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We continue the study initiated in “Signed graph coloring” of the chromatic and Whitney
polynomials of signed graphs. In this article we prove and apply to examples three types of
general theoremm which have no analogs for ordinary graph coloring. First is a balanced
expansion theorem which reduces czlculation of the chromatic and Whitney polynomials to that
of the simpler balanced polynomials. Second is a group of formulas based oa counting colorings
by their magniwdes or their signs; among them are a combinatorial interpretation of signed
coloring (which implies an equivalence between proper colorings of certain signed graphs and
matchiogs in ordinary graphs) and « signed-graphic switching formuia (which for instance gives
the polynomials of a two-graph in werms of those of its associated ordinary graphs). Third are
addivion/deletion formulas obtained by constructing one signed graph from another through
adding and removing arcs; one such formula expresses the chromatic polynomial as 2 combina-
tion of those of ordinary graphs, while another (in one example) yields a complementation
formula for ordinary matchings. The examples treated are the sign-symmetric graphs (among
them in effect the classical reot systems), all-negative graphs (corresponding to the even-cycle
graphic matroid), signed complete graphs (equivalent to two-graphs), and two varieties of
signed graphs associated with ma‘chings and colorings of ordinary graphs. Our results are
terereted as counting the acyclic orientations of a signed graph; geometrically this means
couring the faces of the corresponding arrangement of hyperpianes ot zonotope.

Introducticn

A signed; graph is a graph whose arcs are labelled with signs. Like an ordinary
graph, & signed graph can be colored (by signed colors) and has a chromatic
polynoinial (the function which counts proper colorings). In [10] we explored this
aspect ol signed graph coloring, demonstrating the relationships among the
chromatic (and the related Whitney) polynomial, the matroid, and the acyclic
orientations of a signed graph. This for the most part parallels unsigned graph
theory. Here we present a part of the signed theory which has no analog for
ordinary graphs, a part concerned with means of computing the chromatic and
Whitney polynomials of signed graphs.

We have four related goals. First, to show the remarkable range of reductions
and interpretations possible for signed-graphic polynomials; foremost among
them is the balanced expansion forrula, which underlies nearly all computations.
Second, to point out the simple and pretty forms taken by the polynomials in
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certain cases, such as those of sign-symmetric and all-negative graphs. Third, to
treat in detail a wide variety of examples, some of which have special interest for
their close connection to previously recognized graphical structures (see later in
this introduction). And finaily, but historically our original motivation, to calculate
the numbers of regions (and lower-dimensional faces) of n-dimensional arrange-
ments of hyperplanes in which every hyperplanar equation has one of the forms
X; = %, % +x =0, and x; =0, thus generalizing the sign-symmetric results of 81
As we noted in [10] this geometry problem is equivalent to finding the number of
acyclic orientations of the signed graph associated to the arrangement (and of its
contraction graphs), which in turn is done by computing the chromatic (and the
Whitney) polynomial of the graph. Hence our effort has been to make the
polynomial formulas as explicit as we possibly can.

The theoretical part of this paper contains three types of results. The balanced
expansion theorem is the most fundamental, for it reduces computation of the
chromatic and Whitney polynomials to computation of their balanced versions,
and it is the latte which are treated by our other theorems. The second class of
results is a diverse one based on the technique of counting colorings according to
their magnitudes or signs. Treating magnitudes as primary leads to an important
combinatorial interpretation of the balanced chromatic polynomial (more pre-
cisely, of its coefficients in falling semifactorial expansion) in terms of matchings in
contraction graphs (Theorem 2.1) and also to expressioiis for the balanced
polynomials in terms of chromatic polynomials of ordinary graphs {Theorem 2.3
et seq.) which seem 10 be interesting even for ordinary graphs (Corollary 2.5).
Treating signs as primary leads to quite different formulas, giving the balanced
signed polynomials as sums of the polynomials of positive (essentially, unsigaed)
graphs (Theorem 2.2). The last kind of general result is the addition/deletion
theorem and related lemmas, all based on the idea of constructing a signed graph
from a simpler one, say a sign-symmetric one, by adding and removing arcs. One
gets another set of expressions for the (balanced) chromatic polynomial in terms
of ordinary graphs.

We treat six kinds of examples. For full graphs, in which every node suppoerts a
negative loop or a half arc, the balanced expansions are particularly striking. The
very simple sign-symmetric graphs, combinatorial generalizations of the classical
roo* systems, are easily handied through balanced expansion or through counting
by signs or magnitedes. The balanced polynomials of an all-negative graph are
again found through counting by magnitudes; this gives us the characteristic
polynomial of the even-circle matroid of the underlying graph (since G(—T') is this
matroid; see [9, Section 7D] for that fact and for citations to the literature).
Signed complete graphs (which are equivalent to two-graphs; see [9, Section 7E]
ior this fact and for references) are susceptible to counting by signs and by
magnitudes; among the results are a relationship between colorings of a two-
graph and of the graphs in its switching class.

Especially interesting from the viewpoint of ordinary graph theory are two
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kinds of signed graph associated with an ordinary graph I One consists of z
positive complete graph and all negative links not in I'. The general combinatorial
interpretation reduces in this case to the fact that the balanced chrofsatic
polynomial encodes the matching vector of I' (the numbers of matchings of cach
size). Applying the addition lemma of the addition/deletion theorem shows that
the matching vector of the complementary graph determines that of I' (Section
6.1). The other associated signed graph contains a negative complete greph and
all the positive links in I. Its balanced chromatic polynomial encodes the
chromatic polynomial of I" (Section 6.2). Tkere are also interactions between the
two kinds of associated graph (S«cticn 6.3). These examples show that matchings
and colotings of ordinary graphs can be embedded in a single theoretical
framework; it is not yet known whether that is an important observation.

Evaluating the chromatic and Whitney polynomials at A = —1 gives formulas for
the numbers of acyclic orientations of a signed graph and of its contraction
graphs; ecuivalently, for the nurabers of faces of the corresponding arrangement
of hypeipianes and zonotope (cf. {10]). We give results both generally and for
particula: zxamples.

The ar:icle concludes with mention of some extensions, e.g. to voltage graphs.

Notatior ard terminology

For u weview of the basic ccncepts of signed graphs the reader should sec
Section 1.1 of [10], of which this paper is essentially the second hali. Here are
defined some additional notations and terms.

Let I'={N, E) be a graph. If Sc E we write

1 §) = the number of components of S,

where 5 is regarded as the spanuing subgraph (N, $). If « is a partition of N, we
define the subset S induced by « to be

S:w=J{S:B: Be 7},

with nede set |  if regarded as a subgraph; similar are I': @ and 3: 7. A node
set X ot a partition 7 is stable in I if it supports no arcs, i.e. if E:X=¢ or
E:ar =§ vespectively.

Here are some important partition concepts. For any set X, IIy denctes the set
of partitions of X. In particular IT, denotes the set of partitions of the standard
node set N (whose size is n). For the graph I, II(I') is the set of partitions we [T,
such that each black of = is connected by I': #; similarly [1(S) is defined for any
arc set S. The kernel of a set mapping k: X — Y is the partition of X given by

Ker k ={k"!(y): ye k(CD}.

A bipartition is a partition into iwo blocks of which one (or both) may be void.
If £ =(N, E, o) is a signed graph, 2* denotes 3 with ali haif arcs removed. E,
or E,{2) denotes the set ¢ '(-+) of positive arcs and X, denotes the positive
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subgraph of 2, that is (N, E,(Z), +). In general for any arc set S, S, denotes the
positive: part of S.

The zero-free exact Whitney coefficients ¢% (3) are defined by the falling
semifactorial expansion

wete )= 3 5, 2 o
k=0 r=(

The chromatic number y(2) of the signed graph 3 is the smallest nonnegative
integer p for which xs(2p +1)>0; thus it equals the smallest index for which
. (%) # 0. The strict chromatic number v*(X) is the smallest nonnegative integer p
for which x3{2g)>0; it equals the smallest index for which ¢%{Z)#0.

1. Balanced expansion formulas

In examples it is usually much easier to compute the balanced than the ordinary
chromatic and Whitney polynomials. Fortunately there are simple expressions for
the unbalanced polynomials in terms of their balanced relatives. These expres-
sions I regard as a fundamental theorem, for they show balance to be central o
the matroid and coloring theory of signed graphs. Another, rather technical
reason for thinking one of them, equation (1.3), interesting is that it shows the
baiznced chromatic polynomial to provide an interpretation of the Tutte polyno-
miai 1z, 0) of G(3).

Theorera 1.1. The chromatic and balanced chromatic polynomials of a signed
graph X are related by the equation

Xx<A)=§x%w—1), a.1)

the range of summation being all W< N(X) whose complements are stable; except
that x=(A)=0 if 3 has any free loops. The Whitney and balanced Whitney
polynomials are related by the equation
we(x, )= L whoalx, A= 1)xEw (1.2) -
WeN
in which W ranges over all subsets of N = N(Z).
In particular for a full graph X',

xz(M)=x3(A-1) (1.3)
(if there are ne free loops) and
we(A)= L whulx, A= x"#W), (1.4)
WoN

Proof. There are at least three ways to prove Theorem 1. We shall take the
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combinatorial approach of counting colorings. Thus let A =2u +1 where =0 is
an integer. . ' o

Proof of (1.1) and (1.3). The left-hand side of (1.1} counts the number of
proper colorings of £ by the colors {0, +1,...,+u}.

The right-hand side counts the number of ways to choose a stable set W*, color
it 0, and color % :W properly with the colors {+1,...,2u}. Clearly all these
colorings are distinct. They are also proper, because W¢, being stable, supports no
half arcs or loops (wherefore 0 is a proper color for it) and no links (whence all
nodes in W*° may take the same color). So.the right-hand side counts a certain
class of proper colorings of 3.

We must show this class includes all proper colorings. Let k be any proper
coloring of 3 and X = k~*(0). This set must be stable or k would not be proper.
And W= X° is colored in a zero-free way. Therefore k is one of the proper
colorings of ¥ enumerated by the term x%.w{2p) in the right-hand summation in
(1.1). So we have proved that every proper coloring is counted by the right-hand
side of eguation (1.1). Hence the equation is true. Equation (1.3) is immediate.

Proof 97 {1.2) and (1.4). Because of how coeflicients of x"~¢ are defined, the
equations are entailed by the assertion that, for each c, the class of colorings of ¥
whose I(k) have ¢ balanced components is in one-to-one correspondence with the
disjoinnt uriun over all W N of the zero-free colorings of X: W which have
c¢—b{Z: W*: balanced components. It is easy to check that the mapping k —
(W, k| W), where W={v: k(v)#0}, is just such a correspondence. The inverse
mapping is (W, ky)— k defined by k | W=ky, k| We=0. O

It foilcwws from (1.3) that the full chromatic number y{(2°) equals the strict
chromaiic rumber y*(X).
Formula (1.3) (combined with [10, Theorem 2.3]) shows that

1) (~2) = 1z, 0), (1.5)

where t(z, x) is the Tutte polynomial of G(Z°) (cf. {3] and [1]). This is a new
interpreiaiion of the Tutte polynomial. It can be extended to x# 0 by considering
the ‘balanced dichromatic polynomial’ (cf. [7]); that will appear elsewhere.

2. Counting by color magnitudes and signs

The balanced expansion theorem still leaves us the task of computing the
balanced polynomials of 3. One technique for doing so is to group colorings by
their sign or magnitude parts. We call this process ‘counting by magnitudes’, or by
signs, depending on the order of analysis. The first results are fundamental
combinatorial interpretations of the zero-free exact chromatic coefficients based
on counting by magnitudes.
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Theorem 2.1, Let X be a signed graph and E = E(3).

(A) Suppose X has no free loops. Then the coefficient YyXZ) is equal to the
number of pairs (m, ¢) of partitions of N such that w< ¢, #¢ =k, wis stable in 3.,
and ¢ is a (partial) matching of the blocks of w with E_: ¢ = E_: w. Equivalently

—k
s=% % mE D, 2.1)
oz

(B} The cocfficient Y*(3) is equal to the number of pairs (m, ¢) of partitions of N
such that m< ¢, #¢ =k, ¢ is a {partial) marching of the blocks of m, and

k(B 7 JUUE_@)\(E_:m)D)=r

Proof. (B) Given a ze. -free signed coloring k*, we set 1=k*|, ¢ =Ker |/, and
= Ker k*. An alternate definition of ¢*(3) is the number of symmetry classes
of colorings k* such that [ uses exactly x magnitudes and rk I(k*)=r (cf. [10,
Section 2.2]. where the case r:=0 is discussed): in cther words, such that #¢ =k
and rk I(k*) = r. Notice that

Ik =[E, :wJULE_: @\(E.: m)]. (*)

Because k* =1 -sign(k¥), ¢ is a matching of the blocks of .

The symrmetry class of k* is completely described by « and ¢. Conversely any o
and ¢ as above determine a symmetry class of colorings counted by ¢¥(2). Thus
part (B) is proved.

(A) Setting r=0 in the above argument yields the first part of (A). Equation
(2.1) is an easy variant. [

Equation (2.1) is the expression which leads to most of the interesting in-
terpretations of ¢¥ in the important special cases we treat later. There seems to be
no similarly simple interpretation of ¥, although a complicated analog is
obtained by combining (2.1) above with equation (2.2} of {10].

Another kind of formula results from considering as primary the bipartition of
N due to the sign part of a coloring. We call this ‘counting by signs’.

Theorems 2.2. Let 3 be a signed graph with no half arcs. Then

wi(x, A) =2 w(E,(2"); x, A), 2.2)

»

summed over all switching functions v. If X has no free loops,

X206 A) =2 x(E,(3"): A). (2.3)

Proof. Set A =2u, where p is a positive integer. Any zero-free signed coloring of
3 in g colors is uniquely expressible as a product vl, where » is a sign function on
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N and { is a coloring using the color set {1,2,..., u}. We have
wh(x, 2u) = L L 10,
v 1
We can view v as a switching function: then ! = (#)” so I(2; )= Ig(vl). Now
consider an arc e. If it is improper for | in 2, it must be positive in X%, So

12, )= I(Z%; 1) and
Wi, 20) = L L 21,
v 1

from which (2.2) follows. Equation (2.3) is obtained by setting x=0., [

Reversing the order of summation leads to the formulas we call ‘counting by
magnitudes’.

Theorzt. 2.3. Let 3 be a signed graph, E = E(Z), and A =|3*|. Then

wg(x, A)= Z XA/F(z)*) NZ( }xrkF (2.4a)
= T 2PxuiA) L x4, (2.4b)
Felatd A

where ths range of A is all balanced subsets of F for which —(2 | F/A) is balanced.
(All suciv A are balanced flats.) If 3 has no free loops,

W= L 2y, 25)
FeLata;
—X|F blanced

Froof. For (2.5) we set x =0 in (2.4b). To prove (2.4) we begin as in the proof of
Therrem 2.2. Then we write F=I,(l); we observe that F is a flat of A4,
Il =& [ F; v), and the number of w-colorings ! for which F= I,(l) is x5+p).
Thus

wi(x, 2p) = Z xait) Z xR IEIF ), ()

FelatA
To prove (2.4a), observe that Iy {»)=I(Z* | F; +)=F%.
To prove (2.4b) we view the inner sum in (%) as w‘;;,;(x, 2). By [10, (2.2)],
Wi 200 =L xanlw) L #*Maa(2)

AcLat®2|F

As we see from Lemma 2.4 below, many of the terms x%r4(2) = 0. Thus we get
(b).

Suppose ~(X | F/A) is balanced. Then X | F/A can have no positive loops. So A
isadat. O



294 T. Zuslavsky

Lemma 2.4. Let ® be a signed graph with no half arcs or free loops. Then

2 if @ is balance:,

b -

xel2) {0 if not.
Proof. Say v:N — {+1} is a proper coloring of &. For each arc, its propriety for v
in @ implies it is improper in —¢. Thus I_4(v) = E(P). But the improper arcs of a
zero-free csloring form a balanced set, by {10, Lemma 1.4]. So —& must have
been balanced if v exisis.

If - is indeed balanced, each component can be properly colored in just two
ways. That shows what the rumber of colorings is. 3

Theorem 2.3 is interesting even in its specialization to ordinary graphs, re-
garded as all-positive signed graphs. I do not know a reference for these formuias.

Corollary 2.5. If A is an ordinary graph, then

s = L 2Py (),

Felatad

bipartite

= Vv F 1 kA
waln, A= 2 2Pp(A) L x™A

Felatd A <F:

F/ A bipartite

Proof. An all-negative arc set is balanced if and only if it is bipartite. Use that
fact in (2.5) and (2:4b) to get the polynomials of +4, which are the same as those
of 4. O

Finally we present formulas intermediate between those of Theorems 2.1 and
2.3

Corollary 2.6. Le: 3 bz a signed graph. Then
I = L 23, (2.6)

eeil,:
Heo=x

where a,(2: @)= the number of rank r balanced arc sets A (equivalently, balanced
flats) in X : ¢ such that —[(3*:¢)/A] is balanced. If X has no free loops,

WHS)= L 2eEers @2.7)
vell,, #o=x,
-~ X% ¢ balanced

Proof. Equation (2.7) is immediate from (2.6). For the latter, suppose we are
coloring in « colors, respecting a fixed partition ¢ of N into « parts. Let | be the
magnitade part of such a coloring. There are 2" ways to choose a sign », but these
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are grouped into symmetry classes of 2“ signed colorings. So

Suree T e e

#He=x

As in the proof of (2.4b), I;..(v)= E%:¢ and by Lemma 2.4 the number of ways
a given balanced flat A<E:¢ appears as 3%:¢ equals 2°%® or 0. [J

3. Sign-symmetric graphs

Probably the simplest forms assumed by the chromatic and Whitney polyno-
mials are those for signed expansions of ordinary graphs. If I' is an ordinary
graph, the signed expansion £I" has a positive and a negative arc for each arcin I,
A sign-symmetric graph is a signed expansion with perhaps added half arcs and
negative loops.

Theovem 3.1. The balanced chromatic and Whitney polynomials of the signed
expension £I of an ordinary graph I' are given by

x2r{A)=2"xr(3\) (3.1)
and
wi X, 1) =2"wr(x, }A). (3.2)

Proof. ‘heorem 3.1 is a corollary of equations (2.3) and (2.2): cne merely
observes that E,(=I'")=+I. Almost any other formulas in Section 2 also give
pr-ofs. And the direct proof by counting colorings is very easy. [J

1t filows that the strict chromatic number y*{=:T") equals the chromatic number

of I'

In view of the balanced expansion formulas, Theorem 1 implies formulas for
the unblanced polynomials xs anrd wy when X =T, £I"", and £'U U" for any
Ugc N They, as well as a proof by deletion and contraction and the results for
I'=1I,. can be found in [8].

4. Adilition and deletion formulas

Earlier we calculated the balanced chromatic polynomial of ¥ by splitting its
proper colorings. Now we shall break down ¢ itself. We regard it as obtained
from a different signed graph ¥ by removing some arcs from ¥ and adjoining
others not in it. To get some good from this addition/deletion method we have to
choose our initial graph ¥ carefully. If ¥ is sign-symmetric (Theorem 4.4), things
work out rather well.

We treat deletion first. Addition is best regarded as the inverse operation.
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Deletion Lemma 4.1. Let S< P be signed graphs on the same node set. Let
D = E(P)\ E(Z). Then

= L xesiAl and x3A)= L xhsiA)
Selatd; Selat® ¢
sSeD L X=¢2)

Proof. Although a strictly algebraic proof can be carried through (for instance the
first formula is a special case of Crapo [2, p. 606, Corollary 5]), a proof by
counting colorings is simpler and more interesting. Let us classify the proper
colorings of X according to their sets of impropriety in @. Any such set § = I(k) is
closed [10, Lemma 1.4] and does not intersect E{(X). The number of k such that
I(k)=S is x 4,52+ 1) by [10, Lemma 1.5]. That proves the first formula. When
we consider zero-free colorings, I(k)=S§ entails S is balanced; and since it is
balanced the number of zero-free colorings k with I(k) = § equals x%,s(2x). That
proves the other formuta. [

Addition Lemma 4.2. Let ¥ < @ be signed graphs on the same node set. Let
D = E(DNE(¥). Then

XolA)= Z b (B DxguryHA)

TeLad:
TeD

and

<«
o)=L pe(@ ThxPeuryrA)
Telat"d,
TeD

where pg, is the Mobius function of Lat &.

Proof. Lemma 4.2 is trivial if § is not closed, 50 let us assume it is closed. Then @
is the 0 element of Lat @. We shall apply Mdbius inversion to the deletion lemma.
Pat flQ)= xweonolA) and g(Q) = x40(d) if Q< D and f(Q)=g(Q)=0 other-
wise. Substituting (YU T)/T for 3 and &/T for & in Lemma 4.1, we have

()= Z Xcarys(A) = Z Xaor(A) = Z g(R).

ScLav@/i) Relat ReLat®
SCSDA\T TeReD TeR
In the language of incidence algebra, f= {,* g Inverting, g = up *f. Evaluation at
{# gives the first formula. The proof of the second is similar. [J

Addition/Deletion Lemma 4.3. Let 3 and W be signed graphs on the same nodes
and @=3UW. Let A=E(Z)\E(¥) and D =E(¥)\E(3). Then

(A= 2 ueRND, Rixworym(d) “.1)

RcAUD,
R,RNDeLat®
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and

Xdh)= L pe(RND, Rxtvoryr(d). “2)

RcAUD;
R.RNDeLat®®

Proof. We apply the deletion lemma to ¥ = @\ D, then the addition lemma to
DjS=(¥/S)UA.

s = ). xes(A)

Selat®,
SeD

Y Y pas® Dxwsydd)
Selatd; TeLat®/S;
S=D T=A

Y #e(RND, R)xwr(A);
Relatd;
RcAUD,
RNDeLatd

where R=SUT, thus S= RN D; and p 450, T) = ps(S, R) because the interval
[¢, 7] in Lat @/S is isomorphic to [S, R] in Lat &. The proof of the balance¢
formuiz is similar; we use the fact that, since S is balanced in &, T is balanced in
@5 il end only if TU S is balanced in @ (cf. [10, Lemma 2.5]). Thus the result is
established. O

il

it

"t us describe how we apply this lemma. Suppose, to illustrate, that 2 has set
¥ of ‘il nodes and no balanced loops, and I' is the graph whose arcs are the
negat.+2 links of 3 with their signs suppressed. Then ¥ is obtained from the
sign-sy: ymetric graph ¥ ==I'U W" by removing a set of positive links, +D, and
addiag another, +A. We regard A and D as lying in the graph A =TI'U A; then
D < E(I'). We also identify A, D, I', 4 on the ore hand with +A, +D, +T, +4 on
the otner (which is possible because G(+A4)= G(4)); then 4 =¥, UA. Thus
Lat &. Lat® @, and u, in Lemma 4.3 can be replaced by Lat 4, Lat A, and p,,
respestively.

In general we can always represent 3, if it has no balanced loops, s a
sign-symmetric graph to which some links have been added and from which
others have been taken away. The Addition/Deletion Lemmz when applied to
this representation yields Theorem 4.4, which reduces x5 to a combination of
ordinary chromatic polynomials. In the context of Theorem 4.4, a lifting of AUD 1o
signed arcs means a mapping [: AU D — +E(A) such that [(e) has the same
endpoints as e. Recall that I'/F is an abbreviation for (I'U F)/F.

Addition/Deletion Theorem 4.4. Let I' < A be ordinary simple graphs on the node
set N, D< E(I'), and A =E(A)\E(I'). Let I:AUD — £E(A) be a lifting of
AU D 1o signed arcs, and let 3 = (xT'UI(A)\ (D). Then

X30) =X paip(FN D, F)2Pxp80),
F
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summed over all F< A U D such that l(F)e Lat®(xI"'U1(A)) and FNDelatA | F.

Proof. To begin the proof let us translate the balanced addition/deletion formula
(4.2) into the language of Theorem 4.4. We must replace A and D of (4.2) by
1(A) and I(D) here; then R becomes I(F). @ and ¥ tecome =I"'UI(A) and +T.
Thus the summation of (4.2) is over F€ AU D such that {(F) and {(FN D) are
both closed and balanced in £V I(A). By balance of the signed graph I(F), the
interval [@, I(F)] in Lat(xI"UI(A)) is isomorphic to [@, F} (see [9, Corollary 5.5]).
Thus pe may be replaced by p4ir and the condition on [(FN D) is equivalent to
requiring that FN D be closed in F. We have now shown that the conditions of
summation for x%(A) in (4.2) may be replaced by those of Theorem 4.4.

Let us write T=F\D. Thus (WUR)/R=(xI"U (T))/1{F). Since we are con-
cerned with the balanced polynomial of (¥ R)/R, we may change over ic
+(I"U T)/l(F); this only differs in having more unbalanced loops (those derived
from —I(7) in =(T'UT). But in £(I'V T)/I(F), the arcs of —I(F) become
unbalanced loops, so they are immaterial; thus we obtain the same balanced sets
by turning our attention to +[(I'U T)/F}, or briefly +(I1F). Now by equation (3.1)

XPwuryr(A) = X1arm(A) = 2°FIxre3A).

That concludes the proof of the theorem. [

Unfortunately it does not seem possible to find similar expansions of the
Whitney polynomials. That is because addition/deletion results are related to the
deletion/contraction formulas {10, Theorem 2.3]. Our proofs have not used them
but they are the algebraic technique for proving the deletion lemma. Conversely
the lemma with D ={e} implies {10, Theorem 2.3]. So since the latter does not
hold for Whitney polynomials one cannot expect an exact analog of our deletion
lemnma. Whether there is yet an appropriate variant-——which would be a vory nice
thing to have in work with signed-graphic arrangements of hyperplanus—is not
knowrn.

5. All-negative graphs; the even-circle chromatic polynomisi

The formulas for the chromatic polynomial of an ali-negative graph —I' are
especially elegant. Recall that G(-I) is the even-citcle matroid of I' (cf. [9,
Section 7D]) so what we are computing here is the ‘even-circle chromatic
polynomial’.

Certain bipartite subgraphs play an important role in work with —I. Let
E = E(I') and N= N(I. If X and Y are disjoint node sets, by E:{X, Y) we mean
the set of arcs of I with one end in X and the other in Y (thus half arcs as well as
loops are excluded). If X,, Y,,..., X,, Y. are disjoint node sets, we cail

(B:{X, YO U U(E (X, Yi) (5.1)

a bipartitionally induced arc set.
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Lemma 5.1 [9, Coroltary 7D.2]. The balanced flats of —T, ie. of the even-circle
matroid G(-T), are precisely the bipartitionally induced arc sets. [

From this and equation (2.4) of [10] we know the balanced chromatic and
Whitney polynomials (therefore by Theorera 1.1 the ordinary ones):

XorA) =Y p(AN® (5.2)
A
and
XM= pAA-D® L (A=) (5.3)
A e

where A ranges over all bipartitionally induced arc sets and p(A) denotes the
M&hins invariant of the bipartite graph A.
The combinatorial interpretation of x°r, derived from equation (2.1), is

Wi-n=1% L m(Ial). (5.4)

welly;
#r=jtr

Thereiore the strict chromatic number of ~I' equals the largest size of a matching in
tie complement of any contraction of I

These facts do not offer much insight into the numerical behavior of ~I', An
ineresting result is the next theorem, which shows a remarkable r:iationship
setwesn —I and I, A cut set of T is the set of links between two cor:plementary
nod: sets; thus @ is one cut set.

Theoiem 5.2, Let I' be an ordinary graph. Then

W)= L 2®xrdh) = 2"wr(3, 31) (5.5)
Felatl
and
W)= L 2Py L 2, (5.6)
Felatl” A

where A is summed over all cut sets of I'| F.

Proof. We get (5.5) from (2.5) by noticing that —% | F=4T } F, which is always
balanced.

Equation (5.6) is almost equally immediate from (2.4b); but it is necessary to
prove that A is a cut set and any cut set is an A. Suppose A is a cut set of F. Then
it is a balanced flat (by Lemma 5.1). Furthermore I' | F can be switched to make
A positive without changing any other signs.

Conversely suppose A is the bipartitionally induced arc set (5.1) and —(3 | F/A)
is balanced. That means it is possible to switc’ ¥ to X* in which A is positive and
F\ A is negative. Then A is the cut set E:{X, X°), where X=v"(+). O

Remark. Variant Proof of (5.5). Direct applization of counting by magnitudes is
quite simple.
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One might ask what would happen if we applied Theorem 4.4, If we cliose I'in
(4.4)=T here, A=@, D=E, and (D)=+E, equation (5.5) would result. If we
took I'(4.4)=9, A=F, D=9, I{A)=~E, we would get (5.2). As far as I can see
there are no other interesting cases.

From (5.5) we have for the aii-negative complete graphs:

Xtk A)= i S(n. 1) - o(A) &7
k=0
X-k(A)= i [S(n, )+ nS(n—-1, k)] (A1), (5.8)

And from equation (5.7) we can immediately write down expressions for the
rumbers wi(~K,) (the coefficient in x2x () of A"7%), called the balanced
Whitney numbers of the first kind of —K,. We have also a different formula:

wi-K)=(-0* L [l s#B), (5.9)
#1;'5:!'1‘..—;"86-"
where
800 = (WK )| = L ! S(n=1.1). (510

The latter sum is interesting because there is no cancellation among its terms. To
prove (5.9) we define g(n) by the first equabty in (5.10), then apply Lemma 51
and the matroid formula for x%(A) (in [10, Theorem 2.4]), noticing that rk(A)=
rk 7(A) for a bipartitionally induced arc ser A in K,. To establish the second
equality in (5.10) we observe that A, if of rank n—1, is equal to K, for some
p=1,2,....n—1. Thus

n. 1

gm=12 (:) | (Kpnp)l:

pe1

u being the Mobius invariant of G(K,,_,), that is the coefficient of A in xx, ).
Knowine the latter we can write g{n)=(—1)"""G {0), where

Sy oo ne
XISESD) ( ) L S(n, HA)(A =2
p=0 j=0
Then for instance expanding the Stirling numbers or calculating the exponential
gencrating function one derives the second expression in (5.10).
As a consequence of (5.9) we have values for the Whitney numbers of
G(=K3):

w-kp=1r T ("TAT) 11 g (511

!
nell, n—«g Bew
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6. Partial matching numbers snd ordinary chromatic coefficients

The chromatic polynomials of signed graphs (without loops or half arcs) which
contain a positive or negative complete graph are related to ordinary graphs in
noteworthy ways.

6.1. Graphs with every positive link: partial mastching numbers

A signed graph which contains +K,, can be regarded as the result of deleting a
negative subgraph — I from the signed expansion +K,. The interpretation of the
coefiicients of x% from equation (2.1), in which 7 =0 because E, = +K,, is:

Theceem 6.1, If '=(N, E)c K, and 3 =(+£K,)\(-E), then

Xg('\) = 'go my () + 2(A) s ] (6.1)

This the matching number of T’ equals n— y*(3).

Theerem 6.1 implies tha. by using the semifactorial matching polynomia (the
right-hand side of {6.1)) one has a version of the matching problem to which the
rsuchinery of chromatic theory applies. For instance the deletion/contraction law
for such polynomials is easily reduced to the well-known formula

m(I) = m(I'\ e)+ m,_,(I': N(e)°).

(We omit the details.)

From Theorem 2.1(B) we can caiculate the balanced Whitney polynomial. For
Bg N, let a(l':B) be the proportion of bipartitions {X, Y} of B in which
I':{X, Y} is complete bipartite (and X, Y#0).

Corotary 6.2, If 2 =(xK,)\(-T), we have
WL A= L oMy, - @0 #e [T [1-a(:BY(1~x").

pell, Beg

Prosf. For the proof first note that Theorem 2.1(B) can be restated in the form

win )= 2 oMW I T %,

eell, Beo Belln;
#B=2

where r depends on B and B. Let B ={X, Y} if #8=2. Since E,{3)=+K,, we
have r=##B—1 except that r=#B-2 if the two halves of B are not connected by

any negzative edge: in other words if I':(X, Y) is complete bipartite. From this the
corollary follows. [J

We get a striking result if we apply the addition lemma to @ =+K, U--E with
D =—E. We must sum over those T ~E which are balanced and ciosed in @, It
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follows that T is a partial matching in E, so the formula of the addition lemma
becomes

x;(A>=kZO mi(EX-1)*x,{A), ®
3, dencting a contraction (+K,U-M,)/(-M,) where M, is a k-arc partial
matching. 3, has the same polynomial as (£K,_;)\(~K,_5), as we now prove.
Let L consist of the left endpoints of the links in M, and let R be the rest of N.
If we switch L, the switched graph X} consists of a +K, on L and a +K, ; on R
with every ve L and we R linked by a negative arc, and a matching +M, of L
onto L'z R. After we contract by M,, we have merged L int¢ R. The arcs
(neglecting multiplicities) are a +K,_, on R, negative arcs between each ve L’
and we R, and a negative loop at each v e L’. For balanced polynomials the last
named may be ignored, so in effect we have to deal with (K, I\ (=K, _5), as
claimed.
Substituting into (*) from (6.1) and comparing coefficients of 5{A),_, yields

m(E°) = kio "‘k(E)(—l)kml--k(Kn—Zk)' (6.2)
Thus the partial matching numbers of a simple graph (N, E) determine those of its
complement. This relationship, which is apparently new, was discovered exactly as
we have proved it here. It is, however, easy to prcve direcly. For more on this
subject see {11].
Another explicit formula for w} besides that in Corcilary 2 is implied by

VEED) = (-1 X (":f;’ ) L Mg ). 6.3)
rk1r=¢;

We omit the proof because of its compiexity; it seems “o require a generalization
of (6.2) which appears in [11].

6.2. Graphs with every negative link: chromatic coefficients of an ordinary graph

A signed graph which contains — K, is the union of —K,, with some all-pnsitive
graph, say +I. The balanced chromatic polynomial of Z is a linear transform of
xr(A) =Y U.AT) - (A)., as we can see from (2.1) (in which ¢ =7 because
E_=-K,).

Corollary 6.3. Let '=(N, E) and 5=-K,U+E. Then
Y=y (D). O

Thus the chromatic nurnber of I' equals v*(3).
There is also a formula for w similar to that of Corollary 6.2, which we omit.
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6.3. Matchings vs. colorings

Let I'=(N, E) again. The signed graph 3 =+K,U~E is the result of adding
the arcs +E° to +I'. Theorem 4.4 can be applied with D=§, A= E°, A=K,, and
I(S) = +8§. The range of summation is § = K,, : = where we I, is stable in I'. If we
write p,, for the Mobius function of the partition lattice IT,, Thecrem 4.4 in this
case reads

XEM= L pal0, m2* X, BA).

7 stable
inIl
Here I'/w means I” with the blocks of  identified to points. Now let us expand
Xr=(GA) in falling factorials, collect terms, and compare to Theorern 6.1. We have
Muiil)= L (0, m2# 74y (I ), 6.4)

ar stable
inl"
which shows a relationship between the exact coloring numbers of contractions by
stable partitions and the partial matching numbers of the complementary graph.
(Equation 6.4 can be proved directly by employing the identity

Y ulo, w)2#7=2% or 0,
nelor]
the former if r is a maiching of the blocks of o, the latter otherwise. This identity
is the special case @ =--K, of Lemma 2.4.) The inverse of (6.4) is
W= 2 my,  (I1m])2#"x, (6.5)

 stable

Example 6.4. In case I' = (N, 9), equation (6.4) becomes

(n)Zn-—’Zk — i N
@n-200 2(, st DLSE D),
where s(n, i) is the Stirling number of the first kind.
The inverse formula, from (6.5), is

(i (i)Zi—-Zk
= (i-k) 277202k
Stm 0 Z:kz "Ri-2k

7. Signed coirplete graphs

A signed complete graph is K|, with signs. For such graphs our general formulas
are relatively simple; from them further relationships among partitions and
matchings emerge. We shall treat principally the balanced polynomials; Theorem
1.1 shows how to compute the others.

A few results carry over to signed simple graphs; but in general the latter are
more complex.
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Let 3 =(K,, o) be a signed complete graph. We write X =K,, where Q=
o~1(-) is the set of negative arcs, to emphasize which signed complete graph we
have in mind. Note that K, =—Kp, where P=37"(+) is the set of positive arcs.
We write E = E(K,)=PU Q. The two-graph of K, (also called the two-graph of
Q) is the class T(K) of unbalanced triangles. (See [9, Section 7%Z].) Since F(Kp)
determines the switching class of Ko, we can think of Xxo(A) as the chromatic
polynomial of the two-graph; and the same for the other polynomials.

Harary’s criterion for balance (cf. [9, Proposition 2.1(ii)]) is in the case of a
signed complete graph:

Lemms 7.1. The following are equivalent:
(i) Ko is balanced.
(ii) N partitions into X and Y (possibly void) so that P=E:XUE:Y.
(iii) 9 is a complete bipartite graph on N or is void. [

A criterion for S< E to be a balanced flat (from /9, Proposition 3.6(ii)]) is that
$N Q be bipartitionally induced as in (5.1) and SNP=P:{X,, Y,,..., X, Yi}.
Then by the algebraic connection expressed in [10. (2.4)], we have

Xo M) = 2w, (0, S)AES), 7.1
s

S ranging over all balanced flats. (This reasoning applies also to signed simple
graphs.)

Let us begin with two switching formulas derived f-om counting by magnitudes.
Graph switching (or Seidel switching) means reversir g the adjacencies between a
node set and its complement. Let PY stand for the graph (N, P} switched by
Wc N. From Theorem 2.2 we obtain

XM= L x(P¥i4), 7.2)
WaN
whi(x )= L w(P¥;x4h). (1.3)
WeN

The polynomial of a signed complete graph is thus in a sense the average of those
of the graphs in the graph-switching class of its positive part. (One can say also:
the polynomial of a two-graph is the average of those of all complements of
graphs in its switching class.) From (7.2) we deduce

WK =2 L ilPY) (7.4)

for the exaci chromatic coefficients. (Formulas (7.2-4) hold for a signed simple
graph (4, o) with P=¢"'(+) if graph switching is carried out within A.)

Next we present the combinatorial interpretation of the balanced chromatic
polynomial and a related formula for the Whitney polynomial. We shall regard a
partition ¢ =a in II,, by abuse of notation, as a partition of the set @, writing
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pell,. Let

B\ (') = the number of partitions of N(I') into k blocks, each of which is
either stable in I' or induces a complete bipartite graph.

(These are also the partitions ¢ such that —Kj-: ¢ is balanced, i.e. every triangle
contaired in a block is in T(Ky).)

Corollary 7.2. The zero-free exact chromatic coefficients of X, are given by

WK =pP=L L m{QmD. (7.5)
j mwelly; #m=j+k,
stable in P

The balanced Whitney polynomial is given by
Wi ()= L k" T Y xR (W), (7.6)

aell(P) ¢ell, R
where R ranges over subsets of (Q/a): ¢ such that, in each block of ¢, RU(P/a) is
either O or a complete bipartite graph.

Proof. Equations (7.5) are immediate from the two parts of Theorem 2.1(A).

We deduce (7.6) from Theorem 2.1(B). Evidently by writing the Whitney
polynomial expressions in the form ¥ () we can examine each block of ¢
separately. Let us therefore consider the case ¢ =1. We have to prove that

Z xn—#a i xrk R’ (a)
acll(P) R

the range of R being R< Qfa such that RU(P/a) is cither § or complete
bipartite, is equal to

Z x (P mIIQN (@ )] (b)
well,;
F-2 2]
If we set a=w(P:n) and R=(Q/a)\(Q/a: ), then (b) i, the same as
Z xn—#a z xrkR, (b,}
acll(P) T

summed over bipartitions 7 =X, Y} of a for which (P/a): 7=@. Now clearly
RU(P/a)=(Ela):{X, Y), which is void or complete bipartite. So a and R are as
required by the sum (a).

Conversely given « and R as in (a), we let w={X, Y}=the bipartition of «
determined by RU(P/a). Then (Pla):w=% and R=(Q/a)«(X,Y)=
(Q/a)\(Q/a: 7). So @ and R are as required in the summation (t"). [J

Notice that ¢ in (7.6) is restricied to partitions such that (P/a): ¢ is bipartite.
The range and rank of R too are partially predictable. For instance if (P/a): B is
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nonvoid bipartite and has ¢>1 components, there are 2° possible R, all of rank
#B~ 1. But such observations are not enough to simplify (7.6).

A bevy of formulas results from application of Theorem 4.4 with differcnt
choices of the deletion edge set D. One car choose »ny D < E (then A = Df). The
form taken by Theorem 4.4 is found by noting that I'=(N, D). A=K,, and the
lifting is || D=—-Kgo | D, 1| A=Kgp| A. Thus we have

X‘l’(o()‘) = A; umr(Fﬂ D, F)ZC(F)X(DUF)/F{%A)v (7.7
summed over edge sets F for which FN D is a closed subset of F (in the ordinary
polygon closure) and I(F) is a balanced flat in the signed graph @=+DUI(A)=
KoUxD.

Unfortunately most chaices of D lead to hopelessly complicated versions of
{(7.7). The most trivial cheoices of D, on the other hard, yield results we already
know: choosing D = E we obtain (7.5), while from D =0 we get the matroidal
form of the balanced chromatic polynomial (see [10, (2.4)]). The most interesting
selections are D= P and D= Q.

Case D = P. Here we are regarding Ko as obtained from (N, P) by deleting
~P and adding +Q. The lifting is to negative arcs in ¢=—-K, U+D. The
conditions on I(F) and FND, if rephrased in terms of ¢=m(F) and ==
m(F N D), give the following result:

s

Xk = L 2%°x5 30 L w(E ol VP @), (7.8)
¢ell, B4
where the range of # is 7= ¢ such that = is stable in F. & partitions in exactly
two parts vach nonsingieton block of ¢, and each component of P: p is complete
bipartite or a single node: and where E: ¢/ 7 is shortnand for (E: @)\ (E:m) (this
is a bipartitionally induced subgraph of K,). The strong restriction on 7 means
that few ¢-—only those for which all the components of P:¢ are complete
bipartite graphs or single nodes—will contribute to the sam. For each sum ¢ the
sum over 7 is compuiable: it equals the product over all Be ¢ of a quantity
(~1)"*m-1f(l, m) which depends only on the numbers m of bipartite and ! of
singleton components of P:B. The function f is
{

f,my=2""1Y% !(Dm""i S(k, )(m+j-1)l (1.9)

k=0 j=0

in case m =0 this equals the g(l) defined in (5.10).

Case D = Q. Here we view Ky as the result of deleting +Q and adding —P to
+(N, Q). The lifting is to positive arcs in ¢ =+ K, U - Q. The sum is over sets F of
the form E : ¢ for some partition ¢ such that FN Q is closed in F; this rednces to

XioA) = 2, 1 (7(Q: 9), @)2%°x 0, B, (7.10)

surnmed over all ¢ € I, for which Q: ¢ is polygon-closed in K,.. Here u, denotes
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the Mdbius function of the partition lattice. Note that (7.10) is very much like
(2.5) but involves fewer summands.

8. Orientations

In this section we apply our results to the calculation of

0(3) = the number of acyclic orientations of ¥
and »
0,(Z) = the number of acyclic orientations of all k-node contractions,

in general and for examples. The tool is [10, Corollary 4.1], which says that
o(3) =|xs(-1)| and 0, (2) is the coefficient of x"* in (—1)"wg(~x,—1). One
should keep in mind the geometric interpretations of 0,(%) as the number of
k-dimensional faces of the arrangement of hyperplanes H[3] and as the number
of (n-k)-dimensional faces of ta: acyclotope Z[3] (see [10, Section 4]). One
purpose of this section is to solve the geometric problem of counting faces.

We denote by 0¥(3) the coefficient of x"~* in the polynomial (-1)"w%(-x. -2)
and we write 0*(3) =|x%(-2)]. ‘

8.1. Balanced expansion formulas

From (1.4) we have for a full graph 3~ the expression

(3= Y o}Z:W), | (8.1)

WoN
whose inverse is
o¥(2)= L (-1#¥o (S W) (8.1
WeN .
And note that the ﬁumber 6f acyclic orientations of X' satisfies |
0(Z27) = 0%(2), (8.2)

which gives one combinatorial interpretation of o*.
From (1.2) we obtain for any ¥ the expression

0 (3)= i CD Y oREwW) (8.3)
=0 WeN
‘ b(Z :W)=k~!
and from (1.1) and (8.2) we get
oX)= Y (-1)*™0o(3 :W). ' (8.4)
W€ stable

We can generalize (8.4). For any m-vertex signed graph @, let B{(@) denote the
number of subsets V< N(®) of m—~j vertices whose induced graph ¢ :V has
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exactly i balanced components. Substituting (8.1") into (8.3) yields the expression
‘7k(2)=i D Y a7 X) L (—1YBPL(S : X). (8.5)
1=0 Xwid j=0

These formulas reduce the enumeration of acyclic orientations of general signed
graphs to that for the simpler full graphs.

8.2. All-positive graphs

For an all-positive signed graph +I" (where I is ordinary; that is, without half
arcs or free loops) we can interpret the numbers o¥(+I') in two ways. By counting
colorings (for example} it is clear that

x5HA)=xr(A) and wi(x, A)=wr(x, ).

Thus by the contraction formula (2.4) in [10] and Stanley’s interpretation [S] of
Ixr(-2)l, we see that of(+I) cquals the number of compatible pairs of acyclic
orientations and 2-colorings of all k-node contractions of I

On the other hand G(+I'")= G(I' + v,), where I' + v, means I' plus one extra
node v, adjacent to every node of I'. (We observed this in [9, Section 7A).) Thus

A Wt D= Y Wi A1) (8.6)

wcoN

and similarly for the chromatic polynomials. We conclude by inverting (8.6), or
from (8.1"), that

o¥HT)= ) (1) %o ([I": W]+ ). (8.7)

WcN

In particular,
o*(+ 1) = o(T" + vy). (8.8

These interpretations of o%(+I') lend more meaning to the switching formulas
that follow.

8.3. Switching formulas
From Theorem 2.2 we have
o}(Z)=L o}(3), (8.9)
surnmed over all switching functions »: N - {+}. Since 3% is an all-positive graph,

the right-hand side of (8.9) has the combinatorial interpretations in terms of
ordinary graphs described just above. In particular

(3= WZNZ 0 (5 : WYs{+ v), (8.10)

the range of v being switching functions W — {+}.
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8.4. Other general formulas

From Theorem 2.3 we can express the 0¥(2) in terms of contractions of the
underlying ordinary graph A =|3*|. From (2.4a) we have

o’t(2)=ZF Y (1) ®o(AF) (8.11)

c(F=k
and from (2.5) we get
o(Z)=0% )= Y (-2¢Po(4/F). (8.12)

FelatA
—X | F batanced

Making the appropriate substitutions in Theorem 5.4 yields an ordinary-graphic
expression via addition/deletion:

o(2)= Y D% T |naFL B Z®o(IVF).  (8.13)
Fielat4; Felatd;
FieD, Fi<FcAUD,
1(F,) balanced I(F) balanced

This is less complicated than it looks, since it can be expected to have few outer
summands; moreover the inner summands, being positive, do not cancel each
other.

8.5. Sign-symmetric graphs

Let I be an ordinary graph, U< N=N(I'), and 3 be +I" with the nodes inU
filled. By Theorem 3.1 we have 0*(3) =2"0,(I'); this together with the balanced
expansion formulas in Section 8.1 yields

o)=Y (~1)FV2EVe(I: W)

waU;
Weswablein I'

and
(%)= L (1 ™2*Yorwoll': W),

wWeN
where i(W¢) = the number of isolated nodes of I': W¢ which lie outside U. These
results are treated in more detail in [8] (where the language is that of arrange-
ments of hyperplanes and the proof avoids most of the machinery we have
employed here).

8.6. The classical root system arrangements

The most important ¢lementary examples are 3 =+K,, +K; and £K,. Then
H[ZX]is the arrangement of hyperplanes R* dual to the root system R=A,_,, B,
or C,, and D,, respectively. Thus the chambers of these root systems can be
counted by means of the formulas of the previous subsection. (The results for
these examples are very well known.)
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8.7. Root system subarrangements containing A¥_,

If we are interested in the number of regions of such an arrangement of
hyperplancs. we must calculate 0(Z) where 3 is a signed graph containing +K,,
that is ¥ = + K, \(—E). This brings us to Theorem 6.1 and matchings. First let us
consider £, whose arrangement H[Z ] contains all the coordinat: hyperplanes as
well as A* . From (6.1) and (8.2) we have

[n/2}

o(5)= Y, (=12 (n— i)t m(E).
i=0

If we leave out the coordinate hyperplanes not corresponding to vertices in
Uc N, we have from (8.4) the formula

{n/2]
o5)=F 12t m(E) T mo Bt}
i=0 vglU

Formulas for 0*(Z) can be deduced from Corollary €.%.

8.8. Root system subarrangements deficient in A¥_,

Supposc an arrangement consists of B¥=H[+K;] except for certain hyper-
planes belonging to A¥ | Then it equals H[3'}for ¥ ==K, \(+D). Let I' be ihe
complementary graph K, \D. Then from Corotlary 6.3 along with (8.2),

o(£)= L (-1 24k (D).
k=0
8.9. All-negative graphs

As another example consider the all-negative graph —I" (whose arrangement
H[-T] consists only of hyperplanes with equations x, + x; = 0) and its full version
—TI". Based on Theorem 5.2 and equations (8.4) anu (£.2):

o-N= % ﬁv(—l)’*w"?"ok(l“:w),

W¢stable k=0 )
o(-I")= i (=) 2% (D).
k=0
Recalling that o((K,, : W)/F) = ¢(F)! for FeLat K, =1II,, one can easily calculate
o(-K;)= 3. (~1)2%k! S(n, k)
k=0

and

o(-K,)= i (=1)*2*k! [Stn, k)— nS(n-1, k)],
k

=0

S(n, k) being the Stirling number of the second kind.



Chromatic invariants 31

8.10. Signed. complete graphs

Finally we examine the signed complete graph K, whose negative arc set is Q.
Equation (8.3) reduces to v
o(Ko)=0(Ko)+ L of(Ko: W)= L of (Kg: W), (8.14)
. W eN . i W N
the ranges of W, and W, being the sets W for which K,: W° is respectively
unbalanced and balanced. Equation (8.4) reduces to

0(Ko) = 0*(Ko)— X o*(Kq:{v}). (8.15)
veN

(If we form X from K, by filling some nodes, say those in U < N, similar formulas
hold but ¥ : W* is always unbalanced if W2 U, and v ranges over U*.) Thus what
is crucial is the evaluation of the of.
One evaluation is a switching-class ‘averaging’ formula deduced from (7.3):
of(Ko)= 2, of(P¥).
WcoN
A second kind of evaluation is based on the addition/deletion results (7.7),
(7.8), and (7.9). All give nice expressions for 0*(Ky) in terms of acyclic orienta-
tions of ordinary graphs. To illustrate we adapt (7.8) and (7.10) to acyclic
orientations. From the former,
0*(Ko)= L (~1)***0(Ple) [ f(i(P:B), c(P: B)~i(P:B)),
i ¢ell, Beg
where i(P: B) is the number of isolated nodes in the induced graph P:B. From
(7.10), with p, denoting the Mdbius function of the partition lattice,
0*(Ko)= L (~1)™@ |y (m(Q: ), ¢)| 2#°0(Qlep).

pell,

9, In conclusior

We have developed three general varieties of formula for signed graphs:
balanced expansion, sign/magnitude (including a combinatorial interpretation),
and addition/deletion. But these do rot exploit the full range. For instance a
convolutional formula for ordinary graphs, provable by an easy coloring argu-
ment, extends to signed graphs in two forms:

X3A+p)= XZN X2 M X% xe(p) (9.1b)

and

Xz(h+u)=XZNXz:x(A)x§;xc(u) 9.1
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(assuming 3 has no free loops). This and other expressions are treated in the
general context of biased graphs (which include voltage graphs) in [7].

The method of counting by magnitudes generalizes to voltage graphs, carrying
with it most of Section 2. Addition/deletion formulas, on the other hand, cannot
extend without substantial modification because they depend strongly on the fact
that in a signed graph there are only two possible labels for an arc. But since they
are proved by the method of deletion and contraction they should generalize to
the dichromatic polynomial

Os(wv)= 2 (uo)"@p*S™,
ScE(X)

the generalization of Tutte’s dichromatic polynomial of a graph [6]. The di-
chromatic polynomial is investigated in [7] in the context of biased graphs.
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