
The Canonical Vertex Signature

and the Cosets of the Complete Binary Cycle Space

Thomas Zaslavsky

Dep’t of Mathematical Sciences, Binghamton University, Binghamton, NY 13902-6000,
U.S.A.

zaslav@math.binghamton.edu

May 13, 2010

2010 Mathematics Subject Codes: Primary 05C38; Secondary 05C07, 05C22.

Key Words: Signed graph, canonical vertex signature, canonical marking, even-degree edge set,
binary cycle space, T -join, odd-degree vertices.

Abstract. We consider two combinatorially simple alternatives to summation with even-degree
edge sets for characterizing the class of edge sets E in Kn that have specified odd vertices: replacing
a path inside E by a path outside it, or summing with a circle contained in E or in Ec. The latter
is equivalent to summation with even-degree edge sets for almost all n, and the former is not quite
similarly equivalent. The results help to understand the canonical vertex signature of a signed
graph.

One way to transform a graph into another is to take the set sum of its edge set with that
of a circle (circuit, cycle) contained in the graph or in its complement. (Call this operation
circle replacement.) It is well known that a graph with all even degrees is an edge-disjoint
union of circles; thus, it can be transformed into any other even-degree graph (on the same
vertices) by repeated circle replacement. If we apply the same operation to a graph with
some odd-degree vertices, can we get any other graph with the same odd vertices? The
answer is that we can—but as is so often true in combinatorial problems, with just a few
exceptions.

This transformation rule is a restriction of set summation with an arbitrary circle (circle
addition), which is known to generate precisely all edge sets with the same odd vertices. The
restriction is that we may use only permitted circles, and permission is determined by how
the circle interacts with the given edge set E. The restriction in circle replacement is that
the circle must lie within E or its complement. A somewhat similar restriction is to permit
only a circle made up of two paths, one in E and the other outside it; call this circular path
shifting. With circular path shifting we can get almost, but not quite any other edge set
with the same odd vertices; there are now infinitely many exceptions which, fortunately, can
be described exactly.

Signed graphs. I asked this question the better to understand the canonical vertex signa-
ture of a signed graph. A signed graph Σ = (Γ, σ) consists of an underlying graph Γ (all
our graphs are simple and undirected) and an edge signature σ : E → {+,−}. Quite some
time ago E. Sampathkumar introduced the idea of marking the vertices with signs derived
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from the edge signs [4, 5]. He defined the canonical vertex signature (or canonical marking)1

associated with Σ, which is µσ : V → {+,−} given by

µσ(v) :=
∏
vw∈E

σ(vw).

Here are some obvious facts about µσ:

1. The number of negative vertices is even [5].
2. The negative vertices are the odd-degree vertices of the negative subgraph, which consists

of all the vertices but only the negative edges of Σ.
3. The positive edge set has no effect on µσ. Thus, we may assume every signed graph is a

signed Kn; the positive edge set is simply the complement of the set of negative edges.
4. Any vertex signature µ : V → {+,−} that has evenly many negative vertices is canonical

with respect to some signed graph whose vertex set is V .
5. There are a great many possible negative subgraphs that yield the same vertex signature
µσ.

Recently there has been new interest in the canonical vertex signature in connection with
deriving other signed graphs from a signed graph, in particular a signed line graph; see (in
chronological order) [7, 6, 3, 2]. That led me to wonder how the many negative subgraphs
with the same canonical vertex signature are related to each other. There is a well known,
simple answer, but for understanding the graph theory behind the canonical vertex signature
it is crude and unsatisfactory.

Even-degree edge sets. Instead of a signed graph Σ and its canonical sign function µΣ,
let us change to the equivalent viewpoint that we have a subgraph of Kn and a vertex subset
T ⊆ V (which are related to Σ and µ by E = σ−1(−) and T = µ−1(−)).

Write ∂(E) for the set of odd-degree vertices of a subset E ⊆ E(Kn). An edge set E
whose odd-degree vertex set is T is known as a T -join. For T ⊆ V let 〈T 〉 := ∂−1(T ), the
class of all T -joins in Kn, and let [E] := ∂−1∂(E), the class of all ∂(E)-joins, i.e., edge sets
E ′ that have the same odd-degree vertices as E. For instance, 〈∅〉 = [∅] is the class of all
even-degree edge sets, or ∅-joins, in Kn (widely known as the binary cycle space of Kn),
and 〈V 〉 is the class of V -joins, which are the edge sets with all degrees odd (this class is
void if n is even). We call the classes [E] join classes ; they are the equivalence classes of an
equivalence relation on P(E(Kn)) which we call join equivalence.

We may now add to the obvious facts about µσ, interpreted as its set T of negative vertices,
one more observation:

6. The join class 〈T 〉 contains every matching of the vertices of T ; indeed, the smallest
elements of the join class are the matchings.

Two edge sets E and F are join equivalent if and only if their set sum (i.e., symmetric
difference) E ⊕ F has even degree at every vertex; therefore,

(1) [E] = E ⊕ [∅] := {E ⊕ S : S ∈ [∅]}.
Consequently, join equivalence can be regarded as the relation implied by a particular op-
eration that changes one set E ∈ 〈T 〉 into another: the operation of replacing E by E ⊕ S
for any S ∈ [∅] (even addition). The strength of even addition is that it depends not at all

1“Marking” in signed graph theory is synonymous with “vertex signature”. I am informed [1] that B.D.
Acharya suggested the name “canonical”, which appeared first in [7].
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on the graph structure of E; but this is at the same time a weakness, since even addition
gives little insight into the combinatorial relationships amongst the members of the class [E].
Besides, in the signed-graph interpretation, since E was given as the set of negative edges of
a specific signed graph I want rules for modifying E that pay attention to the structure of
the initial set E.

There will be a cost to having such a rule. A modification rule implies an equivalence
relation on P(E(Kn)), E and E ′ being equivalent if the rule permits transforming E into
E ′. A new rule may imply a new equivalence relation, different from join equivalence, thus
losing the close connection with the join classes 〈T 〉. Consequently, if we propose a new
transformation rule, we must determine how its equivalence classes compare with the join
classes.

Now let us imagine some plausible transformation rules that do involve the graphical
structure of E. A guide is the fact that E ∈ 〈∅〉 if and only if it is an edge-disjoint union
of circles. Thus, a natural new rule is to allow changing E only to E ⊕ C where C is any
circle in Kn (circle addition). This method is obviously equivalent to even addition because
every S ∈ 〈∅〉 is the set sum of circles; worse, it too has nothing to do with the structure of
E. We want an operation that depends on E. We find candidates by restricting the circles
that can be summed with a set E.

A first restriction is to replace E by E ⊕ C only when C is a circle contained entirely in
E or in the complement Ec. This is the circle replacement defined in the introduction; its
equivalence classes, written [E]C, are the circle classes and its equivalence relation is circle
equivalence.

Circular path shifting, also mentioned in the introduction, sums E with a circle that is
composed of two nontrivial paths, one in E and the other in Ec. That is, we replace a path
P in E by a path Q in Ec with the same endpoints, under the assumption that P ∪ Q is
a circle. A liberalized version is path shifting, where any path in E can be replaced by any
path in Ec with the same endpoints. The equivalence classes [E]P are path classes. Since
the parities of the degrees do not change, the path classes refine the join classes; and the
circular path classes obviously refine the path classes.

The question we need to answer now is: How different are the equivalence classes of the
various methods? We consider path shifting first.

Lemma 1. The equivalence classes under circular path shifting are the path classes.

Proof. We prove, by induction on the number of internal points of intersection of the two
paths, that path shifting can be expressed as a sequence of circular path shifts.

We shift a uw-path P ⊆ E to a uw-path Q ⊆ Ec, the result being E ′ = (E \P )∪Q. If P
and Q are internally disjoint, we have circular path shifting. Suppose, then, that they are
not. Let x be the first vertex on Q at which it meets P . Let Qux be the initial segment of Q,
from u to x and let Pux be the part of P from u to x. Replacing Pux by Qux is a circular path
shift. We are left to replace Pxw by Qxw, but these two paths have fewer internal common
vertices, so by induction the replacement can be done by circular path shifting. �

We now have to determine the exact equivalence classes under path shifting and circle
replacement. To do so, we find the reduced members of each equivalence class. With respect
to a particular method of modification, a set E ⊆ E(Kn) is reduced if no other member of
its equivalence class has fewer edges. For instance, E ∈ 〈T 〉 is reduced with respect to even
addition (that is, it is a minimum T -join) if and only if it is a matching of the vertices of T .
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Reduced members are, in a sense, canonical representatives of an equivalence class. Finding
the reduced edge sets is the main step towards answering the original question.

A path of order k (and length k − 1) is Pk.

Lemma 2. An edge set in Kn is reduced in its circle class if and only if it is a matching,
or n = 3 or 4 and the edge set is a Pn.

Proof. Assume that E ⊆ E(Kn) is reduced under circle replacement. It must be a forest,
since any circle in it can be eliminated immediately.

Now we show that circle replacement implies a restricted type of circular path shifting.
Suppose E ⊇ P , a path with endpoints u, v, and Ec ⊇ Q,R, two paths with the same
endpoints u, v, and assume that P ∪Q ∪ R is a theta graph. We may add Q ∪ R to E and
then subtract P ∪ R, with the result that P is replaced by Q in E. This is circular path
shifting, with the added requirement that there is an extra path R in Ec with the same
endpoints as P and Q and internally disjoint from them.

Suppose E contains a P3, say uvw; since E is acyclic, it does not contain the edge uw. If
there is a vertex z nonadjacent to u and w, then P = uvw, Q = uw, and R = uzw permit
us to shift P to the shorter path Q, thus shrinking E. Therefore, a reduced set E cannot
contain a path uvw of length two, unless every other vertex is a neighbor of u or w (but not
both, since E is acyclic). The conclusion is that, if E is not a matching, then it contains
vertices u, v, w such that uvw ⊆ E and there is a bipartition V \{u, v, w} = Y ∪Z (a disjoint
union) for which every y ∈ Y is adjacent to u (but not to v, w) and every z ∈ Z is adjacent
to w (but not to u, v). (Y or Z or both may be empty.)

If Y and Z are nonempty, consider a path vuy where y ∈ Y . Any z ∈ Z provides us with
the extra path R = vzy ⊆ Ec that we need to replace vuy by vy, thereby shrinking E. As
E is reduced, that cannot be. Therefore, we may assume Z = ∅. Now there are three cases
for Y : n = 3 and Y = ∅, n = 4 and |Y | = 1, and n ≥ 5 with |Y | ≥ 2.

If n = 3, E is a P3. There is no possible circle replacement because neither E nor its
complement contains a circle.

If n = 4, then n = 4 and both E and Ec are P4’s. Again, there can be no circle replacement.
In both cases, E is reduced (and is its own equivalence class).

If n ≥ 5, there are distinct vertices y, y′ ∈ Y ; then the path P = yuy′ ⊆ E and the path
R = ywy′ ⊆ Ec fulfill the conditions necessary for us to replace P by yy′ in E. But, again,
that is impossible, so E must be a matching.

We have shown that every reduced set is as in the lemma, and every set described in the
lemma is reduced. �

Lemma 3. An edge set in Kn is reduced in its path class if and only if it is ∅, E(Kn), a
triangle, or a matching.

Proof. First, ∅ and E(Kn) are reduced because no path shifting is possible. They are their
own path classes.

Let us assume now that E ⊂ E(Kn) is reduced and nonvoid; we prove it is a triangle or
a matching. Any induced P3 in E can be transformed by path shifting to a single edge with
the same endpoints; the shifting reduces |E|. Thus, in E every component is complete. If a
component F = E(Kk) with k ≥ 4, F contains a path Pk, say with endpoints u,w; and there
is a vertex x /∈ V (F ). Replace Pk by P3 = uxw. This reduces |E|; therefore, no component
of G can have order more than 3. If a component is a triangle, say with vertices x, y, z, and
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there is another edge uv in E, then replace the path xz by xvz; replace uvxy by uy; and we
have fewer edges; thus, E was not reduced.

If E is a matching, clearly it is reduced.
Suppose E is a triangle; we must prove it cannot be reduced to a smaller edge set. One

thing path shifting can never do is to eliminate all edges; therefore, whatever the result of
operating on E, it has at least one edge and all even degrees. That is only possible if E has
at least three edges. Thus, a triangle is irreducible under path shifting. �

Theorem 4. The circle classes are the join classes, except that when n = 3, 4, each join
class 〈T 〉 for |T | = 2 splits into the following circle classes:

(i) [P ]C = {P}, for each P ∈ 〈T 〉 that is a Pn with endpoints T , and
(ii) 〈T 〉 \ {P ∈ 〈T 〉 : P is a Pn}.

When n = 3, there is one P3 and the class in (ii) contains only one edge set, {uv} where
uv is the edge joining the vertices of T . When n = 4, there are two P4’s and the class in (ii)
contains several edge sets.

Proof. The proof strategy is to find the equivalences amongst the sets that are reduced under
circle replacement.

First, we show that any matching of a particular even set T ⊆ V transforms into any
other under circle replacement. We may assume |T | ≥ 4. Suppose M is one matching of
T with edges uv and wx (among others). The paths uv in M and uxv, uwv in M c permit
us to shift uv to uxv, thereby transforming {uv, wx} into the star with center x and leaves
u, v, w. This star transforms into any matching of u, v, w, x. By repeating this process on
pairs of edges, any matching of T does transform into any other.

We conclude from this and Lemma 2 that the class [E]C = [E] for any edge set E, except
when n = 3 or 4 and [E] contains a Pn. In that case [E] = 〈T 〉 for some 2-element vertex
set T = {u, v}, and [E] splits into circle classes, each of which must contain an edge set G
that is reduced under circle replacement. The only reduced edge sets are {uv} and the path
uxv if V = {u, v, x} (n = 3) or paths uxyv and uyxv if V = {u, v, x, y} (n = 4). Each of the
latter three paths is its own class, since both Pn and P c

n are acyclic. Therefore, the classes
[E]C must be as stated in the theorem. �

Theorem 5. The equivalence classes under path shifting and circular path shifting are the
same. They are the join classes, except that

(i) when n ≥ 3 is odd, [∅] splits into [∅]P = {∅}, [E(Kn)]P = {E(Kn)}, and (if n > 3)
[∅] \ {∅, E(Kn)} (the path class of the triangles of Kn);

(ii) when n ≥ 4 is even, [∅] splits into [∅]P = {∅} and [∅]\{∅}, and 〈V 〉 = [E(Kn)] splits
into [E(Kn)]P = {E(Kn)} and 〈V 〉 \ {E(Kn)} (the path class of the perfect matchings
of Kn).

Proof. The proof follows the same strategy as that of Theorem 4. We noted in the course of
proving Lemma 3 that ∅ and E(Kn) are their own equivalence classes. The theorem follows
if all triangles are equivalent.

Consider two overlapping triangles E = {vw,wu, uv} and E ′ = {vw,wx, xv}. They differ
in a path wuv ⊆ E and a path wxv ⊆ Ec. Therefore, they are equivalent under shifting; we
conclude that all triangles are equivalent.

The rest of the theorem is a matter of noting that for very small values of n some of the
possible path classes are empty. �
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Circle replacement strikes me, from the philosophical viewpoint, as the most relevant to
the original problem of canonical vertex signatures. The reasons are that the modifying
circle is homogeneous (all positive or all negative), and that the modification, changing only
a circle, is of a most elementary kind. The next best operation is circular path shifting,
because two paths are shifted as a whole between sign classes and they may not intersect
except for their endpoints; but the theorems show it gives too weak an equivalence.

None the less it is remarkable that the five methods produce the same equivalence classes
when n ≥ 5 with the sole exception that under path shifting [∅] and (if n is odd) 〈V 〉 both
split. I interpret this to mean that circle equivalence is a very good combinatorialization of
join equivalence of subsets of E(Kn).

A remark on signed multigraphs. We assumed signed graphs were without loops or
multiple edges. However, allowing such edges makes no important difference to our results.
The positive edges can be discarded. A negative loop, since it has two ends, contributes
two negatives to the canonical sign of its vertex; thus, it has no effect on µσ; and it can
be eliminated by either circle addition or circle replacement, though not by path shifting.
A completely negative digon contribures two negatives at each end, so it also has no effect
on µσ; it too can be discarded by circle addition or circle replacement, and usually by path
shifting (an example is {uv, vw, vw} → {uw, vw} → {uv}). Thus, in two of the three
essentially different methods negative loops and doubled negative edges can be eliminated,
reducing |Σ| to a simple graph to which our theorems apply.

General ambient graph. Our results are framed within a particular ambient graph, Kn.
How do the five methods of transforming a T -join compare within an arbitrary ambient
graph Γ? It is easy to see that even addition and circle addition remain equivalent; path
shifting and circular path shifting also remain equivalent. It is also clear that circle addition
can transform any T -join in Γ into any other. But circle replacement and path shifting are
sure to be more complicated because the reduced T -joins will not necessarily be matchings
when the ambient graph is incomplete.

A first question is this: Might the theorems remain true, with minor changes, within any
edge 4-connected, or 4-connected, incomplete ambient graph? I choose 4 because K5 is, and
K4 is not, edge 4-connected.

Homology. The cosets of [∅] have the flavor of homology. One would like to have a
homology of graphs in which the homology classes are the join classes. That requires a chain
complex C = (Ci(G; F2))i such that Z1(C) = P(E) and B1(C) = [∅]; then H1(C) will be
P(E)/[∅], the group of join classes.

The usual binary homology theory of a graph G is not suitable. Its chain groups are
C0 := FV2 ∼= P(V ) and C1 := FE2 ∼= P(E), supplemented by C2 = {0}. The boundary
mappings are the homomorphisms ∂1 := ∂ : C1 → C0 and ∂2 : C2 → C1, which is the zero
function. The 1-cycle space Z1(G; F2) is Ker ∂1 = [∅] (i.e., it is the binary cycle space); the
0-coboundary space B0(G; F2) is Im ∂1 = {T ⊆ V : |T | is even}; and B1(G; F2) is trivial.
The first homology group H1(G; F2) is then Z1/B1 = Z1 = [∅]. But the cosets of [∅],
which are what we want, are not part of this homology theory. They live in the quotient
space C1/Z1

∼= P(E)/[∅]. Rather than graph homology, it is the general algebraic property
that Dom ∂1/Ker ∂1

∼= Im ∂1 = B0 which “explains” the fact that the cosets of [∅] in C1

correspond to the even vertex sets, T ∈ B0. The chain complex necessary to make this into
homology eludes me.

6



References

[1] B.D. Acharya, personal communication, 23 April 2010.
[2] ——, Signed intersection graphs. In preparation.
[3] R. Rangarajan, M.S. Subramanya, and P. Siva Kota Reddy, Neighborhood signed graphs. Submitted.
[4] E. Sampathkumar, Point signed and line signed graphs. Karnatak Univ. Graph Theory Res. Rep. 1, 1972.
[5] ——, Point signed and line signed graphs. Nat. Acad. Sci. Letters (India) 7 (1984), 91–93. Zbl 552.05051.
[6] ——, P. Siva Kota Reddy, and M.S. Subramanya, The line n-sigraph of a symmetric n-sigraph. Southeast

Asian Bull. Math., submitted.
[7] Deepa Sinha, New Frontiers in the Theory of Signed Graphs. Doctoral dissertation, University of Delhi,

2005.

7


