
BIASED GRAPHS. VII.

CONTRABALANCE AND ANTIVOLTAGES

THOMAS ZASLAVSKY

Abstract. We develop linear representation theory for bicircular matroids, a chief exam-
ple being a matroid associated with forests of a graph, and bicircular lift matroids, a chief
example being a matroid associated with spanning forests. (These are bias and lift matroids
of contrabalanced biased graphs.) The theory is expressed largely in terms of antivoltages
(edge labellings that defy Kirchhoff’s voltage law) with values in the multiplicative or ad-
ditive group of the scalar field. We emphasize antivoltages with values in cyclic groups and
finite vector spaces since they are crucial for representing the matroids over finite fields; and
integer-valued antivoltages with bounded breadth since they are crucial in constructions.
We find bounds for the existence of antivoltages and we solve some examples. Other results:
The number of antivoltages in an abelian group is a polynomial function of the group order,
and the number of integral antivoltages with bounded breadth is a polynomial in the breadth
bound. We conclude with an application to complex representation. There are many open
questions.

Contents

Introduction 2
1. Background 3
2. General bounds on representability and antivoltages 5
3. Modular, integral, and prime-power antivoltages 7
4. Minors and matroids 11
5. Complete graphs and complete-graph bounds 11
6. More examples 16
7. The number of antivoltages 18
8. Root-of-unity representations 21
References 21

Date: March 2001; Aug., 2002; Aug.–Sept., 2004; Nov.–Dec., 2005. Version of April 3, 2007.
2000 Mathematics Subject Classification. Primary 05B35, 05C22; Secondary 05A15, 05C35.
Key words and phrases. Antivoltage, bicircular matroid, bicircular lift matroid, forest matroid, spanning

forest matroid, biased graph, gain graph, contrabalance, bias matroid, frame matroid, matroid representation,
transversal matroid.

Research assisted by grant DMS-0070729 from the National Science Foundation.
Acknowledgement. I thank a referee of Part IV for pointing out the need for numerous illustrative ex-

amples, and the wonderful referee of this part who prepared two detailed lists of improvements based on
notably thorough readings.

1



2 Thomas Zaslavsky

Introduction

This article concerns the problem of vector representation of two matroids associated with
the forests of a graph and of their submatroids.

Consider a graph Γ = (N,E), with node set N and edge set E. The lattice of forests,
F(Γ), is the set of all forests in Γ, partially ordered by

F1 ≤ F2 ⇐⇒ N(F2) ⊆ N(F1) and every tree of F1 is contained

in a tree of F2 or is node-disjoint from F2.

(Thus the top element of the forest lattice is the empty graph, ∅; the bottom element is the
edgeless spanning forest (N, ∅).) The spanning forest lattice, F0(Γ), has two parts: the set
Fsp(Γ) of spanning forests and the set Π(Γ) of all partitions of N into connected blocks; that
is, for each B ∈ π ∈ Π(Γ) the induced subgraph on B must be connected. The first part is
ordered by inclusion of edge sets (since the node sets are the same), the second by refinement,
and F ≤ π if and only if π(F ) refines π, where the blocks of π(F ) are the node sets of the
components of F . (The top element of the spanning forest lattice is the partition 1Γ of N
induced by the components of Γ; the bottom element is (N, ∅).) Both the forest lattice and
the spanning forest lattice are geometric lattices; Fsp(Γ) is a geometric semilattice that we
might call the spanning forest semilattice. The forest lattice was introduced in [13]; it is the
lattice of flats of a bicircular matroid which contains that of Γ as a submatroid and which we
call the forest matroid of Γ, written (for reasons to be explained) G(Γ◦, ∅). The spanning
forest lattice comes from [14]; its matroid, which we call the spanning forest matroid of Γ
and write as L(Γ◦, ∅), is an analog of the bicircular matroid in which the circuits may be
disconnected. These matroids and their submatroids are one of the principal subfamilies of
the matroids of biased graphs (see Parts I–IV [15], of which however this article is largely
independent). Our primary purpose is to investigate the implications for this family of the
general theory of linear representations of biased-graphic matroids from Part IV. We are led
thereby to a challenging new graph-theoretical problem: the analysis of antivoltages on a
graph, by means of which we can investigate detailed properties of finite-field representations
and derive bounds on their existence.

An antivoltage is a function ϕ : E(Γ) → G from oriented edges to a group, such that
Kirchhoff’s voltage law is everywhere violated; i.e., if C = e1e2 · · · el is any circle in Γ with
its edges in the indicated cyclic order, then

ϕ(e1) + ϕ(e2) + · · · + ϕ(el) 6= 0,

the group identity. By saying “oriented edges” we mean that, if the orientation of edge e
is reversed, the antivoltage is negated. We write the group additively because our main
focus is on the multiplicative and additive groups of a finite field Fq of q elements. It is
well known that F

∗
q , the multiplicative group of Fq, is isomorphic to Zq−1 and that F

+
q , the

additive group, is isomorphic to Z
k
p, where q = pk. Theorems from Part IV imply that F(Γ)

has a representation over Fq if and only if Γ has antivoltages in F
∗
q , and F0(Γ) has such a

representation if and only if Γ has antivoltages in F
+
q . Thus antivoltages combinatorialize

the representation problem for the forest and spanning forest matroids, and partially do so
for bicircular and bicircular lift matroids in general.

A brief outline: In Section 1 is all necessary background from Parts I–IV. In the succeeding
sections we develop increasingly less elementary lower and upper bounds on the size of fields
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over which the forest and spanning forest matroids are representable. The bound whose
proof requires the most effort (Theorem 5.3) is that, for a simple graph of order n, F(Γ) has
a representation over Fq for all q ≥ ⌈(e − 2)(n − 2)!⌉, where e is Euler’s constant. (Still,
there is ample room for improvement.) Section 4 shows that the best bounds—the critical
parameters defined at the beginning of Section 3—respect the minor ordering of graphs.
In Section 6 we do some examples that can be solved more completely, such as multilinks
and wheels. Section 7 develops a theory of counting antivoltages, in which we show that
the number of antivoltages with values in an abelian group is a polynomial function of the
order of the group, while the number of integral antivoltages that satisfy a bound on the
maximum total antivoltage around any circle is a polynomial function of the bound. Most
sections raise unsolved problems.

There is another enumerative aspect to representations: One can count regions and faces
of real hyperplanar representations of the bicircular or bicircular lift matroid, or find the
Poincaré polynomial of the complement of a complex hyperplane representation. The main
work there, according to Corollaries IV.2.3 and IV.4.5 (i.e., Corollaries 2.3 and 4.5 of Part
IV), is the evaluation of the chromatic polynomial of (Γ, ∅). For that we refer the reader to
Example III.3.4 or, especially, [13].

1. Background

We begin by setting up notation for graphs. The notation e:vw means that e is an edge
with endpoints v and w and, if oriented, is oriented from v to w. A link has distinct endpoints
and a loop has coinciding endpoints. The number of components of Γ is c(Γ). The cyclomatic
number is ξ(Γ) = #E −#N + c(Γ). A bond is a minimal edge cutset. A graph is a block or
inseparable if every pair of edges belongs to a common circle; equivalently, if it is connected
and either is a single loop (with its supporting node) or has no loops and no cut nodes. A
block of Γ is a maximal block subgraph of Γ.

The basis of this article, though mostly hidden, is the theory of biased graphs. A biased
graph (Γ,B) is a graph Γ = (N,E) along with a list B of circles, called balanced circles,
which has to satisfy a certain axiom whose statement is not needed here (see, e.g., Part I)
but which is satisfied by the empty list. (A graph may have loops and multiple edges. The
half and loose edges of previous parts will not be needed. We shall assume Γ is finite of order
#N = n > 0. A circle is the edge set of a simple closed path.) If the list is empty we have a
contrabalanced biased graph (Γ, ∅). Associated with (Γ, ∅) are certain matroids, examples
of the bias1 and lift matroid constructions of Part II, that resemble the ordinary polygon or
cycle matroid but in which every circle is independent.

The bias-matroid construction gives the bicircular matroid G(Γ, ∅), introduced by Simões-
Pereira [11] for finite graphs and in an infinite version by Klee [4] and further studied in
[12], [5], etc. The lift-matroid construction gives the bicircular lift matroid L(Γ, ∅) and
its inseparable companion the bicircular complete lift matroid L0(Γ, ∅). In the bicircular
matroid the circuits are the minimal connected edge sets of cyclomatic number 2; in the
bicircular lift matroid the circuits are the minimal edge sets of cyclomatic number 2, not
necessarily connected. L0(Γ, ∅) is the bicircular lift matroid together with a so-called extra
point that behaves like a graph loop. (In this matroid all graph loops behave the same, and

1The name frame matroid would be preferable in view of [16], but we adhere to the terminology of Parts
I–IV.
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they are not matroid loops.) If we indicate by Γ◦ the graph with a loop adjoined to every
node, then G(Γ◦, ∅) is the matroid whose lattice of flats is the forest lattice; and L(Γ◦, ∅)
is the matroid whose lattice of flats is the spanning forest lattice. In the latter, all the loops
collapse into one atom, which can be identified with the extra point; so it is equivalent to
the bicircular complete lift matroid (except for the empty graph, ∅; we assume n > 0 to
avoid this example). Consequently, we shall write L(Γ◦, ∅) rather than L0(Γ, ∅).

These matroids are matroids on the edge set of the graph. They give rise to the forest and
spanning-forest lattices in the following way. The graph is Γ◦. A forest F corresponds to the
edge set E(F ) ∪ E(Γ◦ \ N(F )). Thus, the partial ordering in the forest lattice derives from
containment of edge sets in the bicircular matroid of Γ◦. A partition π ∈ Π(Γ) corresponds
to the edge set E:π that is the union of all edge subsets induced by node sets B ∈ π. (So,
π is recoverable from E:π as the class of node sets of its components.) Thus, the partial
ordering in the spanning-forest lattice also derives from edge-set containment, but the edge
sets are only partly the same as with the forest lattice.

Switching an antivoltage mapping ϕ : E → G (from Section I.5) means choosing a function
η : N → G and replacing ϕ by ϕη defined by ϕη(e) = −η(v)+ϕ(e)+η(w) (in additive notation
for future use). The basic facts are that any antivoltage can be switched to be zero on any
forest (from Lemma I.5.3) without giving to any circle the identity antivoltage (Lemma I.5.2)
and, in the abelian case, without even changing the antivoltage of any circle.

Our interest is in the fields (and skew fields) F , and mainly the finite fields, over which
the bias and lift matroids have vector representations, especially those over which there are
“canonical” representations. We need the following terminology: A bias representation of
(Γ, ∅) is a vector representation of G(Γ, ∅) and a lift representation is a vector representation
of L(Γ, ∅). The definition of canonical representations begins with an antivoltage function ϕ
on Γ. (In the general terms of Parts I–IV, antivoltages are called gains for (Γ, ∅) and canon-
ical representations are defined in terms of gains.) If ϕ has values in F ∗, a canonical bias
representation of (Γ, ∅) is the bias representation in F n for which a link e:vivj represents as
a vector bi −ϕ(e)bj and a loop e:vivi represents as bi, or any scaling of such a representation.
(The set {bi} is the standard unit coordinate basis of F n. Scaling means multiplying each
vector independently by a nonzero scalar.) If ϕ has values in F+, a canonical lift representa-
tion of (Γ, ∅) is any scaling of the lift representation in F n+1 in which a link e:vivj represents
in F n+1 as a vector −bi + bj + ϕ(e)b0, where ϕ(e) ∈ F+, and a loop as the vector b0. By
Propositions IV.2.4 and IV.4.3 we have:

Fundamental Lemma. (a) A bias representation of (Γ, ∅) in dimension n is a canoni-
cal bias representation if and only if it extends to a representation of G(Γ◦, ∅). Thus all
representations of G(Γ◦, ∅) are canonical with respect to some choice of antivoltage in F ∗.

(b) A lift representation of (Γ, ∅) in dimension n + 1 is a canonical bias representation if
and only if it extends to a representation of L(Γ◦, ∅). Thus all representations of L(Γ◦, ∅)
are canonical with respect to some choice of antivoltage in F+.

What this means is that the statements

(G1) (Γ, ∅) has a canonical bias representation over F ,
(G2) G(Γ◦, ∅) has a representation over F ,
(G3) Γ has antivoltages (i.e., (Γ, ∅) has gains) in F ∗

are equivalent, and so are the statements

(L1) (Γ, ∅) has a canonical lift representation over F ,
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(L2) L(Γ◦, ∅) has a representation over F ,
(L3) Γ has antivoltages (i.e., (Γ, ∅) has gains) in F+.

The problem of determining which skew fields admit canonical representations of G(Γ, ∅)
and L(Γ, ∅) thereby becomes that of deciding which multiplicative or additive groups of skew
fields admit antivoltages for Γ. Indeed, one can count canonical representations by counting
antivoltages, because the different canonical representations (with respect to a fixed basis)
correspond to the different antivoltages. One may even speculate that, for most graphs, pro-
jectively equivalent representations correspond to equivalence classes of antivoltages under
switching and field automorphisms—see Conjectures IV.2.8 and IV.4.8. For the most part
we shall not further mention the representational consequences of antivoltages, as they are
implicit in the Fundamental Lemma.

For existence and (in part) enumeration of antivoltages it is enough to treat graphs that
are inseparable and edge 3-connected. (The same holds for gains on any biased graph.)
Regarding separability, an antivoltage on Γ is equivalent to having an antivoltage on each of
the blocks of Γ. For edge 3-connection, we define a series class of edges as an equivalence
class under the relation of belonging to a common two-edge bond. Let R be the complement
of a system of distinct representatives for the family of series classes of Γ. (We assume for
simplicity that Γ is inseparable.) Then the contraction Γ/R is edge 3-connected if it has
more than one edge. Also, there is a natural bijection between the spanning trees of Γ/R
and those of Γ that contain R. Since every antivoltage switches to be zero on R itself,
antivoltages exist on Γ if and only if they exist on Γ/R. The number of antivoltages on Γ
is determined by the number on Γ/R if the group is abelian, due to properties of switching
that we discuss in Section 7. As the cyclomatic number seems to have an important role, we
mention further that ξ(Γ) = ξ(Γ/R).

Canonical representations are obviously important, because they are the only representa-
tions of the forest and spanning forest matroids. But if a canonical representation does not
exist one will naturally ask about noncanonical ones, not derived from antivoltages. Except
for the simplest lower bounds on the order of the field, that is too difficult for us to treat here.
It seems likely that most well connected graphs will have only canonical representations; but
for the present that is merely a conjecture.

2. General bounds on representability and antivoltages

Lower bounds on the sizes of fields over which bias and lift matroids have representations
follow from restrictions imposed on antivoltages, or directly on representations, by biased-
graph minors whose matroids are lines (uniform matroids of rank 2). The restrictions apply
to all biased graphs but are especially applicable to contrabalanced ones. By mK2 we mean
an m-fold multiple link. By Ω(l) we mean Ω with unbalanced loops attached to l nodes. The
first lemma treats canonical representations; the second concerns any representation. We
state the lemmas for biased graphs in general; for the present article one can think of Ω as
simply (Γ, ∅).

We restate the definitions of contraction and minors from Part I in a simplified form
appropriate to our work here. To contract a link e in a biased graph Ω we identify its
endpoints to a single node and delete the edge. A balanced circle of the contraction is a
circle C that is a balanced circle in Ω or is a path in Ω that joins the endpoints of e and
makes, with e, a balanced circle in Ω. To contract a loop e, one deletes it and its supporting
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node v and changes every link incident with v into a loop supported by its second endpoint;
any other loops at v should be deleted, but note that links incident with v are not deleted.
A finite edge set S can be contracted by contracting its edges one at a time in any order.
We denote by Ω/S the result of contracting Ω by S. A minor is a subgraph of a contraction.
Evidently, a minor of a contrabalanced graph is still contrabalanced.

Lemma 2.1. Suppose a biased graph Ω contains (mK2, ∅) as a minor. Then it has no
gains in any group of order less than m. Furthermore, Ω has no canonical bias representation
over Fq for q ≤ m and no canonical lift representation for q < m.

Proof. Clearly, gains for (mK2, ∅) must be in a group of order at least m. Gains for Ω
transform to gains for its minors (Corollary I.5.7). Thus a gain group for Ω must have order
m at least. �

Lemma 2.2. Suppose a biased graph Ω has (kK2, ∅), ((k−1)K
(1)
2 , ∅), or ((k−2)K

(2)
2 , ∅)

as a minor. Then G(Ω) is not representable over any field F with #F < k−1. If Ω has either
of the first two minors, then L(Ω) is not representable over any field F with #F < k − 1. If
Ω has the first minor, then L0(Ω) is not representable over any field F with #F < k.

Proof. The bias and lift matroids of ((k − l)K
(l)
2 , ∅) equal the k-point line U2,k (except for

the lift matroid when l = 2). Since Ω has ((k − l)K
(l)
2 , ∅) as a minor, G(Ω) and L(Ω) have

U2,k as a minor (by Theorems II.2.5 and II.3.6; for the lift case, we have to note that the
minor can be obtained by contracting only a balanced set of edges).

Now the lemma is immediate from the well-known fact that for a matroid to be repre-
sentable over Fq it cannot have any U2,q+2 minor. �

Now we look for lower bounds on the size of antivoltage groups. An augmented bond in a
graph is a bond together with an edge of one circle contained in each side of the bond that
contains a circle. Thus if the bond separates two circles, the augmented bond is two edges
larger than the bond. If deleting the bond leaves no circles, the augmented bond is the bond
itself. From augmented bonds we get a lower bound on all representability, not necessarily
canonical. A semiaugmented bond is a bond together with one edge of a circle contained in
one side of the bond, if such a circle exists, or just the bond if there is no such circle. In
the next two propositions, M(Γ), M ′(Γ), and M ′′(Γ) are the maximum sizes of a bond, a
semiaugmented bond, and an augmented bond in Γ.

Lemma 2.3. A graph Γ has antivoltages in G only if #G ≥ M(Γ). It has antivoltages
in F ∗ only if #F > M(Γ) and in F+ only if #F ≥ M(Γ).

Proof. Starting from (Γ, ∅), one gets an (mK2, ∅) minor with m = M(Γ) by contracting the
complement of a largest bond. Apply Lemma 2.1. �

Lemma 2.4. The bicircular matroid G(Γ, ∅) is representable over F only if #F ≥
M ′′(Γ)−1. The bicircular lift matroid L(Γ, ∅) is representable over F only if #F ≥ M ′(Γ)−
1, and L(Γ◦, ∅) is representable over F only if #F ≥ M(Γ).

Proof. Apply Lemma 2.2. �

We should mention a weak but completely general upper bound on the order of a group
in which Γ does not have antivoltages.

Proposition 2.5. If ξ is the cyclomatic number of Γ, then there exist antivoltages for Γ
in any group of order µ ≥ 2ξ−1(ξ − 1)!

√
e.
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Proof. Gagola [3] proved that any group G of order at least 2ξ−1(ξ−1)!
√

e contains ξ elements
that avoid the identity element 1: no product of one or more of them or their inverses equals
the identity, where no element can be repeated in a product, not even inverted. If we have
such a set in G, we assign antivoltage 1 to a maximal forest and the ξ values in our set to
the remaining ξ edges. �

3. Modular, integral, and prime-power antivoltages

For questions of representation certain groups are especially important. We call antivolt-
ages modular if they have values in a finite cyclic group (µ-modular if the group is Zµ) and
prime-power if the values are in the additive group Z

k
p of Fpk . Some key numbers, which it

is not difficult to see are well defined if Γ is not a forest (which we shall assume throughout),
are

µ0(Γ) = the smallest µ for which Γ has antivoltages in the cyclic group Zµ,
µ1(Γ) = the smallest µ for which Γ has antivoltages in every Zµ′ with µ′ ≥ µ,
λ0(Γ) = the smallest prime power pk such that Γ has antivoltages in Z

k
p,

λ1(Γ) = the smallest prime power λ such that Γ has antivoltages in Z
k
p for every prime

power pk ≥ λ,
κp(Γ) = the smallest k such that Γ has antivoltages in Z

k
p, where p is a prime number.

Note that Γ has antivoltages in Zp for every p ≥ µ1(Γ) but no Zp with p < µ0(Γ). All
our upper bounds on modular antivoltages are actually based on still another parameter.
Integral antivoltages take values in Z. Define

µ2(Γ) = the minimum breadth of integral antivoltages on Γ,

the breadth of an integral antivoltage ϕ being defined as 1 + maxC ϕ(C), where C ranges
over all oriented circles in Γ. (If C has antivoltage α in one orientation, its antivoltage is −α
in the opposite orientation; it follows that µ2 > 0.) If we switch ϕ to be zero on a maximal
forest, then |ϕ(e)| < breadth(ϕ) for all edges.

An antivoltage mapping modulo µ can be taken as integral with values in the interval
[−(µ − 1), µ − 1]. Thus, any Zµ-antivoltage ϕµ derives from an integral antivoltage ϕ by
reducing the values modulo µ, although the breadth of ϕ may be larger than µ.

If Γ is not a block graph, then it has antivoltages in a group if and only if each of its blocks
does. Therefore, each of the parameters µi, λi, κp on Γ equals the maximum of its values on
the blocks of Γ. Thus in looking for bounds we can confine our attention to block graphs.
Recall the maximum bond size M(Γ) from Section 2.

Proposition 3.1. We have

(a) µ0(Γ) ≥ M(Γ),
(b) κp(Γ) ≥ logp M(Γ),
(c) λ0(Γ) ≥ M(Γ).

Proof. By Lemma 2.3. �

The next result gives upper bounds whose virtue is in their simplicity. Generally speaking,
and for µ2 always, Theorem 3.4 is better. Still, these bounds are better than the ones derived
from Proposition 2.5, except for ξ ≤ 4 in (d).

Theorem 3.2. If Γ is a graph whose cyclomatic number is ξ, then
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(a) µ0(Γ) ≤ µ1(Γ) ≤ µ2(Γ),
(b) µ2(Γ) ≤ 2ξ,
(c) κp(Γ) ≤ ⌈ξ/⌊log2 p⌋⌉,
(d) λ1(Γ) ≤ 3ξ.

Proof. In each case take the antivoltage equal to zero on a maximal forest. Define l = ⌊log2 p⌋.
(a) An integral antivoltage ϕ of breadth k gives a modular antivoltage modulo any µ ≥ k.
(b) Assign integers 1, 2, 4, . . . , 2ξ−1 to the remaining ξ edges. No combination of these

nonzero numbers by addition and subtraction can equal 0 or be as large as 2ξ. Therefore,
no circle can have antivoltage equal to 0 or larger than 2ξ − 1.

(c) Let b1, . . . , bk be generators for Z
k
p and take the elements 2jbi for 0 ≤ j ≤ l − 1. No

sum of one or more of these kl elements or their negatives equals zero. Thus, as long as
kl ≥ ξ, we can assign ξ values to the edges outside the forest and have an antivoltage.

(d) We need to show that an antivoltage exists in Z
k
p if pk ≥ 3ξ. Since 3kl ≥ (2l+1−1)k ≥ pk,

the hypothesis implies that kl ≥ ξ, so k ≥ κp and the antivoltage exists by (c). �

A transversal matroid is defined by partial transversals of a family N of subsets of a ground
set E (see [7, Section 1.6]). If each triple {X,Y, Z} of sets has empty intersection X ∩Y ∩Z,
then Γ = (N,E) defines a graph in which node-edge incidence is reverse set membership.
Then M = G(Γ, ∅), as Matthews observed [5].

Corollary 3.3. If M is a transversal matroid on m points defined by a family of sets of
which each three have empty intersection, then M is representable over every field of order
at least 2m.

Proof. Note that ξ(Γ) ≤ m. �

For transversal matroids of the specified type the corollary improves on the theorem of
Piff and Welsh, who proved that each transversal matroid has a representation over every
sufficiently large field, but without giving a specific bound [8].

A construction by degrees produces generally better but more complicated bounds. We
may as well suppose Γ is a block of order n ≥ 2. (We exclude loops because, if Γ does have
loops, we get better bounds by removing them.) Choose a spanning tree T and an acyclic
orientation α of Γ \ T . Let do

i be the outdegree of vi and define

π(Γ \ T, α) =
n

∏

i=1

(do
i + 1),

σp(Γ \ T, α) =
n

∑

i=1

⌈logp(d
o
i + 1)⌉.

Theorem 3.4. For Γ, T , and α as described, we have

(a) µ2(Γ) ≤ π(Γ \ T, α),
(b) κp(Γ) ≤ σp(Γ \ T, α),
(b′) κp(Γ) = 1 if p ≥ π(Γ \ T, α),
(c) λ1(Γ) < π(Γ \ T, α)2.

Proof. Index the nodes v1, . . . , vn in order of increasing outdegree. (This is for the proof of

part (c).) Set πj =
∏j

i=1(d
o
i + 1); note that π0 = π1 = 1 and πn = π(Γ \ T, α). Assign 0 to

every edge in T .
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(a) To get an antivoltage in Zµ we need values on Γ\T so that no circle in Γ has antivoltage
ϕ(C) = 0. We do this by constructing an integral antivoltage of sufficient breadth. We assign
to each edge departing vi a different one of the integers 1πi−1, 2πi−1, . . . , d

o
i πi−1. Each node

vi at which C contains a departing edge contributes ±kπi−1 to ϕ(C), where 1 ≤ k ≤ do
i . If

amongst the nodes in C having an outgoing edge the one with the largest index is vj, the
other terms in ϕ(C) total less than πj−1 in absolute value, while vj contributes at least this
much. Therefore, ϕ(C) 6= 0.

The largest conceivable value of ϕ(C) is do
2π1 + do

3π2 + · · ·+ do
nπn−1 = πn − 1. Thus, ϕ has

breadth at most πn, proving (a).
(b) We adapt the idea of (a) to modular arithmetic. We assign to each vi a group Z

ki
p .

We define a function ϕi : E \ T → Z
ki
p by assigning do

i distinct nonzero members of Z
ki
p

to the do
i outward edges from vi and zeroes to the other edges. This requires dimension

ki = ⌈logp(d
o
i +1)⌉. Then ϕ1⊕· · ·⊕ϕn is an antivoltage with values in the group Z

k1

p ⊕· · ·⊕Z
kn
p .

Therefore, κp ≤
∑

i ki.
(b′) For a prime number p ≥ πn we apply the method of (a) to construct antivoltages in

Zp.
Before we prove (c) we take advantage of (b′) to develop another formula for λ1.

Lemma 3.5. λ1 is the smallest prime power λ > maxp pκp−1.

Proof. The maximum is well defined because part (b′) shows that there are only finitely
many primes for which pκp−1 > 1. Clearly, λ1 is greater than the maximum, and nothing
otherwise prevents it from being as small as possible so long as it is a prime power. �

Now we can prove part (c). Suppose p is the prime that maximizes pκp−1. From (b′) we
know p < πn. Since p < πn, there are indices 1 = j0 < j1 < · · · < jk < jk+1 = n (for some
k ≥ 0) and exponents r1, . . . , rk+1 > 0 such that

pr1−1 < πj1−1 ≤ pr1 < πj1,

pr2−1 < πj2−1/πj1−1 ≤ pr2 < πj2/πj1−1,

· · ·
prk−1 < πjk−1/πjk−1−1 ≤ prk < πjk

/πjk−1−1,

prk+1−1 < πn/πjk−1 ≤ prk+1;

and in addition, rm > 1 only if do
jm

≥ p; jm+1 = jm + 1 if rm > 1 (for m ≤ k); and k is as
small as possible given the other requirements. Let r = r1 + · · · + rk+1.

For each m = 1, . . . , k+1 we use the method of (a) or (b) to define ϕm : E\T → Z
rm
p which

assigns distinct nonzero values in Z
rm
p to the outward edges from each vi for jm ≤ i < jm+1

and the value 0 to all other edges. When rm = 1, then to the edges departing vi we assign
the numbers 1πi−1/πjm−1, 2πi−1/πjm−1, . . . , d

o
i πi−1/πjm−1, all of which are less than p, and

then we interpret them as values in Zp. But when rm > 1, we assign do
jm

distinct nonzero
values in Z

rm
p to the outward edges from vjm

.
The direct sum ϕ1 ⊕ · · · ⊕ ϕk+1 : E \ T → Z

r
p is an antivoltage mapping with group of

order pr. Now,

pr =
k+1
∏

m=1

prm < πj1(πj2/πj1−1) · · · (πjk
/πjk−1−1)(πn/πjk−1)p
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because prk+1−1 < πn/πjk−1,

= (do
j1

+ 1)(do
j2

+ 1) · · · (do
jk

+ 1)πnp

< πn · (do
j1

+ 1)(do
j2

+ 1) · · · (do
jk

+ 1)πj1

because p < πj1,

≤ πn · πj1(d
o
j1+1 + 1)(do

j2+1 + 1) · · · (do
jk+1 + 1)

≤ πn · πjk+1 ≤ π2
n.

It follows that there is a power of p, pr < π(Γ \ T, α)2, for which there exist antivoltages
in Z

r
p. This implies (c). �

The question arises of how to choose T and α most wisely. Richard Stanley (personal
communication) suggested a partial answer. Think of α as an acyclic orientation of Γ′ = Γ\T .

Proposition 3.6. If an orientation α of a finite graph Γ′ minimizes π(Γ′, α), then α is
maximal in the dominance ordering of orientations.

The dominance ordering < is a partial ordering of unordered partitions of m into n non-
negative integers. Given two such partitions, d and d′, we first arrange each in descending
order and then define d′ < d ⇐⇒ d′

1 + · · · + d′
i ≥ d1 + · · · + di for every i = 1, 2, . . . , n. We

apply this to orientations through their outdegree sequences, getting a partial quasiordering
since different orientations may have the same outdegrees. Define π(d) =

∏

i(di + 1). Then

d′ ≻ d =⇒ π(d′) < π(d). (3.1)

To prove this, note that there are a smallest k such that d′
1 + · · · + d′

k > d1 + · · · + dk and a
smallest l > k such that d′

1 + · · · + d′
l = d1 + · · · + dl. Then d′

k > dk ≥ dl > d′
l. Set d′′

i = d′
i

except for d′′
k = d′

k −1 and d′′
l = d′

l +1; then π(d′′) > π(d′). The formula follows by induction
on the height of the interval [d, d′] in the poset.

Proof of Proposition. Apply (3.1) to the outdegree sequences of orientations of Γ′. �

It is well known that all maximal orientations are acyclic; but not all acyclic orientations
are maximal, and not every maximal orientation gives the minimum value of π(Γ′, α). Thus,
the problem of choosing the best α is not completely solved, nor is that of choosing the best
T in Theorem 3.4.

Example 3.1 (Multiple links). Comparing µ0 to µ1, one readily sees that they are equal
for the m-fold link mK2 (or a subdivision; this includes circles other than loops, and theta
graphs). For mK2, Lemma 2.1 implies that µ0 ≥ m. An obvious integral antivoltage assigns
0, 1, . . . ,m − 1 to the m edges. Hence,

µ0(mK2) = µ1(mK2) = µ2(mK2) = m.

By similar reasoning,

λ1(mK2) = the least prime power q ≥ m,

κp(mK2) = ⌈logp m⌉.
Thus, (mK2, ∅) has a canonical bias representation over Fq if and only if q > m, and a bias
representation if and only if q ≥ m − 1. It has a canonical lift representation if and only
if q ≥ m, and a lift representation if and only if q ≥ m − 1. For the proof, observe that
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G(mK2, ∅) = L(mK2, ∅) = U2,m, the m-point line. The conclusions follow from this and
Lemmas 2.1 and 2.2.

We also know that µ0, µ1, and µ2 are equal for K4, by Equation (6.2).

Problem 3.7. Are µ0 and µ1 equal for every finite graph? In other words, in the set of
orders of cyclic groups in which Γ has antivoltages, are there no gaps?

I do not know whether any of the parameters are independent.

Problem 3.8. Is µ2 = µ1? A stronger question: If ϕµ is an antivoltage in Zµ, does there
exist an integral antivoltage ϕ ≡ ϕµ (mod µ) with breadth ≤ µ?

4. Minors and matroids

In the minor ordering of graphs or matroids, A ≤ B if A is a minor of B.

Proposition 4.1. The functions µi, λi, and κp of a graph Γ are determined by the polygon
matroid G(Γ). Furthermore, they are weakly increasing with respect to the minor orderings
of graphs and of matroids.

Proof. The first part is a special case of Theorem IV.5.1.
It suffices to prove the second part for graphs. Weak increase is obvious for subgraphs.

The proof for contractions relies on three facts from Part I. First, Γ/S = (Γ/T ) \ (S \ T ) if
T is a maximal forest in S ⊆ E. Therefore we need only contract by a forest T . Second,
(Γ, ∅)/T = (Γ/T, ∅) for a forest. (Equality fails if T is not a forest.) Finally, gains contract:
if Ω has gains in G, so does every contraction. �

Proposition 4.2. For each skew field F , the class of graphs Γ for which (Γ, ∅) has each
of the following kinds of representation is closed under taking minors.

(1) A canonical bias representation.
(2) A bias representation.
(3) A canonical lift representation.
(4) A lift representation.

Proof. Again we use the fact that Γ/S = (Γ/T ) \ (S \ T ) if T is a maximal forest in S. �

We conclude, by the famous theorem of Robertson and Seymour [9, 10], that each class of
finite graphs mentioned in Proposition 4.2, as well as each class of finite graphs defined by
the property that f(Γ) ≤ k for f = µi, λi, κp and each k ≥ 1, is characterized by a finite list
of forbidden minors.

5. Complete graphs and complete-graph bounds

For complete graphs we get better bounds than the general ones, but no definitive solution
except in very small orders. Upper bounds on complete graphs imply bounds on simple
graphs and more generally on multigraphs with bounded multiplicity.

First we discuss arbitrary representations.
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Proposition 5.1. G(Kn, ∅) has no representation over Fq when q ≤ ⌊n2

4
⌋ if n ≥ 6, when

q ≤ 5 if n = 5, when q = 2 if n = 4. If n ≥ 5, L(Kn, ∅) has no representation over Fq when

q < ⌊n2

4
⌋. L(K4, ∅) has no binary representation and L(K◦

4 , ∅) has no binary or ternary
representation.

Proof. From Lemma 2.4. �

Now we look into modular antivoltages.

Proposition 5.2. We have µ0(Kn) ≥ ⌊n2

4
⌋ if n ≥ 3.

Proof. The bound follows from Proposition 3.1(a). �

In fact, it is easy to verify directly that µ0(K3) = 2 and µ0(K4) = 4; or see the discussion
of µ2 later.

Theorem 5.3. For any simple graph Γ of order n, µ2(Γ) ≤ ⌈(e − 2)(n − 1)!⌉.
Proof. We produce integral antivoltages for Kn whose breadth equals 1 + ⌊(e − 2)(n − 1)!⌋.
Label the nodes v−1, v0, v1, . . . , vn−2. For an edge vivj with i < j the antivoltage is ϕij =
(j − i)πi, where πi equals the falling factorial (n − 1)i = (n − 1)(n − 2) · · · (n − i), with
(n− 1)0 = 1, except that π−1 = 0. (Thus, the antivoltage of any edge at v−1 equals 0.) The
important properties are that πi−1 | πi for i > 0 and that πi > ϕjk whenever −1 ≤ j < i.

To prove no circle has antivoltage 0, let C be any circle and let vi be the lowest-numbered
node in C other than v−1. Then ϕ(C) ≡ (k − j)πi 6≡ 0 (mod πi+1) if C = vjvivk · · · where
j, k ≥ 0, since k − j < n − i. A similar argument applies if v−1 is adjacent to vi in C.

The Hamiltonian circle H0 = (v−1v0v1 · · · vn−2) has antivoltage

1 + (n − 1) + (n − 1)2 + · · · + (n − 1)n−3,

which by Taylor’s remainder formula for ex at x = 1 is equal to ⌊(e − 2)(n − 1)!⌋. We show
that H0 is the unique circle with maximum antivoltage by building and demolishing bridges
and levelling cliffs.

Take an arbitrary circle C 6= H0, written as a cyclic permutation (vi0vi1vi2 · · · vim) and
oriented so that ϕ(C) > 0. We show how to modify C so as to increase ϕ(C).

Case 1. C = (viv−1vj · · · ) with i < j. By deleting v−1 from C we increase ϕ(C) by ϕij > 0.
Case 2. v−1 /∈ C. There must be a decreasing step in C, that is, C = (vivj · · · ) where

i > j. Insert v−1 between vi and vj . This increases ϕ(C) by ϕji > 0.
Case 3. C = (v−1vi1vi2 · · · vim) with i1 < im. The structure of C is that it contains peaks,

or locally maximal indices, and valleys, or locally minimal indices, joined by downslopes
(from a peak to a valley) and upslopes. If C has more than one peak, it necessarily contains
a rising valley, a valley whose preceding peak is lower than the succeeding peak.

Suppose C contains an ascending consecutive triple vivjvk (that is, −1 ≤ i < j < k).
Then

ϕij + ϕjk > ϕik; (5.1)

this follows because (k − j)πj > (k − j)πi. A descending consecutive triple satisfies the
same inequality in reverse. Therefore any descending triple vkvjvi should be “bridged”: vj

should be deleted and this will increase ϕ(C). Thus we may assume henceforth that every
downslope is a cliff, a peak followed immediately by a valley, as otherwise the antivoltage of
C can certainly be increased.



Biased Graphs. VII 13

Suppose C contains a peak vp in a consecutive triple vivpvj where −1 ≤ i < j. Then
ϕip +ϕpj = ϕip− (p− j)πj < 0 since πj > ϕip. Because ϕij ≥ 0, we increase ϕ(C) by deleting
vp (thus “levelling” the cliff vpvj). Hence we may assume that, if C = (vivpvj · · · ) where vp

is a peak, then i > j.
Now consider a rising valley vl. It must appear in a sequence (vivpvl · · · vjvk · · · vq · · · )

where vp and vq are the previous and next peaks (so p < q), i > l ≥ −1, and l ≤ j < p <
k ≤ q. We level the preceding peak by moving vp to the upslope between vj and vk; i.e., C
becomes (vivl · · · vjvpvk · · · vq · · · ). We show that this operation increases ϕ(C) by comparing
the parts of the sum that change: in C,

s = ϕip + ϕpl + ϕjk = (p − i)πi − (p − l)πl + (k − j)πj,

and in the modified circle,

s′ = ϕil + ϕjp + ϕpk = −(i − l)πl + (p − j)πj + (k − p)πp.

The difference is
s′ − s = (k − p)(πp − πj) − (p − i)(πi − πl).

Since i < p, it follows that

s′ − s ≥ (πp − πj) − (p − i)πi.

When i > j, πi > πj, so

s′ − s > πp − (p + 1 − i)πi

= πi[(n − 1 − i)p−i − (p + 1 − i)]

≥ πi[(n − 1 − i) − (p + 1 − i)]

= πi[n − 2 − p] ≥ 0.

When j > i, πj > (p − i)πi, so we have

s′ − s > πp − 2πj

≥ πj[(n − j − 1) − 2] = πj[n − j − 3] > 0,

since j ≤ q − 3 < n − 3. In every case, s′ > s. Thus, moving vp increases ϕ(C).
What we have shown is that any rising valley can be eliminated while increasing the

antivoltage. Consequently, we may assume C has only one peak. That means it has i1 <
i2 < · · · < im. Equation (5.1) shows that, if there is any place where ik−1 < ik−1, we increase
the antivoltage by inserting vik−1+1. Similarly, if im < n − 2, we increase the antivoltage by
inserting vn−2 at the end of the cycle. Thus in the end we have transformed C into H0,
which is therefore the only circle having maximum antivoltage. �

The upper bound for n = 3 gives µ2 ≤ ⌈2(e − 2)⌉ = 2, which equals the lower bound.
Hence,

µ0(K3) = µ1(K3) = µ2(K3) = 2.

For n = 4 the upper bound is µ2 ≤ ⌈6(e− 2)⌉ = 5. For n = 5 the bounds are 6 ≤ µ0 ≤ µ2 ≤
⌈24(e − 2)⌉ = 18. In the upper bound, since e − 2 ≈ .71828, we are getting about a 28%
improvement over Theorem 3.4(a) by more cleverly assigning the antivoltages. The bound
unfortunately appears to be far from best possible. K4 regarded as a wheel (see Example
6.4) has integral antivoltages with maxC ϕ(C) = 3; thus

µ0(K4) = µ1(K4) = µ2(K4) = 4.
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Moreover, K5 has integral antivoltages shown in Figure 1 with maxϕ(C) = 8. I found by a
tedious calculation, which I believe is reliable, that there are no integral antivoltages whose
breadth is 6 or 7. (This is the only example where I know µ2 > ξ + 1.) Thus,

8 ≤ µ0(K5) ≤ µ2(K5) ≤ 9.

This is enormously better than what Theorem 5.3 implies. Indeed, I do not know whether µ2

is linearly bounded either above or below by ξ for complete (or any) graphs, so the problem
of effectually bounding µ2(Kn) must be regarded as very open.

v
2

2

2

3 2

3

1
v

v
0

v
3

1

Figure 1. Integral antivoltages on K5 in which the maximum antivoltage
of a circle is 8 = ϕ(C) where C = (v−1v0v3v1v2). In the figure, v−1 and its
0-antivoltage edges are omitted.

Corollary 5.4. If Γ is a loopless graph of order n and all edge multiplicities are at most
m, then µ2(Γ) ≤ ⌈mn(e1/m − 1 − m−1)(n − 1)!⌉.
Proof. We exhibit an antivoltage for mKn, which is Kn with each edge replaced by m copies
of itself. In the proof of Theorem 5.3, replace each edge vivj (where 0 ≤ i < j), whose
antivoltage is (j−i)πi, by m edges with antivoltages

[

(j−i)m−k
]

miπi for k = 0, 1, . . . ,m−1.
The largest antivoltage of such an edge is mi+1(j−i)πi. The proof goes through if we assume
all forward edges of C have this largest antivoltage. Thus ϕ(C) ≤ ϕ(H0) =

∑n−3
i=0 mi+1(n −

1)i. �

There remain prime-power antivoltages; that is, upper and lower bounds on κp(Kn) and
λi(Kn).

Proposition 5.5. We have κp(K3) = 1,

κp(K4) = 3, 2, 1 when p = 2, p = 3, p ≥ 5, and

κp(Kn) ≥ logp⌊n2/4⌋ if n ≥ 5.
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For n ≥ 3 we have

κp(Kn) ≤
n−1
∑

j=2

⌈logp j⌉ ≤ n − 2 + logp(n − 1)!

but κp(Kn) = 1 if p ≥ (n − 1)!.

001 010

100

01 10

01

1

1

1

Figure 2. Antivoltages on K4 with values in Z
k
p for (from left to right)

pk = 23, 32, and p1 if p ≥ 5. In the figures, one node and its 0-antivoltage
edges are omitted.

Proof. Proposition 3.1(b) gives the lower bounds for n ≥ 5. For the upper bound, in Theorem
3.4(b,b′) take T to consist of all edges at a node, so Γ \ T = Kn−1, σp =

∑n−1
j=1 ⌈logp j⌉, and

π(Γ \ T, α) = (n − 1)!. As for the exact values, the upper bounds are by example (trivial
for K3, and for K4 see Figure 2). The lower bounds are based on the fact that by switching
we can choose antivoltages to be zero on a node star; then the remaining edge (in K3) or
triangle (in K4) must have antivoltages for which no path or circle sums to 0. �

0100

11101001

0011

0001 0010

Figure 3. Antivoltages on K5 with values in Z
4
2. One node and its 0-

antivoltage edges are omitted.

The value of κ2(K5) is 4, strictly between the lower bound 3 and the upper bound 5.
Figure 3 shows antivoltages in Z

4
2. The proof that none exist in Z

3
2 is neither difficult nor

interesting, so we omit it.
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Proposition 5.6. We have

λ0(K3) = λ1(K3) = 2, λ0(K4) = λ1(K4) = 5,

6 ≤ λ0(K5) ≤ λ1(K5) < 4!2 = 576,

and for n ≥ 6,
⌊

n2/4
⌋

≤ λ0(Kn) ≤ λ1(Kn) < (n − 1)!2.

Proof. K3 is obvious. K4 follows from the analysis of κp. The cases n ≥ 5 are based on
Theorem 3.4 and Proposition 3.1. (Theorem 3.2 is much weaker.) �

Undoubtedly the upper bounds for n ≥ 5 are not close. We set as a homework exercise to
get a reasonable bound for K5 by careful application of the degree method.

6. More examples

Here we treat a few more families of examples. In three we get a complete solution to the
question of canonical bias representability although not necessarily lift representability.

Example 6.1 (Frozen series-parallel graphs). The problem of determining which fields
admit representations of the bicircular or bicircular lift matroid is easy for certain series-
parallel graphs that are, at bottom, fancy versions of Example 3.1. We define a series-parallel
graph Γ as a loop, or a graph obtained from a link r1r2 by repetitions of the series and parallel
operations of subdividing an edge and doubling an edge in parallel. The nodes r1, r2 are the
roots; we regard a loop as the case in which r1 = r2. For an edge f in Γ, let Pf be an
r1r2-path (or circle, in the loop case) that contains f . To get our restricted series-parallel
graphs we confine the series and parallel operations to unfrozen edges, an edge f becoming
frozen whenever an edge in Pf \ f is doubled. (The initial link or loop r1r2 is unfrozen. The
path Pf is unique for unfrozen edges in restricted graphs.) These restricted graphs (including
the graph of a single loop), which we call frozen series-parallel graphs, are essentially the
abstract duals of outerplanar graphs. (To be exact, frozen series-parallel blocks are the
abstract duals of outerplanar blocks.2 One can prove this by observing that the property of
being a frozen series-parallel graph is preserved by Whitney 2-isomorphism operations. By
such operations one can move all multiple edges to be incident to one of the roots. Then,
in a planar drawing, this root is incident to every region; dually, the root becomes a region
incident to every node. Thus we have an outerplanar block graph. This process is reversible.
Since the forbidden minors for outerplanar graphs are K4 and K3,2 [2], by dualizing we find
that a block is a frozen series-parallel graph if and only if it has no minor isomorphic to K4

or 2C3.)
In a frozen series-parallel graph Γ, other than a loop, call two unfrozen edges equivalent if

they lie in the same r1r2-path. Let m be the number of equivalence classes. We can produce
antivoltages by assigning to one edge in each equivalence class, oriented from r1 to r2, a
different antivoltage in the set {0, 1, . . . ,m − 1}, and to all other edges antivoltage 0. This
gives integral antivoltages with breadth m and hence antivoltages in each group Zµ with
µ ≥ m. Furthermore, Γ contracts to mK2 by contracting all the edges except one in each
equivalence class. The number m of equivalence classes equals ξ(Γ) + 1. Therefore,

µ0(Γ) = µ1(Γ) = µ2(Γ) = ξ(Γ) + 1. (6.1)

2I thank James Oxley for this observation.
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Also, λ1(Γ) is the least prime power q > ξ(Γ). These statements apply even when Γ is a
loop. We draw the following conclusions:

Proposition 6.1. Let Γ be a frozen series-parallel graph. (Γ, ∅) has a canonical bias
representation over Fq if and only if q > ξ(Γ) + 1. It has a canonical lift representation if
and only if q ≥ ξ(Γ) + 1. It has a lift or bias representation only if q ≥ ξ(Γ).

Proof. The facts about canonical representations and the lower bounds on arbitrary repre-
sentations follow as in Example 3.1 supplemented by Lemma 2.4, since (mK2, ∅) is a minor
of (Γ, ∅) and indeed M(Γ) = M ′(Γ) = M ′′(Γ) = m. �

The existence of small noncanonical representations seems more difficult. Example 6.2
suggests that a bias representation may always exist if q = ξ(Γ) + 1, and that bias and lift
representations sometimes exist if q = ξ(Γ).

Example 6.2 (Restricted multitriangles). A frozen series-parallel block Γ of order 3 is K3

with up to two multiple edges. (Then L(Γ, ∅) = G(Γ, ∅).) We can determine the Galois
fields Fq over which there is a representation of L(Γ, ∅). Say there are edges ek

ij , 1 ≤ k ≤ mij,
between vi and vj; thus v1v2 has multiplicity m12 ≥ 1, v2v3 has multiplicity m23 ≥ 1, and
there is just one edge e13.

Proposition 6.2. When m23 = 1, a representation exists if and only if q ≥ ξ(Γ). When
m12,m23 ≥ 2, a representation exists if and only if q ≥ ξ(Γ) + 1.

Proof. Comparing to Example 6.1, m = m12 + m23 = ξ(Γ) + 1. We have q ≥ m − 1 from
Proposition 6.1.

When m23 = 1, a representation is easy to construct for any q ≥ m − 1.
Suppose m12,m23 ≥ 2 and assume a representation exists. Let ê denote the point rep-

resenting edge e. The line L12, generated by the points êi
12 for 1 ≤ i ≤ m12, and the line

L23, defined similarly, meet in a point that represents no edge. The edge ê13 lies on neither
L12 nor L23. On L23 there are: m12 points at which L23 intersects the lines êi

12ê13, the point
L12 ∧L23, and the m23 points êj

23. Therefore q + 1 ≥ m12 + m23 + 1; so q ≥ m. If q = m, the
canonical lift representation shows that a representation exists. �

This example with m12 > 1 = m23 is an instance where a representation of G(Γ, ∅) or
L(Γ, ∅) is known to exist over a field that has no canonical bias or lift representation. When
m12,m23 ≥ 2, every representation is obviously a canonical lift representation.

Example 6.3 (Multitriangles). Let Γ be a triangle with multiple edges, in which every edge
is multiple. (Again, L(Γ, ∅) = G(Γ, ∅).) By Theorem IV.7.1, G(Γ, ∅) has only canonical
lift and canonical bias representations. That reduces the question of representability over
Galois fields entirely to the existence of modular and prime-power antivoltages. Because the
bicircular and bicircular lift matroids are equal we deduce that, if Γ is a triangle with every
edge multiple, then G(Γ, ∅) is representable over Fq (where q = pk) if and only if Γ has
antivoltages in either Zq−1 or Z

k
p.

Suppose the multiplicities are m12, m23, and m13, their sum is m, and m′ = m−minmij.
By Proposition 3.1, µ0 ≥ m′ and λ0 ≥ m′. We show that µ2 ≤ m−1 = ξ+1 by construction.
With notation as in the preceding example, take integral antivoltages ϕ(ei

12) = i − 1 for
1 ≤ i ≤ m12, ϕ(ej

23) = j−1 for 1 ≤ j ≤ m23, and ϕ(ek
13) = m12+m23−2+k for 1 ≤ k ≤ m13.
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(We understand the subscripts to indicate the edge orientation.) Thus circles ei
12e

j
23e

k
31 have

antivoltages ranging between −1 and −(m − 2). We conclude that µ2 ≤ m − 1 = ξ(Γ) + 1.
We leave κp and λ1 as exercises.

Example 6.4 (Wheels). The t-spoke wheel Wt turns out to be simple, especially as regards
the bicircular matroid. Note that t equals the cyclomatic number. We assume t ≥ 3. Let
the rim nodes be x1, x2, . . . , xt in consecutive order and let the hub be z. Then

µ0(Wt) = µ1(Wt) = µ2(Wt) = t + 1. (6.2)

To prove µ0 ≥ t + 1, contract the path x1x2 · · · xt−1 to a point, leaving a contrabalanced
graph with three nodes and a (t − 1)-fold multiple edge x1z. Now contract zxt. This gives
((t+1)K2, ∅). Apply Lemma 2.1 to deduce that µ0 ≥ t+1. For µ2 ≤ t+1, assign antivoltage
0 to each spoke and 1 to each rim edge xi−1xi in that orientation (where x0 = xt). Clearly,
these antivoltages are contrabalanced and the antivoltage of a circle reaches its maximum
value t on the rim.

Proposition 6.3. For t ≥ 3, G(W ◦
t , ∅) has a representation over a field F if and only if

#F ≥ t + 2. No representation of G(Wt, ∅) exists over any field of order q < t.
For t ≥ 3, L(W ◦

t , ∅) has a representation over a prime field Fp if and only if p ≥ t + 1.
No representation of L(Wt, ∅) exists over any field of order q < t.

Proof. Apply Equation (6.2) and Lemma 2.2. �

Antivoltages in Z
k
p are more difficult than modular antivoltages but Theorem 3.4 is helpful.

We choose T so as to leave a large-degree node in Wt \ T (I believe this is a good principle);
that means T is a Hamiltonian path from the hub. Then Wt \T is K1,t−1 with an extra edge
hanging off one rim node, so π(Wt \ T, α) = 2t if the hub is the tail of every edge aside from
the extra edge. Then the theorem gives

µ2 ≤ 2t, κp ≤ 1 + ⌈logp t⌉, λ1 < 4t2. (6.3)

When t = 3, the true values are obtained by applying Propositions 5.5 and 5.6 since
W3 = K4; we get κp(W3) = 3, 2, 1 depending on p, and λ1(W3) = 5. The estimates of
Theorems 3.2 and 3.4 are far too big; it seems likely that this remains true when p is large.

Example 6.5 (Complete bipartite graphs). For Kr,s (with r ≥ s), if we follow the advice
of Example 6.4 about choosing T in Theorem 3.4 we will have Kr,s \ T = Kr−1,s−1. Orient
all edges from one side to the other, so do = (r − 1, . . . , r − 1, 0, . . . , 0) with s − 1 positive
terms. Then π(Kr,s \ T, α) = rs−1 and we get

µ2 ≤ rs−1, κp ≤ (s − 1)⌈logp r⌉, λ1 < r2(s−1).

The opposite orientation gives π = sr−1 instead, but Proposition 3.6 shows this is inferior.

7. The number of antivoltages

How many antivoltage mappings does Γ have with values in Zµ? Z
k
p? How many integral

antivoltages have breadth bounded by a fixed positive integer (and are zero on a fixed
maximal forest T ; without this constraint the number is infinite)? For a finite abelian group
A, let
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αΓ(A) = the number of antivoltages on Γ with values in A.

(The number that are zero on T equals αΓ(A)/(#A)#T because, with abelian antivoltages,
each antivoltage that is zero on T switches uniquely to one with arbitrarily prescribed values
on T .) Also, define

β◦
Γ,T (µ) = the number of integral antivoltages on Γ whose breadth is ≤ µ and which are

zero on T .

(The superscript circle on β is there for consistency with the notation in [1].) We cannot
evaluate these functions very often but we can prove general properties. We need the cyclo-
matic number ξ of Γ, the rank ρ = #E − ξ, and a convex polytope P (Γ, T ) ⊆ R

E\T . Let xC

be the coefficient vector of the linear form ϕ(C) corresponding to an oriented circle C; thus
ϕ(C) = ϕ · xC . Think of R

E\T as the subspace {x ∈ R
E : x(e) = 0 for e ∈ T} of R

E. Then
P (Γ, T ) is the intersection of all the halfspaces

HC = {x ∈ R
E\T : x · xC ≤ 1}

corresponding to oriented circles C (so each circle gives two halfspaces). P (Γ, T ) is bounded,
being contained in the box [−1, 1]E\T ; thus, its (ξ-dimensional) volume volP (Γ, T ) is finite,
and the volume is positive since P (Γ, T ) is clearly full-dimensional in R

E\T .

Theorem 7.1. αΓ(A) is a polynomial function of µ = #A, independent of the particular
abelian group A. Its leading term is µ#E and it has a factor µρ.

The function β◦
Γ,T (µ) is a polynomial, independent of T , with leading term volP (Γ, T ) ·µξ

and nonzero constant term.

Proof. Integral antivoltages first. Because each integral antivoltage switches to one of the
same breadth that is 0 on T , β◦

Γ,T (µ) is independent of the choice of T . A vector x ∈ R
E\T

is an integral antivoltage with breadth ≤ µ if and only if

µ−1x ∈
(

int P (Γ, T ) \
⋃

H

)

∩ µ−1
Z

E\T ,

where H is the set of all hyperplanes x ·xC = 0 for C ∈ C, the set of circles of Γ. In what we
call in [1] “inside-out Ehrhart theory” (which is a combination of standard Ehrhart theory
and poset Möbius inversion), β◦

Γ,T (µ) is the open Ehrhart quasipolynomial of (P (Γ, T ),H);

thus it is a quasipolynomial in µ whose leading term is volP (Γ, T ) · µξ and whose constant
term is ±r where r is the number of regions into which H dissects P (Γ, T ). Moreover,
β◦

Γ,T (µ) is a polynomial because all vertices of the regions are integral. To see this, note that
any such vertex is determined by a subset of the linear equations in the matrix equation









IT O
M(C)
M(C)
M(C)









x =









0

1

0

−1









, (7.1)

where on the left the columns are indexed by E, IT is an identity matrix, O is a zero matrix,
and the rows of M(C) are the vectors xT

C for C ∈ C (without being duplicated for opposite
orientations). M(C) is well known to be totally unimodular, so any point determined by a
subset of the rows of (7.1) is integral.

Similar reasoning applies to αΓ(A). For any subset D of C, let M(D) be the matrix that
consists of the rows of M(C) which are associated with C ∈ D. Because M(D) is totally
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unimodular, the number ν(D) of solutions of M(D)x = 0 equals (#A)#E−rk M(D). Thus, for
instance, ν(∅) = (#A)#E. By inclusion and exclusion,

αΓ(A) =
∑

D⊆C

(−1)#Dν(D) =
∑

D⊆C

(−1)#Dµ#E−rk M(D).

There is a factor µρ because #E − rk M(D) ≥ #E − rk M(C) = #E − ξ = ρ. �

We write αΓ(µ) instead of αΓ(A) for an abelian group with #A = µ, and β◦
Γ(µ) = β◦

Γ,T (µ)
for every T .

Note the corollary that volP (Γ, T ) is independent of T .
Now let us do some small examples.

Example 7.1. Let Γ consist of one node and m loops. Then

αΓ(µ) = (µ − 1)m and β◦
Γ(µ) = 2m(µ − 1)m.

The same formulas hold if Γ consists of any m circles joined at one common node, except
that αΓ has to be multiplied by µρ. For instance, if C is a circle of length l, then αC(µ) =
µl−1(µ − 1) and β◦

C(µ) = 2(µ − 1).

Example 7.2. The graph mK2 consists of m links e1, . . . , em joining two nodes. It is clear
that αmK2

(µ) = (µ)m. It is less obvious that

β◦
mK2

(µ) = m(µ − 1)m−1. (7.2)

For the proof, orient all edges the same way. Define M = the set of µ-modular antivoltages,
B = the set of integral antivoltages with breadth ≤ µ,

Mi = {ϕ̄ ∈ M : ϕ̄(ei) = 0}, Bi = {ϕ ∈ B : ϕ(ei) = 0},
B+ = {ϕ ∈ B : ϕ ≥ 0 and minj ϕ(ej) = 0}, B+

i = Bi ∩ B+.

Obviously, #B+
1 = · · · = #B+

m and B+ = B+
1 ∪· · · · ∪· B+

m, so #B+ = m#B+
i . The trans-

lation mappings B → Bi by ϕ 7→ ϕ − ϕ(ei) and B → B+ by ϕ 7→ ϕ − minj ϕ(ej) give
bijections Bi ⇆ B+, so #Bi = #B+. Modular translation ϕ̄ 7→ ϕ̄ − ϕ̄(ei) gives a µ-to-1
mapping M → Mi, so #Mi = µ−1#M . Finally, suppose ϕ̄ ∈ Mi. We can interpret ϕ̄ as
a well-defined element of B+

i by treating Zµ = {0, 1, . . . , µ − 1} as a set of integers. This
mapping is inverse to the modularization mapping B+

i → Mi. Therefore, #Mi = #B+
i . It

follows that β◦
mK2

(µ) = #Bi = m
µ
#M = m

µ
αmK2

(µ), thereby proving (7.2). We also see that

the strong part of Problem 3.8 has a positive answer for the graphs mK2.
The geometry of this example is that of the root system Am−1 in the projected form

A′
m−1 = {±bi} ∪ {bj − bi : j 6= i} ⊆ R

m−1, where {bi} is the standard basis. If we assign
ϕ(ei) = xi for i = 1, . . . ,m− 1, then P (Γ, {em}) is the polytope bounded by x · v ≤ 1 for all
v ∈ A′

m−1; this is the polar dual polytope of conv(A′
m−1). By (7.2), its volume is m. Taking

m = 3 as an example, β◦
3K2

(µ) counts 1
µ
-integral points in the plane domain bounded by

−1 < x1 < 1, −1 < x2 < 1, −1 < x2 − x1 < 1 and not in the lines x1 = 0, x2 = 0, and
x2 − x1 = 0.

I do not discern a deletion-contraction identity for either αΓ or µ−ραΓ or β◦
Γ. Indeed,

suppose any of them satisfied a recurrence of the form

FΓ(µ) = a(µ)FΓ\e(µ) + b(µ)FΓ/e(µ)

when e is neither a loop nor an isthmus. Substituting Γ = mK2 with m = 2 and m = 3
leads to inconsistent values for b(µ).
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Example 7.3. I computed

αK4
(µ) = µ3(µ − 1)(µ2 − 3µ + 3).

Contracting and deleting one edge,

αK4/e(µ) = µ2(µ − 1)(µ − 2)(µ − 3), αK4\e(µ) = µ2(µ − 1)2.

8. Root-of-unity representations

Here is a final use for modular antivoltages. Call a root-of-unity representation of
(Γ, ∅) a canonical bias representation in which the antivoltages are in Zµ but we treat Zµ

as the multiplicative group of powers of ζ, a complex µth root of unity; that is, we convert
ϕ(e) ∈ Zµ to ζϕ(e) before constructing the canonical bias representation. Thus we obtain
a complex representation of G(Γ, ∅) from a modular antivoltage mapping. Dualizing, we
have a representation by an arrangement H[Γ, ϕ] of complex hyperplanes. All the machinery
of complex arrangements can be applied [6]; in particular, the Poincaré polynomial of the
complement is determined by Γ since it is a simple transform of the chromatic polynomial
of (Γ, ∅).
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