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We continue the study initiated in "Signed graph coloring" of the chromatic and Whitney 
polynomials of signed graphs. In this article we prove and apply to examples three types of 
general theorem which have no znalogs for ordinary graph coloring. First is a balanced 
exp~-n~on theorem which reduces c~lculation of the chromatic and Whitney polynomials to that 
o~ the simpler balanced polynomials. Second is a group of formulas based on counting colorings 
by tl~ei~ magni~tudes or their signs; among them are a combinatorial interpretation of signed 
col31 i~g (which implies an equivalence between proper colorings of certain signed graphs and 
matchi~gs in ordinary graphs) and ~ signed-graphic switching formula (which for instance g~ves 
'~he ~olynomials of a two-grapl~ in ~¢rms of those of its associated ordinary graphs). Third are 
a~ldi~ion/deletion formulas obtained by constructing one signed graph from another through 
addin:~ and removing arcs; one such ~ormula expresses the chromatic polynomial as a combina- 
tion ~,f those of ordinary graphs, ,~hile another (in one example) yields a complementation 
fo~mula for or~inary matchlngs. The examples treated are the sign-symmetric graphs (among 
the'a in effect the classical root systems), all-negative graphs (corresponding to the even-cycle 
graphic matroid), signed complete graphs (equivalent to two-graphs), and two varieties of 
~igned !~aphs associated .with ma~chings and colorings of ordinary graphs. Our results are 
~:erf.r,:.ted as counting the acyelic orientations of a signed grzph; geometrically this means 

c6~.~:Jttg the faces of the correspov~ding arrangement of hyperpianes or zonotope. 

lntroduefien 

A slgne,'r~ graph is a graph who~;e arcs are labelled with signs. Like an ordinary 
grapb, e. signed graph can be colered (by signed colors) and has a chromatic 
polynomial (the function which counts proper colorings). In [10] we explored this 
aspect of signed graph coloring, demonstrating the relationships among the 
chromatic (and the related Whitney) polynomial, the matroid, and the acycLie 
orientations of a signed graph. Thi,,~ for tile most part parallels unsigned graph 
theory. Here  we present a part of the signed theory which has no analog for 
ordinary graphs, a part concerned with means of computing the chromatic and 
Whitney polynomials of signed graphs. 

We have four related goals. Fffst, to show the remarkable range of reductions 
and interpretations possible for signed-graphic polynomials; foremost among 
thera is the balanced expansion for~aula, which underlies nearly all computations. 
Second, to point out the simple and pretty forms taken by the polynomials in 
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certain cases, such as those of sign-symmetric and all-negative graphs. Third, to 
treat in detail a wide varlet), of examples, some of whit'h have special interest for 
their close connection to previously recognized graphical structures (see later in 
this in,l:roduction). And finally, but historically our original motivation, to calculate 
the numbers of regions (and lower-dimensional faces) of n-dimensional arrange- 
ments of hyperplanes in which every hyperplanar equ~ttion has one of the forms 
x, ~-- x r, :q 4- x/ = 0, and x~ := 0, t!aus generalizing the sign-symmetric results of [8]. 
As we noted in [10] this geometry problem is equivalent ~o finding the number of 
acyclic orientations of the :;igned graph associated to the alrangement (and of its 
contraction graphs), which in turn is done by computing the chromatic (and the 
Whitney) polynomial of the graph. Hence our effort has been ~,o make the 
polync~miat formulas as explicit as we possibly can. 

The theoretical part of this paper contains three types of results. The balanced 
e×pan.qon theorem is the most fundamental, for it reduces computation of the 
chromatic and Whitney polynomials to computation of their balanced versions, 
and it is the latte'" which ore treated by our other theorems. The second class of 
results is a diverse one based on the technique of counting colorings according to 
their magnitudes or sign~,. Treating magnitudes as primary leads to an important 
combinatorial interpretation of the balanced chromatic polynomial (more pre- 
cisely, of its coefficients in :falling semifactorial expansion) in terms of matchings in 
c~ntraction graphs (Theorem 2.1) and also to exp:'essions for the balanced 
polynomials in terms of chromatic polynomials of ordinary graphs (Theorem 2.3 
et seq.~ which seem to be ~nteresting even for ordinary graph~ (Corollary 2.5). 
Treatirg signs as primary leads to quite different formulas, giving the balanced 
signed polynomials as sums of the polynomials of positive (essentially, unsigned) 
graphs (Theorem 2.2). Tl~e last kind of general result is the addition/deletion 
thcorem and related lemrr, as, all based on the idea of constructing a signed graph 
from a simpler one. say a sign-symmetric one, by adding and removing arcs. One 
gets another set of expressions for the (balanced) chromatic polynomial in terms 
of ordinary graphs. 

We treat six kinds of examples. For full graphs, in which every node supports a 
negative loop or a half ar~:, the balanced e~pansions are particularly striking. The 
very simplc sign-symmetric graphs, combinatorial generalizations of the classical 
r~t;" sy.~tcms, are easily bandied through balanced expansion or through counting 
by signs or magnitudes. The balanced polynomials of '.zn all-negative graph are 
~¢gain found through cot~nting by magnitudes; this gives us the characteristic 
polynomial of the even-ci~rcle matroid of the underlying graph (since G ( - r )  is this 
matroi8: see [9, Section 7D] for th~at fact and for citations to the literature). 
Signed complete graphs (which are equivalent to two-graphs; see [9, Section 7E] 
~or this fact and for references) are susceptible to counting by signs and by 
~nagnitttdes; among the :results are a relationship between colorings of a two- 
~raph and of the graphs in its switching class. 

Especially interesting from the viewpoint of ordinary graph theory are two 
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kinds of signed graph associated with an ordinary graph f'. One consists of a 
positive complete graph and all negative links not in F. The general eombina;torial 
interpretation reduces in this ~:.'ase to the fact ~hat the balanced chroroaat~ic 
polynomial encodes the naatching vector of F (the numbers of matehings of ~;ach 
size). Applying the addition lemma of the addition/deletion theorem shows l;hat 
the matching vector of ~he complementary graph determines that of f '  (Section 
6.1). The other associated signed graph contains a negative complete graph and 
all the positive links in F. It.~, balanced chromatic polynomial encodes the 
chromatic polynomial of F (Section 6.2). Tl~:ere are also interactions between tl~¢ 
two kinds of associated graph (S~.,ction 6.3). These examples show that matehin~!s 
and cololings o~ otdinary graphs can be embedded in a single theoretical 
framework; it is not yet known whether that is an important observation. 

Evalu~ting the chromatic and Whitney polynomials at A = - 1  gives formulas for 
the numbers of acyclic orientations of a signed graph and of its contraction 
graphs; e~uivalently, for the nurabers of faces of the corresponding arrangement 
of hypeipianes and zonotope (cL [10]). We give results both generally and for 
particu~a~ ~xamples. 

The ar fi~:le concludes with met~.tion of some extensions, e.g. to voltage graphs. 

Notatior, ar, d terminology 

For a ,eview of the basic ccncepts of signed graphs the reader should see 
Sectior~ 1.! of [10], of which this paper  is essentially the second hal/. Here are 
defined ~ome additional notatio~s and terms. 

Let F =~ (N, E) be a graph. If S c_ E we write 

: (S)  = the number of c~mponents of S, 

where 5 ~.s regarded as the spanaing subgraph (N, S). If 7r is a partition of N, we 
define tiae ~ubset S induced by ~r to be 

S:  ~r = I..J {S:B:  B ~ ~'}, 

with node set U ~" if regarded as a subgraph; similar are F :  Ir and ,~: Ir. A node 
set X ,3r a partition ~r is stabh~ in F if it supports no arcs, i.e. if E : X =  0 or 
E : w = f); ~espectively. 

Here are some important partition concepts. For any set X , / / x  denotes the se~ 
of partitions of X. In pa r t i cu l a r / / ,  denotes the set of partitions of the standard 
node set N (whose size is n). For the graph F , / / ( F )  is the set of partitions ~r ~ .r/, 
such that each blcJck of rr is connected by F :  ~'; similarly FI(S) is defined for any 
arc set S. The kernel of a set rr~apping k : X - >  Y is the partition of X given by 

Ker k = {k- ~(y): y E k(X)}. 

A bipartition is a partition into ~wo blocks of which one (or both) may be void. 
If ~S = (N, E, o') is a signed gr~ph, ,~* denotes ~, with all half arcs removed. E÷ 

or E÷(2)  denotes ~:he set ~r-~(+) of positive arcs and ~+ denotes the positive 
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subgraph of .~, that is (N, E+(,~), +). In general for any arc set S, S+ denotes the 
positive part of $. 

The zero-free exact Wh~!mey coefficients ~*,(,~) are defined by the falling 
semifactorial expansion 

K=O r~O 

The chromatic number y(.~) of the signed graph ~ is the smallest nonnegative 
integer Ix for which Xz(2p,+ 1)>0; thus it equals the smallest index for which 
~ (,~) :~ 0. Tl~e strict chromal!ic number 3,*(Z) is the smallest nonnegative integer p, 
for which X~(2#)> 0; it equals the smallest index for which tk*(,~)9 0. 

1. Balanced expansion tommlas 

In examples it is usually much easier to compute the balanced than the ordinary 
chromatic and Whitney polynomials. Fortunately there are simple expressions for 
the unbalanced polynomial:: in terms of their balanced relatives. These expres- 
sions I regard as a fundamental theorem, for they show balance to be central ~o 
the matroid and coloring theory of signed graphs. Another, rather technical 
reason for th~inking one of them, equation (1.3), interesting is that it shows the 
bal:~mced chrc,matic polynomial to provide an interpretation of the Tutte polyno- 
miai t(z, 0) of G(Z). 

Theoreta 1,L The chromatic and balanced chromatic polynomials of a signed 
graph Y, are related by the equation 

Xx(A) = ~. X~:w(A - 1), (1.i) 
v¢ 

the range of summation being all We_ N(2~) whose complements are stable; except 
that Xz(A)-~O if 2~ has any free loops. The Whitney and balanced Whitney 
polynomials ore related by the equation 

w,z(x, h) = ~ W~:w(X, X - 1)x 'k~:w°) (1.2) - 
W ~ N  

in which W ranges over all subsets of N = N(,,~). 
Ii~ pvrticular for a full graph ~' ,  

x,~-O,.) = x~(X - 1) ( ! . 3 )  

(if there ale ~to free loops) and 

w~.(x, A) = ~ w~.:w(x, ~, - 1)x "-#(w). (1.4) 
W ~ N  

Proof. There are at least three ways to prove Theorem 1. We shall take the 
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combinatorial approach of counting colorings. Thus let h. = 2t~ + 1 where/~ ~ 0  is 
an integer. 

Proof of (1.1) and (1.3). The left-hand side of (1.1)counts the number of 
proper eolofmgs of ,~ by ~he colors {0,+1 . . . . .  :t:#z}. 

The right-hand side counts the number of ways to choose a stable set W ~, color 
it 0, and color ,Y:W properly with the colors {±1 . . . . .  ±~}. Clearly all these 
colorings are distinct. They are ~lso proper, because W ¢, being stable, supports no 
half arcs ~r loops (wherefore 0 is a proper color for it) and no links (whence all 
nodes in W ¢ may take the same color). So.the right-hand side counts a certain 
c~ass of proper colorings of £. 

We must show this class includes all proper colorings. Let k be any proper 
coloring eft ,~ and X =  k-~(0). This set must be stable or ~t: would not be proper. 
And W= X ~ is colored in a zero-free way. Therefore k is one of the proper 
colorings o~ ~ enumerated by the term b , X~:w(2t~) in the ri:ght-hand summation in 
(1.1). So we have proved that every proper coloring is cotmted by the right-hand 
side of co?nation (1.1). Hence the equation is true. Equation (1.3) is immediate. 

Proof ~f (1.2) and (1.4). Because of how coetf4cients of x "-" are defined, the 
equations are entailed by the assertion that, for each c, the class of colorings of 
whose I(/~:) have c balanced components is in one-to-one correspondence with the 
disjoint u~;~on over aU We_ N of the zero-free colorings of £ : W  which have 
c - b ( ~  : ~'~i! balanced components. It is easy to check theft the mapping k 
(W, k lW), ~vhere W={v:  k(v):~0}, is just such a correspondence. The inverse 
mappfi~g i~ (W, kw) - ,  k defined by k [ W= kw, k [ W~---O. I-'1 

It foi~o'~,~ from (1.3) that the full chromatic number 2~(~') equals the strict 
chromatic r ~mber 3,*(,S). 

Formula (1.3) (combined with [10, Theorem 2.3]) shows that 

( -  1)"X~-(-z) = t(z, 0), (1.5) 

where t(z. x) is the Tutte polynomial of G(£ ' )  (ef. [3] and [I]). This is a new 
interpretation of the Tutte polynomial. It can be extended to x4:0 by considering 
the 'balanced dichromatic polynomial' (of. [7]); that will appear elsewhere. 

2. Counting by color magnitudes and signs 

The balanced expansion theorem still leaves us the task of computing the 
balanced polynomials of 2L One technique for doing so is to group colorings by 
their sign or magnitude parts. We call this process 'counting by magnitudes', or by 
signs, depending on the order of analysis. The first results are fundamental 
combinatorial interpretations of the zero-free exact chromatic coeffidents based 
on counting by magnitudes. 



292 T. Zaslavsky 

Theorem 2.1, Let Z be a signed graph and E = E(~) .  
(A) Suppose ~ has no .free loops. Then the coe~cient tO*(~) is equal to the 

number of pairs (~r, ~o) of partitions of N such that 7r<~ q~, #q~ = ~c, ~r is stable in ~+, 
and ,¢ is a (partial) matching of the bfocks of  ~r with E_ : ~ = E_: ~r. Equivalently 

= ~£~ q,*(v~) ~ mi([E_llr]¢). (2.1) 
I = 0  rr ~ 1 1 . : # ~  = , ; + , ~ ,  

¢r s l / Ib l¢  irl $ ,  

(B) The coefficient tO*,(Y,') is equal to the number of  pairs (~r, q~) of partitions of N 
such that rr~ q:, #q~ = K, ~; is a (partial) matching of the blocks of ¢r, and 

rk([E+ : or] t9 [(E_ : ~o) \ (E_ : ~')]) = r. 

Proot. (B) Given a z e . - f r e e  aigned coloring k*, we set 1= [k* I, q~ = Ker 1, and 
~r = Ker k*. An alternate definition of tO*,(~) is the number of symmetry classes 
of colorings k* such that l uses exactly K magnitudes and rk I (k*)= r (cf. [10, 
Section 2.2]. where the case r = 0 is discussed): in other words, such that # ~  = 
and rk l (k* )=  r. Notice that 

l (k*) = [E+ : rr]U [(E_ : ¢) \ (E_ : rr)]. (*) 

Because k* = l • sign(k*), ~0 is a matching of the blocks of it. 
The symmetry class of k* is completely described by rr and q>. Conversely any ~r 

and ~ as above determine a symmetry class of colorings counted by tO*,(Z). Thus 
part (B) is proved. 

(A) Setting r = 0 in the above argument yields the first part of (A). Equation 
(2.1) is an easy variant. [] 

Equation (21) is the expression which leads to most of the interesting in- 
terpretations of to* in the important special cases we treat later. There seems to be 
no similarly simple interpretation of tO*,, although a complicated analog is 
obtained by combining (2.1) above with equation (2.2) of [10]. 

Another kind ~f formula results from considering as primary the bipartition of 
N due to the sign part of a coloring. We call this 'counting by signs'. 

Theorem 2.2, Let v be a signed graph wi,,h no half arcs. Then 
b w,~(x, x)= Y~ w(E~<~),  x, a), 

v 

summed over all switching functions v. I f  2~ has no free loops, 

X~(x, A) = ~ x(E+(X~); ),). 
v 

(2.2) 

(2.3) 

Pr(~ot. Set a = 2~, where tx is a positive integer. Any zero-free signed coloring of 
x- in/~ colors is uniquely expressible as a product vl, where v is a sign function on 
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N and t is a coloring using the color set {1, 2 . . . . .  g}. We have 

u I 

We can view u as a switching function: then l=(ul) ~ so I ( ~ ;  l)=Ix(ul). Now 
consider an arc e. If it is improper  for l in $~, it must be positive in ~", So 
I ( ~ ;  l) = I ( ~ . ;  I) and 

w~(x, 2g)  = ~ Y. x ~kt(~y;'), 
v l 

from which (2.2) follows. Equation (2.3) is obtained by setting x = 0. [ ]  

Reversing the order of summation leads to the formulas we call 'counting by 
magnitudes' .  

Theor¢~  ~,.3. Let Y~ be a signed graph, E = E(£), and A = [2~*[. Then 

w~(x,A)= ~ X,x/v(~A) ~ x rk~: (2.4a) 
F ~ L a t  A u : N ~ { ± }  

= ~ 2"w')Xa/r(!()t ) Y. x "kA, (2.4b) 
F 6  La t  A A 

where :h~ range o[ A is all balanced subsets of F for which -(2~ IF/A) is balanced. 
(All .:.~ch A are balanced flatsr) I~ ~ has no free loops, 

~'~(A) = ~ 2~v)X,,/~(½~t). (2.5) 
F E L a t ~ ;  

--.'~ I F  b l a n e e d  

l?rooL For (2.5) we set x = 0 in (2.4b). To prove (2.4) we begin as in the proof of 
Ther, rem 2.2. Then we write F = I a ( l ) ;  we observe that F is a fiat of A, 
l(vl) = ~($ J F;  v), and the number of tz-colorings l for which F =  Ia(l) is Xa/F(g). 
Thus 

w~(x, 2g)= ~ Xa/F(t~) ~ x ~knzIF; ~' (*) 
F 6 L a t A  ~, 

To prove (2.4a), observe that Ixlr(v) = I(2 v I F; +) = F~.. 
To prove (2.4b) we view the inner sum in (*) as wbl~x, 2). By [10, (2.2)], 

w~(x, 2tz)= ~ Xa/~/z) ~ X'kAX~lv/a (2). 
F AELatb~£[F 

As we see from Lemma 2.4 below, many of the terms X~IV/A(2) = 0. Thus we get 
(b). 

Suppose - ( £  [ F/A) is balanced. Then £ [ FIA can have no positive loops. So A 
is a :iat. [ ]  
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Lemma 2.4. Let dp be a signed graph wLith no half arcs or free loops. Then 

{ 20~(*' if O is balanced, 
X~(2) = if not. 

ProoL Say v : N --~ {-4-1} is a proper  coloring of q~. For  each arc, its propriety [or v 
in • implies it is improper in - ~ .  Thus L ~ ( v )  = E(q~). ]But the improper  arcs of a 
zero-free c'~loring form a balanced set, by [10, Lemma 1.4]. So -q~ must have 
been balanced if v exists. 

If -q~ is indeed balanced, each component can be properly colored in just two 
ways. That shows what the r, umber of colorings is. []  

Theorem 2.3 is interesting even in its specialization to ordinary graphs, re- 
garded as all-positive signed graphs. I do no~t know a reference for these formulas. 

Corollary 2.5. If z~ is an ordinary graph, then 

)Ca(X) = ~ 2~(v)Xn/v(½~.), 
bipar t i t e  

wa(x, A)= ~ 2~'F)Xa, F(½A) 
/z/A b ipar t i t e  

X rk A • 

Proof. An all-negative arc set is balanced if and only if it is bipartite. Uge that 
fact in (2.5) and (2:4b) to get the polynomials of +A, which are the same as those 
of,~. 

Finally we present formulas intermediate between those of Theorerns 2.1 and 
2.3. 

Corollary 2.6. Let Y, be a signed graph. Then 

~*,(Z)= ~ 2c¢~:~)- 'a , (Z:¢) ,  (2.6) 

where a,(Z : •) = the number of rank r ba!anced arc sets A (equivalently, balanced 
fiats) in 2f : q~ such that -[(•* : q~)/A] is balanced. I f  £ has no free loops, 

4'*(~) = ~ 2 "(~ : ~ - ' .  (2.7) 
,¢el l . ;  #~=x ,  

- £ *  : ,¢ b a l a n c e d  

Proof. Equation (2.7) is immediate from (2.6). For the latter, suppose we are 
coloring in K colors, respecting a fixed partition ~, of N into x parts. Let l be lhe 
magnitude part of such a coloring. There are 2" ways to choose a sign v, but these 
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are grouped into .~ymmetry classes of 2" signed colorings. So 

Z 2-.E 
r # q ~ = K  p 

As in the proof of (2.4b), I~:~(v) = E+ : q~ ai~d by Lemma 2.4 the number of ways 
a given balanced flat A ~< E:~p appears as ~ : q ~  equals 2 ̀ ~x:¢) or 0. []  

3o Sign-symmetric graphs 

Probably the simplest forms assumed by the chromatic and Whitney polyno- 
mials are those for signed expansions of ordinary graphs. If F is an ordinary 
graph, the signed expansion ± F  has a positive and a negative arc for each arc in f:  
A si~,~-symmetric graph is a signed expansion with perhaps added half ares and 
r:egative loops. 

Theorem 3.1. The balanced chromatic and Whitney polynomials of the signed 
exp~naon ± F  of an ordinary graph F are given by 

xbr(X) = 2"XA½~,) (3.1) 
and 

wbr(x, ~ ) = 2"Wr(X, ~ ). (3.2) 

PraoL ';'heorem 3.1 is a corollary of equations (2.3) and (2.2): one merely 
ob~crves that E+(± F v) = +F. Ahnost any other formulas in Section 2 also give 
pr~ ~fs. And the direct proof by ,:ounting colorings is very easy. [] 

~,, f d!ows that the strict chrome.tic number ~/*(~:F) equals the chromatic number 
of r 

In view of the balanced expa~sion formulas, Theorem I implies fozmulas for 
the unblanced polynomials Xz and wz when ,~ = +F, ±F ' ,  and ±FLI U" for any 
U g NI They, as well as a proof by deletion and contraction and the results for 
F =/,f,: can be found in [8]. 

4. Ad.~lition and deletion formulas 

Earlier we calculated the balanced chromatic polynomial of 2 by splitting its 
proper colorings. Now we shall break down ~ itself. We regard it as ob~:ained 
from a di~erent signed graph 9. by removing some arcs from 9" and adjoining 
others not in it. To get some good from this addition/deletion method we have to 
choose our initial graph 9. carefully. If t/t is sign-symmetric (Theorem 4.4), things 
work out rather well. 

We treat deletion first. Addition is best regarded as the inverse operation. 
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Deletion Lemma 4.1. Let ~ c dp be signed graphs ,an the same node set; Let 
D = E(  ~) \E(-~ .  Then 

X,~(,~) = ~ X a,/s(a) and X~(,~) =: ~ Xg/s()t). 
S d . a t  ~ ;  S ~ L a l b  4~; 

S~ -D  S~_O 

ProoL Although a strictly algebraic proof can be carried through (for instance the 
first formula is a special case of Crapo [2, p. 606, Corollary 5]), a proof by 
counting colorings is simpler and more interesting. Let us classify the proper  
colorings of 2? according to their sets of impropriety in ~. Any such set S = Ilk) is 
closed [l 0, Lemma 1.4] and does not intersect E(_~). The number of k such that 
Ilk) = S is X®/s(2g + i) by [10, Lemma 1.5]. Tihat proves the first formula. When 
we consider zero-free colorings, I lk)= S entails S is balanced; and since it is 
balanced the number of zero-free colorings k with Ilk)= S equals X~vs(2t~). That 
proves the other formula. []  

Addition Lemma 4.2. Let ~ c c~ be signed graph~ on the same node set. Let 
D = E(~) \E(~ ) .  Then 

)(,.~/,~ ) = ~ /x~,(0, T)g~,UT)/~h) 
Tt': L;II  ~ :  

To_ D 

and 

X~(A) = 2 0,~(0, T)X~*UT)IT(A), 
T~= t . a t  h ~ ;  

T _ ~ D  

where ~ ,  is the M6bius function of Lat ~. 

ProoL Lemma 4.2 is t rMal if 0 is not closed, so let us assume it is closed. Then 
is the 0 element of Lat ~/,. We shall apply M6bius inversion to the deletion lemma, 
Put f(O)= X~,~;o~jo(h) and g ( O ) =  X~vo(h.) if O ~  D and f ( Q ) =  g(O) = 0  other-  
wise, Substituting (~/tU T)/T for ~ and ~ /T  for ~ in Lemma 4.1, we have 

f~T)= Y x,,,,,~(~)-- Y x~,~(,~) = Y g(R). 
Sc  La l  (q'V'F) R ~: L a l  ~$~ R ~ L a t  ~,  

S ~ D \ T  T ~ - R ~ D  T~_R 

In tile language of incidence algebra, f =  ~'~ * g. Inverting, g = #~ *f. Evaluation at 
0 g;¢es the first formula  The proof of the second is similar. [ ]  

Addition!Deletion Lemma 4.3. Let ~ and ~ be signed graphs on the same nodes 
and ~ = X U ~. Let A = E(V)kE(~)  and D = E(~)kE(£ ) .  Then 

XZ(A) = E p%(R ("] D, R)X(woR)/R(A ) (4.1) 
R c _ A u D ,  

R , R N D e L a t  ~ 
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and 

X~(,k) = ~ /**(R n D, R)x}~um,a(),). (4.2) 
R ~ A U D ;  

R,R  N D ~ L a t ~  

Proof. We apply the deletion lemma to ~ = aS\D, then the addition lemma to 
,~/S = ( ' l ' l S )  U A. 

x~(x)= ~ x.:s(x) 
SEL a t @ ;  

S~_D 

S ~ L a t  ~ ;  T ~ L a t  ~ / S  ; 
S~_D T E A  

R ~ L a t @ ;  
R ~ A L J D ,  

R N D ~ L ~ t ~  

where R = S U T, thus S = R N D; and ~ / s (¢ ,  T) = #¢(S, R) because the interval 
[(~, T 1 i~ Lat ~/S  is isomorphic to [S, R] in Lat qb. The proof of the balancecl 
formula is similar; we use the fact that, since S is balanced in @, T is ba!anced in 
~/S if ~,nd only if TU S is balanced in 4~ (cf. [10, Lemma 2.5]). Thus the result is 
established. [] 

,~i es describe how we apply this lemma. Suppose, to illustrate, that £ has set 
W of %11 nodes and no balanced loops, and F is the graph whose arcs are the 
negat ¢.~ links of ,~ with their signs suppressed. Then £ is obtained from the 
sign-sy~ ~metric graph ~" = ± F  U W" by removing a set of positive links, +D, and 
addiag another, +A. We regard A and D as lying in the graph ~ = F U  A;  then 
D ~  E~F). We also identify A, D, F, A on the one hand with +A, +D, +F, +A on 
the ot?~,er (which is possible because G ( + ~ ) =  G(A)); then A = ~+UA.  Thus 
Lat ,~. Lat ~ ¢~, and ~ in Lemma 4.3 ca~: be replaced by Lat A, Lat a, and pa, 
respectively. 

Ie, general we can always represent ~, if it has no balanced loops, as a 
sign-,:,ymmetric graph to w~,ich some links have been added and from which 
others have been taken away. The Addit;,on/Deletion Lemma when applied to 
this representation yields Theorem 4.4, which reduces X~ to a combination of 
ordinary chromatic polynomials. In the context of Theorem 4.4, a lifting o fA  U D to 
signed arcs means a mapping I : A U D - - + ± E ( A )  such that l(e) has the same 
endpoints as e. Recall that F/F is an abbreviation for (FU F)/F, 

Addition/Deletion Theorem 4.4. Let F c A be ordinary simple graphs on the node 
set N, D E E ( F ) ,  and A = E ( Z i ) \ E ( F ) .  Let I : A U D - - * . ± E ( d )  be a lifting of 
A U D to signed arcs, and let X = (± :FU I (A)) \  I(D). Then 

x~(~ ) --- Y J*~ i~(t ~ n D, ~ : ' . " % . ~ k  ), 
F 
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summed over a~,l F c_ A U D such that I(F) e Latb(+F U l(A)) and FN D ~ Lat A ] F. 

Proof. To begin the proof let us translate the balanced addition/deletion formula 
(4.2) into the language of Theorem 4.4. We must replace A and D of (4.2) by 
lIA) and l(D) here; then R becomes l(F). q~ and • become ± F U  l(A) and +F. 
Thus the summation of (4.2) is over Fc_ A U D such that I(F) and l(FN D) are 
both closed and balanced in + F U  l(A). By balance of the signed graph l(F), the 
interval [0, I(F)] in Lat(± / 'U l(A)) is isomorphic to [¢, F] (see [9, Corollary 5.5]). 
Thus tz~, may be replaced by /zatF and the condition on I(FN D) is equivalent to 
requiring that F n  D be closed in F. We have now shown that the conditions of 
summation for X~(A) in (4.2) may be replaced by those of Theorem 4.4. 

Let us write T =  F\D.  Thus ( ~ U  R)/R = (+FU l(T))ll(F). Since we are con- 
cerned with the balanced polynomial of ( ~ U R ) / R ,  we may change over tc~ 
± (I'U T)/I(F); this only differs in having more unbalanced loops (those derived 
from - / (T)  in ± (FU T)). But in ± (FUT)/I(F),  the arcs of - l ( F )  become 
unbalanced loops, so they are immaterial; thus we obtain the same balanced sets 
by turning our attention to ±[(FU T)/F], or briefly +(I/F). Now by equation (3.1) 

h _ h 2c~F~, /IA~ 

That concludes the proof of the theorem. [] 

Unfortunately it does not seem possible to find similar expansions of the 
Whitney polynomials. That is because addition/deletion results are related to the 
deletion/contraction formulas [10, Theorem 2.3]. Our proofs have not used them 
but they are the algebraic technique for proving the deletion lemma. Conversely 
the lemma with D = {e} implies [10, Theorem 2.3]. So since the latter does not 
hold for Whitney polynomials one cannot expect an exact analog of our deletion 
~emma. Whether there is yet an appropriate variant--which would be a v~ry nice 
thing to have in work with signed-grapl~ic arrangements of hyperplam.s--is not 
known. 

5. All-negative graphs; the even-circle chromatic polynomial 

The formulas for the chromatic polynomial of an a?,-negative graph - F  are 
especially elegant. Recall that G(-F)  is the even-circle matroid of F (cf. [9, 
Section 7D]) so what we are computing here is the 'even-circle chromatic 
polynomial'. 

Certain bipartite subgraphs play an important role in work with - F .  Let 
E ~; E(F) and N =  N(F). If X and Y are disjoint node sets, by E:(X,  Y) we mean 
the set of arcs of F with one end in X and the other in Y (,thus half arcs as well as 
loops are cxcludedt. ]If X,, Y1 . . . . .  Xk, Y~ are disjoint node sets, we call 

(E :(X1, Y , ) ) U ' "  U (E :(Xk, Yk)) (5.1) 

a bipartitionally induced arc set. 
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Lemma 5.1 [9, Corollary 7D.2]. The balanced flats of -F ,  i.e. of the e,jen°circle 
matroid G(-F) ,  are precisely the bipartitionally induced arc sets. 0 

From this and equation (2.4) of [10] we know the balanced chromatic and 
Whitney polynomials (therefore by Theorera 1.1 the ordinary ones): 

x%(x) = ~ ~(A)X "A~ (5.2) 
A 

and 
X_r(X) = ~ ~.(.~)(~ _ 1),A) y~ (~ _ 1)-#", (5.3) 

A X ~ N ( A ) ¢  
stable in F 

where A ranges over all bipartitionally induced arc sets and tt(A) denotes the 
H 6 ~ s  invariant of the bipartite graph A. 

Tae combinatorial interpret,~.tion of xbr, derived from equation (2.1), is 

, l , * ( - r )= )~  ~ m ~ ( [ r / ~ r ] ~ )  • (5.4) 
f ~ r e H . ;  

The;~e;ore the strict chromatic number of" - F  equals the largest size of a matching in 
tt~e ~;~plement of any contraction of F. 

T~'~ese facts do not offer much insight into the numerical behavior of -F .  An 
~.~;e~e~;ting. resui~ is the next theorem, which shows a remarkable rAationship 
,ietween - F  and F. A cut set of F is the set of links between two cor;:plementary 
n~d~ sets; thus ~ is one cut set. 

~ e ~ : e m  $.2. Let F be an ordinary graph. Then 

x~A~) ~ 2o~,~x~½x)=2-w '~ 'x' (5.5) 
F ~ L a t F  

and 
t,~'b_t~.';, h) = ~ 2 e(F)" [!)t'~ U X,-'~A~, (5.6) ,,~ FI F~2 ! 

F ~ L a t F  A 

where A is summed over all cut sets of F[ F~ 

ProoL We get (5.5) from (2.5) by noticing that -,~ I F =  +F [ F, which is always 
balanced. 

Equation (5.6) is almost equally immediate from (2.4b); but it is necessary to 
prove that A is a cut set and any cut set is an A. Suppose A is a cut set of F. Then 
it is a balanced flat (by Lemma 5.1). Furthermore F ] F can be switched to make 
A positive without changing any other signs. 

Conversely suppose A i,,; the bipartitionally induced arc set (5.1) and -(,~ i bTA) 
is balanced. That means it is possible to switc! ,~ to , ~  in which A is positive and 
F \ A  is negative. Then A is the cut ~et E : ( X , X ' ) ,  where X=v-~(+) .  El 

Remark. Variant Proof of (5.5). Direct appli:ation of counting by magnitudes is 
quite simple. 
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One might ask what would happen if we applied Theorem 4.4. If we cho~e F in 
(4.4) = r here, A = 0, D = E, and I(D) = +E, equation (5.5) would result. If we 
took F(4.4) = O, A = E, D = ~, l(A) = -E ,  we would get (5.2). As far as I can see 
there are no other interesting eases. 

From (5.5) we have for the all-negative complete graphs: 

x~_K.(x) = ~ s(,~_~ K)  =(~)~, (.".,.7) 
K =0  

X_ K.(;t) = ~ [S(n, x)+ n S ( n -  1, K)]. 2(X - 1),. (5.8) 

And from equation (5.7) we can immediately write down expressions for the 
h ), called the balanced .umbers  w~(-K~) (the coefficient in ~(b_K.(X) of .-k 

W.~imey numbers of the first kind of - K . .  We have also a different formula: 

w ~ ( - K . ) = ( - 1 )  k ~ 1-I g(#B) ,  (5.9) 
, r t c l l . ;  B E r t  

# ' t r  = n - k 

where 

g(n)--iw~_,(-K,,)[= / ! S ( n - l , j ) .  (5.10) 
./=O 

The latter sum is interesting because there is no cancellation among its terms. To 
prove (5.9) we define g(n) by the first equabt7 in (5A0), then apply Lemma 5.1 
and the matroid formula for ;y~(h) (in [10~. qheorem 2.4]), noticing that rk (A)=  
rk ~:(A) for a bipartitionally induced arc se~ A in K,. To establish the second 
equality in (5.10) we observe that A, if of ratlk n -  1, is equal to Kp,,_p for some 
p = l, 2 . . . . .  n -  1. Thus 

g(n) = ~ Y. I~(K,,.,,-,,)I, 

~z being the M6bius invariant of G(K~,.,_~,), that is the coefficient of h in XK,.~ ,(A). 
Knowine the latter we can write g (n )=  ( - I ) " I G ' , ( 0 ) ,  where 

G.(;~) = ~ p-~o \P / j= , ,  

Then for instance expanding the Stirling numbers or calculating the exponential 
gcncrating function one derives the second expression in (5.10). 

As a consequence of (5.9) we have values for the Whitney numbers of 
G ( -  K~,): 

Wk(--Ki'*)=(--1)k~.En \ n - ~  ] B~,~ 
(5.11) 
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6. Partial matching numbers and ordinL~ chromatic ©,elclents 

The chromatic polynomials of signed graphs (wkhout loops or half arcs) which 
contain a positive or negative complete graph are related to ordinary graphs in 
noteworthy ways. 

6.1. Graphs with every positive link: partial matching numbers 

A ~.igned graph which contains +K,  can be regarded as the result of deleting a 
negative subgraph - F  from the signed expansion +K,.  The interpretation of the 
coefficients of X~: from equation (2.1), in which ¢r = 0 because E+ = +K,, is: 

Theecem 6.1. I[ F= (N, E ) ~  K, and ~, = ( + K . ) \ ( - E ) ,  then 

x~(x) = ~ m,(r)- ~(x)._,. [] 
i=:0 

(6.1) 

This  the matching number of F equals n -  y*(,~). 
The~rem 6.i  implies tha, by using the semifactor'ai matching polynomia (the 

r~gbt-hand s~de of (6.1)) one has a version of the matching problem to which the 
r~,ckioery of chromatic theory applies. For instance the deletion/contraction law 
for such polynomials is easily reduced to the well-known formula 

m~(F) = m~(l"\ e) + m,_.~(F : N(e)~). 

(We omit the details.) 
Fro:n Theorem 2.1(B) we can calculate the balanced Whitney polynomial. For 

B.c_zN, let a ( F : B )  be the proportion of bipartitions {X,Y} of B in which 
1': (X, Y) ,.'s complete bipartite (and X, Y# 0). 

Corollary 6.2. I / ~  = ( + K.) \ ( -  F), we have 

w~(x, A)= ~ ~(x)#~. (2x) ~-#~ rI [1-~(r:8)(1-x-,)]. 
tO ~ f/~ B E ~  

Proof. For the proof first note that Theorem 2.1(B) can be restated in the form 

w (x, E H E x r, 
~ H .  B~fo l~ella; 

# 0 ~ 2  

where r depends on B and /3. Let /3 ={X, Y} if # / 3 = 2 .  Since E÷ (~)=+K. ,  we 
have r = # B - 1  except that r = # B - 2  if the two halves of/3 are not connected by 
any nege~tive edge: in other words if F:(X, Y) is complete bipartite. From this the 
corollary follows. [] 

We get a striking result if we apply the addition lemma to ¢~ = +K,  U - -~  with 
D = - E .  We must sum over those Tc_ - E  which are balanced and c~.osed in 4, It 
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follows that T is a partial matching in E, so the formula of the addition lemma 
become:~ 

X~(A) = ~ mk(E)(--l)kxbZ,(A), (*) 
k ;=O 

iEk den~,ting a contraction (+K,U-Mk)I(-Mk) where Mk is a k-arc partial 
matching. ,~k has the same polynomial as (+K~-k)\(--K,-2k), as we now prove. 

Let L consist of the lef~t endpoinls of the links in Mk and let R b,e the rest of N. 
If we switch L, the switched graph £~, consists of a +KE on L and a +K,-k  on R 
with eve~ T v c L and w ~ R linked by a negative are, and a matching +Mk of L 
onto L'c_-R. After we contract by ME, we have merged L intt) R. The arcs 
(neglecting multiplicities) are a +K._k on R, negative arcs between each v ~ L'  
and w ~ R, and a negative loop at each v ~ L'. For balanced polynomials the last 
named may be ignored, so, in effect we have to deal with (+K,_~)\(-K,_2k), as 
claimed. 

Substituting into (*) frown (6.1) and comparing coefficients of 2(A),-i yields 

mt(E¢) = ~. mk(E)(-1)~mr..~(K,_2k). (6.2) 
k = 0  

Thus the partial matching numbers of a simple graph (N, E) determine those of its 
complement. This relationship, which ~s apperently new, was discovered exactly as 
we have proved it here. It is, however, easy to prove ciire, qv. For more on this 
subject see [11]. 

Another explicit formula for w~. be,Ades that in Cot( ilary 2 is implied by 

qs*,(,~)=(-1) . . . . .  ~ ( n - q - " ~  Z m.-q-~(tr~/lrY) • (6.3) 
\ r - q /  q = 0  ~r~ [ / .  ; 

r k c r = q  

We omit the proof because of its complexity; it seems "o t,:quire a generalization 
of (6.2) which appears in [11]. 

6.2. Graphs with every negative link: chromatic coefficient:s o/an ordinary graph 

A signed graph which contains - K ,  is the union of - /( , ,  with some all-positive 
graph, say +F. The balanced chromatic polynomial of 2~ is a linear transform of 
Xr(A)=~,,O,(F)'(X),, as we can see from (2.1) (in which ¢=.r r  because 
E _  := -K.). 

Corollary 6,3, Let F = ( N, E) and .~ = - K. U + E. Then 

~,*(~) = ~,~(r). [ ]  

Thus the chromatic nuraber of F equals 3'*(£). 
There is also a formula for w~ similar to that of Corollary 6.2, which we omit. 
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6.3. Matchings vs. colorings 

Let F =  (N, E) again. The signed graph ~ = +K,  L I - E  is the result of adding 
the an:s +E  e to +F. Theorem 4.4 can be applied with D = 0, A = E e, A = K,, and 
l(S) = +S. The range of summation is S = K,  : ¢r where ere F/, is stable in F. If we 
write ~,  for the Mrbius function of the partition lattice H,, Theorem 4.4 in this 
case read,; 

s t a b l e  
in  U 

Here/'ycr means F with the blocks of ¢r identified to points. Now let us expand 
Xr/~(½;~) in falling factorials, collect terms, and compare to Theorem 6.1. We have 

m._ko~r e) = ~ ~ ~,(0, w)2#'-kqJk(r/rr), (6.4) 
• r s t ab l e  

in  U 

which shows a relationship between the exact coloring numbers of contractions by 
stable partitions and the partial matching numbers of the complementary graph. 
(Equation 6A can be proved directly by employing the identity 

# "  = 2 #T o r  0 ,  

the former if r is a matching of the blocks of o', the latter otherwise, This identity 
is the special case ~ = +K.  of Lemma 2.4.) The inverse of (6.4) is 

Ck(F)= ~ m#~,_k([17cr]°)/2 #'-k.  (6~5) 
"n. s t ab l e  

Example 6.4. In case F = (N, ~), equation (6.4) becomes 

= t s(1, i)2iS(i, k), 
(2n-2k)! r  ,=o 

where s(n, i) is the Stirl~r~g number of the first kind. 
The inverse formula, from (6.5), is 

S(n, k)-- 2 
i=k (2i -2k)!!  " 

7. Signed complete graphs 

A signed complete graph is K, with signs. For such graphs our general formulas 
are relatively s~imple; from them further relationships among partitions and 
matchings emerge. We shall treat principaUy the balanced polynomials; Theorem 
1.1 shows how to compute the others. 

A few results carry over to signed simple graphs; but in general the latter are 
more complex. 
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Let 2 =: (K,,, o') be a signed complete graph. We write ~ = K o, where Q = 
~r-~(-) is 1!he set of negative arcs, to emphasize which signed complete graph we 
have in mind. Note that K o =-Kp,  where P =  o'-t(+) is the set of positive arcs. 
We write E = E(K,)  = PU Q. The two-graph of K o (also called the two-graph of 
Q) is the class 3"(K o) of unbalanced triangles. (See. [9, Section 7El.) Since 3"(1(o) 
determines the switching class of K o, we can think of Xgo(A) as the chromatic 
polynomial of the two-graph; and the same for the other polynomials. 

Harary's criterion for balance (of. [9, Proposition 2.1(ii)]) is in the case of a 
signed complete graph: 

Lemmst 7.1. The following are equivalent: 
(i) K o is balanced. 

(ii) iV partitions into X and Y (possibly void) so that P = E : X tJ E : Y. 
(iii) Q is a c~mplete bipartite graph on N or is void. [] 

A criterion for S _  E to be a balanced flat (from ~9, Proposition 5.6(ii)]) is that 
S N Q t,e biparfitionally induced as in (5.1) and S f3 P =  P:{Xt, Y~ . . . . .  Xk, Yk}. 
Then by the algebraic connection expressed in [10 (24)], we have 

b X S)A "~s~, XK,,( ) = ~ tzKo(O, (7.1) 
S 

S ranging over al~ balanced flats. (This reasoning applies also to signed simple 
graphs.) 

Let u,; begin with two switching formulas derived f 'om counting by magnitudes. 
Graph switching (or Seidel switching) means reversir ~. the adjacenc:!es between a 
node set and its complement. Let pw stand fe, r t le  graph (N,P} switched by 
We_ N. From Theorem 2.2 we obtain 

X~;,,(A)= ~ x(pw;½h), (7.2) 
W ~ N  

w~,,(x,X)= ~, w(pW;x,  ½X). (7.3) 
~,' ~ N 

The polynomial of a signed complete graph is thus in a sense the average of those 
of the graphs in the graph-switching class of its positive part. (One can say also: 
the polynomial of a two-graph is the average of those of all complements of 
graphs in its switching class.) From (7.2) we deduce 

.~b*(K o) = 2 -k ~. ~bk(pw) (7.4) 
w~N 

for the exac~ chromatic coefficients. (Formulas, (7.2--4) hold for a signed simple 
graph (A, a) with P =  (r-~('~ -) if graph switching is carried out within zl.) 

Next we present the combinatorial interpretation o! the balanced chromatic 
polynomial and a related formula for the Whitney polynomial. We shall regard a 
partition ~/> a in H,, by abuse of notation, as a partition of the set a, writing 



Chwmalic invariants 305  

q, ~ / / , .  Let 

/3k(r) = the number of partitions of N(F) into k blocks, each of which is 
either stable in F or induces a complete bipartite graph. 

(These are also the parti~tions q~ such that - K r  :q~ is balanced, i.e. every triangle 
contair,~ed in a block is in 3"(Kr).) 

Corollary 7.2. The zero-/tee exact chmma6c coefficients of I£ 0 are given by 

#,*(go) = t L ( P )  = (7.5) 
j , r~ I I . ;  # * r= j+k ,  

stable in P 

The balanced Whitney polynomial is given by 

W~co(X,A)= E x"-#'~ ~ E x'~'" 'z(A)#., (7.6) 
a e l l ( P )  ,¢ ¢ / / .  R 

where R ranges over subsets of (Q/a) : ~p such that, in each block of ~p,, R t.J (P/a) is 
either 0 or a complete bipaa~ite graph. 

Proof. Equations (7.5) are immediate from the two parts of Theorem 2.1(A). 
We deduce (7.6) from Theorem 2.1(B). Evidently by writing the Whitney 

polynomial expressions in the form ~ ( . )  ,we can examine each block of 
separately. Let us therefore consider the case ~p = 1 We have to prove that 

X x n-#a ~.d x r k  R,  (a) 
eIcFI(P) R 

the range of R being R~_ Q/a such that R U(PIcO is (;ither 0 or complete 
bipartite, is equal to 

x rkttP:'dwt°\(° :'~',~J) . (b) 
qr E//n ; 
# , r ~ 2  

If we set ot = w(P:~r) and R=(Q/cO\(Q/a :~r), then (b) i:, the same as 

Y. x " - #  ° Y. x 
acill(P) lr 

summed over bipartitions ¢r = ~IX, Y} of a for which (Pfa):~r = O. Now clearly 
R U (P/a)=  (E/a):{X, Y), which is void or complete bipartite. So ~ and R are as 
required by the sum (a). 

Conw~.rsely giw.n a and R a,s in (a), we let w = {X, Y} = the bipartition of c~ 
determined by R U (Plot). 'rhen (PIoO : ¢r = 9 and R = (QI~) :(X, Y) = 
(Q/a)\(Qla :~r). So a and R are as required in the summation (b'), [] 

Notice that ~p is (7.6) is restricted to partitions such that (P /a ) :¢  is bipartite. 
The range and rank of R too are partially predictable. For instance if (P /a) :B is 
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nonvoid bipartite and has c > 1 components, there are 2 c possible R, all of rank 
# B -  1. But such observations are not enough to simplify (7,6). 

A bevy of formulas results from application of Theorem 4.4 with different 
choices of the deletion edge set /9.  One can el~oose ~ y  D c_ E (then A = Dg .  The 
form taken by Theorem 4.4 is found by noting that F = (N, D). A = K,, and the 
lifting is l l O = - K o [ D ,  1 [ A = K o I A .  'I'hu,~ we have 

bO2 X(DUF)IA~A), (7.7) 
F 

summed over edge sets F for which F n  D is a closed subset of F (in the ordinary 
polygon closure) and l(F) is a balanced flat in the signed graph 4> = + D  U l (A)  = 
Ko O :t:D. 

Unfortunately most choices of D lead to hopelessly complicated versions of 
(7.7). The most trivial choices of D, on the other hand, yield results we already 
know: choosing D = E we obtain (7.5), while from D - - 0  we get the matroidal 
form of the balanced chromatic polynomial (see [10, (2.4)]). The most interesting 
selections are D = P and D = Q. 

Case D = P. Here we are regarding K o :as obtained from +(N, P) by deleting 
- P  and adding +Q. The lifting is to negative arcs in 4 ' = - K ~ O + D .  The 
conditions on l(F) and F N D ,  if rephrased in terins of q~=*r(F) and ~r= 
7r(FN D), give the following result: 

X~:o(h) = ~ 2#*Xp/,(½h) ~ It([E:, , /Tr]/[P:¢!),  (7.8) 

where the range of rr is T ~< q~ such that ~ is stable i:'. P. z¢ partitions in exactly 
two parts each nonsingleton block of ~0, and each component of P:,p is complete 
bipartite or a single node; and where E:~tTr is shormand for ( E : ~ o ) \ ( E : z t )  (this 
is a bipartitionally finduced subgraph of K,,). The strong restriction on rr means 
that few ~¢--only those for which all the components of P:q~ are complete 
bipartite graphs or single nodes~wiU contribute to the sam. For each sum q~ the 
sum over rt is comput.~ble: it equals the product over all B e  q~ of a quantity 
(-l)*+m-~/(i, m) which depends only on the numbers m of bipartite and l of 
:dngleton components of P: B. The function [ is 

'(,) f( l ,  m) =  2 " - '  ~, rn '-k ,., S(k, ])(m + j -  1)!; (7.9) 
-0 k ~=o k= 

in case m - - 0  this equals the g(l) defined in (5.10). 
Case D = O. Here we view K o as the result of deleting + O  and adding - P  to 

±(N, O). The lifting is to positive arcs in ~ = +K,  U - O .  The sum is over sets F of 
the form E : ~¢ for some partition q~ such that F N  (2 is closed in F; this rednces to 

X~o(a) = Y'. e , (w (Q  : q~), q~)2#*XQ,,(½A), (7.10) 
~o 

summed over all q~ e / / .  for which Q : ~0 i:~ polygon-closed in K,~. Here ~.  denotes 
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the M6bius function of the partition lattice. Note that (7.10) is very much like 
(2.5) but involves fewer summands. 

8 .  Orientations 

In this section we apply our results to the calculation of 

o(2~) = the number of acyclic orientations of X 
and 

ok(X) = the number of acyclic orientations of all k-node contractions, 

in general and for examples. The tool is [10, Corollary 4.1], whi'ch says that 
o(~)=lx~(-1)l and ok(Z) is the coefficient of x "-k in (-1)"wz(-.x,-1).  One 
should keep in mind the geometric interpretations of o~(X) as the number of 
k-dimensional faces of the arrangement Of hyperplanes H[~]  and as the number 
of (n-k)-dimensional faces of t;ac: ~ acyclotope Z[£]  (see [10, Section 4]). One 
purpose of this section is to solve the geometric problem of counting' faces. 

We denote by o*(,v,) the coefficient of x "-k in the polynomial ( -1)"w~(-x, -2)  
and we write o*(,Y)= ]X~(-2)I. 

8.1. Balanced expansion formulas 
From (1.4) we have for a full graph 2~" the expression 

ok(Z') = Y~ o*(Z : W), 
W~_N 

whose inverse is 

(8.1) 

ok*(~) = ~ (-l')#W~ok(E': W). (8.1') 
w~_N 

And note that the number of acyclic orientations of ~" satisfies 

o(,Y') = o*(,Y), (8.2) 

which gives one combinatorial interpretation of o*. 
From (1.2) we obtain for any ,Y the expression 

E o* Z: .o (8.3) 
f = O  W ~ N  

b ( g : W ¢ ) = k - l  

and from (1.1) and (8.2) we get 

o(~)= Y. (-1)#W'o(2~': W). (8.4) 
W c s t a b l e  

We can generalize (8.4). For any m-vertex signed graph q~, let/3{'(c/}) denote the 
number of subsets Vc_ N(~) of m - ]  vertices whose induced graph 4 :  V has 
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exactly i balanced components. Substituting (8,1') into (8.3) yields the expression 

ok(~)= ~ (-I) k-' ~. o,(~':X) ~ (-l)'fl~)_~(~:X:). (8.5) 
I=0  Xc.~il j~O 

These formulas reduce the enumeration of acyclic orientations of general signed 
graphs to that for the simpler full graphs. 

8.2. AU-positive graphs 
For an all-positive signed graph + r  (where r is ordinary; that is, without half 

arcs or free loops) we can interpret the numbers o*(+r) in two ways. By counting 
colorings (for example) it is clear that 

X~+r(A)= Xr(A) and wb+r(x, h )=  Wr(X, A). 

Thus by the: contraction formula (2.4) in [10] and St~n~ey's interpretation [5] of 
IXr(-2)l, we see that o*(+/") equals tlae number of compatible pairs of acyclic 
orientations and 2-colorings of all k-node contractions ef r .  

On the other hand G(+r') = G(U+ Vo), where r +  Vo means r plus one extra 
node vo adjacent to every node of F. (We observed this in [9, Section 7A].) Thus 

a-'Wr+o,,(x, A)= ~ W~r:w0: ,h-1)  (8.6) 
W E N  

and similarly for the chromatic polynomials. We conclu,~e by inverting (8.6), or 
from (8.1'), that 

o*~(+r)--: ~ (-])--%(It: ~ +  Oo). (8.7) 
W~_N 

In particular, 
o*(+r) = o(r+  vo). (8.8) 

These interpretations of o*(+r)  lend more meaning to the switching formulas 
that follow. 

8.3. Switching [ormulas 
Front Theorem 2.2 we h~ve 

o*(,~) = % o*(.~:), 
v 

(8.9) 

summed over all switching functions v : N -~ {+}. Since £~. is an all-positive graph, 
the right-hand side of (8.9) has the combinatorial interpretations in terms of 
ordinary graphs described just above. In p~xrticular 

o~(~')= Y~ ~ o~([(~: w)~l+vo), (8.1o) 
W E N  v 

the range of v being switching functions W ~ ,  {±}. 
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8.4. Other general formulas 

From Theorem 2.3 we can express the v~,~, in terms of contractions of the 
underlying ,..'aln~_._~_, graph A = I~*l. From (2.4a) we have 

~,*(.~)=y~ Y. ( -1) .~ . - .%(alF)  (8.11) 
F,v 

c(F~.)=k 

and from (2.5) we get 

o(~;') = o*(~;) = Y. ( - 2 ) c ( % ( a / F ) .  (8.12) 
F~Lat/ t  

- ~  I F balanced 

Making the appropriate substitutions in Theorem 5.4 yields an ordinary-graphic 
expression via addition/deletion: 

O ( , ~ ' )  = X ( - - 1 )  rkF '  Y~ I g a ( G ,  F)[ 2~('~o(F/F). (8.13) 
Ft eLa.t A ; F~La~: a ; 

FtGD, F t~F~At3D.  
I(F O balanced I ( F) balanced 

This is less complicated than it looks, since it can be expected to have few outer 
summands; moreover the inner summands, being positive, do not cancel each 
other. 

8.5. Sign-symmetric graphs 
Let r be an ordinary graph, Uc_ N =  N(F), and ~ be +F  with the nodes in U 

filled. By The.orem 3.1 we have o*(,Y,) = 2~ok(r); this together with the balanced 
expansion formulas in Section 8.1 yields 

o($)=  ~ (-1)~-#w2#Wo(F: W) 
W ~ U ;  

W" stable in r 
and 

ok(£3, = Y (-1)"w°~2#%k-.w°)( r :  w), 
W ~ N  

where i(W c) = the number of isolated nodes of F: W c which lie outside U. These 
results are treated in more detail in [8] (where the language is that of arrange- 
ments of hype, rplanes and the proof avoids most of the machinery we have 
employed here). 

8.6. The classical root .system arrangements 

The most important elementary examples are £ = +K,, ±K~ and +K,. Then 
/-/[~] is the arrangement of hyperplanes R* dual to the root system R = A,_~, B, 
or C,, and D,, respectively. Thus the chambers of these root systems can be 
counted by means of the formulas of the previous subsection. (The results tor 
these examples are very well known.) 
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8.7. Root system subamangements containing A*_~ 
If we are interested in the number of regions of such an arrangement of 

hyperpla~::~,, we must calculate o(£) where ~ is a signed graph containing +K,, 
that is ,~ -'~ :~K,\(-E) .  This brings us to Theorem 6.1 and matchings. First let us 
consider ':" whose arrangement/4[,, ] contains all the coordinate hyperplanes as 
well as A,*_~. From (6.1) and (8.2) we have 

In /2 ]  

o(,~') = ~ ( -  l ) '2"- ' (n-  i)! m,(E). 
i = 0  

If we leave out the coordinate hyperplanes not corresponding to vertices in 
U___ N, we have from (8.4) the formula 

[.,21 { ( c}.  o(Z)= ~ ( -1) '2"- ' (n- i ) !  m,(E)- ~ m,_~E:{v}) 
i = 0  vCU 

Formulas for ok*(-~) can be deduced from Corollary 6.~. 

8.8. Root system subarrangements deficient in A*._, 
Suppose an arrangement consists of B, *= H[+K;.] except for certain hyper- 

planes belonging to A,*_~. Then it equals H[.,~'~ for v = ~:K, \ (+D).  Let F be ~.he 
complementary graph K. \ D. Then from Corollary 6.3 along with (8.2), 

o(~') = t (-1) "-k2kk! ~k(F). 
k = O  

8.9. All-negative graphs 
As another example consider the all-negative graph - F  (whose arrangement 

H[-F] consists only of hyperplanes with equations x~ + Jc~ = 0) and its full version 
-F ' .  Ba.~ed on Theorem 5.2 and equations (8.4) ano (~,,.2): 

o(-r)  = Y. ~r~ (_l).W-~2~o~(r: iv), 
W ~ s t ab le  k = 0  

o(-F ' )  = t (--l)"-k2kOk( F)" 
k = 0  

Recalling that o((K. : W)/F) = c(F)! for Fe  Lat K, -- H., one can easily calculate 

o(-K'.) = t (-1) k2kk! S(n, k) 
k = O  

and 
o(-K.)  = t (-1) k2kk! [S{n, k ) - n S ( n -  1, k)], 

k = O  

S(n, k) being the Stirling number of the second kind. 
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8.10. Signed complete graphs 

Finally we examine the signed complete graph K o whose negative arc set is Q. 
Equat ion (8.3) reduces to 

ok(Ko)=o*(Ko)+ ~. o*(Ko:W1)- ~, o*_i(Ko:W2), (8.14) 
W I ~ N  ~ i W 2 ~ N  

the ranges of WI and W2 being the sets W for which Ko:W ¢ is respectively 
unbalanced and balanced. Equation (8.4) reduces to 

o(Ko) = o*(Ko)- ~ o*(KQ :{v}C). (8.15) 
t ) E N  

(If we form ~ from K o by filling some nodes, say those in U___ N, similar formulas 
hold but ,S : W c is always unbalanced if W ~  U, and v ranges over UL) Thu~ what 
is crucial is the evaluation of the ok*. 

One evaluation is a switching-class 'averaging' formula deduced from (7.3): 

o*(Ko)= ~ o*(pw). 
W ~ _ N  

A second kind of evaluation is based on the addition/deletion results (7.7), 
(7.8), and (7.9). All give n;ce expressions for o*(Ko) in terms of aeyclic orienta- 
tions of ordinary graphs. To illustrate we adapt (7.8) and (7.10) to acyclic 
orientations. From the former, 

o*(Ko)= ~ (--1)rk(P:'F)o(P/~P) I'I I(i(P:B), c(P:B)-i(P:B)),  
q~call~ B ~  

where i(P:B) is the number of isolated nodes in the induced graph P:B. From 
(7.10), with tz, denoting the M6bius function of the partition lattice, 

o*(Ko) = ~ (-1)  'k(°:~) [/z,(~r(O:¢), ¢)12#~o(Q/¢) • 
q~ E/Tn 

9. In conclusion 

We have developed three general varieties of formula for signed graphs: 
balanced expansion, sign/magnitude (including a combinatorial interpretation), 
and addition/deletion. But these do r~ot exploit the full range. For instance a 
convolutional formula for ordinary graphs, provable by an easy coloring argu- 
ment, extends to signed graphs in two forms: 

and 

Xz :x-(h)X~ :x~(lJ.) (9.1b) 
X ~ _ N  

x (A x:~:x(A)x:~:xo(0-) (9.1u) 
X ~ N  
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(assuming ,~ has no free loops). This and other expressions are treated in the 
general context of biased graphs (which include voltage graphs) in [7]. 

The method of counting by magnitudes generalizes to voltage graphs, carrying 
with it most of Section 2. Addition/deletion formulas, on the other hand, cannot 
extend without substantial modification because they depend strongly on the fact 
that in a signed graph there are only two possible labels for an arc. But since they 
are proved by the method of deletion and contraction they should generalize to 
the dichromatic polynomial 

Cl (u, v)= (uv) C  v 

the generalization of Tutte's dichromatic polynomial of a graph [6]. The di- 
chromatic polynomia~ is investigated in [7] in the context of biased graphs. 
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