Non-Attacking Chess Pieces: The Bishop

Thomas Zaslavsky

Binghamton University (State University of New York)

C R RAO ADVANCED INSTITUTE OF MATHEMATICS, STATISTICS AND COMPUTER SCIENCE 29 July 2010

Joint work with Seth Chaiken and Christopher R.H. Hanusa

OUTLINE

- 1. Chess Problems: Non-Attacking Pieces
- 2. Largely Czech Numbers and Formulas
- 3. Riders
- 4. Configurations and Inside-Out Polytopes
- 5. The Bishop Equations
- 6. Signed Graphs
- 7. Signed Graphs to the Rescue

1. Chess Problems: Non-Attacking Pieces

7 non-attacking bishops on an 8×8 board.

Question 1: How many bishops can you get onto the board?

Question 2: Given q bishops, how many ways can you place them on the board so none attacks any other?

2. Largely Czech Numbers and Formulas

Vacláv Kotěšovec (Czech Republic) has a book of chess problems and solutions [5], called *Chess and Mathematics*. Some of the numbers:

 $N_B(q;n) :=$ the number of ways to place q non-attacking bishops on an $n \times n$ board.

n =	1	2	3	4	5	6	7	8	Period	Denom
q=1	1	4	9	16	25	36	49	64	1	1
2	0	4	26	92	240	520	994	1736	1	1
3	0	0	26	232	1124	3896	10894	26192	2	2
4	0	0	8	260	2728	16428	70792	242856	2	2
5	0	0	0	112	3368	39680	282248	1444928	2	2
6	0	0	0	16	1960	53744	692320	5599888	2	2

 $N_Q(q;n) :=$ the number of ways to place q non-attacking queens on an $n \times n$ board.

n =	1	2	3	4	5	6	7	8	Period	Denom
q=1	1	4	9	16	25	36	49	64	1	1
2	0	0	8	44	140	340	700	1288	1	1
3	0	0	0	24	204	1024	3628	10320	2	2
4	0	0	0	2	82	982	7002	34568	6	6
5	0	0	0	0	10	248	4618	46736	60	??
6	0	0	0	0	0	4	832	22708	840	??
7	0	0	0	0	0	0	40	3192	360360	??

$$N_B(1;n) = n^2.$$

$$N_B(2;n) = \frac{n}{6} (3n^3 - 4n^2 + 3n - 2).$$

$$N_B(3;n) = \begin{cases} \frac{(n-1)(2n^5 - 6n^4 + 9n^3 - 11n^2 + 5n - 3)}{12} & \text{if } n \text{ is odd,} \\ \frac{n(n-2)(2n^4 - 4n^3 + 7n^2 - 6n + 4)}{12} & \text{if } n \text{ is even.} \end{cases}$$

$$N_B(4;n) = \begin{cases} \frac{(n-1)(n-2)(15n^6 - 75n^5 + 185n^4 - 339n^3 + 388n^2 - 258n + 180)}{360} & \text{if } n \text{ is odd,} \\ \frac{n(n-2)(15n^6 - 90n^5 + 260n^4 - 524n^3 + 727n^2 - 646n + 348)}{360} & \text{if } n \text{ is even.} \end{cases}$$

$$N_B(5;n) = \begin{cases} \frac{(n-1)(n-2)(n-3)(3n^7 - 22n^6 + 80n^5 - 204n^4 + 379n^3 - 464n^2 + 378^n - 270)}{360} \\ & if n \text{ is odd,} \\ \frac{n(n-2)(3n^8 - 34n^7 + 177n^6 - 590n^5 + 1435n^4 - 2592n^3 + 3326n^2 - 2844n + 1344)}{360} \\ & if n \text{ is even.} \end{cases}$$

$$N_B(6; n) = \begin{cases} (n-1)(n-3)(126n^{10} - 2016n^9 + 14868n^8 - 69244n^7 + 234017n^6 \\ -607984n^5 + 1211879n^4 - 1797328n^3 + 1953593n^2 - 1550820n + 722925) \\ \hline 90720 \\ \text{if } n \text{ is odd,} \\ n(n-2)(126n^{10} - 2268n^9 + 18774n^8 - 97216n^7 + 361165n^6 \\ -1029454n^5 + 2283178n^4 - 3841960n^3 + 4676932n^2 - 3808152n + 1640160) \\ \hline 90720 \\ \text{if } n \text{ is even} \end{cases}$$

5

3. Riders

Rider: Moves any distance in specified directions (forward and back).

The move is specified by an integral vector $(m_1, m_2) \in \mathbb{R}^2$ in the direction of the line.

Bishop: (1,1), (1,-1).

Queen: (1,0), (0,1), (1,1), (1,-1).

Nightrider: (1,2), (2,1), (1,-2), (2,-1).

Configuration:

A point

$$z = (z_1, z_2, \dots, z_q) \in (\mathbb{R}^2)^q = \mathbb{R}^{2q}$$

where

$$z_i = (x_i, y_i),$$

which describes the locations of all the bishops (or queens, or ...).

Constraints:

The equations that correspond to attacking positions:

$$z_j - z_i \in a$$
 line of attack,

or in a formula:

$$z_j - z_i \perp m$$
 for some move vector $m = (m_1, m_2)$,

or,

$$m_2(x_i - x_i) = m_1(y_i - y_i).$$

4. Configurations and Inside-Out Polytopes

The board.

A square board with squares $\{(x, y) : x, y \in \{1, 2, ..., n\}\} = \{1, 2, ..., n\}^2$.

The board is $n \times n = 4 \times 4$ with a border, coordinates shown on the left side of each square. Note the border coordinates with 0 or n + 1, not part of the main square.

The dot picture in \mathbb{Z}^2 . The border points are hollow.

7

Reduce
$$(x, y)$$
 to $\frac{1}{n+1}(x, y) \in [0, 1]^2$.

The position of a piece becomes $z_i = (x_i, y_i) \in (0, 1)^2 \cap \frac{1}{n+1} \mathbb{Z}^2$.

The configuration becomes $z = (z_1, \dots, z_q) \in (0, 1)^{2q} \cap \frac{1}{n+1} \mathbb{Z}^{2q}$,

a $\frac{1}{n+1}$ -fractional point in the open cube $([0,1]^{2q})^{\circ}$.

$$\circ \left(\frac{0}{5}, \frac{0}{5}\right) \qquad \circ \left(\frac{1}{5}, \frac{0}{5}\right) \qquad \circ \left(\frac{2}{5}, \frac{0}{5}\right) \qquad \circ \left(\frac{3}{5}, \frac{0}{5}\right) \qquad \circ \left(\frac{4}{5}, \frac{0}{5}\right) \qquad \circ \left(\frac{5}{5}, \frac{0}{5}\right)$$

$$\circ \left(\frac{0}{5}, \frac{1}{5}\right) \qquad \bullet \left(\frac{1}{5}, \frac{1}{5}\right) \qquad \bullet \left(\frac{2}{5}, \frac{1}{5}\right) \qquad \bullet \left(\frac{3}{5}, \frac{1}{5}\right) \qquad \circ \left(\frac{4}{5}, \frac{1}{5}\right) \qquad \circ \left(\frac{5}{5}, \frac{1}{5}\right)$$

$$\circ \left(\frac{0}{5}, \frac{2}{5}\right) \qquad \bullet \left(\frac{1}{5}, \frac{2}{5}\right) \qquad \bullet \left(\frac{2}{5}, \frac{2}{5}\right) \qquad \bullet \left(\frac{3}{5}, \frac{2}{5}\right) \qquad \circ \left(\frac{4}{5}, \frac{2}{5}\right) \qquad \circ \left(\frac{5}{5}, \frac{2}{5}\right)$$

$$\circ \left(\frac{0}{5}, \frac{3}{5}\right) \qquad \bullet \left(\frac{1}{5}, \frac{3}{5}\right) \qquad \bullet \left(\frac{2}{5}, \frac{3}{5}\right) \qquad \bullet \left(\frac{3}{5}, \frac{3}{5}\right) \qquad \circ \left(\frac{4}{5}, \frac{3}{5}\right) \qquad \circ \left(\frac{5}{5}, \frac{3}{5}\right)$$

$$\circ(\frac{0}{5}, \frac{4}{5})$$
 $\bullet(\frac{1}{5}, \frac{4}{5})$ $\bullet(\frac{2}{5}, \frac{4}{5})$ $\bullet(\frac{3}{5}, \frac{4}{5})$ $\bullet(\frac{4}{5}, \frac{4}{5})$ $\circ(\frac{5}{5}, \frac{4}{5})$

$$o(\frac{0}{5}, \frac{5}{5})$$
 $o(\frac{1}{5}, \frac{5}{5})$ $o(\frac{2}{5}, \frac{5}{5})$ $o(\frac{3}{5}, \frac{5}{5})$ $o(\frac{4}{5}, \frac{5}{5})$

The Bishop Equations. Bishops must not attack.

The forbidden equations:

$$z_i \notin y_j - y_i = x_j - x_i$$
 and $z_i \notin y_j - y_i = -(x_j - x_i)$.

Left: The move line of slope +1. Right: The move line of slope -1.

Forbidden hyperplanes in \mathbb{R}^{2q} given by the 'bishop equations'.

Summary:

We have

a convex polytope $P = [0, 1]^{2q}$, and a set $\mathcal{H} = \{h_{ij}^+, h_{ij}^-\}$ of forbidden hyperplanes,

and we want the number of ways to pick

$$z \in \left[P^{\circ} \cap \frac{1}{n+1}\mathbb{Z}^{2q}\right] \setminus \left[\bigcup \mathcal{H}\right].$$

Inside-Out Polytopes.

 (P,\mathcal{H}) is an 'inside-out polytope'. We want $E_{P^{\circ},\mathcal{H}}(n+1) :=$ the number of points in

$$\left[P^{\circ} \cap \frac{1}{n+1} \mathbb{Z}^{2q}\right] \setminus \left[\bigcup \mathcal{H}\right].$$

Inside-out Ehrhart theory (Beck & Zaslavsky 2005, based on Ehrhart and Macdonald) says that $E_{P^{\circ},\mathcal{H}}(n+1)$ is a quasipolynomial function of n+1, for $n+1 \in \mathbb{Z}_{>0}$.

Vertex of (P, \mathcal{H}) :

A point in P determined by the intersection of hyperplanes in \mathcal{H} and facets of P.

Quasipolynomial:

A cyclically repeating series of polynomials,

$$c_d(n)n^d + c_{d-1}(n)n^{d-1} + \cdots + c_1(n)n + c_0(n),$$

where the c_i are periodic functions of n that depend on $n \mod p$ for some $p \in \mathbb{Z}_{>0}$. The smallest p is called the period of the quasipolynomial.

Lemma 4.1 ([1]). If P has rational vertices and the hyperplanes in \mathcal{H} are given by an integral linear equation, then:

- (a) $E_{P^{\circ},\mathcal{H}}(n+1)$ is a quasipolynomial function of n.
- (b) Its degree is $d = \dim P$, and its leading term is $vol(P)n^d$.
- (c) Its period is a factor of the least common denominator of all coordinates of vertices of (P, \mathcal{H}) .

Define

 $N_R(q;n) :=$ the number of ways to place q non-attacking R-pieces on an $n \times n$ board.

Theorem 4.2. For a rider chess piece R, $N_R(q;n)$ is a quasipolynomial function of n, for each fixed q > 0; the leading term of each polynomial is $\frac{1}{q!}n^{2q}$.

Agrees with Kotěšovec's formulas!

The chess problem.

What is the quasipolyomial for q bishops (or queens, or ...)?

We have 2qp undetermined coefficients. The actual numbers $N_B(q; n)$ for $1 \le n \le 2pq$ will determine the whole thing.

Aye, there's the rub. Two rubs:

- (1) We don't know p.
- (2) It may be impossible to compute enough values of $N_B(q;n)$.

Finding a small upper bound on the period is not so easy. Lemma 4.1(c) says:

The period is a factor of the gcd of the denominators of the vertices of (P°, \mathcal{H}) .

Good, if we can find the denominator.

The Bishop Solution.

Theorem 4.3. The bishop quasipolynomial $N_B(q; n)$ has period at most 2.

Theorem 4.3 is an immediate corollary of Lemma 6.1, which bounds the denominator.

5. SIGNED GRAPHS

- Graph (N, E):
 - Node set $N = \{v_1, v_2, \dots, v_q\}.$
 - Edge set E.
- 1-Forest: each component is a tree with one more edge. (Each component contains exactly one circle.)
- Signed graph $\Sigma = (N, E, \sigma)$:
 - Graph (N, E).
 - Signature $\sigma: E \to \{+, -\}$.
- Circle sign $\sigma(C)$.
- Signed circuit: a positive circle; or a connected subgraph that contains exactly two circles, both negative.
- Homogeneous node: all incident edges have the same sign.
- Incidence matrix $H(\Sigma)$:
 - $-N \times E$ matrix.
 - In column of edge $e:v_iv_i$,
 - (a) $\eta(v, e) = \pm 1$ if v is an endpoint of e and = 0 if not;
 - (b) $\eta(v_i, e)\eta(v_j, e) = -\sigma(e)$.

(The column of a positive edge: one +1 and one -1, the column of a negative edge: two +1's or two -1's.)

Lemma 5.1 ([8, Theorems 5.1(j) and 8B.1]). For a signed graph Σ :

 $H(\Sigma)$ has full column rank iff Σ contains no signed circuit.

 $H(\Sigma)$ has full row rank iff every component of Σ contains a negative circle.

• The usual hyperplane arrangement $\mathcal{H}[\Sigma]$:

Edge $e: v_i v_i \mapsto h_e: x_i = \sigma(e) x_i$ in \mathbb{R}^q .

Vector-space dual to columns of incidence matrix.

(Linear dependencies are those of the incidence matrix columns.)

• Clique graph $C(\Sigma)$:

- Positive clique: maximal set of nodes connected by positive edges.
- $-\mathcal{A} := \{\text{positive cliques}\}.$
- Negative clique: maximal set of nodes connected by negative edges.
- $-\mathcal{B} := \{\text{negative cliques}\}.$
- Signed clique: either one.
- $\forall v \in \text{one positive clique}$ and one negative clique.
- For a signed forest with q nodes, $k_A + k_B = q + c$, where

c = number of components,

 k_A = number of positive cliques,

 k_B = number of negative cliques.

- Clique graph:

$$N(C(\Sigma)) = \mathcal{A} \cup \mathcal{B}.$$

An edge $A_k B_l$ for each $v_i \in A_k \cap B_l$.

6. Signed Graphs to the Rescue

Lemma 6.1. A point $z = (z_1, z_2, ..., z_q) \in \mathbb{R}^{2q}$, determined by a total of 2q bishop equations and fixations, is weakly half integral. Furthermore, in each z_i , either both coordinates are integers or both are strict half integers.

Consequently, a vertex of the bishops' inside-out polytope ($[0,1]^{2q}$, \mathcal{A}_B) has each $z_i \in \{0,1\}^2$ or $z_i = (\frac{1}{2}, \frac{1}{2})$.

Proof. A vertex z is the intersection of 2q hyperplanes:

• Bishop hyperplanes,

$$h_{ij}^+: x_j - y_j = x_i - y_i$$
 and $h_{ij}^-: x_j + y_j = x_i + y_i$.

• Facet hyperplanes,

$$x_i = c_i$$
 and $y_j = d_j$.

Equations:

Bishop equations (relations between coordinates).

Fixations:

Facet hyperplanes (fix some coordinates to chosen integers).

Signed graph of z:

 $\Sigma_z \longleftrightarrow$ the 'equations', i.e., hyperplanes h_{ij}^{ε} .

Clique graph of z:

$$C_z := C(\Sigma_z)$$
, and $\pm C_z$.

Meaning of a clique:

$$\bullet \ A_k = \{v_i, v_j, \ldots\} \implies x_i - y_i = x_j - y_j \implies$$

$$x_i - y_i = a_k \quad \forall \ v_i \in A_k.$$

•
$$B_l = \{v_i, v_j, \ldots\} \implies x_i + y_i = x_j + y_j \implies$$

$$x_i + y_i = b_l \quad \forall \ v_i \in B_l.$$

Method:

- (1) Convert to variables a_k, b_l .
- (2) Find enough fixations to determine a_k, b_l .
- (3) Solve for all x_i, y_i .

Example 6.1. $A = \{A_1, A_2, A_3\}$ and $B = \{B_1, B_2, B_3, B_4\}$, $N = \{v_1, \dots, v_8\}$:

$$C_z$$
:
$$A_1 \bullet \underbrace{v_1}_{v_3} \bullet B_1$$

$$A_2 \bullet \underbrace{v_2}_{v_4} \bullet B_2$$

$$A_3 \bullet \underbrace{v_5}_{v_6} \bullet B_3$$

$$\bullet B_4$$

A suitable 1-forest $\Sigma_z \subseteq \pm C_z$ (superscript x is +, y is -):

$$A_{1} \bullet \underbrace{v_{1}^{x}}_{v_{3}^{x}} \bullet B_{1}$$

$$A_{2} \bullet \underbrace{v_{2}^{x}}_{v_{4}^{x}} \bullet B_{2}$$

$$A_{3} \bullet \underbrace{v_{4}^{x}}_{v_{7}^{x}} \bullet B_{3}$$

$$A_{3} \bullet \underbrace{v_{4}^{x}}_{v_{7}^{x}} \bullet B_{3}$$

$$E_{2} \oplus B_{3}$$

$$E_{3} \oplus B_{4}$$

$$fixations$$

$$y_{2} = d_{1},$$

$$x_{3} = c_{2},$$

$$x_{4} = c_{3},$$

$$y_{5} = d_{2},$$

$$x_{7} = c_{4},$$

$$y_{7} = d_{3}.$$

Incidence matrix (invertible):

$$M := H(\Sigma_z) = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 1 \\ \hline -1 & -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & -1 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} A_1 \\ A_2 \\ A_3 \\ B_1 \\ B_2 \\ B_3 \\ B_4 \end{bmatrix}$$

In matrix form:

$$M^{\mathrm{T}} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \\ b_1 \\ b_2 \\ b_3 \\ b_4 \end{bmatrix} = 2 \begin{bmatrix} x_1 \\ x_3 \\ x_4 \\ x_7 \\ y_2 \\ y_5 \\ y_7 \end{bmatrix} = 2 \begin{bmatrix} c_1 \\ c_2 \\ c_3 \\ c_4 \\ d_1 \\ d_2 \\ d_3 \end{bmatrix},$$

where $c_i, d_i \in \mathbb{Z}$. Solution:

$$a_{1} = x_{1} - x_{3} + x_{4} + y_{2} = c_{1} - c_{2} + c_{3} + d_{1},$$

$$a_{2} = -x_{1} + x_{3} + x_{4} + y_{2} = -c_{1} + c_{2} + c_{3} + d_{1},$$

$$a_{3} = x_{7} + y_{7} = c_{4} + d_{3},$$

$$b_{1} = -x_{1} - x_{3} + x_{4} + y_{2} = -c_{1} - c_{2} + c_{3} + d_{1},$$

$$b_{2} = -x_{1} + x_{3} - x_{4} + y_{2} = -c_{1} + c_{2} - c_{3} + d_{1},$$

$$b_{3} = x_{1} - x_{3} - x_{4} - y_{2} + 2y_{5} = c_{1} - c_{2} - c_{3} - d_{1} + 2d_{2},$$

$$b_{4} = -x_{7} + y_{7} = -c_{4} + d_{3},$$

and the unfixed variables are

$$x_{2} = \frac{a_{1} - b_{2}}{2} = c_{1} - c_{2} + c_{3},$$

$$x_{5} = \frac{a_{2} - b_{3}}{2} = -c_{1} + c_{2} + c_{3} + d_{1} - d_{2},$$

$$x_{6} = \frac{a_{3} - b_{3}}{2} = \frac{-c_{1} + c_{2} + c_{3} + c_{4} + d_{1} - 2d_{2} + d_{3}}{2},$$

$$y_{1} = \frac{a_{1} + b_{1}}{2} = -c_{2} + c_{3} + d_{1},$$

$$y_{3} = \frac{a_{2} + b_{1}}{2} = -c_{1} + c_{3} + d_{1},$$

$$y_{4} = \frac{a_{2} + b_{2}}{2} = -c_{1} + c_{2} + d_{1},$$

$$y_{6} = \frac{a_{3} + b_{3}}{2} = \frac{c_{1} - c_{2} - c_{3} + c_{4} - d_{1} + 2d_{2} + d_{3}}{2}.$$

 x_6 and y_6 are the only possibly fractional coordinates; their sum is integral; therefore, either z_6 is integral or $z_6 = (\frac{1}{2}, \frac{1}{2})$.

Lemma 6.2 (Hochbaum, Megiddo, Naor, and Tamir 1993). The solution of a linear system with integral constant terms, whose coefficient matrix is the transpose of a nonsingular signed-graph incidence matrix, is weakly half-integral.

Proof of Theorem, concluded.

$$\begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix} = \mathbf{H}(\pm C_z)^{\mathrm{T}} (M^{-1})^{\mathrm{T}} \begin{bmatrix} \mathbf{c} \\ \mathbf{d} \end{bmatrix}.$$

This is half integral, because $(M^{-1})^{\mathrm{T}} \begin{bmatrix} \mathbf{c} \\ \mathbf{d} \end{bmatrix}$ is half integral by the lemma, and $\mathrm{H}(\pm C_z)^{\mathrm{T}}$ is integral.

REFERENCES

- [1] Matthias Beck and Thomas Zaslavsky, Inside-out polytopes. Adv. Math. 205 (2006), no. 1, 134–162.
 MR 2007e:52017. Zbl 1107.52009. arXiv.org math.CO/0309330.
- [2] Seth Chaiken, Christopher R.H. Hanusa, and Thomas Zaslavsky, Mathematical analysis of a q-queens problem. In preparation.

 The full paper of this talk.
- [3] F. Harary, On the notion of balance of a signed graph. *Michigan Math. J.* **2** (1953–54), 143–146 and addendum preceding p. 1. MR 16, 733h. Zbl 056.42103.
- [4] Dorit S. Hochbaum, Nimrod Megiddo, Joseph (Seffi) Naor, and Arie Tamir, Tight bounds and 2-approximation algorithms for integer programs with two variables per inequality. *Math. Programming Ser. B* **62** (1993), 69–83. Zbl 802.90080.
- [5] Václav Kotěšovec, Non-attacking chess pieces (chess and mathematics) [Šach a matematika počty rozmístění neohrožujících se kamenů]. [Self-published online book], 2010; second edition 2010, URL http://problem64.beda.cz/silo/kotesovec_non_attacking_chess_pieces_2010.pdf An amazing source of formulas and conjectures; no proofs.
- [6] N.J.A. Sloane, The On-Line Encyclopedia of Integer Sequences, URL http://www.research.att.com/~njas/sequences/Many numbers for bishops up to 6, queens up to 7, nightriders up to 3.
- [7] Thomas Zaslavsky, The geometry of root systems and signed graphs. Amer. Math. Monthly 88 (1981), 88–105. MR 82g:05012. Zbl 466.05058.
 Hyperplanes led me to signed graphs.
- [8] Thomas Zaslavsky, Signed graphs. Discrete Appl. Math. 4 (1982), 47–74. Erratum. Discrete Appl. Math. 5 (1983), 248. MR 84e:05095. Zbl 503.05060.
 The theory of the incidence matrix.