in M . Thus
rkM0 F0 ≥ k + 1 = #F0, and it follows that F0 is independent in M0. We conclude that
M0 ≥ L0; consequently, also M0/e0 ≥ L0/e0 = G(‖Ω‖).

Now we show that M0/e0 = L0/e0. We must prove that a circle C in ‖Ω‖ is dependent in
M0/e0. If C (of length l) is balanced, then it is dependent in G, hence inM , and consequently
in M/e0. If C is unbalanced, it is independent in L so rkM(C) = l. Take e′vw parallel to
an edge evw ∈ C, so Lvw = êvwê′vw. We know rkM(C) = rkM(C ∪ e′vw) = l, therefore

Ĉ = Ĉ ∪ ê′vw ⊇ Lvw 3 p0. Thus rk(Ĉ ∪ p0) = l, which means rkM0(C ∪ e0) = l; thus C has
rank l−1 in M0/e0. That is, C is dependent. If evw has no parallel in E, then a half edge hv

(or hw) is in E; then C ∪hv is a circuit. Since hv is parallel to e0 in L0, again C is dependent
in M0/e0.

We have just seen not only that M0/e0 = G(‖Ω‖) but also that a circle is dependent in
M0 if and only if it is balanced. It follows from Proposition 4.6 that M0 = L0(Ω).
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Case 2: {pv : v ∈ N} is an independent set. By Lemma 7.4, M
•

= G(Ω
•
).

We conclude that the theorem holds when Ω is thick. For if all pv = p0, then M = L(Ω)
and the original representation extends to a representation of L0(Ω), hence is a canonical lift
representation. If all pv are independent, then M = G(Ω) and the representation extends to
one of G(Ω

•
), hence is a canonical bias representation.

The lemma we apply to Case 2 is very general. Suppose a matroid M on E(Ω) is rep-
resented in a projective space P so that there exist points pv ∈ P, corresponding to the
nodes, that are independent and such that, if e ∈ Evw, then ê ∈ pvpw. Then we say the
representation has a complete set of node points.

Lemma 7.4. Let Ω be a biased graph with n ≥ 3 and M an intermediate matroid on
Ω that is represented in some projective space with a complete set of node points. Then the
representation is a canonical bias representation of Ω.

Proof. Let M
•

be M together with the node points pv. Then M
•

satisfies (a, g) of Section
6 because of the complete set of node points. It satisfies (b, c) because it is an intermediate
matroid. By Proposition 6.5 it is G(Ω

•
). It follows that M = G(Ω). �

The proof of the complete Theorem 7.1 depends on the generality of Lemma 7.4. Let Ω
be as in the theorem and let Ωt be a maximal thick subgraph of Ω. Thus Ωt is 2-connected
and spanning. By the thick case applied to Ωt, either all edge lines are concurrent or there
is a complete set of node points.

In the latter case, let the node points of Ωt be pv for v ∈ N and write X̂ = {pv : v ∈ X}.
We know the node points of Ωt are independent. We have to prove they are node points of
Ω: that is, if evw is a link without a parallel edge, then êvw ∈ pvpw. There are internally
disjoint paths P1 and P2 in Ωt from v to w. Let e1 be parallel to an edge in P1; then P1∪{e1}
is unbalanced. Either P ∪ {e1, evw} contains a balanced circle on evw, which is a circuit in L
and G, hence in M , or P ∪ {e1, evw} is a contrabalanced theta graph, which is a circuit in L

and G, thus in M . In either case, evw ∈ closM(P ∪{e1}). Therefore, êvw ∈ N̂(P1). Similarly,

êvw ∈ N̂(P2). We deduce that êvw ∈ N̂(P1)∩ N̂(P2) = pvpw. By Lemma 7.4, M = G(Ω) and
the representation is a canonical bias representation.

What remains is the case in which all edge lines are concurrent at a point p0. Note that an
edge line Lvw exists if and only if v ∼ w and Evw is unbalanced; and by Lemma 7.2 applied
to Ωt, if e is a half edge at v, then ê = p0.

In order to prove that θ is a canonical lift representation we must show that it extends
to a representation of L0(Ω). We do this by extending M to a matroid M

•
in the sense of

Section 6, that is, E
•

= E ∪H where H = {hv : v ∈ N} consists of one half edge for each
node and is disjoint from E. Extending θ to E

•
by θ(hv) = p0 defines M

•
as the matroid

represented by the extended θ; our task is to prove that M
•

= L(Ω
•
).

We do so by means of Proposition 6.3. Properties (b′) and (l) are obvious. That M
•

is finitary follows from the finitarity of any projective dependence matroid. It remains to
establish (a).

For finite S ⊆ E, (a) is valid because rkM S ≤ rkG S. We therefore consider a set S ⊆ E
•

such that S ∩H 6= ∅. The first step depends on the nature of S ∩ E.
If S ∩ E is balanced, then rkM

• S ≤ rkM(S ∩ E) + rkM
• (S ∩ H) = rkM(S ∩ E) + 1 <

#N(S ∩ E) + 1; so (a) is satisfied.
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Suppose R = S ∩ E is unbalanced. If p0 ∈ R̂, then closM
• R ⊇ S so rkM

• S = rkM R and

(a) is satisfied. Thus we must show that p0 ∈ Ĉ when C is an unbalanced circle. There are
three cases.

Case 1: If E:N(C) contains a double link {e, e′}, then

p0 ∈ Ĉ ∪ {ê, ê′},

so rkM
• C

• ≤ rkM(C ∪ {e, e′}) ≤ rkG(C ∪ {e, e′}) ≤ #N(C) = rkM C. Therefore Ĉ spans

Ĉ ∪ {ê, ê′}; consequently p0 ∈ Ĉ.

Case 2: If there is a half edge e′ of Ω such that C ∪ e′ is a circuit in M , then p0 ∈ Ĉ
because p0 = θ(e′) by Lemma 7.2. This applies in particular if N(C) supports a half edge in
Ω.

Case 3: If neither Case 1 nor Case 2 applies, choose two nodes v, w ∈ N(C). By Menger’s
theorem there are internally disjoint paths vv′ · · ·w and ww′ · · · v in Ωt. We focus on Evv′ . It
contains a pair of parallel links, {e, e′}, or a link e and a half edge e′ which (since we are not
in Case 2) is at v′. Again since we are not in Case 2, in both of these subcases C ∪ {e, e′} is

a circuit in M . But also, p0 ∈ êê′. Therefore, p0 ∈ Ĉ ∪ ê. Similarly, p0 ∈ Ĉ ∪ f̂ if f :ww′ is a
link. Since rkM(C∪e) = rkM(C∪f) = #N(C)+1 and rkM(C∪{e, f}) = #N(C∪{e, f}) =
#N(C) + 2 (all because C ∪ e, C ∪ f , and C ∪{e, f} are connected), by the submodular law

Ĉ ∪ ê ∩ Ĉ ∪ f̂ = Ĉ.

Because p0 belongs to both terms on the left side, p0 ∈ Ĉ.
Now we demonstrate that M

• ≥ L(Ω
•
). Since M

•
is finitary, it suffices to show that a

finite independent set S in L(Ω
•
) is independent in M

•
. If S ⊆ E, S is independent in M

by the intermediacy of M . Otherwise, S consists of a half edge h ∈ H and a finite forest
T = S \ h in Ω.

Suppose p0 ∈ T̂ . If T does not connect N , there is a link e ∈ E(Ωt) whose endpoints v
and w are not connected by T . Evw contains another edge e′, and since p0êê

′ or p0ê
′ is a

circuit and p0 ∈ T̂ , ê′ ∈ T̂ ∪ ê. Thus, e′ ∈ closM(T ∪ e). However, T ∪ e is balanced and
T ∪{e, e′} is not, so they cannot have the same rank in M . This contradiction shows that T
must be a spanning tree of Ω. In fact, we may assume that n is finite and no forest U that

is not a spanning tree has p0 contained in Û . Hence, T̂ ∪ p0 is a circuit in M
•
.

Furthermore, if there is an edge e ∈ T ∩ E(Ωt), then p0 ∈ T̂ implies E:N(e) ⊆ closM
• T ,

so closM T is unbalanced. This is again a contradiction. Therefore, T ∩ E(Ωt) = ∅.
Since n ≥ 3, T has an end node z, which is adjacent to a node y by an edge f ∈ T .

Because Ωt connects y to z but f /∈ E(Ωt), y is adjacent to some x 6= z in Ωt. Let e, e′ ∈ Exy.
Now,

f̂ ∈ T̂ \ f̂ ∪ p0 ⊆ T̂ \ f̂ ∪ {ê, ê′},
so f ∈ closM(T \ f ∪ {e, e′}). However, this is impossible, as T \ f ∪ {e, e′} ⊆ E:(N \ z)
and closM(E:(N \ z)) ⊆ E:(N \ z) because M is intermediate. We conclude that p0 /∈ T̂ and
consequently M

• ≥ L(Ω
•
).

We have shown that M
•

satisfies (a, b′, l) of Section 6 with respect to Ω
•
. The weakest

such matroid is L(Ω
•
). On the other hand, M

• ≥ L(Ω
•
). It follows that M

•
= L(Ω

•
),

whence M = L(Ω) and θ is a canonical lift representation of Ω. �
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Let us discuss the meaning of Theorem 7.1.
First of all, it is a partial unique-representation theorem for G(Ω) and L(Ω) and it proves

Conjectures II.2.15 and II.3.14 for sufficiently thick graphs. Suppose the bias and lift ma-
troids are not equal, as for instance when Ω has disjoint unbalanced circles. Then for each
gain group G of Ω, G(Ω) has a unique representation (up to gain-group embedding) over
each skew field F for which G ↪→ F ∗, and L(Ω) has a unique representation (up to gain-
group embedding) over each skew field F for which G ↪→ F+. If G is a subgroup of both
F ∗ and F+ (as is Z, for instance, when char F = 0; but this can only happen when F is
infinite), then G(Ω) and L(Ω) both have representations over F , canonically induced by the
G-gains. These representations are, of course, inequivalent since G(Ω) 6= L(Ω). Moreover,
there are no other representations. (I am ignoring here the possibility that Ω has more than
one essentially different G-gain function. That will produce additional representations.)

Perhaps more remarkable is that, when G(Ω) and L(Ω) are equal, this one matroid has
two different kinds of representation. Again, each gain group G ≤ F ∗ or F+ produces a
canonical bias or lift representation over F for each embedding G ↪→ F ∗ or G ↪→ F+. If
G ≤ F ∗ and F+, the one matroid has (at least) two representations canonically induced by
the G-gains. These representations are inequivalent (since n ≥ 3): we see this from the fact
that the canonical bias representation extends to node points pi that are all distinct, so the
edge lines Lij are not concurrent, but in the canonical lift representation the edge lines are
concurrent at p0.

This double representability when G(Ω) = L(Ω) is even more striking when Ω has unique
gains. (I mean that any two gain functions for Ω are switching equivalent after appropriately
switching and cutting down the gain group. Biased graphs with this property include those
of the group expansions of nontrivial 2-connected graphs; see Theorem V.2.1.) Then G(Ω)
has exactly two inequivalent representations over any skew field that contains the gain group
uniquely both additively and multiplicatively.

We have already seen in Examples 2.1, 2.2, 4.1, and 4.2 applications of Theorem 7.1 to limit
the variety of representations of a bias or lift matroid. In the former two all representations
are canonical bias, in the latter all are canonical lift. Modified graphs exemplify the existence
of both types of representation of the same matroid.

Example 7.1 (Example 2.1 continued). Let Φ1 be Φ of Example 2.1 without h1 and
(−1)e22. Most of Example 2.1 applies but there is a big difference: G(Φ1) has noncanonical
bias representations. These arise from Theorem 7.1 and the fact that G(Φ1) = L(Φ1).
The theorem then says that G(Φ1) has two kinds of real representation: canonical bias
representations arising from R∗-gains for 〈Φ〉, in which the three edge lines are nonconcurrent,
and canonical lift representations arising from R+-gains for Φ1, in which the three edge lines
concur. For this to actually occur there must be additive real gains for 〈Φ1〉, and indeed
there are.

Example 7.2 (Example 4.1 continued). Let Φ2 be Φ of Example 4.1 without h1 and
(−1)e22. Most of Example 4.1 remains valid, except that there are noncanonical representa-
tions of L(Φ2). This is due, as in the previous example, to the isomorphism of L(Φ2) with
G(Φ2). Thus all canonical bias representations of Φ2 are representations of L(Φ2) but are
not canonical lift representations because the edge lines do not concur. Still, by Theorem
7.1 there are no other representations but canonical lift and bias ones.
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Example 7.3 (Integral gains). Take Ω to be 〈ZK3〉 or any subgraph 〈Φ〉 for which Φ ⊆ ZK3

is large enough to force unique gains. (I do not know whether such a Φ can be finite; this
is an interesting question for research.) Then any two nodes are multiply adjacent, so that
G(Ω) has exactly two kinds of inequivalent representations (but not just two inequivalent
representations) over F = Q, R, and C. The first kind is the canonical lift representations.
All are projectively equivalent because they differ only by the embedding Z ↪→ F , which
is determined by the image of 1; scaling the 0th coordinate is the equivalence. Second,
there are the canonical bias representations, one for each possible image α of 1, namely any
α 6= 0,±1, in the embedding Z ↪→ F . All are inequivalent, since scaling cannot transform
one into another.

Example 7.4 (Whirls). Tutte’s whirl matroid Wn = G(C
•

n,∅) is another which, by
Theorem 7.1, has only canonical representations. This means its representations over any
skew field are (up to projective equivalence) a 1-parameter family indexed by the orbits of
F ∗ \ {1} under the action of AutF . To see this we switch so that all edges but one in the
Cn have gain 1, and let α be the gain of the remaining edge. Clearly, α 6= 1 is the only
restriction, and canonical bias representations corresponding to α and α′ are projectively
equivalent if and only if α and α′ are equivalent by an automorphism (Proposition 2.9).

In particular, if R(q) is the number of inequivalent representations over Fq, we have R(2) =
0, R(3) = 1, and in general7

R(q) =


q − 2 if q is prime,

−2 +
∑
c|d

pc

c

∏
p′| d

c
prime

(
1− 1

p′

)
if q = pd.

Example 7.5 (Signed expansion of K3, continued from Example 2.4). By Theorem 7.1 and
the uniqueness of its gains (Theorem V.2.1), 〈±K3〉 has a canonical bias representation over
F if and only if char F 6= 2 and a canonical lift representation if and only if char F = 2,
and each of these is the unique F -representation. It also has representations over every field
due to the isomorphism of G(±K3) with G(K4). If we examine the representation of G(K4)
(which is unique since the matroid is unimodular [9]), we find that it is a canonical lift
representation of ±K3 when char F = 2 and a canonical bias representation of ±K3 when
char F 6= 2—just as it should be. See Figure 7.1.

Quite a different aspect of Theorem 7.1 is its conclusion that M can only be L or G—
that is, there are no true intermediate matroids. This complements the similar Proposition
II.4.4, which concerns biased graphs that are full and complete but assumes nothing about
representability of M . In general, I believe, truly intermediate matroids cannot exist except
on graphs of low connectivity, possibly 2 or less. On a separable graph they can exist.

Example 7.6 (True intermediate matroids). Suppose Ω has cutpoints u1, . . . , uk at which
a central part, Ω0, is separated from Ω1, . . . ,Ωk, respectively. Just to make the description
easier, suppose also that each ui supports a half edge hi. Let M be the result of carrying
out parallel connection of G(Ω0) with L(Ωi) at hi for all i > 0. Then M is neither G(Ω)

7I thank Dikran Karagueuzian and Marcin Mazur for calculating the number of orbits of Fq.
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Figure 7.1. The two kinds of representation in a plane of G(K4), hence of
G(±K3) = L(±K3). They are, respectively, canonical bias and lift represen-
tations of ±K3.

nor L(Ω) except in special cases, but it is intermediate between them. Furthermore, M is
representable over a skew field F if (and only if) all of G(Ω0), L(Ω1), . . . , L(Ωk) are.

8. Seven dwarves: Representations of the biased K4’s

We complete here the treatment of the seven biased graphs with underlying graph K4,
initiated in Part I and carried through Parts II and III. We call these biased graphs Ωi =
Ωi(K4) for i = 1, 2, . . . , 7. Recapitulating their definitions: Ω1 = 〈K4〉 is balanced; Ω7 =
(K4,∅) is contrabalanced. Ω2 has two balanced triangles and consequently one balanced
quadrilateral, the sum of the triangles. Ω3 has the one balanced triangle v1v2v3 and no
balanced quadrilaterals. Ω4, Ω5, and Ω6 have no balanced triangles and, respectively, three,
two, and one balanced quadrilateral; then Ω4 = 〈−K4〉.

We wish to know the skew fields F over which each of these has canonical bias and lift
representations as well as noncanonical matroid representations. The question is simplified
by the fact that G(Ωi) = L(Ωi), because K4 contains no two node-disjoint circles. There-
fore we have only one matroid to represent, but there are two distinct kinds of canonical
representation that may or may not coincide. The facts are presented in Table 8.1.

Section III.13c presents the chromatic and balanced chromatic polynomials. For those ma-
troids G(Ωi) that have a real or complex canonical representation, these polynomials equal
the characteristic polynomials of canonical hyperplanar representations. The unsigned coef-
ficients of λ4, λ3, . . . , λ0 in the chromatic polynomials are the Betti numbers β0, β1, . . . , β4 of
the complement of a complex hyperplanar bias representation as in Corollary 2.2. Similarly,
the unsigned coefficients in the balanced chromatic polynomial are the Betti numbers of the
complement of a complex affinographic representation A(Ωi) as in Corollary 4.5 (so that here
β4 = 0). As for real representations, |χΩi

(−1)| is the number of regions of a hyperplanar
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Ω1 Ω2 Ω3 Ω4 Ω5 Ω6 Ω7

No can. bias rep. – F2 F2,F3 char = 2 F2,F3 F2,F3,F4 F2,F3,F4

No can. lift rep. – – F2 char 6= 2 char = 2 F2,F3 F2,F3,F4

No rep. – – F2 – F2 F2,F3 F2,F3,F4

Table 8.1. The skew fields over which there do not exist canonical or any
representations of the matroid G(Ωi) = L(Ωi) for Ωi = Ωi(K4).

Bias representation Lift representation
Real Complex Real Complex
r β0, β1, β2, β3, β4 r β0, β1, β2, β3

Ω1 24 1, 6, 11, 6, 0 24 1, 6, 11, 6
Ω2 38 1, 6, 13, 13, 5 30 1, 6, 13, 10
Ω3 44 1, 6, 14, 16, 7 34 1, 6, 14, 13
Ω4 46 1, 6, 15, 17, 7 (35) (1, 6, 15, 13)
Ω5 48 1, 6, 15, 18, 8 36 1, 6, 15, 14
Ω6 50 1, 6, 15, 19, 9 37 1, 6, 15, 15
Ω7 52 1, 6, 15, 20, 10 38 1, 6, 15, 16

Table 8.2. The number of regions (r) and the complementary Betti numbers
(βj) of a hyperplanar representation of Ωi which is either a bias representation
in R4 or C4 (left) or an affinographic representation in A4(R) or A4(C) (right).
(An affinographic representation of Ω4 does not exist in characteristic 0; the
table shows the numbers that would apply if it did.)

representation in R4 and |χb
Ωi

(−1)| is that of an affinographic representation in A4(R). All
these numbers are in Table 8.2. Bear in mind that by a representation of Ωi we mean a
representation of any F ∗- or F+-gain graph Φ whose biased graph 〈Φ〉 equals Ωi. There may
be many such gain graphs; see Section I.7.

Table 8.1 is justified by reasoning that has three parts: Table I.7.1 shows the possible gain
groups of a gain graph for Ωi, from which we immediately deduce the precise skew fields
over which Ωi has a canonical bias or lift representation; well-chosen contractions show the
nonexistence of representations over certain small fields; and Proposition 8.1 assures us that
there are no representations other than canonical ones.

The well-chosen contractions are

G(Ω3/e14e24) = L4,

G(Ω5/e13e23) = L4,

G(Ω6/e13) = U3,5 = L⊥5 ,

G(Ω7) = U4,6 = L⊥6 ,

where Lk is a k-point line (a uniform matroid of rank two). Since representing Lk or L⊥k
requires that |F | ≥ k − 1, the last line of Table 8.1 follows at once.

Proposition 8.1. For each i = 1, 2, . . . , 7, every representation of Ωi is a canonical lift
representation or a canonical bias representation. When i ≤ 4, every representation is both
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canonical bias and canonical lift, whenever both kinds exist (see Table 8.1). When i ≥ 5, no
representation is simultaneously canonical for bias and lift.

Outline of proof. The lift matroid of Ωi for i = 1, 2, 4 is binary: graphic for i = 1, 2 and
a signed-graphic lift matroid for Ω4. Binary matroids are uniquely representable up to
projective equivalence over any skew field for which a representation exists [9]; therefore the
canonical bias and lift representations of Ω1, Ω2, and Ω4 are the same whenever both exist.

In the other cases there is a node at which every triangle is unbalanced. We assume a
projective representation and use the notation of Section 7, in which ê represents edge e.

Lemma 8.2. In Ωi, if every triangle incident to node vj is unbalanced, then the intersection
of the representations of these triangles is a single point.

We omit the proof. The point we call pj.
Now, if i ≥ 5 every node has a point pj. It is clear that either all the points coincide or

they have rank 4. One can verify that in the former case the representation extends to one
of L0(Ωi) in which the pj represent the extra point e0, while in the latter case it extends to
one of G(Ω

•

i ) in which each pj represents the half edge hj at vj.
In the case of Ω3 Lemma 8.2 yields a point p4. One can prove that, p4 representing e0,

one has a representation of L0(Ω3); this is similar to the proof when i ≥ 5. Thus any
representation of Ω3 is a canonical lift representation. To conclude the proof we must show
that this is at the same time a canonical bias representation so long as |F | ≥ 4. We let
p4 represent h4. We need to locate points p2 and p3 representing h2 and h3; then a point
p1 representing h1 will be easy to find. We know p2 ∈ p4ê24 and p3 ∈ p4ê34. However,
certain points on those lines must be avoided. The exclusions can be translated into a list
of five points on p4ê24 that cannot be p2. If |F | ≥ 5, that suffices to show p2 exists. If
F = F4 = {0, 1, ω, ω2}, we know the exact representation because, being a canonical lift
representation, it arises from F+-gains, and we know all possible F+

4 -gains up to switching:
they are ϕ(eij) = 0 except for ϕ(e24) = ωk and ϕ(e34) = ωk+1 for some k. Scaling lets us
take k = 0. Now, with a single concrete representation in hand, we can show that two of the
five forbidden points on p4ê24 coincide; that is, a possible p2 exists. Thus, the representation
of G(Ω3) extends to one of G(Ω

•

3). �

Finally, an unanswered question. Are all the canonical bias representations of Ωi actually
different, that is, projectively inequivalent? For Ω1, Ω2, and Ω4 they are not, and for the
others they might not be although the gains are not unique up to switching (by Section I.7).
Similar remarks apply to canonical lift representations. Indeed the Ωi for i = 3, 5, 6, 7 may
be counterexamples to Conjectures 2.8 and 4.8, but this is unexplored.

9. Questions

Certain questions naturally arise from our work, that refine the general problems of repre-
sentability raised in Problems II.2.13–14 and II.3.13. The greatest lack in our theory, and a
difficult problem, is the question of noncanonical representation of the bias and lift matroids.
Since there are natural ways to represent these matroids—by canonical representations—the
most natural question in the world is: which gain or biased graphs allow a noncanonical
representation? Although we can answer this for some very special (though large) classes
of biased graphs, namely full and thick graphs, in general we are helpless. Even regarding
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such an obvious example as biased complete graphs, whose large number of edges ought to
permit some deductions restricting possible representations, we can say nothing.

Consider the distinction between canonical and noncanonical representations. Results like
Propositions 2.4 and 4.3 and especially Theorem 7.1 show that many biased graphs have only
those representations, derived from gain functions in a skew field, that we call ‘canonical’.
Yet still these are only special kinds of biased graph.

Problem 9.1 (Problems 2.5 and 4.4). Which biased graphs have noncanonical representa-
tions?

Since canonical representations depend on having suitable gains, and since representability
over finite fields is generally interesting, we ask about gains (for bias representation) in
the multiplicative group of a Galois field, more generally in cyclic groups, and (for lift
representation) in its additive group, which is a vector space over a prime field.

Problem 9.2. In which cyclic groups does a given biased graph have gains? Which biased
graphs have gains in a given cyclic group?

Problem 9.3. In which vector spaces Fd
p does a given biased graph have gains? Which

biased graphs have gains in a given space Fd
p?

These questions are part of our legacy to the reader.

Errata for Parts I and III

Part I, p. 48, bottom: “Example 7.i below.”
Part III, p. 45: “substituting w = 0, v = −1, and w, x, λ = 1 in the appropriate places.”
Part III, p. 78, Example 12.2: Γ must be a simple graph.
Part III, p. 79: In (12.2) and (12.3), (wx+1)n should be (wx+ v)n. Also, m denotes #E.

In the specializations, (wx+ 1)n should be (wx− 1)n and (x+ 1)n should be (x− 1)n.

Part III, p. 83: In (13.3), q
[b]
i should be ∆q

[b]
i .
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