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Abstract. A topological hyperplane is a subspace of R
n (or a homeomorph of it) that is topo-

logically equivalent to an ordinary straight hyperplane. An arrangement of topological hyperplanes
in R

n is a finite set H such that for any nonvoid intersection Y of topological hyperplanes in H

and any H ∈ H that intersects but does not contain Y , the intersection is a topological hyperplane
in Y . (We also assume a technical condition on pairwise intersections.) If every two intersect-
ing topological hyperplanes cross each other, the arrangement is called transsective. The number
of regions formed by an arrangement of topological hyperplanes has the same formula as for ar-
rangements of ordinary affine hyperplanes, provided that every region is a cell. Hoping to explain
this geometrically, we ask whether parts of the topological hyperplanes in any arrangement can
be reassembled into a transsective arrangement of topological hyperplanes with the same regions.
That is always possible if the dimension is two but not in higher dimensions. We also ask whether
all transsective topological hyperplane arrangements correspond to oriented matroids; they need
not (because parallelism may not be an equivalence relation), but we can characterize those that
do if the dimension is two. In higher dimensions this problem is open. Another open question is
to characterize the intersection semilattices of topological hyperplane arrangements; a third is to
prove that the regions of an arrangement of topological hyperplanes are necessarily cells; a fourth
is whether the technical pairwise condition is necessary.
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1. Introduction

In a topological space X that is homeomorphic to R
n, a topological hyperplane, or topoplane

for short, is a subspace Y such that (X,Y ) is homeomorphic to (Rn, Rn−1). Consider a finite
set H of topoplanes in X. Its intersection semilattice is the class

L := {
⋂

S : S ⊆ H and
⋂

S 6= ∅},

partially ordered (as is customary) by reverse inclusion; the members of L are called the
flats of H, of which the smallest (in the partial ordering) is X. We study the combinatorial
topology of an arrangement of topoplanes in X, which is a finite set H of topoplanes such
that, for every topoplane H ∈ H and flat Y ∈ L, either Y ⊆ H or H ∩ Y = ∅ or H ∩ Y is a
topoplane in Y . We find that the simplest structure appears only in the planar case. (There
we call a topoplane a topological line, abbreviated to topoline.)

Zaslavsky showed in [9, Theorem 3.2(A)] that the number of regions of a topoplane ar-
rangement H—these are the components of the complement, X r

⋃

H—equals

(1)
∑

Y ∈L

|µ(X,Y )|,

where µ is the Möbius function of L, assuming the side condition that every region is a
topological cell.The proof combined topology with combinatorics. Our work was inspired by
the hope that, in a sense, Equation (1) would be no more general than the widely known
formula for the number of regions of an arrangement of pseudospheres, or equivalently,
topes of an oriented matroid. We hoped, in particular, that the parts of the topoplanes
of any arrangement could be reorganized into new topoplanes so that any two topoplanes
that intersect actually cross, while not only the number but the actual regions remained
exactly the same, and moreover that the reorganized arrangement would be equivalent to
an arrangement of pseudohyperplanes that represents an oriented matroid. This hope, alas,
failed, except in the plane. Even there, not every topoline arrangement represents an oriented
matroid; but it is easy to characterize those that do (see Theorem 13).

The technical definition of crossing, or transsection, of topoplanes H1, H2 ∈ H is that the
two components of H2 r H1 lie on the same side of H1. (It is easy to see that interchanging
the roles of the two topoplanes makes no difference.) We say H1 and H2 cross, or transsect.
Consider two topoplanes in H. They may have the topology of two crossing hyperplanes,

(2) (X,H1, H2, H1 ∩ H2) ∼= (Rn, x1 = 0, x2 = 0, x1 = x2 = 0).

Or, they may have the topology of two noncrossing flat topoplanes,

(3) (X,H1, H2, H1 ∩ H2) ∼= (Rn, G+, G−, x1 = x2 = 0),

where G+ := {x : x1x2 = 0 and x1, x2 ≥ 0} and G− := {x : x1x2 = 0 and x1, x2 ≤ 0} in R
n.

(Each of these sets is a topoplane that is the union of two perpendicular half-hyperplanes;
their union is the union of the first two coordinate hyperplanes; and their intersection is the
coordinate flat x1 = x2 = 0.) We say H is solid if for any two topoplanes H1, H2 ∈ H,
either H1 and H2 do not intersect, or they cross as in (2), or they touch without crossing
as in (3), and the same is true of intersecting topoplanes in every flat Y ∈ L. (We suggest
that solidity can be proved from the definition of a topoplane arrangement, but that is only
conjecture—except in the plane, by Lemma 8.

We call an arrangement transsective if every pair of topoplanes is disjoint or crossing. Two
of our main theorems are that, for an arrangement H of topoplanes, there is a transsective
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topoplane arrangement A such that
⋃

A =
⋃

H if the space is the plane or, in any dimension,
if there are no multiple intersections. However, when there are multiple intersections in
dimension 3 or greater, there may be no such transsective arrangement.

In the enumerative sense the least complicated topoplane arrangements A are those that
realize an oriented matroid. Combinatorially, this means the regions are cells that correspond
to the topes of an oriented matroid on the ground set A (and this entails that the arrangement
is transsective) [5, 3]; thus the region-counting formula becomes the known formula for the
number of topes (still assuming all the regions are cells). Topologically, it means A is isotopic
to the affine part of a projective pseudohyperplane arrangement P (which we will explain
later). In two dimensions, this is true given the obvious necessary condition, that the union
⋃

A be connected, is sufficient; but in higher dimensions it is hopelessly far from the facts.
Finding a necessary and sufficient condition for a transsective topoplane arrangement A

whose union is connected to realize an oriented matroid is one open question. A second is
whether the regions of a topoplane arrangement are necessarily open cells (as is known to be
true for arrangements that realize an oriented matroid; see [4, 7] as described in [3, p. 227]).
We expect that they must be, but we do not prove it.

One more question, that might turn out to be interesting, is to characterize the intersection
semilattice. We can prove each interval is a geometric lattice. Though the intersection
semilattice is not necessarily a geometric semilattice [8], could it be true that every geometric
semilattice is the intersection semilattice of an arrangement of topoplanes?

2. Elementary properties

We regard arrangements as topological objects, so we have to define homeomorphism.
We call two topoplane arrangements, A in X and A′ in X ′, homeomorphic if there is a
homeomorphism X → X ′ that induces homeomorphisms of the topoplanes and consequently
of all the flats and faces of the two arrangements.

If H is a topoplane arrangement, a flat Y induces the set

H
Y := {Y ∩ H : H ∈ H and Y 6⊆ H and Y ∩ H 6= ∅}

of topological subspaces of Y .

Proposition 1. If H is an arrangement of topoplanes and Y is a flat, then the induced

collection HY is an arrangement of topoplanes.

Proof. It is clear that L(HY ) = {Z ∈ L(H) : Z ⊆ Y }. This makes the lemma obvious from
the definition. �

We often call an element of HY a relative topoplane in Y .

Proposition 2. For an arrangement of topoplanes, each interval in L is a geometric lattice

with rank given by codimension.

Proof. Consider a lower interval [X,Y ] in the partial ordering. In this interval no two flats
are disjoint. Consequently, the function r(Z) := dim X −dim Z is well defined and, since by
definition H ⊇ Z or dim(H ∩Z) = dim Z −1 for any topoplane H and flat Z in the interval,
r satisfies the axioms of the rank function of a geometric lattice. �

To clarify the idea of a transsective topoplane arrangement we like to have a second
characterization.
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Proposition 3. A solid topoplane arrangement H is transsective if and only if, for each

intersecting pair H1, H2 ∈ H, each of the four regions into which they divide X has boundary

that intersects both H1 r H2 and H2 r H1.

Proof. This is obvious from solidity. �

There is a more specific version of the characterization.

Lemma 4. Topoplanes H1 and H2 of a solid arrangement cross if and only if they intersect

each other and each of the regions they form has boundary that meets both H1 r H2 and

H2 r H1.

Proof. This also is obvious from solidity. �

It will help us to have a general conception of crossing that we can apply to half topoplanes
as well as whole ones. Suppose M is a manifold in X and H is a topoplane. We say M crosses

H if M and H intersect and, at each intersection point, every neighborhood contains an open
neighborhood U such that (U,H ∩U) ∼= (Rn, x1 = 0) and M ∩U meets both components of
U r H. It is clear that this definition generalizes that given in the introduction, where M is
a topoplane.

Lemma 5. Assume H is a solid topoplane arrangement, H ∈ H, Y ∈ L, and Z ∈ HY such

that Z 6⊆ H. Let Z+ be either of the components of Z r H. Then H ∩ Z+ is a topoplane in

Z+ and Z crosses H if and only if Z+ crosses H.

Proof. The first statement is obvious and the second is immediate from solidity. �

Lemma 6. If in a solid topoplane arrangement H two topoplanes, H1 and H2, cross, then

Y ∩ H1 and Y ∩ H2 cross in HY for each Y ∈ L such that Y 6⊆ H1, H2, both Y ∩ H1 and

Y ∩ H2 are nonvoid, and Y ∩ H1, Y ∩ H2 are distinct.

Proof. Suppose Y has codimension 1 and two relative topoplanes in HY intersect. The
relative topoplanes have the form Y ∩H1 and Y ∩H2 for H1, H2 ∈ H, and their intersection
is W := Y ∩ Z where Z := H1 ∩ H2. The set Z1 := Y ∩ H1 cannot be in H2, or else
Y ∩H1 = Y ∩H2, contrary to the hypothesis that we have two different relative topoplanes;
similarly Z2 := Y ∩H2 cannot be in H1. Thus, W has dimension n− 3 by Proposition 2. In
Y we have the relative topoplanes Z1 and Z2 whose intersection is W , a relative topoplane
of both. By solidity, Z1 and Z2 form four regions in Y . Each of these is the intersection with
Y of a different region of {H1, H2} in X.

Let R+ and R− be the regions of {H1} and let S+ and S− be the regions of {H2}. Then
Rij := Ri ∩ Sj are the four regions of {H1, H2}. The intersections Y ∩ Rij are the four
regions of {Z1, Z2} in Y . What separates Y ∩R++ from Y ∩R+− is Y ∩H2 = Z2, just as H2

separates R++ from R+− in X. Similarly, Z1 separates Y ∩R++ from Y ∩R−+. This shows
that Z1 and Z2 are both on the boundary of Y ∩ R++. Similarly, both relative topoplanes
are on the boundary of each Y ∩ Rij. By Lemma 4, Z1 and Z2 cross in Y .

If Y has codimension d > 1, we apply induction on a maximal chain Y ⊂ Y1 ⊂ · · · ⊂ Yd =
X. �

Proposition 7. If H is a transsective, solid arrangement of topoplanes and Y is a flat, then

so is the induced arrangement HY .

Proof. We appeal to the previous lemma. �
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Lemma 8. Every topoline arrangement is solid.

Proof. The first task is to prove solidity: If topolines H1, H2 ∈ H intersect at a point Z,
then they satisfy (2) or (3). This follows from the Jordan curve theorem in the sphere

X̂ = X ∪ {∞} which is the one-point compactification of X.
Let Ci for i = 1, 2, 3, 4 be the four closed curves from Z to ∞ contained in H1∪H2∪{∞},

numbered in consecutive order around Z. Then each pair Ci ∪ Ci+1 (subscripts modulo 4)

forms a simple closed curve in X̂; thus it has two sides, Ci+2 and Ci+3 are on one side, and
an open region R of {H1, H2} such that the closure R̂ in X̂ is a closed 2-cell with interior R
is on the other side.

The entire sphere X̂ is the union of the four closed regions along their boundaries. It is
easy to see that either (2) or (3) must hold true. Hence H is solid. �

3. Reglueing

The basic question is whether, as concerns its combinatorics, a topoplane arrangement
can be replaced by a transsective arrangement. The first theorem is that this is possible in
the plane. A face of an arrangement is a region of the arrangement induced in a flat. Thus,
a k-dimensional face is a region of Ht where t is a k-dimensional flat of H. A region of H is a
d-dimensional face where d = dim X. The k-skeleton of H is the union of all k-dimensional
flats. Thus, writing Hk for the k-skeleton, the k-faces are the components of Hk

r Hk−1.

Theorem 9. For any arrangement of topolines, there is a transsective topoline arrangement

which has the same faces.

Proof. We apply the method of descent to the number of noncrossing intersecting pairs of
topolines. Suppose we have a noncrossing pair of topolines that intersect. Their intersection
Z lies in k ≥ 2 topolines, call them H1, H2, . . . , Hk. Z separates H i

rZ into two halves, H i
+

and H i
−
. In cyclic order around Z, call these 2k halves K1

+,K2
+, . . . ,Kk

+,K1
−
,K2

−
, . . . ,Kk

−
.

Let Ki = Ki
+ ∪ Ki

−
.

It is clear that the new arrangement H′, which is H with H1, . . . , Hk replaced by K1, . . . ,Kk,
has the same skeleton in each dimension, hence it has the same faces. However, we have to
check that H′ is an arrangement of topolines, and then that it has fewer noncrossing pairs
of topolines than did H.

To show that H′ is an arrangement of topolines we consider the intersection of a topoline
H and a flat Y of H′. If Y and H are comparable or disjoint, the definition of a topoline
arrangement is satisfied. The only other case is that of two topolines. If they both contain
Z, they intersect in Z, which is a relative topoplane of both. If neither contains Z, they
are common topolines of H and H′ so their intersection remains the same as in H. Suppose
the topolines are H 6⊇ Z and K1 and suppose that H ∩K1 consists of more than one point.
Then it consists of a point W+ ∈ K1

+ and a point W− ∈ K1
−
. K1 divides the plane into

halves, K1+ and K1−, with Ki
+ in K1+ for i = 2, . . . , k. Also, H divides the plane into two

halves, H+ and H−; by choice of notation assume O ∈ H− and that the segment of H from
W+ to W− lies in K1+. (All this is just to fix the notation.)

Now, observe that Ki
+ is a topoline in K1+ by Lemma 5. It follows that H intersects

H i
+. Thus, H intersects more than k of the 2k half-topolines H i

ε, and consequently H must
intersect a topoline H i of H more than once. This is contrary to hypothesis, so it is impossible
after all for H ∩K1 to have more than one point. The argument applies equally to each Ki,
so we may conclude that H′ is a topoline arrangement.
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Finally, we prove that the number of noncrossing pairs of topolines decreases from H to
H′. A crossing pair from H, neither of them an H i, remains crossing. Amongst the H i, the
number of crossing pairs increases. Suppose, then, that H crosses exactly k of the H i, where
H 6⊇ Z. Then H crosses exactly 2k of the halves Ki

+ and Ki
−
; hence by Lemma 5 it crosses

k of the new topoplanes Ki. Consequently, the number of crossing pairs increases.
Since there are fewer noncrossing topoline pairs in the new arrangement, by continuing

the process we get a transsective arrangement. �

Reglueing can be impossible for a topoplane arrangement in three or more dimensions.
We give an example of this.

Example 1 (Failure in three dimensions). The example H, which is solid, has five topoplanes
in R

3. They are:

H1 = {x : x1 = 0},

H2 = {x : x2 = 0},

H3 = {x : x2 = |x1|},

H4 = {x : x3 = 0},

H5 = {x : x2 + x3 = 0}.

Every pair crosses except H2 and H3. The common point of all topoplanes is O, the origin.
The 1-dimensional flats are:

Z := H1 ∩ H2 ∩ H3 = {x : x1 = x2 = 0},

H1 ∩ H4 = {x : x1 = x3 = 0},

H1 ∩ H5 = {x : x1 = 0, x2 + x3 = 0},

Y := H2 ∩ H4 ∩ H5 = {x : x2 = x3 = 0},

H3 ∩ H4 = {x : x2 = |x1|, x3 = 0},

H3 ∩ H5 = {x : x2 = |x1| = −x3}.

The only two 1-dimensional flats that lie in three topoplanes are Z and Y . This so limits
the possibilities of recombining the faces of H that it is impossible to get a transsective
arrangement H′.

To see why, note that Y and Z are relative topoplanes in a plane; therefore, in a transsective
recombination they have to cross. This means, in effect, that they cannot be changed. The
plane H1 that contains both has to remain a plane in H′. Hence, the only potential changes
in topoplanes are that H1 and H3 might be recombined and H4 and H5 might be recombined.
However, there is no way to recombine the halves of H1 and H3 so that two halves are on
each side of H2, which is a necessity if the recombined planes are to cross H2.

An intersection flat is simple if its codimension equals the number of topoplanes that
contain it; otherwise it is multiple. It is no coincidence that our counterexample has multiple
intersections. We call an arrangement simple if every flat is simple.

Theorem 10. For a simple, solid topoplane arrangement, there is a transsective topoplane

arrangement which has the same faces.

Proof. The method of proof is similar to that of Theorem 9, applying the method of descent
to the number of noncrossing intersecting pairs of topoplanes.
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Suppose we have two noncrossing topoplanes, H1 and H2. Their intersection Z lies in no
other topoplanes than these two. Z separates H i

rZ into two halves. In cyclic order around
Z, call these four halves H1

+ = K1
+, H2

+ = K2
+, H2

−
= K1

−
, H1

−
= K2

−
, and let Ki = Ki

+∪Ki
−
.

The new arrangement H′, which is H with H1, H2 replaced by K1,K2, has the same faces
as H. We need to prove that H′ is an arrangement of topoplanes and that it has fewer
noncrossing pairs of topoplanes.

To show that H′ is an arrangement of topoplanes we consider the intersection of a topo-
plane H and a flat Y of H′. There are four cases, depending mostly on whether either of
them is a topoplane or flat in H.

Before we can treat the cases we need to understand the flats of H′. Those that are
contained in Z, and those that are not contained in any Ki, are flats of H because they are
the intersection of topoplanes common to H and H′. Any other flat V is the intersection of
one Ki with a flat W not contained in either K1 or K2; so W is a common flat of H and
H′. Then

(4) V = V+ ∪ V− ∪ (W ∩ Z), where V+ := W ∩ Ki
+ and V− := W ∩ Ki

−
.

Each Vε is an intersection W ∩ Hj
ε . Thus, it has codimension 1 in W . It follows that V is

a relative topoplane in W , assembled from the two half flats V ∩ H1
ε and V ∩ H2

ε as well as
V ∩ Z.

Now we analyze the cases. When Y ∈ L (Cases 1 and 2), either Y ⊆ Z or Y 6⊆ K1,K2.
When Y /∈ L (Cases 3–5) we may assume Y ⊆ K2 but Y 6⊆ K1.

Case 1. If Y ∈ L and H 6= K1,K2, then H ∩ Y is empty or it is in L, hence is Y or a
relative topoplane of Y .

Case 2. Suppose Y ∈ L and H = K1. If Y ⊆ K1, then Y ∩ H = Y . If Y 6⊆ K1,K2, then
Y ∩H has the form of V in (4) with i = 1 and W = Y . Thus, Y ∩H is a relative topoplane
in Y .

Case 3. Suppose Y /∈ L (so we assume Y ⊆ K2 but Y 6⊆ K1) and H = K1, then Y has
the form of V in (4) with i = 2. Then Y ∩ H = Y ∩ Z, which is a relative topoplane in Y ,
as (4) shows.

Case 4. If Y 6∈ L and H = K2, then Y ⊆ H.
Case 5. If Y /∈ L and H 6= K1,K2, then Y has the form of V in (4). We may assume

H ∩W is a relative topoplane in W ; it must be different from H1 ∩W and H2 ∩W since H

is simple. We work in the induced arrangement HW . In effect, that puts us in the situation
where W = X, Y = K1, and Z = H1 ∩ H2 = K1 ∩ K2. Note that Y ⊆ H1 ∪ H2.

Now there are several subcases depending on which of the intersections H ∩ H i are void.
Case 5a. If both are void, then H ∩ Y is empty.
Case 5b. Suppose one is void, say H ∩ H1 6= ∅ = H ∩ H2. Then H, being disjoint from

the relative topoplane Z in H1, lies in one half of H1. By choice of notation, H ∩H1 ⊆ H1
+.

Now we make an argument that will show up again. H ∩K1 ⊆ K1
+, so H ∩K1 = H ∩H1

+,
which (by Lemma 5) is a relative topoplane of H1

+. It follows that H ∩ K1 is a relative
topoplane of K1

+; we conclude that it is a relative topoplane of K1. This is what we needed
to know in order to conclude that H′ is an arrangement of topoplanes.

Case 5c. Suppose that H ∩H1 and H ∩H2 are both nonempty. Note that H 6⊇ Z by the
simplicity of H. Here we have two sub-subcases.

If H ∩ Z = ∅, we can choose the notation so that H ∩ H i ⊆ H i
+. Then the argument of

Case 5b implies that H ∩ Ki = H ∩ H i, which is a relative topoplane both in H and in Ki.
7



If H ∩Z is not empty, then V := H ∩Z is a relative topoplane in Z and has codimension
3. H ∩ H i has V as a relative topoplane, so it is divided by Z into H ∩ H i

+ and H ∩ H i
−
,

each of which is a relative topoplane in its half of H i and has as its boundary H ∩ Z. Now,

H ∩ K1 = (H ∩ H1
+) ∪ (H ∩ H2

−
) ∪ (H ∩ Z).

In the right-hand side, the first part is a relative topoplane of K1
+; the second part is a

relative topoplane of K1
−
, and the last part is the boundary of each of the previous parts.

Thus, H ∩ K1 is a relative topoplane of K1. That is what we needed to show.
That ends the cases. To conclude the proof we observe that H′ has fewer noncrossing

pairs of topoplanes than H, just as in Theorem 9. By continuing with half-topoplane recom-
bination we get a transsective topoplane arrangement. �

4. Topoplanes vs. pseudohyperplanes

An arrangement of pseudospheres in the n-sphere Sn is a finite set S of subspaces such
that

• each S ∈ S is a pseudosphere in Sn, i.e., (Sn, S) ∼= (Sn, Sn−1) (where we think of
Sn−1 as the equator of Sn) and S is centrally symmetric in Sn,

• the intersection of any subclass of S is a topological sphere (which is necessarily again
centrally symmetric), and

• for any S′ ⊆ S and S ∈ S r S′, either
⋂

S′ ⊆ S or S ∩
⋂

S′ is a pseudosphere in
⋂

S′.

It is known that every region is an open cell and its closure is a closed cell [4, 7]. By
identifying opposite points of Sn we get a projective pseudohyperplane arrangement P in the
real projective space P

n. If we remove one pseudohyperplane H0 ∈ P from the arrangement
and the space, and take the arrangement A := {H rH0 : H ∈ P, H 6= H0} in X := P

n
rH0,

we have an affine pseudohyperplane arrangement. It is clearly a transsective arrangement
of topoplanes. We call a topoplane arrangement projectivizable if it is homeomorphic to an
arrangement constructed in this way, and more specifically we call it the affinization of P.
(See [3, Chapter 5] for all facts about pseudosphere arrangements and [3, Chapter 6] for
projective pseudoline arrangements.)

There are several ways in which topoplane arrangements can be more complicated than
affine pseudohyperplane arrangements. In the analysis the concept of parallelism is impor-
tant. We define two topoplanes to be parallel if they are disjoint.

Lemma 11. If a topoplane arrangement is projectivizable then it is solid and transsective

and parallelism is an equivalence relation on topoplanes.

Proof. It is easy to see from the known structure of pseudosphere, or projective pseudohy-
perplane, arrangements that A is transsective.

Suppose A is projectivizable. Parallel topoplanes H arise only from projective pseudohy-
perplanes HP that meet at infinity. If H ‖ H ′ ‖ H ′′, then HP ∩H ′

P
= Y , a pseudohyperplane

contained in the infinite hyperplane, and H ′

P
∩H ′′

P
= Y also. Thus, H and H ′′ are parallel. �

This lemma suggests that the nearest topoplane generalization of an affine pseudohy-
perplane arrangement is a transsective topoplane arrangement in which parallelism is an
equivalence relation. Perhaps such arrangements should be called affine topoplane arrange-

ments.
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Example 2 (Disconnection). The first way to get an unprojectivizable arrangement is by
its being disconnected and not having all its topoplanes parallel. We call a topoplane ar-
rangement connected if the union of its topoplanes (that is, the codimension-1 skeleton)
is connected. There are disconnected topoplane arrangements that are pseudohyperplane
arrangements, indeed that are arrangements of true hyperplanes: take a finite family of
parallel hyperplanes. However, that is the only way. It is just the opposite with topoplane
arrangements. Take any two topoplane arrangements H1 and H2 in two copies of R

n. In
an unbounded region R of H1 find an open topological n-ball that extends to infinity. By
identifying this ball with R

n we can embed H2 topologically inside R. This gives a new to-
poplane arrangement H := H1∪H2 in R

n whose connected components are the components
of H1 and of H2; in particular, assuming neither original arrangement was empty, the union
is disconnected.

Proposition 12. If H1 has a pair of intersecting topoplanes, H is not projectivizable.

Proof. The topoplanes in H1 are parallel to those in H2. For H to be projectivizable,
parallelism must be an equivalence relation, so all the topoplanes are pairwise disjoint. But
this contradicts the assumption. �

Example 3 (The plane). In two dimensions nonequivalent parallelism is the only obstruc-
tion to being the affine part of a projective pseudoline arrangement. (A pseudoline is a
pseudohyperplane in dimension 2.)

Theorem 13. A transsective topoline arrangement in R
2 is projectivizable if and only if

parallelism in A is an equivalence relation.

Proof. The forward implication is obvious because topolines in the affinization are parallel
if and only if they meet in a point at infinity.

For the converse, take a topoline arrangement A. Suppose it is transsective and parallelism
is an equivalence relation. Take a circle C so large that all the intersection points as well
as the other bounded faces of A are inside C. (If there is a topoline that is disjoint from
all other topolines, imagine that it has a fictitious “intersection point” in the following
discussion; that serves to make sure part of the topoline is inside C.) Each topoline Li ∈ A

has two unbounded 1-faces, which we arbitrarily label Li
+ and Li

−
and call the ends of Li.

Let W i
ε be the first point on Li

ε, going from its finite end toward infinity, that lies on C. We
call the part of Li that extends from W i

ε to infinity, away from the bounded part of Li, the
positive or negative tail of Li.

To prove the theorem we replace the tails by new tails such that the positive tails of
parallel topolines approach the same point at infinity, and the negative tails approach that
point from the other side of infinity. The rest of the proof explains a way to do that.

The points W i
ε lie on C in a cyclic order that is the same order in which the ends of

the topolines appear outside C. (The cyclic order of ends is well defined because there are
no crossings outside C.) We show that the points of parallel topolines form two opposite
consecutive groups. Suppose that L1 ‖ L2, and sign the W points so their cyclic order is
W 1

+,W 2
+,W 2

−
,W 1

−
. Now suppose W 3

+ comes between W 1
+ and W 2

+. If L3 intersects L1 it also
intersects L2, by transitivity of parallelism; but since L3

+ is disjoint from L1 and L2, that
forces the bounded faces in L3 to intersect L1 or L2 twice, which is impossible. Therefore, L3

is parallel to L1 and L2 and, clearly, W 3
−

lies between W 3
−
. Thus, the W points of a parallel
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+
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−
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−
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+
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+
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−
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−
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V 2
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V 1
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V 4

V 5
−

3

−

−

Figure 1. The construction in the proof of Theorem 13, characterizing pro-
jectivizability of planar arrangements.

class L1, . . . , Lk appear in two consecutive groups along C, namely (in cyclic order around
C) W 1

+, . . . ,W k
+, S+,W k

−
, . . . ,W 1

−
S−, where Sε is the set of W i

ε points of all other topolines
Li, since each of those Li crosses all of L1, . . . , Lk. Let us call the points W i

ε of each group,
but with fixed ε, equivalent points. Changing the signs of the points in an equivalence class
gives the opposite class.

Choose a larger circle C ′ concentric with C and points V i
ε on C ′ in the same cyclic order

as the W i
ε , and give them the same equivalence relation. Pick the V points so that those in

one equivalence class are close together. Furthermore, if V+ and V− denote the midpoints of
10



the arcs containing an equivalence class and its negative, the points should be chosen so V+

and V− are diametrically opposed. Draw nonintersecting curves in the annulus bounded by
C and C ′ that connect corresponding W and V points.

For each equivalence class of V points, choose the direction d that extends from its mid-
point Vε radially away from the center of C ′. Draw rays from each point in the equivalence
class in the direction d. Now we replace each topoline Li by the curve made up of the part
of Li that is not in the tails, together with the two curves from W i

ε to V i
ε and the rays

emanating from the two points V i
ε . By the rule for choosing midpoints, opposite classes have

opposite directions. Since the points of each class are close together, the rays are entirely
outside C ′ and therefore do not intersect each other or any of the curves from W points to
V points or any of the parts of the original topolines other than their tails. Thus, the new
topolines form an arrangement A′ that has the same intersection points (and all bounded
faces) as the original ones. It is clear that A′ is homeomorphic (indeed isotopic) to A.

Moreover, the topolines of A′ have the property that parallels approach the same point at
infinity while nonparallels do not. Furthermore, the opposite ends of the new topolines ap-
proach the same point at infinity, but from opposite directions. Thus, we can add the infinite
line to get a projective pseudoline arrangement P from which A′ is derived by affinization;
and A′ is homeomorphic to A, so A is projectivizable. �

Example 4 (Connected, transsective, but not projectivizable). To get a simple example of a
transsective topoline arrangement that is not projectivizable, take the four topolines x1 =
−1, x1 = 1, x2 = 1, and the bent line {x : x1x2 = 0 and x1, x2 ≥ 0}. In this example
parallelism is obviously not transitive. One can even omit the horizontal line, but it is what
makes the arrangement connected.

In higher dimensions, which transsective topoplane arrangements are projectivizable re-
mains mysterious. Is intransitivity of parallelism the only obstruction? If so, the name
“affine” for such arrangements would be fully justified.

5. Restriction to a domain

A cellular domain is an open subset of X that is itself homeomorphic to R
n. Suppose

we have an arrangement of topoplanes, H, and a cellular domain D, such that HD :=
{H ∩D : H ∈ H and H ∩D 6= ∅} is a topoplane arrangement in D. Call HD the restriction

of H to D. It is clear that HD is transsective if H is transsective. This construction is
suggested by Alexanderson and Wetzel [1, 2], who restricted simple hyperplane arrangements
to convex domains, and Zaslavsky [9, bottom of p. 275], who did the same for all hyperplane
arrangements. (Lawrence has a more abstract treatment of this idea in [6, p. 158].)

In particular, H could be projectivizable, so that parallelism is an equivalence relation. By
choosing D appropriately we can make parallelism in HD intransitive. Suppose intransitivity
of parallelism is, in fact, the only obstruction to projectivizability. That would raise the
further question of whether every transsective topoplane arrangement is the restriction to
a cellular domain of a projectivizable arrangement. We believe this is so in the plane, at
least.1 (This question resembles a topological version of the abstract conjecture of Lawrence
[6, p. 172], as was pointed out by a referee.)

1Added during revision. Independently, LasVergnas proved this for the plane and constructed an apparent
counterexample in dimension 3.
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6. No weaker definition

Examples show that our definition of an arrangement of topoplanes cannot be simplified
in some tempting ways. The essential property of flats for the proof of Equation (1) is that a
flat Y has a rank, r(Y ), in the intersection semilattice and its Euler characteristic is (−1)r(Y ).
The natural way to ensure this is to require that Y have codimension equal to its rank, and
be homeomorphic to R

dim Y . The essential property of regions is that each open region be
a cell; this seems to require that a flat be a topoplane in each flat that it covers. However,
that alone is not enough; and this is not the only natural idea for simplifying the definition
that does not work.

Example 5 (Pair intersection). For instance, it would be much simpler if it were sufficient
that pairs of topoplanes intersect in a relative topoplane of each. Here is a counterexample
consisting of three topoplanes, each pair intersecting in a relative topoplane, but the inter-
section of all three being neither a relative topoplane nor of the correct dimension. In R

3

let H1 be the plane x1 = −x2 and let H2 be the plane x1 = x2. For H3 we use the surface
defined by

x2 =











x3 − 1 if x3 ≥ 1,

0 if x3 ∈ [−1, 1],

x3 + 1 if x3 ≤ −1.

Each Hi ∩ Hj is a straight line or a broken line that divides Hi and Hj into two parts, but
the intersection of all three topoplanes is the line segment {(0, 0, x3) : −1 ≤ x3 ≤ 1}.

Example 6 (Flat intersection). One might still hope it would be sufficient that, if a flat Y
covers a flat Z, then Z is a relative topoplane of Y . (In L we say Y covers Z if Y > Z—that
is, Y ⊂ Z—and there is no other element in between them.) Another example of three
topoplanes shows that this is too weak to give us an arrangement of topoplanes. In X = R

3

take the two halves of the cone x2
2 + x2

3 = 1, one opening to the right and the other to the
left, to be H1 and H2. Let H3 be a plane tangent to the cone in a line W and let Z :=
the origin. Setting H := {H1, H2, H3}, the intersection poset is L = {R

3, H1, H2, H3,W,Z}.
This satisfies the covering property but it is not a topoplane arrangement because H1 ∩ H2

is not a topoplane in H1.

Still, none of these counterexamples applies to arrangements of topolines; for them, it is
sufficient to require only that the intersection of any two topolines be void or a point. It is
also sufficient to require that for any covering pair Y, Z, Z is a relative topoline in Y , except
that one must forbid the case of a single flat that is a point. (These facts are obvious.)
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