Non-Attacking Chess Pieces: The Bishop

Thomas Zaslavsky Binghamton University (State University of New York)

C R Rao
Advanced Institute of
Mathematics, Statistics and Computer Science

29 July 2010

Joint work with Seth Chaiken and Christopher R.H. Hanusa

Outline

1. Chess Problems: Non-Attacking Pieces
2. Largely Czech Numbers and Formulas
3. Riders
4. Configurations and Inside-Out Polytopes
5. The Bishop Equations
6. Signed Graphs
7. Signed Graphs to the Rescue

1. Chess Problems: Non-Attacking Pieces

7 non-attacking bishops on an 8×8 board.
Question 1: How many bishops can you get onto the board?
Question 2: Given q bishops, how many ways can you place them on the board so none attacks any other?

2. Largely Czech Numbers and Formulas

Vacláv Kotěšovec (Czech Republic) has a book of chess problems and solutions [5], called Chess and Mathematics. Some of the numbers:
$N_{B}(q ; n):=$ the number of ways to place q non-attacking bishops on an $n \times n$ board.

$n=$	1	2	3	4	5	6	7	8	Period	Denom
$q=1$	1	4	9	16	25	36	49	64	1	1
2	0	4	26	92	240	520	994	1736	1	1
3	0	0	26	232	1124	3896	10894	26192	2	2
4	0	0	8	260	2728	16428	70792	242856	2	2
5	0	0	0	112	3368	39680	282248	1444928	2	2
6	0	0	0	16	1960	53744	692320	5599888	2	2

$N_{Q}(q ; n):=$ the number of ways to place q non-attacking queens on an $n \times n$ board.

| $n=$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | Period |
| ---: | :--- | :--- | ---: | ---: | ---: | ---: | ---: | :---: | :---: | Denom

$$
\begin{aligned}
& N_{B}(1 ; n)=n^{2} \\
& N_{B}(2 ; n)=\frac{n}{6}\left(3 n^{3}-4 n^{2}+3 n-2\right) \\
& N_{B}(3 ; n)= \begin{cases}\frac{(n-1)\left(2 n^{5}-6 n^{4}+9 n^{3}-11 n^{2}+5 n-3\right)}{12} & \text { if } n \text { is odd } \\
\frac{n(n-2)\left(2 n^{4}-4 n^{3}+7 n^{2}-6 n+4\right)}{12} & \text { if } n \text { is even. }\end{cases}
\end{aligned}
$$

$$
\begin{aligned}
& N_{B}(4 ; n)= \\
& \begin{cases}\frac{(n-1)(n-2)\left(15 n^{6}-75 n^{5}+185 n^{4}-339 n^{3}+388 n^{2}-258 n+180\right)}{360} & \text { if } n \text { is odd, } \\
\frac{n(n-2)\left(15 n^{6}-90 n^{5}+260 n^{4}-524 n^{3}+727 n^{2}-646 n+348\right)}{360} & \text { if } n \text { is even. }\end{cases}
\end{aligned}
$$

$N_{B}(5 ; n)=$
$\left(\frac{(n-1)(n-2)(n-3)\left(3 n^{7}-22 n^{6}+80 n^{5}-204 n^{4}+379 n^{3}-464 n^{2}+378^{n}-270\right)}{360}\right.$
if n is odd,
$\frac{n(n-2)\left(3 n^{8}-34 n^{7}+177 n^{6}-590 n^{5}+1435 n^{4}-2592 n^{3}+3326 n^{2}-2844 n+1344\right)}{360}$
if n is even.
$N_{B}(6 ; n)=$
$\left\{\begin{array}{l}(n-1)(n-3)\left(126 n^{10}-2016 n^{9}+14868 n^{8}-69244 n^{7}+234017 n^{6}\right. \\ \frac{\left.-607984 n^{5}+1211879 n^{4}-1797328 n^{3}+1953593 n^{2}-1550820 n+722925\right)}{90720} \\ \text { if } n \text { is odd, } \\ n(n-2)\left(126 n^{10}-2268 n^{9}+18774 n^{8}-97216 n^{7}+361165 n^{6}\right. \\ \left.-1029454 n^{5}+2283178 n^{4}-3841960 n^{3}+4676932 n^{2}-3808152 n+1640160\right) \\ \hline 90720\end{array}\right.$

3. Riders

Rider: Moves any distance in specified directions (forward and back).
The move is specified by an integral vector $\left(m_{1}, m_{2}\right) \in \mathbb{R}^{2}$ in the direction of the line.

Bishop: $(1,1),(1,-1)$.
Queen: $(1,0),(0,1),(1,1),(1,-1)$.
Nightrider: $(1,2),(2,1),(1,-2),(2,-1)$.

Configuration:

A point

$$
z=\left(z_{1}, z_{2}, \ldots, z_{q}\right) \in\left(\mathbb{R}^{2}\right)^{q}=\mathbb{R}^{2 q}
$$

where

$$
z_{i}=\left(x_{i}, y_{i}\right),
$$

which describes the locations of all the bishops (or queens, or ...).

Constraints:

The equations that correspond to attacking positions:

$$
z_{j}-z_{i} \in \text { a line of attack, }
$$

or in a formula:

$$
z_{j}-z_{i} \perp m \quad \text { for some move vector } m=\left(m_{1}, m_{2}\right)
$$

or,

$$
m_{2}\left(x_{j}-x_{i}\right)=m_{1}\left(y_{j}-y_{i}\right) .
$$

4. Configurations and Inside-Out Polytopes

The board.

A square board with squares $\{(x, y): x, y \in\{1,2, \ldots, n\}\}=\{1,2, \ldots, n\}^{2}$.
The board is $n \times n=4 \times 4$ with a border, coordinates shown on the left side of each square. Note the border coordinates with 0 or $n+1$, not part of the main square.

The dot picture in \mathbb{Z}^{2}. The border points are hollow.

$$
\begin{array}{lccccc}
\circ(0,0) & \circ(1,0) & \circ(2,0) & \circ(3,0) & \circ(4,0) & \circ(5,0) \\
\circ(0,1) & \bullet(1,1) & \bullet(2,1) & \bullet(3,1) & \bullet(4,1) & \circ(5,1) \\
\circ(0,2) & \bullet(1,2) & \bullet(2,2) & \bullet(3,2) & \bullet(4,2) & \circ(5,2) \\
\circ(0,3) & \bullet(1,3) & \bullet(2,3) & \bullet(3,3) & \bullet(4,3) & \circ(5,3) \\
\circ(0,4) & \bullet(1,4) & \bullet(2,4) & \bullet(3,4) & \bullet(4,4) & \circ(5,4) \\
\circ(0,5) & \circ(1,5) & \circ(2,5) & \circ(3,5) & \circ(4,5) & \circ(5,5)
\end{array}
$$

The cube.

Reduce (x, y) to $\frac{1}{n+1}(x, y) \in[0,1]^{2}$.
The position of a piece becomes $z_{i}=\left(x_{i}, y_{i}\right) \in(0,1)^{2} \cap \frac{1}{n+1} \mathbb{Z}^{2}$.
The configuration becomes $z=\left(z_{1}, \ldots, z_{q}\right) \in(0,1)^{2 q} \cap \frac{1}{n+1} \mathbb{Z}^{2 q}$, a $\frac{1}{n+1}$-fractional point in the open cube $\left([0,1]^{2 q}\right)^{\circ}$.

$$
\begin{array}{llllll}
\circ\left(\frac{0}{5}, \frac{0}{5}\right) & \circ\left(\frac{1}{5}, \frac{0}{5}\right) & \circ\left(\frac{2}{5}, \frac{0}{5}\right) & \circ\left(\frac{3}{5}, \frac{0}{5}\right) & \circ\left(\frac{4}{5}, \frac{0}{5}\right) & \circ\left(\frac{5}{5}, \frac{0}{5}\right) \\
\circ\left(\frac{0}{5}, \frac{1}{5}\right) & \bullet\left(\frac{1}{5}, \frac{1}{5}\right) & \bullet\left(\frac{2}{5}, \frac{1}{5}\right) & \bullet\left(\frac{3}{5}, \frac{1}{5}\right) & \bullet\left(\frac{4}{5}, \frac{1}{5}\right) & \circ\left(\frac{5}{5}, \frac{1}{5}\right) \\
\circ\left(\frac{0}{5}, \frac{2}{5}\right) & \bullet\left(\frac{1}{5}, \frac{2}{5}\right) & \bullet\left(\frac{2}{5}, \frac{2}{5}\right) & \bullet\left(\frac{3}{5}, \frac{2}{5}\right) & \bullet\left(\frac{4}{5}, \frac{2}{5}\right) & \circ\left(\frac{5}{5}, \frac{2}{5}\right) \\
\circ\left(\frac{0}{5}, \frac{3}{5}\right) & \bullet\left(\frac{1}{5}, \frac{3}{5}\right) & \bullet\left(\frac{2}{5}, \frac{3}{5}\right) & \bullet\left(\frac{3}{5}, \frac{3}{5}\right) & \bullet\left(\frac{4}{5}, \frac{3}{5}\right) & \circ\left(\frac{5}{5}, \frac{3}{5}\right) \\
\circ\left(\frac{0}{5}, \frac{4}{5}\right) & \bullet\left(\frac{1}{5}, \frac{4}{5}\right) & \bullet\left(\frac{2}{5}, \frac{4}{5}\right) & \bullet\left(\frac{3}{5}, \frac{4}{5}\right) & \bullet\left(\frac{4}{5}, \frac{4}{5}\right) & \circ\left(\frac{5}{5}, \frac{4}{5}\right) \\
\circ\left(\frac{0}{5}, \frac{5}{5}\right) & \circ\left(\frac{1}{5}, \frac{5}{5}\right) & \circ\left(\frac{2}{5}, \frac{5}{5}\right) & \circ\left(\frac{3}{5}, \frac{5}{5}\right) & \circ\left(\frac{4}{5}, \frac{5}{5}\right) & \circ\left(\frac{5}{5}, \frac{5}{5}\right)
\end{array}
$$

The Bishop Equations. Bishops must not attack.
The forbidden equations:

$$
z_{i} \notin y_{j}-y_{i}=x_{j}-x_{i} \quad \text { and } \quad z_{i} \notin y_{j}-y_{i}=-\left(x_{j}-x_{i}\right) .
$$

Left: The move line of slope +1 . Right: The move line of slope -1 .
Forbidden hyperplanes in $\mathbb{R}^{2 q}$ given by the 'bishop equations'.

Summary:

We have
a convex polytope $P=[0,1]^{2 q}$, and
a set $\mathcal{H}=\left\{h_{i j}^{+}, h_{i j}^{-}\right\}$of forbidden hyperplanes,
and we want the number of ways to pick

$$
z \in\left[P^{\circ} \cap \frac{1}{n+1} \mathbb{Z}^{2 q}\right] \backslash[\bigcup \mathcal{H}]
$$

Inside-Out Polytopes.

(P, \mathcal{H}) is an 'inside-out polytope'. We want $E_{P \circ, \mathcal{H}}(n+1):=$ the number of points in

$$
\left[P^{\circ} \cap \frac{1}{n+1} \mathbb{Z}^{2 q}\right] \backslash[\bigcup \mathcal{H}] .
$$

Inside-out Ehrhart theory (Beck \& Zaslavsky 2005, based on Ehrhart and Macdonald) says that $E_{P^{\circ}, \mathcal{H}}(n+1)$ is a quasipolynomial function of $n+1$, for $n+1 \in \mathbb{Z}_{>0}$.

Vertex of (P, \mathcal{H}) :
A point in P determined by the intersection of hyperplanes in \mathcal{H} and facets of P.

Quasipolynomial:

A cyclically repeating series of polynomials,

$$
c_{d}(n) n^{d}+c_{d-1}(n) n^{d-1}+\cdots+c_{1}(n) n+c_{0}(n)
$$

where the c_{i} are periodic functions of n that depend on $n \bmod p$ for some $p \in \mathbb{Z}_{>0}$. The smallest p is called the period of the quasipolynomial.
Lemma 4.1 ([1]). If P has rational vertices and the hyperplanes in \mathcal{H} are given by an integral linear equation, then:
(a) $E_{P^{\circ}, \mathcal{H}}(n+1)$ is a quasipolynomial function of n.
(b) Its degree is $d=\operatorname{dim} P$, and its leading term is $\operatorname{vol}(P) n^{d}$.
(c) Its period is a factor of the least common denominator of all coordinates of vertices of (P, \mathcal{H}).

Define
$N_{R}(q ; n):=$ the number of ways to place q non-attacking R-pieces on an $n \times n$ board.
Theorem 4.2. For a rider chess piece $R, N_{R}(q ; n)$ is a quasipolynomial function of n, for each fixed $q>0$; the leading term of each polynomial is $\frac{1}{q!} n^{2 q}$.

Agrees with Kotěšovec's formulas!

The chess problem.

What is the quasipolyomial for q bishops (or queens, or ...)?
We have $2 q p$ undetermined coefficients. The actual numbers $N_{B}(q ; n)$ for $1 \leq n \leq 2 p q$ will determine the whole thing.

Aye, there's the rub. Two rubs:
(1) We don't know p.
(2) It may be impossible to compute enough values of $N_{B}(q ; n)$.

Finding a small upper bound on the period is not so easy. Lemma 4.1(c) says:
The period is a factor of the gcd of the denominators of the vertices of $\left(P^{\circ}, \mathcal{H}\right)$.

Good, if we can find the denominator.

The Bishop Solution.

Theorem 4.3. The bishop quasipolynomial $N_{B}(q ; n)$ has period at most 2.
Theorem 4.3 is an immediate corollary of Lemma 6.1, which bounds the denominator.

5. Signed Graphs

- Graph (N, E) :
- Node set $N=\left\{v_{1}, v_{2}, \ldots, v_{q}\right\}$.
- Edge set E.
- 1-Forest: each component is a tree with one more edge. (Each component contains exactly one circle.)
- Signed graph $\Sigma=(N, E, \sigma)$:
- Graph (N, E).
- Signature $\sigma: E \rightarrow\{+,-\}$.
- Circle sign $\sigma(C)$.
- Signed circuit: a positive circle; or a connected subgraph that contains exactly two circles, both negative.
- Homogeneous node: all incident edges have the same sign.
- Incidence matrix $\mathrm{H}(\Sigma)$:
$-N \times E$ matrix.
- In column of edge $e: v_{i} v_{j}$,
(a) $\eta(v, e)= \pm 1$ if v is an endpoint of e and $=0$ if not;
(b) $\eta\left(v_{i}, e\right) \eta\left(v_{j}, e\right)=-\sigma(e)$.
(The column of a positive edge: one +1 and one -1 , the column of a negative edge: two +1 's or two -1 's.)
Lemma 5.1 ([8, Theorems 5.1(j) and 8B.1]). For a signed graph Σ :
$\mathrm{H}(\Sigma)$ has full column rank iff Σ contains no signed circuit.
$\mathrm{H}(\Sigma)$ has full row rank iff every component of Σ contains a negative circle.
- The usual hyperplane arrangement $\mathcal{H}[\Sigma]$:

Edge $e: v_{i} v_{j} \mapsto h_{e}: x_{j}=\sigma(e) x_{i}$ in \mathbb{R}^{q}.
Vector-space dual to columns of incidence matrix.
(Linear dependencies are those of the incidence matrix columns.)

- Clique graph $C(\Sigma)$:

- Positive clique: maximal set of nodes connected by positive edges.
$-\mathcal{A}:=\{$ positive cliques $\}$.
- Negative clique: maximal set of nodes connected by negative edges.
$-\mathcal{B}:=\{$ negative cliques $\}$.
- Signed clique: either one.
$-\forall v \in$ one positive clique and one negative clique.
- For a signed forest with q nodes, $k_{A}+k_{B}=q+c$, where $c=$ number of components, $k_{A}=$ number of positive cliques, $k_{B}=$ number of negative cliques.
- Clique graph:
$N(C(\Sigma))=\mathcal{A} \cup \mathcal{B}$.
An edge $A_{k} B_{l}$ for each $v_{i} \in A_{k} \cap B_{l}$.

6. Signed Graphs to the Rescue

Lemma 6.1. A point $z=\left(z_{1}, z_{2}, \ldots, z_{q}\right) \in \mathbb{R}^{2 q}$, determined by a total of $2 q$ bishop equations and fixations, is weakly half integral. Furthermore, in each z_{i}, either both coordinates are integers or both are strict half integers.

Consequently, a vertex of the bishops' inside-out polytope $\left([0,1]^{2 q}, \mathcal{A}_{B}\right)$ has each $z_{i} \in$ $\{0,1\}^{2}$ or $z_{i}=\left(\frac{1}{2}, \frac{1}{2}\right)$.
Proof. A vertex z is the intersection of $2 q$ hyperplanes:

- Bishop hyperplanes,

$$
\begin{aligned}
& h_{i j}^{+}: x_{j}-y_{j}=x_{i}-y_{i} \text { and } \\
& h_{i j}^{-}: x_{j}+y_{j}=x_{i}+y_{i} .
\end{aligned}
$$

- Facet hyperplanes,

$$
\begin{aligned}
& x_{i}=c_{i} \text { and } \\
& y_{j}=d_{j} .
\end{aligned}
$$

Equations:

Bishop equations (relations between coordinates).

Fixations:

Facet hyperplanes (fix some coordinates to chosen integers).
Signed graph of z :
$\Sigma_{z} \longleftrightarrow$ the 'equations', i.e., hyperplanes $h_{i j}^{\varepsilon}$.
Clique graph of z :

$$
C_{z}:=C\left(\Sigma_{z}\right), \text { and }
$$

$$
\pm C_{z} .
$$

Meaning of a clique:

- $A_{k}=\left\{v_{i}, v_{j}, \ldots\right\} \Longrightarrow x_{i}-y_{i}=x_{j}-y_{j} \Longrightarrow$

$$
x_{i}-y_{i}=a_{k} \quad \forall v_{i} \in A_{k} .
$$

- $B_{l}=\left\{v_{i}, v_{j}, \ldots\right\} \Longrightarrow x_{i}+y_{i}=x_{j}+y_{j} \Longrightarrow$

$$
x_{i}+y_{i}=b_{l} \quad \forall v_{i} \in B_{l} .
$$

Method:

(1) Convert to variables a_{k}, b_{l}.
(2) Find enough fixations to determine a_{k}, b_{l}.
(3) Solve for all x_{i}, y_{j}.

Example 6.1. $\mathcal{A}=\left\{A_{1}, A_{2}, A_{3}\right\}$ and $\mathcal{B}=\left\{B_{1}, B_{2}, B_{3}, B_{4}\right\}$, $N=\left\{v_{1}, \ldots, v_{8}\right\}:$

A suitable 1-forest $\Sigma_{z} \subseteq \pm C_{z}$
(superscript x is,$+ y$ is -):

fixations

$$
\begin{aligned}
& x_{1}=c_{1}, \\
& y_{2}=d_{1}, \\
& x_{3}=c_{2}, \\
& x_{4}=c_{3}, \\
& y_{5}=d_{2}, \\
& x_{7}=c_{4}, \\
& y_{7}=d_{3} .
\end{aligned}
$$

Incidence matrix (invertible):

$$
M:=\mathrm{H}\left(\Sigma_{z}\right)=\begin{gathered}
x_{1} \\
x_{3}
\end{gathered} x_{4} x_{7} y_{2} y_{5} y_{7} .
$$

In matrix form:

$$
M^{\mathrm{T}}\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3} \\
b_{1} \\
b_{2} \\
b_{3} \\
b_{4}
\end{array}\right]=2\left[\begin{array}{l}
x_{1} \\
x_{3} \\
x_{4} \\
x_{7} \\
y_{2} \\
y_{5} \\
y_{7}
\end{array}\right]=2\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3} \\
c_{4} \\
d_{1} \\
d_{2} \\
d_{3}
\end{array}\right],
$$

where $c_{i}, d_{j} \in \mathbb{Z}$. Solution:

$$
\begin{array}{ll}
a_{1}=x_{1}-x_{3}+x_{4}+y_{2} & =c_{1}-c_{2}+c_{3}+d_{1}, \\
a_{2}=-x_{1}+x_{3}+x_{4}+y_{2} & =-c_{1}+c_{2}+c_{3}+d_{1}, \\
a_{3}=x_{7}+y_{7} & =c_{4}+d_{3}, \\
b_{1}=-x_{1}-x_{3}+x_{4}+y_{2} & =-c_{1}-c_{2}+c_{3}+d_{1}, \\
b_{2}=-x_{1}+x_{3}-x_{4}+y_{2} & \\
b_{3}=x_{1}-x_{3}-x_{4}-y_{2}+2 y_{5}-c_{3}+d_{1}, \\
b_{4}=-x_{7}+y_{7} & \\
=c_{1}-c_{2}-c_{3}-d_{1}+2 d_{2}, \\
& \\
=-c_{4}+d_{3},
\end{array}
$$

and the unfixed variables are

$$
\begin{aligned}
& x_{2}=\frac{a_{1}-b_{2}}{2}=c_{1}-c_{2}+c_{3} \\
& x_{5}=\frac{a_{2}-b_{3}}{2}=-c_{1}+c_{2}+c_{3}+d_{1}-d_{2} \\
& x_{6}=\frac{a_{3}-b_{3}}{2}=\frac{-c_{1}+c_{2}+c_{3}+c_{4}+d_{1}-2 d_{2}+d_{3}}{2} \\
& y_{1}=\frac{a_{1}+b_{1}}{2}=-c_{2}+c_{3}+d_{1} \\
& y_{3}=\frac{a_{2}+b_{1}}{2}=-c_{1}+c_{3}+d_{1} \\
& y_{4}=\frac{a_{2}+b_{2}}{2}=-c_{1}+c_{2}+d_{1} \\
& y_{6}=\frac{a_{3}+b_{3}}{2}=\frac{c_{1}-c_{2}-c_{3}+c_{4}-d_{1}+2 d_{2}+d_{3}}{2}
\end{aligned}
$$

x_{6} and y_{6} are the only possibly fractional coordinates; their sum is integral; therefore, either z_{6} is integral or $z_{6}=\left(\frac{1}{2}, \frac{1}{2}\right)$.

Lemma 6.2 (Hochbaum, Megiddo, Naor, and Tamir 1993). The solution of a linear system with integral constant terms, whose coefficient matrix is the transpose of a nonsingular signed-graph incidence matrix, is weakly half-integral.

Proof of Theorem, concluded.

$$
\left[\begin{array}{l}
\mathbf{x} \\
\mathbf{y}
\end{array}\right]=\mathrm{H}\left(\pm C_{z}\right)^{\mathrm{T}}\left(M^{-1}\right)^{\mathrm{T}}\left[\begin{array}{l}
\mathbf{c} \\
\mathbf{d}
\end{array}\right] .
$$

This is half integral, because $\left(M^{-1}\right)^{\mathrm{T}}\left[\begin{array}{l}\mathbf{c} \\ \mathbf{d}\end{array}\right]$ is half integral by the lemma, and $\mathrm{H}\left(\pm C_{z}\right)^{\mathrm{T}}$ is integral.

References

[1] Matthias Beck and Thomas Zaslavsky, Inside-out polytopes. Adv. Math. 205 (2006), no. 1, 134-162. MR 2007e:52017. Zbl 1107.52009. arXiv. org math.CO/0309330.
[2] Seth Chaiken, Christopher R.H. Hanusa, and Thomas Zaslavsky, Mathematical analysis of a q-queens problem. In preparation.
The full paper of this talk.
[3] F. Harary, On the notion of balance of a signed graph. Michigan Math. J. 2 (1953-54), 143-146 and addendum preceding p. 1. MR 16, 733h. Zbl 056.42103.
[4] Dorit S. Hochbaum, Nimrod Megiddo, Joseph (Seffi) Naor, and Arie Tamir, Tight bounds and 2approximation algorithms for integer programs with two variables per inequality. Math. Programming Ser. B 62 (1993), 69-83. Zbl 802.90080.
[5] Václav Kotěšovec, Non-attacking chess pieces (chess and mathematics) [Šach a matematika - počty rozmístění neohrožujících se kamenů]. [Self-published online book], 2010; second edition 2010, URL http://problem64.beda.cz/silo/kotesovec_non_attacking_chess_pieces_2010.pdf An amazing source of formulas and conjectures; no proofs.
[6] N.J.A. Sloane, The On-Line Encyclopedia of Integer Sequences, URL http://www.research.att.com/~njas/sequences/ Many numbers for bishops up to 6 , queens up to 7 , nightriders up to 3 .
[7] Thomas Zaslavsky, The geometry of root systems and signed graphs. Amer. Math. Monthly 88 (1981), 88-105. MR 82g:05012. Zbl 466.05058.
Hyperplanes led me to signed graphs.
[8] Thomas Zaslavsky, Signed graphs. Discrete Appl. Math. 4 (1982), 47-74. Erratum. Discrete Appl. Math. 5 (1983), 248. MR 84e:05095. Zbl 503.05060. The theory of the incidence matrix.

