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ABSTRACT

A cladistic character can be viewed as a type of set-labeled tree. This representation is
used to derive a recurrence equation giving the number #(n, r) of cladistic characters on n
species having r states. Values for #(n, r) are given for r up to 5 and n up to 30.

INTRODUCTION

Felsenstein [5] gave nice recursion formulas that enabled him to compute
the numbers of various sorts of evolutionary trees. A companion problem to
the one of counting evolutionary trees is that of counting the number of
taxonomic characters that are possible for a particular study collection of
evolutionary units (EUs). These problems, as noted by Felsenstein, certainly
are not the most pressing for taxonomy, but we feel that they present
interesting challenges and may be useful in probabilistic investigations.

TREES OF SUBSETS

The type of taxonomic character that we consider here has been called a
cladistic character (Estabrook, Johnson and McMorris [2]). Recently
(Estabrook and McMorris [3]) the definition of cladistic character was
slightly changed so that we could perform a more elegant analysis using the
concept of trees of subsets. Each cladistic character on S corresponds in a
natural way to precisely one tree of subsets of S, and each tree of subsets of
S corresponds to precisely one cladistic character. To illustrate this before we
give a formal definition we refer to Fig. 1.

MATHEMATICAL BIOSCIENCES 54: 3—10 (1981) 3

©Elsevier North Holland, Inc., 1981
52 Vanderbilt Ave., New York, NY 10017 0025-5564 /81 /030003 + 8802.50




4 F. R. MCMORRIS AND THOMAS ZASLAVSKY

(a) A

B

C
0
(b) °
n=n g

(e) °

a n=n g

FIG. 1. (a) The character state tree of K (see text). (b, ¢) Two equivalent way’s of

representing K.

Suppose each EU in § is identified with a positive integer. In this example,
§={1,2,3,4,5,6}. The character state tree of the cladistic character K is
given in Fig. 1(a). Notice that it is required that the character state tree be
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(a) 152

F1G. 2. (a) This tree is not the character state tree of a cladistic character and therefore
does not have a representation as a tree of subsets. The problem is that the state p is not the
greatest lower bound of occupied states (see Estabrook and McMorris [3]). (b) The empty
state g of this character state tree is the greatest lower bound of the occupied states r and s.

directed from primitive to advanced. Figure 1(b) indicates that EU 1 pos-
sesses state A of character K, EUs 3 and 4 state B, EUs 2 and 6 state C, and
EU 5 the most primitive state 0. Figure 1(c) illustrates how K can then be
considered as the tree of subsets K={{1},{1,3,4},{2,6},{1,2,3,4,5,6}}. A
detailed account of this process can be found in Estabrook and McMorris [3].
The reader should also look at Fig. 2 for another example.




6 F. R. MCMORRIS AND THOMAS ZASLAVSKY

A precise definition is as follows: If S={1,2,...,n}, then a tree of subsets
of S is a collection 9 of nonempty subsets of S such that

(i) S€J, and
(i) if A, BET and ANB5 @, then ACB or BCA.

Thus the following set of subsets of {1,2,3,4,5,6} is not a tree of subsets
and could not be obtained from a character state tree: {{1},{1,3,4},
(2,6},{4,5},{1,2,3,4,5,6}}. Here {1,3,4} N{4,5}={4} 5 &, but neither set
is a subset of the other one.

Since every cladistic character on S is, in effect, a tree of subsets of S, the
problem of counting the number of possible cladistic characters on S reduces
to that of counting the number of trees of subsets of S. The method of
character compatibility analysis (Estabrook and Anderson [1]; Estabrook,
Strauch, and Fiala [4]; Strauch [7]) uses cladistic chararacters to construct
estimates of the evolutionary history of a group S of EUs. These evolutionary
trees can be considered equivalent to cladistic characters on S. Hence we will
be counting the number of distinct estimates of the evolutionary history of S
that are of this type.

THE NUMBERS

We will say that a tree of subsets T has r nodes if T contains r elements
(i.e., subsets of S). Let #(n,r) denote the number of trees of subsets of an
n-element set S having r nodes, and let #(n) denote the number of trees of
subsets of S. Then clearly

2n—1

t(n)= 21 t(n,r).

r=

A recurrence equation for the calculation of #(n,r) is obtained by
counting the number of ways to enlarge a tree T* of subsets of an (n—1)-
element set S* to a tree of subsets of S* with an additional element, which
we label n, adjoined. For a set X we use the notation nX for X with n
adjoined; and S=nS*.

Suppose T* has r nodes. Figure 3 shows the ways n can be added to T*.
First notice that in adding n to T* there is exactly one greatest node
(“highest” on the tree) to which it is added. (This is equivalent to adding 7 to
an already existing node on the original character state tree.) Call this node
C. The simplest tree of subsets of S is obtained by just adding »n to C and
every node below it. This tree, called T}, has r nodes. A tree T, with r+1
nodes is derived from T, by adding n as an extra node above nC. Two more
trees, T, with r+1 nodes and T, with r+2 nodes, are obtained respectively
from T, and T, by keeping C itself as a node just above nC.
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FIG. 3. The four ways that the element 7 can be added to the tree of subsets 7* of a
set with (n— 1)-elements S* to produce a tree of subsets of nS*.

Each of these four trees of subsets of S has the property that, if n is
deleted from every node (throwing away the empty set and the duplicate C
node if necessary), one gets 7* back again. And the only trees of subsets of S
which give T* back upon deleting n are T}, T, T3, and 7. Thus if n is added
as we describe to all possible trees of subsets of S*, we will get all trees of
subsets of S without duplication.




8 F. R. MCMORRIS AND THOMAS ZASLAVSKY

Let us count up the trees of subsets of the n-element set S having r nodes
according to the size of the tree T* from which they were derived. We find
that

r of type T, come from each T* with r nodes (one tree T for each choice
of the node C in T%),

r—1 of type T, come from each T* with r—1 nodes,

r—1 of type T, come from each T* with r—1 nodes,

r—2 of type T, come from each T* with r—2 nodes.

This gives
t(n,r)=rt(n—1,r)+2(r—)t(n—1,r—1)+(r—2)t(n—1,r—2) (1)
with the initial conditions #(n,1)=1 for all n=1 and #(1, 7)=0 for all r=2.
In an actual study, each cladistic character will usually have less than five
states. (For example, see Gardner and LaDuke [6], Strauch [7], Estabrook

and Anderson [1].) We give the exact values of ¢(n, r) for r up to 5. They can
be proved by induction on » using (1):

t(n,1)=1,

t(n,2)=2"-2,
t(n,3)=2-3"—4.2"+1,
t(n,4)=%-4"—9.3"+11.2" -4

t(n,5)="135-5"— .47 4 135.37 300 4 20

TABLE 1

The Number of Trees of Subsets of a Set of n Elements

Number of trees of subsets

N

1 1
2 4
3 32
4 416
5 7,552
6 176,128
7 5,018,624
8 168,968,192
9 6,563,282,944
10 288,909,131,776
11 14,212,910,809,088
12 772,776,684,683,264
13 46,017,323,176,296,448
14 2,978,458,881,388,183,550

15 208,198,894,956,559,677,000
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If n, the number of EUs, is large, the first term is clearly dominant. Thus
we have, for r<5, the asymptotic estimate

rr—l

r!

n

t(n,r)~ -r as n—oo0.
(This is valid for all r, but we omit the proof.)

The formula (1) makes it easy to compute #(n,r) recursively. Table 1
shows #(n) for n up to 15, and Table 2 gives t(n,r) for n up to 30 and r up to
5. These values were computed using a double-precision FORTRAN program
written by Tim Margush on an IBM 360/75 at Bowling Green State
University. The figures are significant only to 18 digits.

Because a bifurcating tree with 7 labeled tip EUs has n—1 interior nodes,
we get the number of bifurcating trees by letting r=2n— 1. From (1) we have
by an easy induction the well-known formula

t(n,2n—1)=(2n—3)2n—5) - - -(5)(3)(1).

We thank T. Margush for programming assistance, and an unknown con-
ference housing director at Florida Atlantic University for originally getting us
together. Thanks also to Christopher Meacham and an anonymous reviewer for
helpful comments.
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