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Abstract. A biased graph is a graph with a class of selected circles (“cycles”, “circuits”),
called balanced, such that no theta subgraph contains exactly two balanced circles. A biased
graph Ω has two natural matroids, the frame matroid G(Ω) and the lift matroid L(Ω), and
their extensions the full frame matroid G•(Ω) and the extended (or complete) lift matroid
L0(Ω). In Part IV we used algebra to study the representations of these matroids by vectors
over a skew field and the corresponding embeddings in Desarguesian projective spaces. Here
we redevelop those representations, independently of Part IV and in greater generality, by
using synthetic geometry.
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Introduction

This paper bridges a few branches of combinatorial mathematics: matroids, graphs, and
incidence geometry. The root of our branches is biased graphs. A biased graph is a graph that
has an additional structure which gives it new properties that are yet recognizably graph-
like. Notably, it has two natural generalizations of the usual graphic matroid, which we call
its frame and lift matroids. In Part IV of this series1 we studied linear, projective, and affine
geometrical representation of those matroids using coordinates in a skew field. That leaves
a gap in the representation theory because there are projective and affine geometries (lines
and planes) that cannot be coordinatized by a skew field and there are biased graphs whose
matroids cannot be embedded in a vector space over any skew field. The reason for that gap
is that our representation theory depended on coordinates. Here we close the gap with an
alternative development of geometrical representation of the frame and lift matroids that is
free of coordinates. The development is purely synthetic: we reconstruct the analytic point
and hyperplane representations from Part IV without coordinates and we prove that the
synthetic representations, when in Desarguesian geometries, are equivalent to the analytic
ones.

Because all projective and affine geometries of rank higher than 3 are Desarguesian, we
are not generalizing Part IV—except for planes. Notably, there are many biased-graphic
matroids that do not embed in a projective geometry; we describe some examples of rank
at least 4 in Section 1.5.2, but we do not give general criteria to decide when a matroid of a
particular biased graph has a projective representation. (By contrast, in [9] we prove explicit
algebraic criteria for representability of matroid of a biased graph of order 3 in a projective
plane, although applying our criteria is difficult because not enough is known about ternary
rings of non-Desarguesian planes). We nevertheless think our synthetic treatment is well
justified as an axiomatic treatment of projectively representable biased-graphic matroids.

1. Graphs, biased graphs, geometry

So as not to require familiarity with the many previous parts of this series, we repeat
necessary old definitions as well as giving new ones and providing the required background
from algebra and projective geometry.

1.1. Algebra.
We denote by F a skew field. Its multiplicative and additive groups are F× and F+. it

multiplies vectors on the left.

1.2. Projective and affine geometry.
It is not that easy to find a standard reference for the basics of projective and affine

geometry other than in the plane. We summarize essentials for readers who are not familiar
with them; also to fix our terminology and notation. We stress that all our geometries
are finitary, which means that every dependency contains a finite dependency (as we shall
explain shortly).

1To read this paper it is not necessary to know other parts of this series. We refer to previous parts,
specifically Parts I, II, IV, and (once) V [14, 15, 16, 17], by Roman numeral; e.g., Theorem IV.7.1 is Theorem
7.1 in Part IV [16].
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There are two kinds of projective and affine geometries: those defined by coordinates in a
skew field, written P(F) where F is the skew field, and those defined axiomatically, without
coordinates, written P. The dimension may be infinite, but since there is no topology the
geometry is finitary : every dependent set of vectors contains a finite dependent set. Every
coordinatized geometry is also an axiomatic geometry. The converse is false in general but
a fundamental theorem says that every axiomatic geometry of dimension greater than 2 has
coordinates in some skew field. For this to be meaningful we must define dimension, which
in turn requires the notions of independence and span; those are some of the concepts we
explain here.

Now we begin again from the beginning.

1.2.1. Coordinatized projective geometry. We begin with one of the several constructions of
projective geometries over a skew field F. Consider an F-vector space FN , where N is a
set; that is, the vector space comes with a coordinate system. The set of lines in FN is
the point set of a projective geometry PN(F), or simply P(F).2 A set of projective points
is defined to be a (projective) subspace when the vectors that belong to its points are the
nonzero vectors in a subspace of V (F). The projective geometry (or projective space) PN(F)
is defined to be the incidence structure of projective points and subspaces, incidence being
set containment. (We say PN(F) is a projective space over F. This construction of PN(F)
is called central projection of FN . Each vector x has coordinates, written (xi)i∈N . Two
nonzero vectors in FN that lie in the same projective point ê have the same coordinates
up to a nonzero scalar: y = αx for some α ∈ F×. The homogeneous coordinates of ê are
[ê] := [x] := [xi]i∈N := {αx : α ∈ F×} (three notations; each has its use). Note that
[x] = [y]; it does not matter which vector one chooses from ê to generate the homogeneous
coordinates.

A projective geometry of this kind is called coordinatized.

1.2.2. Coordinatized affine geometry. Next is a simple construction of affine geometries over
F. The translates of the linear subspaces of FN are called affine subspaces (or affine flats);
with these extra subspaces the set FN becomes an affine geometry AN(F) or simply A(F).
The affine geometry has the same coordinate system as does FN .

There is a second important construction of A(F) from a vector space. Begin with FN with
a distinguished coordinate x0 and choose the linear hyperplane h0 := {x ∈ FN : x0 = 0}.
Translate h0 to the affine hyperplane h1 := {x ∈ FN : x0 = 1} and define the subspaces of
h1 to be its intersections with arbitrary vector subspaces T of FN . With these subspaces h1

is an affine space of dimension #N − 1. This affine space is naturally isomorphic to that
obtained from PN(F), the central projection of FN , by taking the ideal hyperplane h∞ to
be the hyperplane in PN(F) that corresponds to h0. The isomorphism is simple: an affine
subspace T ∩ h1 corresponds to the projective subspace implied by the vector subspace T .
Thus the points of h1, as an affine space, correspond one-for-one to the lines of FN that do
not lie in h0; the ideal points of PN(F) correspond to the lines that do lie in h0.

1.2.3. Axiomatics. The properties of an axiomatic projective or affine geometry, P or A, are
the same, except that there are no coordinates and no projective or affine combinations.
Here is a system of axioms for projective geometr, modernized from [13, Ch. II], also found
in [12, Ch. I, Axioms A and E 0] and [5, Theorem 2.3(a–c)].

2We write a subscript because superscript notation customarily implies the dimension is #N .
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I. There is a set P of points.
II. There is a set L of lines, each of which is a subset of P.

III. Any two points p, q lie on a unique line, written pq.
IV. Every line has at least three points.
V. For noncollinear points p, q, r, if p′ ∈ qr and q′ ∈ pr, then pp′ ∩ qq′ 6= ∅.
V′. For points p, q, r, s, if pq ∩ rs 6= ∅, then pr ∩ qs 6= ∅.

Axioms V and V′ are equivalent alternatives; some prefer one, some the other. We assume
our geometries are finitary (defined below in connection with independence). If there is at
most one point, there cannot be a line. If there is more than one point, there is a line so
there are at least three points. A subspace is a point set that is line-closed, i.e., it contains
the whole line determined by any two of its points. We do not, as is usually done, assume
P and L are nonempty, because for technical simplicity we want ∅ and a solitary point,
which are subspaces, to qualify as projective geometries. However, there are only those two
abnormal cases.

There are axioms for affine geometry (see [5, Theorem 2.7(a–c)]) but we simply define an
axiomatic affine geometry as a projective geometry with a hyperplane removed as in Section
1.2.5.

Two fundamental theorems say that every projective or affine geometry of dimension
greater than two (to be defined soon) is Desarguesian, which means it satisfies a certain inci-
dence property called Desargues’ theorem; and that every Desarguesian projective or affine
geometry is coordinatizable, that is, it is constructible from a vector space in the manner
just described. Thus, only projective and affine lines and planes can be non-coordinatizable.

1.2.4. Internal structure. We defined subspaces; we list some properties. We often call a
projective or affine subspace a flat of its geometry (but a vector subspace is not called a
flat). A projective or affine subspace is itself a projective or affine geometry. The intersection
of subspaces is a subspace; intersection is the meet operation ∧ in the subspace lattice:
t ∧ t′ := t ∩ t′. The span, span(S), of a point set S is the smallest subspace that contains it.
Span is the join operation ∨ in the subspace lattice; that is, t∨t := span(t∪t′). In particular,
p ∨ q denotes the line through points p and q. A hyperplane is a maximal proper subspace;
every subspace is the intersection of hyperplanes. A relative hyperplane in a subspace t is a
subspace that is a hyperplane of t.

A point set S is independent if every proper subset spans a properly smaller subspace than
span(S). We assume that independence is finitary : a set is independent if and only if every
finite subset is independent. (This assumption excludes some geometries, in particular those
defined with a topology that admits convergent infinite sequences.)

A basis of a subspace t is a maximal independent subset of t. Every subspace has a basis,
by Zorn’s Lemma. A proper subset of a basis for t spans a proper subspace of t. Every
basis has the same cardinality; the dimension of t is 1 less than the size of a basis. The
matroid rank, however, is the cardinality of a basis. A line has dimension 1; a plane has
dimension 2; etc. In a projective geometry subspace dimension obeys the modular law:
dim t+ dim t′ = dim(t∧ t′) + dim(t∨ t′). In an affine geometry that is true when t∧ t′ 6= ∅.

In a Desarguesian projective space P(F) constructed by central projection, the dimension
of a projective subspace t is dimT − 1, where T is the corresponding vector subspace. In
particular, dimPN(F) = #N − 1. The coordinatized definition of projective dependence
of a point set S ⊆ P(F) is that some finite subset of S satisfies an equation of the form
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i=1 λi[xi] = 0 in homogeneous coordinates, with all λi ∈ F×. (It follows that S is affinely

independent if and only if every finite subset is affinely independent.) This agrees with the
axiomatic definition.

In a Desarguesian affine space, using the construction of A(F) by translating linear sub-
spaces, the dimension of an affine subspace t is the same as that of its corresponding linear
subspace T , but the notion of dependence changes. We say a set S in A(F) is affinely in-

dependent if no nonempty finite subset {x1, . . . ,xk satisfies an equation
∑k

i=1 λixi = 0 with

nonzero scalars such that
∑k

i=1 λi = 0. A consequence is that while dim t = dimT , a linear
basis B of T is one point short of an affine basis; an affine basis is, for instance, T ∪ {0}.

1.2.5. From projective to affine. We often pass back and forth between related projective
and affine geometries. For one direction, in a projective geometry P choose any hyperplane
h0. The point set P \ h0 is then an affine geometry, the affine subspaces being the sets t \ h0

for all projective subspaces t 6⊆ h0. Projectively independent sets in P \ h∞ become affinely
independent sets; the bases of affine subspaces are the bases of the corresponding projective
subspaces that are disjoint from h∞. From the viewpoint of A, h∞ is called the ideal or
infinite hyperplane of P. Points and subspaces in h∞ are called ideal or infinite; the rest are
called ordinary.

If P is Desarguesian, all hyperplanes are equivalent under projective isomorphisms; thus,
we get the same affine geometry (up to isomorphism) no matter which hyperplane we choose.
A precise statement is that P(F) \ h∞ = A(F), i.e., the affine geometry has the same
coordinate skew field. It is often convenient to choose coordinates so that h∞ = {[x] ∈
P(F) : x0 = 0} where x0 is a chosen coordinate. Then all ordinary points have homogeneous
coordinates in which x0 = 1 and the affine coordinates are the projective coordinates with
x0 omitted.

When P is a non-Desarguesian projective plane, the resulting affine plane depends on the
choice of h∞, in the sense that not all such planes need be isomorphic. This fact does not
affect our synthetic approach.

1.2.6. From affine to projective. In the opposite direction, given any affine geometry A
there is a unique projective geometry P in which A = P\h∞ for a projective hyperplane h∞.

First, lines in A are parallel if they are coplanar but have no common point. For each
parallel class of lines, say L, create a new point, L∞, called an ideal or infinite point; the
points of A are now called ordinary points. The union of A and these ideal points is a
projective geometry P, which we call the projective completion of A. The set h∞ of ideal
points is a hyperplane in P, called the ideal or infinite hyperplane. The subspaces of P are
of two kinds: first, the ordinary subspaces, which are the projective completions sP of affine
subspaces s—that means adding to s all the points L∞ for which s contains a line in the
class L—and second, the ideal subspaces, which are the intersections s∞ ∩ h∞ of ordinary
subspaces with the ideal hyperplane. Then the hyperplanes of P are h∞ and the ordinary
hyperplanes.

This construction does not use coordinates. It is a theorem that all projective geometries
arise in this way; the proof is that by deleting a hyperplane (any hyperplane) from a projective
geometry P one gets an affine geometry of the same dimension, and by adding ideal points
using this construction one recovers the original projective geometry. This is important,
because it means that there is no distinguished ideal hyperplane in P unless we have chosen
one, and we can choose any hyperplane to be “ideal”.
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Note that a basis for A is the same as a basis for P that avoids the ideal hyperplane
(whichever it is).

It follows from the preceding constructions that an affine geometry can be defined as what
results by deleting any hyperplane from a projective geometry.

1.2.7. Projective duality. In the axioms of projective geometry, points and hyperplanes oc-
cupy symmetric roles; by interchanding the names one gets a new axiom system identical or
equivalent to the first. This means that, given any projective geometry P, there is a dual
geometry P∗ in which the points are the hyperplanes of P and a hyperplane is a set of all P-
hyperplanes that contain a fixed point. In other words, we can identify the hyperplanes of
P∗ with the points of P; and in fact (P∗)∗ = P with this identification.

A simple way to describe P∗ is to say that its lattice of subspaces (remembering that a
point is a subspace) is the order dual of that of P. An easy consequence is that duality does
not change dimension.

1.3. Graphs.
A graph Γ = (N,E), with node set N = N(Γ) and edge set E = E(Γ), may have multiple

edges. Its order is #N . Edges may be links (two distinct endpoints) or half edges (one
endpoint); the notation euv means a link with endpoints u and v and the notation ev means
a half edge with endpoint v.3 If there are no half edges, Γ is ordinary. If there are also no
parallel edges, it is simple. We make no finiteness restrictions on graphs. The empty graph
is ∅ := (∅,∅). The simplification of Γ is the graph with node set N(Γ) and with one edge
for each class of parallel links in Γ, where links are parallel if they have the same endpoints.

For S ⊆ E, N(S) means the set of nodes of edges in S. The subgraph induced by X ⊆ N
is notated Γ:X := (X,E:X), where E:X := {e ∈ E : N(e) ⊆ X}.

A separating node is a node v that separates one edge from another; i.e., there is a partition
{A,B} of E such that N(A) ∩ N(B) = {v}. (For example, a node incident to a half edge
and another edge is a separating node.) A graph is inseparable if it is connected and has
no separating node; equivalently, for every partition {A,B} of E, #(N(A) ∩N(B)) ≥ 2. A
maximal inseparable subgraph of Γ is called a block of Γ.

A circle is the edge set of a simple closed path, that is, of a connected graph with valency
2 at every node. Cn denotes a circle of length n. The set of circles of a graph Γ is C(Γ). A
theta graph is the union of three internally disjoint paths with the same two endpoints. A
subgraph of Γ spans (in the sense of graph theory) if it contains all the nodes of Γ.

The number of components of Γ is c(Γ). For S ⊆ E, c(S) denotes the number of connected
components of the spanning subgraph (N,S).

1.4. Biased graphs and biased expansions.

1.4.1. Biased graphs.
A biased graph Ω = (Γ,B) consists of an underlying graph ‖Ω‖ := Γ together with a class

B of circles satisfying the condition that, in any theta subgraph, the number of circles that
belong to B is not exactly 2. Such a class is called a linear class of circles and the circles in
it are called balanced circles. (The “bias” is not precisely defined but it means, in essence,
the set of unbalanced circles.) Another biased graph, Ω1, is a subgraph of Ω if ‖Ω1‖ ⊆ ‖Ω‖
and B(Ω1) = {C ∈ B(Ω) : C ⊆ E(Ω1)}, i.e., the bias of Ω1 is the restriction of that of Ω. A

3The (graph) loops and loose edges that appear in other parts of this series are not needed here because
they are not important in projective representation.
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biased graph is simply biased if it has no balanced digons. A simply biased graph is thick if
every pair of adjacent nodes supports at least two edges (which implies that they induce an
unbalanced subgraph).

In a biased graph Ω = (Γ,B), an edge set or a subgraph is called balanced if it has no half
edges and every circle in it belongs to B. Thus, a circle is (consistently with the previous
paragraph’s definition) balanced if and only if it belongs to B, and any set containing a half
edge is unbalanced. For S ⊆ E, b(S) denotes the number of balanced components of the
spanning subgraph (N,S). N0(S) denotes the set of nodes of all unbalanced components of
(N,S). A full biased graph has a half edge at every node; if Ω is any biased graph, then Ω•

is Ω with a half edge adjoined to every node that does not already support one.4

In a biased graph there is an operator on edge sets, the balance-closure bcl,5 defined by

bclS := S ∪ {e /∈ S : there is a balanced circle C such that e ∈ C ⊆ S ∪ {e}}

for any S ⊆ E. This operator is not an abstract closure since it is not idempotent, but it
is idempotent when restricted to balanced edge sets; indeed, bclS is balanced whenever S
is balanced (Proposition I.3.1). We call S balance-closed if bclS = S (although such a set
need be neither balanced nor closed).

1.4.2. Gain graphs and expansions.
We define gain graphs by first defining group expansions and their gain functions.
The group expansion G∆ of an ordinary graph ∆ by a group G, in brief the G-expansion

of ∆, is a graph whose node set is N(∆) and whose edge set is G× E(∆), the endpoints of
an edge (g, e) ∈ E(G∆) being the same as those of e. The projection p : E(G∆) → E(∆)
maps (g, e) to e. The full G-expansion G∆• is G∆ with a half edge attached to each node.

Each edge (g, e) can be given an orientation, which is either in the direction of e in ∆, or
not. The mapping ϕ : E(G∆) → G, defined by (g, e) 7→ g in the former case and g−1 in
the latter, is the gain function of G∆. From now on we abandon the notation (g, e), which
was merely a notational device to define ϕ. Instead, we write e for an edge of G∆ and infer
direction from the context. For instance, when we compute the gain of a circle, the circle is
assumed to have a direction and its edges are oriented in that direction. When necessary,
we disambiguate the value of ϕ(e) on an edge euv ∈ E(G∆) by writing ϕ(euv) for the gain
in the direction from u to v. Note that a gain function is not defined on half edges.

A gain graph Φ = (Γ, ϕ) is any subgraph of a full group expansion, with the restricted
gain function. (Gain graphs can also be defined without mentioning ∆; see Part I.) In
Φ every circle C = e1e2 · · · el has a gain ϕ(C) := ϕ(e1)ϕ(e2) · · ·ϕ(el); although the gain
depends on the direction and initial edge, the important property, whether the gain is or
is not the identity, is independent of those choices. A gain graph thus determines a biased
graph 〈Φ〉 := (Γ,B(Φ)) where B(Φ) is the class of circles with identity gain.

Switching a gain graph means replacing ϕ by a new gain function defined by ϕζ(euv) :=
ζ(u)−1ϕ(euv)ζ(v), where ζ is some function V → G and euv indicates that e has the endpoints
u and v and the gain is taken in the direction from u to v. Switching Φ does not change the
associated biased graph.

4The unbalanced (graph) loops that appear in other papers in this series are here replaced by half edges
since that does not alter the matroids. Loops arise in contraction of gain graphs but in this paper there is
no such contraction.

5Not “balanced closure”; it need not be balanced.
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A biased expansion of ∆ is a combinatorial generalization of a group expansion. It is
defined as a biased graph Ω together with a projection mapping p : ‖Ω‖ → ∆ that is
surjective, is the identity on nodes, and has the property that, for each circle C = e1e2 · · · el
in ∆, each i = 1, 2, . . . , l, and each choice of ẽj ∈ p−1(ej) for j 6= i, there is a unique
ẽi ∈ p−1(ei) for which ẽ1ẽ2 · · · ẽi · · · ẽl is balanced. We write Ω ↓∆ to mean that Ω is a biased
expansion of ∆. We call Ω a γ-fold expansion if each p−1(e) has the same cardinality γ;
then γ is the multiplicity of the expansion and we may write Ω = γ ·∆. It is easy to prove
that a biased expansion of an inseparable graph must be a γ-fold expansion for some γ
(Proposition V.1.4). A biased expansion is nontrivial if it has multiplicity greater than 1. A
trivial expansion of ∆ is simply ∆ with all circles balanced. A simple relationship between
biased and group expansions is that in the next result.

Lemma 1.1. Let ∆ be an inseparable simple graph that has order at least 3. A biased
expansion of ∆ that equals 〈Φ〉 for a gain graph Φ with gain group G is the biased graph
〈H∆〉 of a group expansion by a subgroup H ≤ G, and Φ is a switching of H∆.

Proof. Let Φ denote the gain graph. First, we show that Φ is a group expansion. Take a
circle C ⊆ ∆ and a balanced circle C̃ ⊆ Φ that is projected C. Assume Φ has been switched
so C̃ has all identity gains.

Suppose g ∈ G is the gain of an edge ẽ ∈ p−1(C) and e = p(ẽ). Let f ∈ C \ e and define
P̃ to be the path in Φ whose projection is C \ f and whose edges are those of C̃ except that

it has the edge ẽ. Then there is an edge f̃ covering f such that P̃ ∪ {f̃} is balanced, from

which we infer that ϕ(P̃ )ϕ(f̃) = ϕ(P̃ f̃) = 1. Since ϕ(P̃ ) = ϕ(ẽ) = g, ϕ(f̃) = g−1. We have
proved that for every two edges e, f ∈ C, if g is the gain of a covering edge ẽ, then g−1 is
the gain of an edge f̃ . Letting e1, e2, e3 be consecutive edges of C, it follows that g−1 is the
gain of an edge ẽ′ covering e. We conclude that the set H of gains of edges in p−1(e) is closed
under inversion and is the same set for every edge f that is in a circle with e. Inseparability
implies that f can be any edge of ∆.

Let ẽ1, ẽ2, ẽ3 be edges covering e1, e2, e3, with ẽ3 chosen so that the circle C̃ ′ formed from
C̃ by using ẽ1, ẽ2, ẽ3 instead of whatever edges of C̃ cover e1, e2, e3 is balanced. Then 1 =
ϕ(C̃ ′) = ϕ(ẽ1)ϕ(ẽ2)ϕ(ẽ3). Therefore, if g1, g2 ∈ H, so is (g1g2)−1 and consequently g1g2. So
H is closed under multiplication. We have shown H is a subgroup of G and, since it is the
whole set of gains of edges in the fiber of any edge of Φ, Φ = H∆. �

Biased expansions are studied in depth in [19], where it is shown that they are built
out of groups and irreducible multiary quasigroups. That structure is not relevant here.
Biased expansions are important for us because they correspond to certain kinds of complete
projective and affine structures, as will be clear from our constructions and results.

1.4.3. Isomorphisms.
An isomorphism of biased graphs is an isomorphism of the underlying graphs that pre-

serves balance and imbalance of circles. A fibered isomorphism of biased expansions Ω1 and
Ω2 of the same base graph ∆ is a biased-graph isomorphism combined with an automorphism
α of ∆ under which p−1

1 (evw) corresponds to p−1
2 (αevw). In this paper all isomorphisms of

biased expansions are intended to be fibered whether explicitly said so or not. A stable iso-
morphism of Ω1 and Ω2 is a fibered isomorphism in which α is the identity function (the
base graph is fixed pointwise).
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1.5. Matroids.
We assume acquaintance with elementary matroid theory as in [11, Chapter 1]. The lattice

of closed sets of a matroid M is Lat(M). The matroid of projective (or affine) dependence
of a projective (or affine) point set A is denoted by M(A). All the matroids in this paper are
finitary, which means that any dependent set contains a finite dependent set; equivalently,
that any element in the closure of an infinite set S is in the closure of a finite subset of S.

1.5.1. Graphic and biased-graphic matroids.
In an ordinary graph Γ there is a closure operator closΓ on the edges, associated to the

graphic matroid, also called the cycle matroid, G(Γ). The circuits of G(Γ) are the circles
of Γ. We call an edge set S closed in Γ (and we call (N,S) a closed subgraph of Γ) if S is
closed in G(Γ); that is, if whenever S contains a path joining the endpoints of an edge e,
then e ∈ S. The rank function of G(Γ) is rkS = #N − c(S) for an edge set S. (A second
formula is rkS = #N(S)− c(N(S), S). This gives the rank of all finite-rank subsets even if
N is infinite. The geometric lattice of closed edge sets is Lat Γ.

A biased graph Ω, however, gives rise to two kinds of matroid, both of which generalize
the graphic matroid. (For a gain graph, the matroids of Φ are those of its biased graph 〈Φ〉.)
First, the frame matroid of Ω (formerly the “bias matroid”), written G(Ω), has for ground
set E(Ω). A frame circuit, that is, a circuit of G(Ω), is a balanced circle, a theta graph that
has no balanced circle, or two unbalanced figures connected either at a single common node
or by a path that intersects each figure at one of its endpoints. (An unbalanced figure is a
half edge or unbalanced circle.) The rank function in G(Ω) is rkS = #N − b(S). (Another
formula is rkS = #N(S) − b(N(S), S), which gives the rank of finite-rank subsets when
N is infinite. The full frame matroid of Ω is G•(Ω) := G(Ω•). The frame of G(Ω) is the
distinguished basis consisting of the half edges at the nodes (even if they are not in Ω). The
closure operator is

closS =

{
E:N0(S) ∪ bclS in general, and

bclS if S is balanced;
(1.1)

recall that N0(S) is the set of nodes of unbalanced components of (N,S). (The two definitions
for balanced S agree because then N0(S) is empty.) There are two kinds of closed edge set
in G(Ω): balanced and unbalanced; the lattice of closed edge sets is Lat Ω and the meet
sub-semilattice of closed, balanced sets is Latb Ω.

The archetypical frame matroid, though not presented in this language, was the Dowling
geometry of a group [8], which is G•(GKn).

Second, the extended lift matroid L0(Ω) (also called the complete lift matroid), whose
ground set is E(Ω)∪{e0}, that is, E(Ω) with an extra element e0. A lift circuit, which means
a circuit of L0(Ω), is either a balanced circle, a theta graph that has no balanced circle, two
unbalanced figures connected at one node, two unbalanced figures without common nodes,
or an unbalanced figure and e0. The lift matroid L(Ω) is L0(Ω) \ e0. The rank function in
L0(Ω), for S ⊆ E(Ω) ∪ {e0}, is rkS = #N − c(S) if S is balanced and does not contain e0,
and #N − c(S) + 1 if S is unbalanced or contains e0. The closure operator in L0(Ω) is

closL0 S =


bclS if S is a balanced edge set,

clos‖Ω‖ S ∪ {e0} if S is an unbalanced edge set,

clos‖Ω‖(S ∩ E) ∪ {e0} if S contains e0.
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The closure operator of L(Ω) is the same but restricted to E, so closL S = clos‖Ω‖ S if S is
unbalanced.

When Ω is balanced, G(Ω) = L(Ω) = the graphic matroid G(‖Ω‖) and L0(Ω) is isomorphic
to G(‖Ω‖∪· K2) (∪· denotes disjoint union).

A (vector or projective) representation of the frame or lift matroid of Ω is called, respec-
tively, a frame representation (a “bias representation” in Part IV) or a lift representation of
Ω. An embedding is a representation that is injective; as all the matroids in this paper are
simple, “embedding” is merely a short synonym for “representation”. A frame or lift repre-
sentation is canonical if it extends to a representation of G•(Ω) (if a frame representation)
or L0(Ω) (if a lift representation).

Theorem 1.2 (Theorem IV.7.1). Every frame or lift representation of a thick, simply
biased graph of order at least 3 is canonical.

In particular, a frame or lift representation of a biased expansion of an inseparable graph
of order at least 3 is canonical.

Proof. The general part is Theorem IV.7.1. The case of trivial expansions is standard graph
theory. The case of nontrivial expansions is valid because a nontrivial biased expansion is a
thick biased graph. �

The next result explains the significance of canonical representation and the importance
of a biased graph’s having only canonical representations. It gives algebraic criteria for
representability of matroids of biased expansion graphs in Desarguesian projective geometries
([9] develops analogs for non-Desarguesian planes).

Theorem 1.3. Let Ω be a biased graph and F a skew field.

(i) The frame matroid G(Ω) has a canonical representation in a projective space over F if
and only if Ω has gains in the group F×.

(ii) The lift matroid L(Ω) has a canonical representation in a projective space over F if and
only if Ω has gains in the group F+.

Proof. The first part is a combination of Theorem IV.2.1 and Proposition IV.2.4. The former
says that gains in F× imply the existence of a canonical frame-matroid representation by
vectors over F, which is equivalent (by projection) to a canonical projective representation;
that gives sufficiency. The latter says that a representation of G•(Ω) by vectors over F
implies that Ω can be given gains in F×. Since a canonical representation of G(Ω) is by
definition a representation of G•(Ω) (restricted to Ω), we have necessity.

The second part is a combination of Theorem IV.4.1 and Proposition IV.4.3, which are
the lift-matroid analogs of the results used for (i). The matroid G•(Ω) is replaced by the
extended lift matroid L0(Ω). �

1.5.2. Non-projective matroids of biased graphs.
These theorems are the tools we can use to prove that biased-graphic matroids exist of

all ranks n ≥ 4 that cannot be embedded in any projective geometry P. First consider a
simple biased-graphic matroid M • = G•(Ω) or L0(Ω) (both of which have rank n := #N ,
which may be infinite). Since P is Desarguesian, i.e., it has coordinates in a skew field F,
by Theorem 1.3 M • can be embedded in P if and only if there is a gain graph Φ with gains
in F× or F+, respectively. So, any biased graph of rank at least 4 that cannot be given
gains in any group will yield two non-projective matroids. One such graph is Example 1.4
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below. Infinitely many non-gainable biased graphs of any finite or infinite order n ≥ 4 can
be constructed by methods in [19], for instance (for finite n) by taking a biased expansion of
Cn obtained from an n-ary quasigroup that has no factorizations, or (for any infinite or large
enough finite n) by gluing together biased expansion graphs along edges as in [19, Section
5, especially Corollary 5.5].

Example 1.4 (Example I.5.8). The underlying graph is 2C4, which consists of four nodes
vi and four double edges, ei−1,i and fi−1,i, for 1 ≤ i ≤ 4, arranged in a quadrilateral (the
subscripts are modulo 4). The balanced circles are e12e23e34e41, f12f23f34f41, and f12f23e34e41.
Example I.5.8 proves that there are no gains for this biased graph (and furthermore it is
minor-minimal with that property).

If we prefer non-projective matroids G(Ω) or L(Ω) of biased graphs without half edges,
then using thick biased graphs gives matroids that, by Theorem 1.2, have only canonical
representations. All the biased graphs mentioned in the previous paragraph are thick, so
even without half edges their matroids are not projective.

2. Menelæan and Cevian representations of the frame matroid

Section IV.2 developed generalizations of the classical theorems of Menelaus and Ceva
by means of frame-matroid representations in Desarguesian projective spaces P(F) of gain
graphs with gains in the multiplicative group of the skew field F. Now we give synthetic
generalizations of those representations, which apply to any biased graph and any projective
geometry, Desarguesian or not.

We begin by stating the classical results, for which one may refer, e.g., to [1] or [6]. Both
theorems concern a triangle ABC in the affine plane A2(R). We consider the edge lines

AB et al., points P ∈ AB, Q ∈ BC, R ∈ CA, and the signed distances
−→
AP,

−→
BP ,

−→
BQ,

−→
CQ,

and
−→
CR,

−→
AR. (For instance,

−→
AP and

−→
BP are positive when P is inside the edge.) Define

ϕ(P ) :=
−→
BP/

−→
AP , ϕ(Q) :=

−→
CQ/

−→
BQ, and ϕ(R) :=

−→
AR/

−→
CR.

Theorem 2.1 (Menelaus). The points P,Q,R are collinear if and only if ϕ(P )ϕ(Q)ϕ(R) =
−1.

Theorem 2.2 (Ceva). The lines PC,QA,RB are concurrent if and only if ϕ(P )ϕ(Q)ϕ(R) =
+1.

To convert these results to gain-graphic form, make a graph with nodes vA, vB, vC and edges
e(P )vAvB , e(Q)vBvC , e(R)vCvA . Assign gains ϕ(e(P )vAvB) := ϕ(P ), ϕ(e(Q)vBvC ) := ϕ(Q),
and ϕ(e(R)vCvA) := ϕ(R) for Ceva and their negatives for Menelaus. Then the conditions
of both theorems become balance of the triangle e(P )e(Q)e(R) and the theorems become
special cases of Theorems IV.2.10 (quoted in Theorem 2.7 below) and IV.2.18 (quoted in
Theorem 2.11), which generalize Menelaus and Ceva, respectively, to all dimensions and to
arbitrary collections of points in the lines generated by a projective basis, using coordinates
to construct the appropriate gains. The arbitrary collection of points generates the frame
matroid (Theorem IV.2.10) and the dual hyperplanes (defined in Section 2.2) generate that
same matroid (Theorem IV.2.18). (Less comprehensive higher-dimensional Menelaus theo-
rems appeared previously in [3, 4, 10]. Less comprehensive multidimensional Ceva theorems
appeared in [4, 10]. Boldescu [3] has a different generalization of Ceva that is not contained
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in Theorem IV.2.8.) Our objective here is to de-coordinatize the constructions and theorems
in Part IV to obtain synthetic results.

We note that Menelaus and Ceva are traditionally stated by comparing the product of
three of the distances to the product of the three complementary distances, which obscures
their true gain-graphic nature.

2.1. Menelaus: points.
Suppose we have a set N̂ of independent points in a projective geometry P (which may

be non-Desarguesian). We call an edge line any line of the form pq for p, q ∈ N̂ . The union

of all edge lines is Ê•(N̂); without N̂ it is Ê(N̂) = Ê•(N̂) \ N̂ . The matroid M(Ê•(N̂)), or

any submatroid, is called a frame matroid with N̂ as its frame. (This is an abstract frame
matroid, not presented as the frame matroid G(Ω) of a biased graph.)

Now let us choose a set Ê ⊆ Ê•(N̂). Following [18] we shall set up a biased graph

Ω(N̂ , Ê) = (N,E,B) whose node set N and edge set E are in one-to-one correspondence,

respectively, with N̂ and Ê but which are disjoint from Ê•(N̂) and from each other, and such
that the full frame matroid G•(Ω) is naturally isomorphic to the projective frame matroid

M(N̂ ∪ Ê). We call this representation of the frame matroid of Ω Menelæan because it
generalizes the theorem of Menelaus.

For the underlying graph Γ = (N,E) we let p ∈ Ê \ N̂ correspond to a link e whose
endpoints v, w ∈ N are chosen so p ∈ v̂ŵ. Then we write p = ê. (For v ∈ N or e ∈ E, we

write v̂ or ê for the corresponding point in P.) A point p ∈ Ê ∩ N̂ corresponds to a half edge
at that node v for which p = v̂. For the bias we need the notion of a cross-flat. This is any
projective flat that is disjoint from N̂ . We define a circle C in Γ to be balanced if Ĉ lies in a
cross-flat. (This differs from the definition of balance used in [18], but [18, Lemma 4] states

that both definitions are equivalent.) That completes the definition of Ω(N̂ , Ê).

Theorem 2.3. (a) For any Ê ⊆ Ê•(N̂), Ω(N̂ , Ê) is a biased graph. The natural corre-

spondence e 7→ ê is an isomorphism G(Ω(N̂ , Ê)) ∼= M(Ê).

(b) The closed, balanced sets of G(Ω(N̂ , Ê)) are the edge sets corresponding to the inter-

sections of Ê with the cross-flats of N̂ .

Proof. For a synthetic proof of part (a), we note that it is precisely the statement of [18,
Theorem 1], whose proof is coordinate-free.

The cross-flat property (b) has two parts. By the matroid isomorphism a subset S of E

is closed if and only if Ŝ is the intersection of Ê with a flat of P, and furthermore its closure
in G•(Ω(N̂ , Ê)) corresponds to the intersection of N̂ ∪ Ê with the projective closure span Ŝ.

Lemma 5 of [18] states that S is balanced if and only if span Ŝ does not contain any element

of N̂ ; in other words, Ŝ spans a cross-flat. �

Example 2.4. Notice that the construction of Ω(N̂ , Ê) is carried out with respect to an

independent set N̂ that is given in advance. If Ê is small, it may not determine N̂ uniquely,
and different choices of N̂ may lead to biased graphs with different edge structure.

For example, in a projective plane choose a set Ê = {p1, . . . , p6} of 6 points so that no
three are collinear. Let qi := pipi+1 ∧ pi+2pi+3 (with subscripts modulo 6) and assume that

N̂ := {q1, q3, q5} and N̂ ′ := {q2, q4, q6} are noncollinear triples. (This is possible unless the

plane has very small order; we omit the details.) Then N̂ and N̂ ′ are two different frames
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for Ê. The edge set of both underlying graphs, Γ and Γ′, is E = {e1, . . . , e6} with pi ↔ ei
but the edges are attached differently. In the frame N̂ the node set is N = {v1, v3, v5} (the
nodes correspond to q1, q3, q5); since p1, p2 ∈ q1q3, e1 and e2 are parallel edges with endpoints

v1, v5. However, in the frame N̂ ′ with node set N ′ = {v2, v4, v6}, p1 ∈ q4q6 and p2 ∈ q2q6 so e1

has endpoints v4, v6, and e2 has endpoints v2, v6; the same two edges are not parallel. Thus
the underlying graphs, hence the biased graphs, have different edge structure with respect
to the two different frames, so even ignoring the different node names, they are not the same
graph. (The matroids in both cases are the same because they are the matroid of Ê. The
graphs happen to be isomorphic, but further discussion of that is outside our scope.)

If N is a set, KN denotes the complete graph with node set N .

Corollary 2.5. Ω(N̂ , Ê•(N̂)) is a full biased expansion of KN .

Proof. The projection p : Ω(N̂ , Ê•(N̂)) → KN is obvious. We have to show that, for any
circle C = e1 · · · el in KN and any ẽ1 ∈ p−1(e1), . . . , ẽl−1 ∈ p−1(el−1), there is exactly one
ẽl ∈ p−1(el) that makes the circle ẽ1 · · · ẽl balanced.

Let P = ẽ1 · · · ẽl−1, with endpoints v and w (which are also the endpoints of el). Then

rk(P̂ ) = l − 1 and span(P̂ ∪ v̂ŵ) = span N̂(C). (By N(C) we mean the node set of C and

by N̂(C) we mean the corresponding projective point set.) So,

rk((span P̂ ) ∧ v̂ŵ) = rk(P̂ ) + rk(v̂ŵ)− rk((span P̂ ) ∨ v̂ŵ)

= (l − 1) + 2− rk(P̂ ∪ v̂ŵ) = 1.

That is, there is a unique point q ∈ (span P̂ )∩ v̂ŵ. This point cannot be in N̂ , for (span P̂ )∩
N̂ = ∅ by balance of P . Therefore q = f̂ for a link f ∈ p−1(el). Note that we have proved

span P̂ to be a cross-flat.
We now have a circle P ∪ {f}, and we know that span(P̂ ∪ {f̂}) = span P̂ , a cross-flat.

Therefore P ∪ {f} is balanced, so we may take ẽl = f . There can be no other choice for ẽl,

because q is the unique point in (span P̂ ) ∩ v̂ŵ. �

Finally, we show that our synthetic Menelæan representation coincides with the analytic
one presented in Section IV.2.5 when the latter is defined. Suppose Φ = (N,E, ϕ) is a
gain graph with gains in F×. In a coordinatized projective space PN(F) (derived from FN)

there is the natural basis N̂ := {v̂ = [0, . . . , 0, 1v, 0, . . . , 0] : v ∈ N}. Choose the hyper-
plane

∑
v∈N xv = 0 to be the ideal hyperplane h∞. The analytic definition of a Menelæan

representation of Φ, from Equation (IV.2.3), is

ê = v̂ for a half edge at v,

ê =


1

1− ϕ(evw)
(v̂ − ϕ(evw)ŵ) if ϕ(evw) 6= 1,

h∞ ∧ v̂ŵ if ϕ(evw) = 1

 for a link e = evw.

Then M[Φ] = {ê : e ∈ E} is the (analytic) projective Menelæan representation of G(Φ).

Theorem 2.6. Consider a gain graph Φ = (N,E, ϕ) with gains in the multiplicative group
of a skew field F, and the Desarguesian projective space PN(F) coordinatized by F. Then
M[Φ] is a synthetic Menelæan representation of G(Φ). Stated precisely, the mappings v 7→ v̂
and e 7→ ê are isomorphisms 〈Φ〉 ∼= Ω(M[Φ]) and G(Φ) ∼= M(M[Φ]).
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Proof. If we show that Ω(M[Φ]) is naturally isomorphic to 〈Φ〉 (by the correspondences
v̂ ↔ v and ê↔ e), then the matroids are also naturally isomorphic. The underlying graphs
are clearly isomorphic. We have to show that corresponding edge sets are balanced in both.
We employ the Generalized Theorem of Menelaus from Part IV, which we quote:

Theorem 2.7 (Theorem IV.2.10). (a) The set of flats spanned by M[Φ] is isomorphic
to LatG(Φ) under the isomorphism induced by e 7→ ē. (b) If S ⊆ E and W ⊆ N , the flat

generated by the points ē for e ∈ S contains span(Ŵ ) if and only if W ⊆ N0(S).

In Ω(M[Φ]) an edge set Ŝ is balanced if and only if its span is a cross-flat, i.e., it contains

none of the basis points v̂ ∈ N̂ . Theorem 2.7(b) implies that a flat spanned by Ŝ ⊆ M[Φ],
corresponding to S ⊆ E(Φ), is a cross-flat if and only if S is balanced. This is the same
criterion for balance as that in Theorem 2.3, given that an edge set is balanced if and only if
its matroid closure is balanced and that, by Theorem 2.7(a), M[Φ] represents G(Φ). We have
shown that the criterion for balance in Ω(M[Φ]) is equivalent to that in Φ; consequently,
Ω(M[Φ]) and 〈Φ〉 are naturally isomorphic. �

A special case of Theorem 2.6 is that, when P is Desarguesian over a skew field F, the
biased graph Ω(N̂ , Ê•(N̂)) of Corollary 2.5 is the biased graph of the full group expansion
F×K•

N .
A more general way biased expansions appear is set out in the next result. Let ∆ ⊆ KN

be a simple graph on node set N . By an edge line of ∆ we mean an edge line le of N̂ that
corresponds to an edge e of ∆. Let Ê(∆) be the union of the edge lines of ∆. Call Ê ⊆ Ê(N̂)

cross-closed with respect to ∆ if for any cross-flat t generated by points in Ê, t∩ Ê(∆) ⊆ Ê.

(Equivalently, for any edge line le of ∆, t ∩ le ⊆ Ê.)

Corollary 2.8. (I) Suppose Ê ⊆ Ê(N̂) is contained in the union of edge lines of ∆. Then

Ê is cross-closed with respect to ∆ if and only if Ω(N̂ , Ê) is a biased expansion of a closed
subgraph ∆′ of ∆.

(II) Suppose further that ∆ is inseparable and has order at least 3 and that P is co-

ordinatized by a skew field F. Then Ê is cross-closed with respect to ∆ if and only if
Ω(N̂ , Ê) = 〈H∆′〉, where ∆′ is some closed subgraph of ∆ and H is some subgroup of F×.

Proof. We prove (I). Let Ẽ ′ denote the edge set of Ω(N̂ , Ê).

To prove necessity, suppose Ê is cross-closed with respect to ∆. We identify ∆′ by its edge
set E ′ := {e ∈ E(∆) : Ê ∩ le 6= ∅}. If t is a cross-flat, we identify a subgraph ∆t (with node

set N) by its edge set Et := {e ∈ E(∆) : t ∩ le ∩ Ê 6= ∅}. Evidently, ∆′ =
⋃
t ∆t, where the

union is taken over all cross-flats generated by finite subsets of Ê.
The first step is to prove E ′ is closed in Γ. Let P = e1e2 · · · ek be a path in ∆′ with edges

ei = evi−1vi , whose endpoints v0, vk are joined by an edge e of ∆ so that e ∈ closP , and choose

a point qi ∈ lei ∩ Ê for i = 1, . . . , k. Define t := span{q1, . . . , qk}; t is a cross-flat because its
dimension is (at most) k− 1 but if it contained any point v̂ it would span all of v̂0, v̂1, . . . , v̂k
and have dimension k. Then P ⊆ Et and t ∧ lei = qi. Define u := span{v̂0, . . . , v̂k}, of
dimension k. t is a proper subspace of u with dimension k− 1 because t∨ v̂0 = u. The edge
line le is a 1-dimensional subspace of u. Thus t∩ le is a point, which is in Ê by cross-closure;
it follows that e ∈ Et ⊆ E ′. This proves that E ′ is closed in ∆.

Now we prove that Ω(N̂ , Ê) is a biased expansion of ∆′; it is similar to the preceding but
more involved. Suppose we have P and e in E ′ as before and arbitrary edges ẽi ∈ p−1(ei)∩Ẽ ′
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for i = 1, . . . , k. These edges correspond to points qi ∈ Ê ∩ lei . The flat t spanned by

q1, . . . , qk is a cross-flat that intersects le in a point qe, and by cross-closure qe ∈ Ê. In
Ω(N̂ , Ê), qe corresponds to an edge ẽ ∈ p−1(e) that is in Ẽ ′ because qe ∈ Ê and that forms a
balanced circle with ẽ1, . . . , ẽk because t is a cross-flat. Clearly, qe is uniquely determined by
q1, . . . , qk, so the requirement for a biased expansion that a unique edge in the fiber p−1(e)

forms a balanced circle in Ω(N̂ , Ê) is satisfied. We conclude that Ω(N̂ , Ê) ↓∆′.

For sufficiency suppose Ê has the property that Ω(N̂ , Ê) is a biased expansion of a closed

subgraph ∆′ ⊆ ∆. Let a point set Q ⊆ Ê span a cross-flat t such that t ∩ le, for some
e ∈ E(∆), is a point q ∈ Ê but not in t; we show this leads to a contradiction. We may
assume Q is a minimal subset of t that spans q, so Q ∪ {q} is a minimal dependent set

and thus finite. Let Q = {q1, . . . , qk}, let qi correspond to ẽi ∈ Ê, and let ei = p(ẽi); then

ei ∈ E(∆′) by the definition of Ê. Since q ∈ le, q corresponds to some edge ẽ ∈ Ẽ ′ such that

p(ẽ) = e. It follows (since t ∩ N̂ = ∅) that {ẽ1, . . . , ẽk, ẽ} is a frame circuit in Ω(N̂ , Ê). It
is also balanced because Q ∪ {e} lies in the cross-flat t; therefore it is a balanced circle in

Ω(N̂ , Ê). The projection of a balanced circle in Ω(N̂ , Ê) is a circle in ∆. Thus, e ∈ E(∆′)
since ∆′ is closed and all ei ∈ E(∆′).

Now we have ẽ1, . . . , ẽk, ẽ forming a balanced circle in Ω(N̂ , Ê(∆)). The edges ẽ1, . . . , ẽk
make a path in Ω(N̂ , Ê) whose projection, with e, makes a circle in ∆′. By the definition

of a biased expansion of ∆, there is only one edge in Ω(N̂ , Ê(∆)) that forms a balanced
circle with ẽ1, . . . , ẽk; ẽ is that edge. By the definition of a biased expansion of ∆′, there
is an edge in Ẽ ′ that forms a balanced circle with ẽ1, . . . , ẽk; ẽ must be that edge because
Ω(N̂ , Ê) ⊆ Ω(N̂ , Ê(∆)). Therefore, ẽ ∈ Ẽ ′, and it follows that q ∈ Ê ′.

Part (II) follows from part (I) and Lemma 1.1. �

2.2. Ceva: hyperplanes.
In the dual representation (that is projective duality, not matroid duality), which we call

Cevian because it generalizes Ceva’s theorem, an edge corresponds to a projective hyperplane
instead of a point.

We think the frame representation by hyperplanes rather than points is the more natural
because of the simpler form xj = xiϕ(eij) of the representation formula for gain graphs in
a Desarguesian projective geometry with coordinates xk that correspond to the nodes (as
shown in Sections IV.2.5 vs. IV.2.6). Nevertheless, a biased graph has both representations if
it has either one, say Menelæan in P and Cevian in the dual geometry P∗, since the Menelæan
representation in P dualizes to a Cevian representation in P∗ with the same matroid structure,
and vice versa.

A point basis N̂ of P generates a hyperplane basis N̂∗ := {p∗ : p ∈ N̂} where p∗ :=

span(N̂ \ p). (A hyperplane basis is a set of hyperplanes whose intersection is empty and
that are independent, so that none contains the intersection of any others.) A hyperplane
basis is a point basis of the dual geometry P∗; the concepts are equivalent. For p in an edge
line v̂ŵ of N̂ , let

h(p) :=

{
span(N̂ \ {v̂, ŵ} ∪ {p}) if p /∈ N̂ ,
p∗ := span(N̂ \ p) if p ∈ N̂ .

(2.1)
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We call this an apical hyperplane of N̂ with p as apex. In particular, v̂∗ is a node hyperplane.
Let Ê∗•(N̂) be the set of all apical hyperplanes, including those with apices in N̂ , and let

Ê∗(N̂) be the set of those whose apices are not in N̂ ; thus, Ê∗•(N̂) = Ê∗(N̂) ∪ N̂∗.
Any set A of hyperplanes has a matroid structure given by, for example, the rank function

rk S := codim
⋂

S for S ⊆ A. (It is not the same as the matroid of the apices; see Example
2.13.)

In the Cevian representation of a frame matroid of a biased graph an edge evw will corre-
spond to a hyperplane of the form h̄(e) := h(ē) for some ē ∈ v̂ŵ\{v̂, ŵ}. Let A be any subset

of Ê∗•(N̂); we call A a Cevian arrangement of hyperplanes. We show it represents G(Ω) for
a biased graph Ω constructed from A, by which we mean that the matroid of A is naturally
isomorphic to G(Ω), or equivalently that the intersection lattice L(A) := {

⋂
S : S ⊆ A},

which is partially ordered by reverse inclusion, corresponds isomorphically to Lat Ω and that
the rank function in the latter equals codimension in L(A).

The setup is similar to that of Section 2.1. The underlying graph Γ = (N,E) has node set

N in bijection with N̂ and N̂∗ by v ↔ v̂ ↔ v̂∗. The edge set is in bijection with A by the
apical hyperplane function h̄ : E → A. A hyperplane h(ē) with apex ē ∈ v̂ŵ \ N̂ becomes a
link evw. For a hyperplane v̂∗, the edge is a half edge ev. The intended rank function of this
graph is easy to state:

rkP(S) := codim
⋂

h̄(S), (2.2)

where S ⊆ E and
⋂
h̄(S) :=

⋂
e∈S h̄(e). The class of balanced circles should be the class

B := {C ∈ C(Γ) : rkPC < #C}. In order to define a biased graph Ω(A), B must be a
linear class: no theta subgraph can contain exactly two circles in B. Moreover, A represents
G(Ω(A)) if and only if the rank function defined by Equation (2.2) agrees with the rank
function of the frame matroid. Thus, we have to prove B is a linear class and that (2.2)
gives the correct rank.

Some necessary notation: For an intersection flat t ∈ L(A), define A(t) := {h(ē) ∈ A :
h(ē) ⊇ t}. This implies a mapping H̄ from L(A) to the power set P(E) by t 7→ h̄−1(A(t)),
the edge set that naturally corresponds to A(t).

We also need a formula for deletion of a pendant edge; that is, a link that has an endpoint
with no other incident edges.

Lemma 2.9 (Pendance Reduction). An edge set S that has a pendant edge e satisfies
rkP S = rkP(S \ e) + 1.

Proof. Let e = evw with v the endpoint at which e is the only incident edge and let W :=
N(S); then W \ v = N(S \ e) (unless S = {e}; that case is easy). It follows that tP(S \ e) ⊂
tP(S)) since tP(S) ⊆ span(N̂ \ (Ŵ \ v̂) 6⊇ tP(S \ e. Thus, rkP S > rkP(S \ e). But deleting one
hyperplane from h̄(S) can only decrease the intersection rank by 1; the lemma follows. �

Theorem 2.10. For any A ⊆ Ê∗•(N̂), Ω(A) is a biased graph. The natural correspondence
e 7→ h(ē) is an isomorphism G(Ω(A)) ∼= M(A).

The intersection flats of A correspond to the closed sets of G(Ω(A)) through the natural
correspondence H̄. A connected edge set S of Ω(A) is unbalanced if and only if

⋂
h̄(S) ∈

L(N̂∗).

Proof. There is a proof by projective duality since a Cevian representation in P is a Menelæan
representation in P∗. However, we prefer to give a direct proof using the correspondence
between edges and Cevian hyperplanes and the definition of rank as codimension.
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It follows from pendance reduction that the rank of a forest S ⊆ E is rkP S = #S. Then
it follows that the rank of a circle C is either #C or #C− 1. Therefore, the balanced circles
are those with rank rkPC = #C − 1.

Next, we prove that a theta graph, composed of internally disjoint paths P,Q,R with the
same endpoints, cannot contain exactly two balanced circles. Suppose P ∪ Q and Q ∪ R
are balanced. Let e ∈ P and e′′ ∈ R. Then P ∪ Q ∪ R \ {e, e′′}, being a tree, has rank
#P+#Q+#R−2. By balance, rkP(P ∪Q) = rkP(P ∪Q\e) and rkP(Q∪R) = rkP(Q∪R\e′′).
It follows that h̄(P ∪Q) = h̄(P ∪Q\ e) and h̄(Q∪R) = h̄(Q∪R\ e′′), and consequently that
h̄(P ∪Q∪R) = h̄(P ∪Q∪R\{e, e′′}). We conclude that rkP(P ∪Q∪R) = #P+#Q+#R−2.
Let e′ ∈ Q. Then rkP(P ∪Q∪R\e′) ≤ #P +#Q+#R−2, which implies that rkP(P ∪R) ≤
#P+#R−1 by pendance reduction. However, P∪R is a circle so rkP(P∪R) ≥ #P+#R−1;
thus we have equality: rkP(P ∪ R) = #P + #R − 1. That is the definition of balance of
P ∪ R. It follows that no theta graph can have exactly two balanced circles; i.e., Ω(A) is a
biased graph.

We now prove matroid isomorphism by proving that the rank functions rkP and rk (in
G(Ω)) agree. (Since our matroids are finitary, it is only necessary to consider finite sets of

edges or hyperplanes.) First, suppose (W,S) ⊆ ‖Ω(A)‖. Clearly,
⋂
h̄(S) ⊇

⋂
(N̂∗ − Ŵ ∗),

so rkP S ≤ rkP Ŵ
∗ = #W . Now suppose (W,S) is connected (and S 6= ∅). Then rkP S ≥

#W −1 because S contains a spanning tree T . If S is balanced, then S = bclT by Equation
(1.1) so that rkP S = rkP bclT = rkP T = #T = #W − 1 = rkS, because bcl adds edges e to
T only through balanced circles C, in which rkPC = #C−1 = rkP(C \e). If S is unbalanced,
then it contains an unbalanced circle C0 and we can choose T ⊇ C0 \ e for an edge e ∈ C0.
Then rkP(C0 ∪ T ) = rkPC0 + #(T \ C0) (by pendance reduction) = #T + 1 = #W . This
shows that rkP agrees with rk on finite sets, from which we conclude that M(A) and G(Ω(A))
are isomorphic under the mapping H̄.

It is easy to prove by similar reasoning that an edge set S is closed in Ω(A) if and only if
H̄(S) = A(t) for the intersection flat t :=

⋂
H̄(S).

Our previous arguments show that, for a connected subgraph (W,S),
⋂
h̄(S) =

⋂
Ŵ ∗

if S is unbalanced. If S is balanced, then its rank is #W − 1 so
⋂
h̄(S) is either not the

intersection of node hyperplanes v̂∗, or is the intersection
⋂

(Ŵ ∗ \ ŵ∗) for some w ∈ W . If
the latter, there is an edge e ∈ S incident with w and the hyperplane h̄(e) is not contained

in
⋂

(Ŵ ∗ \ ŵ∗), a contradiction. Therefore,
⋂
h̄(S) /∈ L(N̂∗). �

Theorem 2.10 has a corollary similar to Corollary 2.5, whose statement and proof we omit.
We cannot omit a proof that our synthetic Cevian representation agrees with the analytic
Cevian representation of G(Φ) developed in Section IV.2.6 when the latter exists. Consider
a skew field F, a gain graph Φ = (N,E, ϕ) with gains in F∗, and the Desarguesian projective

space PN(F) coordinatized by F with basis N̂ . The analytic representation begins with the
apices:

ē = v̂ for a half edge at v,

ē =


1

1 + ϕ(evw)
(ϕ(evw)v̂ + ŵ) if ϕ(evw) 6= −1,

h∞ ∧ v̂ŵ if ϕ(evw) = −1

 for a link e = evw
(2.3)



18 RIGOBERTO FLÓREZ AND THOMAS ZASLAVSKY

(ē was called p∗(e) in Section IV.2.6), and then defines the hyperplane h̄(e) := h(ē) by (2.1)
with p := ē. The resulting hyperplanes are the analytic Cevian representation C[Φ]. We
quote the relevant part of the Generalized Theorem of Ceva from Part IV:

Theorem 2.11 (Theorem IV.2.18, first part). The set of flats of the projective family C(Φ),
ordered by reverse inclusion, is isomorphic to LatG(Φ) under the natural correspondence
induced by h̄.

Theorem 2.12. Consider a gain graph Φ = (N,E, ϕ) with gains in the multiplicative
group of a skew field F, and the Desarguesian projective space PN(F) coordinatized by F.
Then C[Φ] is a synthetic Cevian representation of G(Φ). Stated precisely, the mappings
v 7→ v̂∗ and e 7→ h(e) are isomorphisms 〈Φ〉 ∼= Ω(C[Φ]) and G(Φ) ∼= M(C[Φ]).

Conversely, given a biased graph Ω, a synthetic Cevian representation of G•(Ω) in a pro-
jective geometry P(F) over a division ring F is an analytic Cevian representation as in
Equations (2.3).

Proof. The underlying graphs are obviously isomorphic under the specified mappings. By
Theorems 2.10 and 2.11, the matroids are isomorphic. Therefore the rank functions rkΦ and
rkΩ(C[Φ]) correspond under the graph isomorphism so the biased graphs are also isomorphic.

It is clear that, given a synthetic Cevian representation C of Ω based on the independent
set N̂ ⊆ P(F), one can use (2.3) in reverse to assign gains on Ω from F× that make a gain
graph Φ such that C = C[Φ] and 〈Φ〉 = Ω. �

Example 2.13. The apices of a Cevian representation are not a Menelæan representation.
Consider the representations in the plane over a skew field. In the former the criterion for
collinearity is a gain product of−1 (Menelaus’ Theorem) and in the other there is concurrency
when the gain product is +1 (Ceva’s Theorem) not accepted. The two criteria agree when
the characteristic is 2 but not otherwise.

3. Two dual representations of the lift matroid

Just as with the frame matroid, there are projectively dual representations of the lift
matroid, one by points and the other by hyperplanes. Here the most interesting viewpoints
are affine instead of projective, which, if anything, makes the dual representations look more
different from each other because the dual of the ideal hyperplane is a mere point.

3.1. Points in parallel lines.

3.1.1. Projective orthography.
In a projective geometry P choose a base hyperplane P′ and a projective representation,

z′ : E(∆) → P′, of the graphic matroid G(∆) of a nonempty simple graph ∆ in P′. (Since
graphic matroids are regular, that is possible if and only if the dimension is large enough,
i.e., dimP ≥ rk ∆ = #N − c(∆).) Also choose a point ê0 in P \ P′. The point determines a
family of lines in P: one line z′(e)ê0 for each edge e ∈ E(∆). Call these lines the edge lines

in P and write Ê(∆, ê0) for the union of the edge lines. Given a subset Ê of Ê(∆, ê0) \ ê0,

we construct a biased graph Ω(∆, z′, Ê, ê0), abbreviated Ω0(Ê), whose extended lift matroid

is isomorphic to the projective dependence matroid M(Ê ∪ {ê0}); that is, Ê ∪ {ê0} will be
a representation of that extended lift matroid, with e0 represented by ê0.
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For the underlying graph Γ, let N = N(∆) and let E be a set in one-to-one correspondence

with Ê by e 7→ ê. (It is often convenient to take E = Ê.) If e ∈ E, the projection p(e) is the
edge of ∆ whose edge line contains ê. A cross-flat is a projective flat that does not contain
ê0. We define a circle C in Γ to be balanced if Ĉ spans a cross-flat. Let B be the class of
balanced circles.

Theorem 3.1. This definition gives a biased graph Ω0(Ê) = (Γ,B) = (N,E,B) whose

extended lift matroid L0(Ω0(Ê)) ∼= M(Ê ∪ {ê0}) by the correspondence e 7→ ê and e0 7→ ê0.

We say that Ê is a (projective) synthetic orthographic representation of a biased graph Ω

if Ω ∼= Ω0(Ê). The representation mapping E(Ω)→ Ê is e 7→ ê when e and ê correspond to

the same edge in Ω0(Ê).

Proof. We first prove a lemma. Write rkΓ for rank in G(Γ).

Lemma 3.2. For any S ⊆ E,

rk(Ŝ) =

{
rkΓ(S) if S is balanced,

rkΓ(S) + 1 if S is unbalanced.

Proof. It is clear that rk
(
z′(p(S))∪{ê0}

)
= rk z′(p(S))+1 and that rk z′(p(S)) = rk∆ p(S) =

rkΓ S. It is also clear that span(Ŝ ∪ {ê0}) = span
(
z′(p(S)) ∪ {ê0}

)
. Therefore,

rk Ŝ = rkΓ S + ε,

where ε = 0 if ê0 /∈ span Ŝ but ε = 1 if ê0 ∈ span Ŝ.
If S is unbalanced, it contains an unbalanced circle C and ê0 ∈ span Ĉ; then ê0 ∈ span Ŝ

so ε = 1.
If C is a balanced circle, then ê0 6∈ span Ĉ; thus ε = 0. Thus Lemma 3.2 is proved for a

circle.
Consider a forest S. Since #S = rkΓ S, we know that rk F̂ must also equal rkΓ S. Thus,

F̂ is independent.
Finally, consider a general balanced edge set S. Take a maximal forest F ⊆ S. For

e ∈ S \ F , let Ce be the fundamental circle of e with respect to F . Each Ce is balanced;

thus from the circle case and the independence of the forest C \ e we infer ê ∈ span(Ĉ \ ê).
Therefore Ŝ ⊆ span F̂ , so rk Ŝ = rk F̂ = rkΓ S. In other words, ε = 0. This completes the
proof of Lemma 3.2. �

Now we complete the proof of the theorem. If we define r(S) = rk Ŝ, then r is a matroid
rank function. On the other hand, r has the form of a lift-matroid rank function, in fact the
one that is associated with (Γ,B) if the latter is indeed a biased graph. Proposition II.3.15

states that if this rank function defines a matroid, then B is a linear class; hence, Ω0(Ê) is
a biased graph. �

Corollary 3.3. An edge set S ⊆ E is balanced in Ω0(Ê) if and only if Ŝ is contained

in a cross-flat. S is a closed, balanced set of L(Ω0(Ê)) if and only if Ŝ = Ê ∩ t for some
cross-flat t. �

Now recall the definitions of P and Ê(∆, ê0) from the beginning of this subsection. We
define an affine part of a projective geometry to be what remains after deletion of any
hyperplane.
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Proposition 3.4. Let Ω := Ω0(Ê(∆, ê0)).
(I) The biased graph Ω is a biased expansion of ∆.
(II) Suppose P has coordinate skew field F. Assume z′ represents ∆ in an affine part of

P′; if ∆ is finite, this means ∆ is #F-colorable. If P has coordinate skew field F and ∆ is
#F-colorable, then Ω = 〈F+∆〉 i.e., Ω has gains in F+.

Proof. (I) is a consequence of the definitions and Corollary 3.3.
(II) follows by taking the deleted hyperplane h′∞ in P′ and choosing the ideal hyperplane

h∞ := h′∞ ∨ ê0 in P; then ê0 is an ideal point and z′(E(∆)) is disjoint from h∞. Then choose
coordinates for P so that h∞ is the infinite hyperplane in that coordinate system, in the
affine part P \ h∞ the hyperplane P′ \ h′∞ is a coordinate hyperplane, say for coordinate z0,
and in P′ each z′(eij) = v̂j − v̂i. (This is possible because graphic matroid representation is
projectively unique.) For an edge e of Ω that projects to eij ∈ E(∆), the gain of e (in the
direction vivj) is the z0-coordinate of ê.

The colorability criterion comes from the Critical Theorem of Crapo and Rota [7, Chapter
16]. Assume P = P(F). According to the Critical Theorem, a finite graph ∆ has a matroid
representation in P′ that avoids a hyperplane if and only if (i) P′ is large enough, i.e., dimP ≥
rk ∆, and (ii) F is infinite or F = Fq and the chromatic polynomial of ∆ satisfies χ∆(q) > 0;
equivalently, ∆ is #F-colorable. This is true for every representation z′ and every hyperplane
to be avoided. (The Critical Theorem could be proved for non-Desarguesian projective
geometries—all of which are planes, which unfortunately makes it less interesting—the proof
by Möbius inversion is the same and the order of F is replaced by the order of the plane.)

�

We can expand on this observation by considering a subset Ê ⊆ Ê(∆, ê0). We call Ê

cross-closed with respect to ∆ if, whenever t is a cross-flat spanned by a subset of Ê, then
t ∩ Ê(∆, ê0) ⊆ Ê.

Corollary 3.5. (I) Suppose Ê ⊆ Ê(∆, ê0). Then Ê is cross-closed if and only if Ω0(Ê)
is a biased expansion of a closed subgraph of ∆.

(II) Suppose ∆ is inseparable and is represented in an affine part of P′, and suppose P
has coordinates in a skew field F. Then Ê is cross-closed if and only if Ω0(Ê) = 〈Φ〉, where
Φ ⊆ F+∆ and Φ switches to a group expansion H∆′ of a closed subgraph ∆′ of ∆ by a
subgroup H ≤ F+.

Proof. The proof is very similar to that of Corollary 2.8. The difference is that instead of
edge lines le = v̂ŵ for evw ∈ E(∆) that join node points we have edge lines le = ê0z

′(e)
that are projected (from ê0) to edge points. Nevertheless, the relationships between lines are
similar, so we permit the reader to make the necessary adjustments. �

3.1.2. Affine orthography.
There is an affine version of this representation. Suppose z′(E(∆)) can be contained in

an affine part of P′, that is, A′ = P′ \ h′ for a hyperplane h′ of P′. (By the Critical Theorem,
mentioned in the proof of Proposition 3.4(II), if P = P(F) and ∆ is finite, this assumption
is satisfied if and only if ∆ is #F-colorable.) Then we can treat h∞ := h′ ∨ ê0 as the ideal

hyperplane, replacing P and P′ by the affine spaces A = P′ \ h∞ and A′. We may call Ê an

affine synthetic orthographic representation of Ω ∼= Ω0(Ê). The now-ideal point ê0 implies
a direction in A transverse to A′ and the edge lines are parallel lines in the direction of ê0,
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one through z′(e) for each edge e ∈ E(∆). A cross-flat is now an affine flat that does not

projectively span ê0; equivalently (if we restrict to cross-flats spanned by subsets of Ê), it is
not parallel to any edge line. Theorem 3.1 remains true, of course, and so do Corollary 3.3
and Proposition 3.4 if A replaces P in the latter.

3.1.3. Desarguesian orthography.
In the case of a Desarguesian space P(F) our construction is equivalent to the analytic one

in Section IV.4.1 by projection, a fact we now explain. Analytically, for a gain graph Φ with
gains in F+ we represent the extended lift matroid L0(Φ) in F1+N := F×FN by a mapping

zΦ(e) =

{
(ϕ(evw), ŵ − v̂) for a link evw,

(1,0) for a half edge or e0

(3.1)

of E(Φ) into F1+N . We call zΦ an analytic orthographic representation of Ω if it represents
an F+-gain graph Φ such that 〈Φ〉 ∼= Ω.

Vector coordinates for F1+N are (x0,x
′); thus, x0 = ϕ(e) or 1 for e ∈ E(Φ) ∪ {e0}.

Homogeneous coordinates are [x0,x
′] for the same point in the projective space P(F) that

results from treating the lines of F1+N as points and vector subspaces as flats in the usual
manner. Thus zΦ gives rise to a projective representation z̄0 of L0(Φ). The content of
the next theorem is that what we get is a synthetic representation and that all synthetic
representations of biased graphs in P(F) arise in this way.

Theorem 3.6. In a Desarguesian geometry over F, the synthetic orthographic represen-
tations of extended lift matroids of biased graphs are the same as the projections from the
origin of the analytic orthographic representations of the gain graphs Φ with gains in F+.

Proof. Suppose given an analytic representation zΦ : E(Φ) → F1+N with image Ê, based
on z′ : E(∆) → FN . We treat FN as the subspace {0} × FN of F1+N . Projection from
the origin turns F1+N into a projective space P with hyperplane P′ as the image of FN . We
use the notation v̄ for the projective point derived from a vector v and similar notation for
mappings, i.e., z̄ : E(Φ)→ P and z̄′ : E(∆)→ P. For instance, the projective point ¯̂e0 is not
in P′ since the vector ê0 = (1,0) /∈ FN , and z̄′(E(∆)) ⊆ P′ since z′(E(∆)) ⊆ FN .

Under projection, linear dependence and independence become projective dependence and
independence; therefore z̄′ is a projective representation of G(∆) and z̄Φ is a projective
representation of L0(Φ). The plane spanned by ê0 and the image of p−1(e) for an edge
e ∈ E(∆) becomes a line through z̄′(e) in the direction of ¯̂e0; it is the edge line le of a
synthetic affinographic representation. Thus we have the entire structure of a synthetic
representation of L0(Φ).

Conversely, let z : E(Ω) → Ê be a synthetic representation of L0(Ω) in P, a projective
space over F, with associated representation z′ : E(∆) → P′. We can assume, by enlarging

P if necessary, that P′ is large enough to contain an independent set N̂ := {v̂ : v ∈ N} with
respect to which z′(E(∆)) has standard coordinates (Lemma 3.11 shows that and more),

and we can assume P′ = span(N̂ ∪ {ê0}) by restricting P to P′ ∨ ê0. Since P is coordinatized

and spanned by the independent set N̂ ∪ {ê0}, we can assume the homogeneous coordinates
of P represent ê0 as [1,0]. As P is the quotient of F1+N under central projection, all the

points of interest in P, that is, N̂ , Ê, ê0, can be pulled back to vectors with the same linear
dependencies as the projective versions have in P. By the choice of coordinate system, each
point ê representing an edge evw of Ω has homogeneous coordinates [x0, w̄− v̄] and the vector
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has linear coordinates (x0, w̄− v̄). Because we chose standard coordinates for z′(E(∆)) there
is no ambiguity in the value of x0 except that it could be replaced by its negative, which
corresponds to reversing the direction of e. Thus, if we assign e the gain ϕ(evw) := x0

and, negatively, ϕ(ewv) := −x0, we obtain an unambiguous F+-gain graph Φ whose biased
graph is Ω and whose analytic representation zΦ in F1+N has the property that z̄Φ(e), the
projectivization of zΦ(e), equals ê. �

3.2. Affinographic arrangements.

3.2.1. Affinographic hyperplanes.
In an affine geometry A, consider a family A of hyperplanes that fall into parallel classes Ai

for i ∈ I, an index set. In the projective completion P the hyperplanes of A have ideal parts
that are hyperplanes of the ideal hyperplane h∞; call this family of ideal hyperplanes A∞. All
the members of a parallel class Ai have the same ideal part, call it hi; thus A∞ = {hi : i ∈ I}.
The family A∞ has a matroid structure M(A∞) (it is the matroid of the dual points h∗i in
the dual of the projective geometry h∞). If this matroid is graphic, isomorphic to M(∆) for
a graph ∆, we call A a synthetic affinographic hyperplane arrangement (“arrangement” here
is a synonym for “family”). The edges of ∆ must be links, not half edges. There may be
more than one such ∆; later we explain why that does not matter.

In Section IV.4.1 we showed that the lift matroid of a gain graph Φ with gain group F+

has a representation by a coordinatized affinographic hyperplane arrangement A[Φ], whose
hyperplane equations have the form xj − xi = ϕ(eij). In the present section we prove that
synthetic affinographic arrangements are precisely the synthetic expression and generaliza-
tion of those coordinatized affinographic arrangements.

First, given A, we construct a biased graph Ω(A) of which A is a lift representation by
hyperplanes; to say it precisely, such that M(AP) = L0(Ω(A)). Here AP, the projectivization
of the affine arrangement A, is defined to be {hP : h ∈ A} ∪ {h∞}, hP in turn being defined
as the projective closure of h. The underlying graph ‖Ω(A)‖ is constructed from a graph ∆
such that G(∆) ∼= M(A∞). ∆ has one edge for each ideal part hi ∈ A∞; we get ‖Ω(A)‖ if
we replace each edge ei ∈ E(∆), corresponding to an ideal hyperplane hi, by one edge for
each h ∈ Ai. Thus, if ∆ = (N,E(∆)), then N(Ω(A)) = N and there is a natural surjection
p : E(Ω(A))→ E(∆), which is a graph homomorphism if we take p|N to be the identity.

To define the class B(Ω(A)) of balanced circles, we must know which edge sets are circles
in Ω(A). We get that information from ∆: a circle in Ω(A) is either a digon {e, f}, where
p(e) = p(f), or a bijective preimage under p of a circle in ∆. Define a digon in Ω(A) to
be unbalanced, and let any other circle C be balanced if and only if the intersection of its
corresponding hyperplanes,

⋂
e∈C he, is nonempty. This defines B(Ω(A)) so we have defined

Ω(A), but we have not proved it is a biased graph.

Theorem 3.7. Let A be a synthetic affinographic arrangement of hyperplanes in an affine
geometry A. Then Ω(A) is a biased graph, and L(A) ∼= Latb Ω(A) under the correspondence
he 7→ e ∈ E(Ω(A)). Furthermore, L(AP) ∼= LatL0(AP) under the same correspondence aug-
mented by h∞ 7→ e0. The intersection of S ⊆ A is nonempty if and only if the corresponding
edge set S ⊆ E(Ω(A)) is balanced.

We note that L(A) ∼= Latb Ω(A) is another way of asserting a matroid isomorphism
M(AP) ∼= L0(Ω(A)).
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Proof. We write E := E(Ω(A)) and tA(S) :=
⋂
e∈S he if S ⊆ E. Recall that the intersection

poset of a hyperplane arrangement is partially ordered by reverse inclusion; A∞ is an upper
interval in AP. The cover relation is xm y (x covers y).

The first step is to establish an isthmus reduction formula for an affinographic arrangement.
An isthmus in a graph is an edge whose deletion converts one component into two.

Lemma 3.8 (Isthmus Reduction). If S ⊆ E has an isthmus e and tA(S \ e) 6= ∅, then
tA(S) 6= ∅ and tA(S) is a hyperplane in tA(S \ e).

Proof. We show that tA(S) 6= ∅. The proof takes place in P. Define tP(S) :=
⋂
e∈S(he)P; if

tA(S) 6= ∅ this is the projective completion of tA(S). Observe that t∞(R) covers or equals
tP(R) for every edge set R. Let t∞(S) := tP(S)∩h∞. Because A∞ is the graphic arrangement
of ∆ and e /∈ clos∆(S \ e), t∞(S) m t∞(S \ e) in L(A∞). As (he)P is a hyperplane, tP(S)
covers or equals tP(S \ e). Because tA(S \ e) 6= ∅, t∞(S \ e) > tP(S \ e). We now have the
Hasse diagram

t∞(S)
m,=

yy

m

&&
tP(S)

m,=

%%

t∞(S \ e)
m

xx
tP(S \ e)

in which the path on the right has length 2. The intersection lattice is geometric so the path
on the left has the same length; it follows that t∞(S) m tP(S) m tP(S \ e). We conclude that
tP(S) is not contained in the ideal hyperplane, so tA(S) 6= ∅, and that tP(S) is a hyperplane
in tP(S \ e). It follows that tA(S) is a hyperplane in tA(S \ e). �

Lemma 3.9. Let C be a circle C in Ω(A). If C is balanced, then tA(C) = tA(C \ e) 6= ∅
for each e ∈ C and codim tA(C) = #C − 1. If C is unbalanced, then tA(C) = ∅.

Proof. We defined C to be balanced if tA(C) is nonempty, so the task is to prove that a
balanced circle has tA(C) = tA(C \ e) and codim tA(C) = #C − 1. Let e ∈ C. Since A∞
represents G(∆), t∞(C) = t∞(C \ e). By isthmus reduction tA(C \ e) 6= ∅, so tP(C \ e) l
t∞(C \ e). As t∞(C) ≥ tP(C) ≥ tP(C \ e), tP(C) equals either t∞(C) or tP(C \ e). In the
former case tA(C) = ∅. In the latter case tA(C) = tA(C \ e) and codim tA(C) = #C − 1. �

The proof that B(Ω(A)) is a linear class is also carried out in P. It is similar to that for
Theorem 2.10.

The next step is to prove that for a balanced edge set S, tA(bclS) = tA(S) 6= ∅. Since
bcl(bclS) = bclS if S is balanced (Proposition I.3.5) and consequently bclS = bclF for any
maximal forest F ⊆ S, it suffices to prove that for a forest F ⊆ E(Ω), tA(bclF ) = tA(F ) 6= ∅.
An edge e ∈ (bclF )\F is in a balanced circle C such that C\e ⊆ F . Since tA(C) = tA(C\e),
we can infer that tA(F ∪ {e}) = tA(F ). It easily follows that tA(bclF ) = tA(F ), using
induction or Zorn’s lemma according as (bclF ) \ F is finite or infinite.

Thus the question reduces to proving that tA(F ) 6= ∅. We do so in the dual geometry
P∗. The hyperplanes (he)P and h∞ become points qe and q∞; for S ⊆ E let SP := {qe : e ∈
S}. The intersection he ∩ h∞, which is a hyperplane of h∞, becomes the line qeq∞. The
arrangement A∞ becomes the point set Ē := {q̄e := qeq∞ : e ∈ E} in the projection P∗/q∞
(that is the projective geometry of all lines through q∞ in P∗). Thus M(A∞) = M(Ē). This
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matroid is G(∆) under the correspondence q̄e ↔ p(e) ∈ E(∆). It is also the simplification
of the contraction matroid M(EP ∪ {q∞})/q∞.

The statement that tA(F ) = ∅, which is equivalent to
⋂
e∈F (he)P ⊆ h∞, becomes the

statement that FP spans q∞ in P∗. That means FP∪ q∞ is dependent in M(FP∪{q∞}). Now
consider our hypothesis that F is a forest. The mapping p|F is injective into E(∆) with
image p(F ) that is a forest in ∆. Hence, M(FP ∪ {q∞})/q∞ ∼= G(∆)|p(F ) (the vertical bar
denotes a restriction matroid), which is a free matroid because p(F ) is a forest. However,
the point set F̄ , as the contraction of FP ∪ {q∞}, is dependent in M(FP ∪ {q∞})/q∞. This is
a contradiction. Therefore, tA(F ) 6= ∅.

We now know that tA(S) 6= ∅ if S is balanced. The inverse implication follows from the
definition of balance in Ω(A).

It remains to prove that L(AP) ∼= LatL0(Ω(A)), and that cL(A) ∼= Latb Ω(A). The latter
is an immediate corollary of Lemma 3.9, since a closed, balanced set in Ω(A) is the same as
a set S such that tA(S) 6= ∅ and tA(S ∪ {e}) ⊂ tA(S) for any e /∈ S.

The lattice LatL0(Ω(A)) has a particular structure (see Theorem II.3.1(A)(b)), namely,
Latb Ω(A) is a lower ideal and its complement is essentially Lat ‖Ω(A)‖, which is isomorphic
to Lat ∆ since ∆ is the simplification of ‖Ω(A)‖. The precise relationship is that each closed
set S ∈ Lat ‖Ω(A)‖ appears in LatL0(Ω(A)) as the set S ∪ {e0}. As e0 corresponds to h∞,
this upper ideal of LatL0(Ω(A)) corresponds to L(A∞), whose structure is that of Lat ∆
by assumption. It is easy to verify that the order relations in L(AP) agree with those in
LatL0(Ω(A)). That completes the proof. �

The non-uniqueness of ∆ calls for some discussion. Whitney proved that two graphs of
finite order have the same matroid if and only if one can be obtained from the other by
three operations, each of which preserves the edge sets of circles (though not necessarily
their cyclic order in the circle). Whitney’s 2-operations are:

(Wh1) Combine two components by identifying one node in the first component with one
node in the other component. (The identified node will be a separating node.)

(Wh2) The reverse of (Wh1), i.e., splitting a component in two at a separating node.
(Wh3) (Whitney twist.) Reversing the attachment of one side of a 2-separation. Suppose

{u, v} is a pair of nodes that separates a subgraph ∆1 from another subgraph ∆2.
Split u and v into u1, v1 in ∆1 and u2, v2 in ∆2. Then recombine by identifying u2

with v1 and v2 with u1.

Graphs related by Whitney’s 2-operations are called 2-isomorphic. It is clear from Whitney’s
proof that the same theorem applies to graphs of infinite order. So, ∆ is determined precisely
up to Whitney 2-isomorphism. It is also easy to see that Whitney’s theorem applies to the
extended lift matroid; thus, Ω(A) is determined only up to 2-isomorphism; but once ∆ has
been chosen, Ω(A) and L0(Ω(A)) are completely determined.

We wish to establish the relationship between synthetic and coordinatized affinographic
arrangements; we begin by reviewing the latter in some detail (from Section IV.4.1). Given
F, suppose we have a gain graph Φ = (N,E, ϕ) (without half edges; N and E may be
infinite) with gain group F+. This gain graph has a representation in the #N -dimensional
affine space AN(F) by hyperplanes he : xj − xi = ϕ(eij) for each edge e = eij ∈ E. Write
A[Φ] for this family of hyperplanes; we call it an affinographic hyperplane arrangement
(“coordinatized” to distinguish it from the synthetic analog) because it consists of affine
translates of graphic hyperplanes hij : xj−xi = 0. The hyperplanes of a parallel class of edges,
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i.e., all edges eij for fixed nodes vi, vj, are a parallel class of hyperplanes whose intersection
in the ideal part of PN(F) (the projective completion of AN(F)) is a relative hyperplane
hij∞. These ideal parts hij∞ are a graphic arrangement associated with ∆, the simplification
of ‖Φ‖ := (N,E); specifically, they are the ideal parts of the standard graphic arrangement
H[∆] = {hij : vivj ∈ E(∆)} in AN(F). The essential property of A[Φ] for our purposes is
that L(A[Φ]) ∼= Latb Φ under the natural correspondence he ↔ e; in addition there are the
projectivization AP[Φ] and the ideal part A∞[Φ], which satisfy L(AP[Φ]) ∼= LatL0(Φ) and
L(A∞[Φ]) ∼= LatG(‖Φ‖) ∼= LatG(∆). (The latter two isomorphisms can also be expressed
as matroid isomorphisms.)

Theorem 3.10. In an affine geometry A(F) over a skew field F, synthetic affinographic
hyperplane arrangements in A(F) are the same as coordinatized affinographic arrangements.

We mean that, given a synthetic affinographic arrangement A, we can choose the coor-
dinate system so as to express A by affinographic equations. The construction of suitable
coordinates will be part of the proof.

One more remark before the proof. Since every affine geometry beyond planes is coordina-
tized by a skew field, what is the purpose of Theorem 3.10? There are several answers. First,
it is not a priori true that the synthetic definition has no examples that do not coordinatize.
A more fundamental answer is that by defining synthetic affinographic arrangements we are
axiomatizing affinographic arrangements. And there is a third answer: the theorem lets us
treat affinographic arrangements of lines in a non-Desarguesian plane; for that see [9, Section
4].

Proof. We already explained how a coordinatized affinographic arrangement is a synthetic
affinographic arrangement. For the converse let A be a synthetic affinographic arrangement
in an affine geometry A(F) over F; we construct coordinates that put A in coordinatized
form.

A standard representation of a graphic matroid G(∆) is a representation in FN , with unit
basis vectors v̂ for v ∈ N , such that an edge evivj is represented by ê = v̂j − v̂i (or its
negative). This representation is in a vector space; a standard representation in an affine
geometry A is obtained by choosing an origin o, so A becomes a vector space, and forming
a standard representation in that vector space.

Lemma 3.11. Given a skew field F, a possibly infinite simple graph ∆ = (N,E(∆)), and
an embedding e 7→ ē of the matroid G(∆) in the ideal hyperplane h∞ of a projective space
P(F), there are an origin o ∈ A := P(F) \ h∞ and a standard representation e 7→ ê of G(∆)
in A such that oê ∧ h∞ = ē.

In other words, Ē should be the projection of Ê into h∞ from center o.

Proof. We can treat each component of ∆ separately, so assume it is connected. Let T be the
edge set of a spanning tree with root node v0 and set Ni := {v ∈ N : distanceT (v0, v) = i}.
Enlarge P(F) if necessary so there is a point v̄0 in h∞ \ span Ē. Finally, choose a point o ∈ A
to serve as an origin; that makes A into a vector space Ao over F with addition defined by
the parallelogram law.

Now we inductively construct a basis {v̂ : v ∈ N} for a subspace of A and representing
points ê, e ∈ E(∆), such that ê = v̂j−v̂i for each edge evivj ∈ E(∆). The first step is to choose
v̂0 ∈ ov̄0 \ {o, v̄0}. Then for each edge ev0v1 ∈ T such that v1 ∈ N1, choose ê ∈ oē \ {o, ē}
and define v̂1 := v̂0 + ê; thus ê = v̂1 − v̂0. At the ith step, v̂i−1 has been chosen for all
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nodes vi−1 ∈ Ni−1. For every edge evi−1vi ∈ T such that vi−1 ∈ Ni−1 and vi ∈ Ni, choose
ê ∈ oē\{o, ē} and define v̂i := v̂i−1 + ê; thus ê = v̂i− v̂i−1. (If there are infinitely many edges
of the form evi−1vi ∈ T we apply the Axiom of Choice.) Induction extends the definitions of
v̂ and ê to all nodes and to all edges in T . Note that in the algebraic formula ê = v̂i − v̂i−1

we treat e as oriented from vi−1 to vi. If we reverse the orientation, the representing vector
of e is negated to v̂i−1 − v̂i.

For an edge evivj /∈ T there is a path P = f1 · · · fl ⊆ T joining vi and vj. Orient each

fj ∈ P in the direction from vi to vj and define ê := f̂1 + · · ·+ f̂l with f̂j defined according
to the orientation of f . Then ê = v̂j − v̂i. That completes the construction of a standard
representation of G(∆) in Ao, since the linear dependencies of the vectors ê are the same as
the projective dependencies of the ideal points ē. That completes the proof.

If N̂ does not span Ao, we may extend it to a basis of Ao in order to provide a complete
coordinate system. However, that is not required for the proof. �

To prove Theorem 3.10 we dualize Lemma 3.11. The dual lemma says that a hyperplanar
embedding A∞ of G(∆) in h∞ extends to a hyperplanar representation H[∆] in P(F) in which
e corresponds to an affine hyperplane he whose ideal part (he)∞ is the given representative
of e in h∞, and whose hyperplanes have equations xi = xj in a coordinate system for A(F).
A hyperplane in the synthetic affinographic arrangement A belongs to a parallel class whose
ideal part hk is an element of A∞ corresponding, say, to e ∈ E(∆); therefore it is parallel to
one of the hyperplanes of H[∆] and has equation of the form xj − xi = c, a constant. Then
we put an edge eij in Φ with gain ϕ(eij) = c. Taking N(Φ) := N , this defines the right gain
graph for A, i.e., A[Φ] = A. Producing Φ completes the proof of the theorem. �

3.2.2. Expansions.
We turn now to the example of group and biased expansions. Take a subgroup H of

F+; the group expansion Φ = H∆ gives an affinographic arrangement A[Φ] in FN . Viewed
abstractly, we have an affinographic hyperplane representation of the biased graph 〈H∆〉.
Now we reverse the process.

Corollary 3.12. Suppose A is a synthetic affinographic hyperplane arrangement that is a
lift representation of a biased expansion graph Ω ↓∆ in an affine geometry A(F) over a skew
field F. Assume ∆ is simple, inseparable, and of order at least 3. Then there are a subgroup
H ⊆ F+ and an F+-gain graph Φ such that Φ switches to H∆ and, with suitable coordinates
in A(F), A = A[Φ].

Proof. Theorem 3.10 implies that A = A[Φ] for some gain graph Φ with gains in F+. Since
A is a lift representation of a biased expansion of ∆, ‖Φ‖ must simplify to ∆. We want to
prove Φ switches to a subgroup expansion of ∆. If Ω is a trivial expansion, the subgroup
is trivial. Otherwise, Ω is thick and the representation is canonical (Theorem 1.2), which
implies that Ω has gains in F+ (Theorem 1.3). A biased expansion with gains in a group G
has to switch to a subgroup expansion (Lemma 1.1). �

For the corresponding result about non-Desarguesian planes see [9, Proposition 4.6].

3.2.3. Duality.
Finally, we briefly explain how the point and hyperplanar lift-matroid representations are

dual to each other. Summarizing the dual correspondence: the point representation e 7→ ê
of G(∆) in P′ dualizes to the hyperplanar representation e 7→ (he)P in P; the extra point
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ê0 corresponds to h∞; the edge line lij = z′(vivj) ∨ ê0 for vivj ∈ E(∆) corresponds to
(he)∞ = (he)P ∧ h∞ = hij; and, last but far from least, the representing point ê of an edge
e ∈ E is dual to the affine or projective hyperplane he or (he)P.

We did not use this fact to prove anything about them, for three reasons. First, we think
it is good to have direct proofs, thereby illustrating how one works with the representa-
tions. Second, we found the projective interpretation of the orthographic representations
was stronger but the affine interpretation of affinographic hyperplanes is the more inter-
esting. Third, the reader will have noticed that the proofs share a dependence on Lemma
3.11, but less so for the orthographic than for the affinographic representations, a fact that
suggests the separate proofs are not themselves mere duals of each other. Furthermore, since
the corollaries and developments are not precisely parallel, by dualizing some results one can
get a few more properties that we did not mention.
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