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Abstract

In descending generality I survey: five partial orderings of graphs, the induced-
subgraph ordering, and examples like perfect, threshold, and mock threshold graphs.
The emphasis is on how the induced subgraph ordering differs from other popular
orderings and leads to different basic questions.
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1 Preparation

This is a very small survey of partial orderings of graphs, hereditary graph
classes (mainly in terms of induced subgraphs), and characterizations by for-
bidden containments and by vertex orderings, leading up to a new graph class
and a new theorem.

Our graphs, written G = (V,E), G′ = (V ′, E ′), etc., will be finite, sim-
ple (with some exceptions), and unlabelled; thus we are talking about iso-
morphism types (isomorphism classes) rather than individual labelled graphs.
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Graphs can be partially ordered in many ways, of which five make an inter-
esting comparison.

We list some notation of which we make frequent use:

N(G; v) = the neighborhood of v in G.
d(G; v) = the degree of vertex v in G.
G:X = the subgraph of G induced by X ⊆ V .

2 Five Kinds of Containment

We say a graph G contains H if H ≤ G, where ≤ denotes some partial
ordering on graphs. There are many kinds of containment; each yields a
different characterization of each interesting hereditary graph class.

Two kinds of graph that make good models are planar and outerplanar
graphs. A planar graph can be drawn in the plane with no crossing edges. An
outerplanar graph can be drawn with no crossing edges and with all vertices
on the boundary of the infinite region. These two types can be characterized
by forbidden contained graphs.

1. The subgraph ordering: G′ ⊆ G means V ′ ⊆ V and E ′ ⊆ E. (Tech-
nically, this definition applies to labelled graphs. We apply it to unlabelled
graphs by forgetting the labels.). Examples:

(i) Planarity. There are infinitely many forbidden subgraphs, i.e., graphs
such that G is planar iff it contains none of those graphs.

(ii) Outerplanarity. There are also infinitely many forbidden subgraphs.

But both infinities are repaired by the next form of containment. Subdividing
a graph means replacing each edges by a path of positive length (thus, G is a
subdivision of itself).

2. The subdivided subgraph or topological subgraph ordering: G′ ⊆t G
means there is a subdivision G′′ of of G′ such that G′′ ⊆ G. Examples:

(i) Planarity. By Kuratowski’s Theorem there are two forbidden subdivided
subgraphs (K5 and K3,3, if anyone forgot).

(ii) Outerplanarity. There are also two forbidden subdivided subgraphs, K4

and K2,3, by Chartrand and Harary [3].

3. The minor ordering: G′ � G means G has a subgraph that contracts
to G′. (Contraction means shrinking an edge to a point, thereby combining
the endpoints into a single vertex. Or, several edges may be contracted.)



Examples:

(i) Planarity. By Wagner’s extension of Kuratowski’s Theorem there are two
forbidden minors (K5 and K3,3 again).

(ii) Outerplanarity. There are two forbidden minors (K4 and K2,3; trivially
since any K4 or K2,3 minor is a subdivision).

4. The induced subgraph ordering: G′ v G means V ′ ⊆ V and E ′ contains
all edges of G that have both endpoints in V ′. The induced subgraph ordering
is a very active research topic currently. Examples (both obvious):

(i) Planarity. There are infinitely many forbidden induced subgraphs.

(ii) Outerplanarity. Also infinitely many forbidden induced subgraphs.

Does subdivision eliminate the infinities? We subdivide:

5. The subdivided induced subgraph or topological induced subgraph order-
ing: G′ vt G means there is a subdivision G′′ of G′ such that G′′ v G. This
ordering seems to be newly regarded. Examples:

(i) Planarity. Infinitely many forbidden topological induced subgraphs.

(ii) Outerplanarity. We have not yet decided finiteness of the number of
forbidden topological induced subgraphs.

Despite that last uncertainty, subdivision can matter; see Theorem 6.2.

3 Hereditary Classes and Forbidden Subgraphs

A hereditary class of graphs in a partial ordering of graphs, ≤, is a class G of
graphs for which G ∈ G & G′ ≤ G =⇒ G′ ∈ G. The forbidden graphs for G
are the minimal non-members of G. We write Forb(G) for the set of minimal
non-members. Thus,

G ∈ G ⇐⇒ no element of Forb(G) is ≤ G.

The main question: What is Forb(G)? Is there any general statement about
it? The most famous answer of this kind at present is the Robertson–Seymour
Graph Minors Theorem:

Theorem 3.1 In the minor ordering �, every Forb(G) is finite.

None of the other orderings has this finiteness property.

The Robertson–Seymour graph minors theory is comprehensive, including
a structure theory of graphs. Another aspect of it is recognition. Class P is the



class of problems for which the time required is not more than a polynomial
function of the size of the input (these are often called “fast” computations).
Class NP is the class of problems for which the required time is polynomial
if there is a hint. Trivially, P (where no hint is needed) ⊆ NP. The notorious
open question: Is P ( NP?

Corollary 3.2 Given a fixed graph H, the question “For every graph G, de-
cide whether H � G” is in Class P.

This leads to our main problem:

Question 1 Is anything like these results true in other orderings? In partic-
ular, is there any kind of finiteness for interesting hereditary classes?

See the introduction to [9] for a review of questions like this for several
orderings, especially the immersion ordering (which I have omitted).

Question 2 How difficult is it to decide whether H ≤ G in other orderings?

I am especially interested in the induced and topological induced subgraph
orderings. 2 They are the subject of the rest of this report.

4 Holes and Antiholes

A hole in a graph is an induced cycle Cl for l ≥ 4. An antihole is an induced
subgraph isomorphic to the complement C l for l ≥ 4. Forbidding holes and
antiholes is important.

4.1 Holes and Triangles: Forests

Perhaps someone may be surprised by the following form of statement, an
induced-subgraph characterization.

Proposition 4.1 G has no holes and no induced triangles ⇐⇒ G contains
no cycles ⇐⇒ G is a forest.

For a constructive characterization of forests we have a slightly unconven-
tional restatement of the fact that every tree other than K1 has a leaf:

Proposition 4.2 G is a forest ⇐⇒ there is a vertex ordering (v1, v2, . . . , vn)
such that d(G:{v1, v2, . . . , vi}; vi) ≤ 1.

The vertex ordering implies that recognizing forests is in Class P.

2 For the subgraph and induced-subgraph orderings, Question 2 is easily answered in poly-
nomial time.



4.2 Holes: Chordal Graphs (Triangulated Graphs)

A graph is chordal if every cycle in G of length ≥ 4 has a chord. Restated:

Proposition 4.3 G is chordal ⇐⇒ G has no holes.

There is an important constructive characterization by Dirac [6]:

Proposition 4.4 G is chordal ⇐⇒ there is a vertex ordering (v1, v2, . . . , vn)
such that N(G:{v1, v2, . . . , vi}; vi) is a clique.

This vertex ordering implies that recognizing chordal graphs is in Class P.

4.3 Odd Holes: Bipartite Graphs

Parity of holes matters.

Proposition 4.5 G has no odd holes and no triangles ⇐⇒ G is bipartite.

Is there a constructive characterization involving vertex ordering? Appar-
ently not. Still, bipartite graphs matter:

(i) Many computational problems have simple algorithms for bipartite graphs
but difficult ones for non-bipartite graphs. Many have algorithms in P
for bipartite graphs, but not for all graphs.

(ii) Bipartite graphs are the answer to some good graph-theory questions.

(iii) Bipartite graphs are good subjects for integer linear programming, but
general graphs are not.

Is there an “anti” version of this? G has no odd antiholes and no indepen-
dent vertex triples ⇐⇒ it consists of two cliques and connecting edges. So
odd antiholes are not very interesting? Well . . .

4.4 Odd Holes and Antiholes: Perfect Graphs

Some more notation:

χ = chromatic number.
ω = clique number (the largest size of a clique).

In general, obviously, χ(G) ≥ ω(G). So, when are they equal? A perfect
graph is a graph G that satisfies χ(G′) = ω(G′) for every G′ v G. Note that
the requirement extends to induced subgraphs. Why do we care about these
graphs?

(i) Perfect graphs are the answer to some good graph-theory questions.



(ii) Perfect graphs are good for polyhedral combinatorics.

(iii) Many computational problems have fast algorithms (Class P) for perfect
graphs but not for all graphs.

Conjecture 4.6 (Berge, 1961) G is perfect ⇐⇒ G is perfect ⇐⇒ G has
no odd holes or antiholes.

The Strong Perfect Graph Theorem of Chudnovsky–Robertson–Seymour–
Thomas [1] says Berge was right.

Theorem 4.7 G has no odd holes and no odd antiholes ⇐⇒ it is perfect.

Graphs with no odd holes or antiholes have become known as Berge graphs.
There is now a thorough structural decomposition that enables polynomial-
time recognition of perfect graphs (see Chudnovsky et al. [2]). One direction
of current research is to modify the Berge exclusions, hoping that valuable
properties of perfect graphs remain valid. For instance . . .

4.5 Even Holes

A nearly Berge graph has no even holes. One reason for this definition is that
having no even holes =⇒ no induced C4 =⇒ no antiholes C l for l ≥ 6.
So, about half the Berge exclusions are preserved. There is an attractive
constructive description by vertex ordering [10]:

Theorem 4.8 A graph without even holes has a vertex ordering such that
N(vi) in G:{v1, v2, . . . , vi} is chordal.

But not the converse, unfortunately, so this is not a characterization (see
[12]) and it does not give a recognition algorithm.

5 Three Small Exclusions: Threshold Graphs

Threshold graphs, introduced by Chvátal and Hammer [4,5], can be defined by
forbidden induced subgraphs: they are the graphs such that G 6w P4, C4, C4.
(That is not the original definition, which is more complicated and off topic.)
This characterization implies that the complement of a threshold graph is
again a threshold graph.

A constructive characterization is also due to Chvátal and Hammer. (A
vertex is dominating if it is adjacent to all other vertices.)

Proposition 5.1 G is threshold ⇐⇒ ∃ a vertex ordering such that each vi
is isolated or dominating in G:{v1, v2, . . . , vi}.



The vertex ordering, once again, implies that recognizing threshold graphs
is in Class P (and fast).

Is there a generalization? Yes . . .

6 Relaxed Vertex Ordering: Mock Threshold Graphs

So far we have gone from forbidden induced subgraphs to a vertex ordering.
Now it’s reversal time. We relax the threshold ordering requirement to define
a new class of graphs. In 2014 Sivaraman said a graph is mock threshold 3 if
there is a vertex ordering such that d(G:{v1, v2, . . . , vi}; vi) ≤ 1 or ≥ i − 2.
Two essential properties are:

(i) The complement of a mock threshold graph is mock threshold.

(ii) An induced subgraph of a mock threshold graph is mock threshold.

Hence the obvious question.

Question 3 What are the forbidden induced subgraphs for the class M of
mock threshold graphs?

Easy forbidden induced subgraphs are the holes C5, C6, C7, . . . and their
antiholes. Can we find the others? Are there infinitely many?

Theorem 6.1 (Behr–Sivaraman–Zaslavsky–computer [7]) Forb(M)
consists of all holes Cl and antiholes C l for l ≥ 5, and 318 other graphs. 4

Once more, because of the definition by vertex ordering, recognition of
mock threshold graphs is in Class P.

Something strange happens when we ask planarity questions about mock
threshold graphs. Outerplanarity and planarity become very different.

Theorem 6.2 (Behr–Sivaraman–Zaslavsky [8]) Outerplanar mock thresh-
old graphs are characterized by finitely many forbidden topological induced sub-
graphs. Planar mock threshold graphs are characterized by infinitely many
forbidden topological induced subgraphs.

7 Induction-Hereditary Classes

Question 4 (Sivaraman) What can we say about a general hereditary class
in the induced-subgraph ordering v?

3 I acknowledge responsibility for this name.
4 We thank Jeffrey Nye for computational help.



This is rather vague, and so general there might be nothing. But there
is something! Given an induction-hereditary class G, define the sequence of
cardinalities Φ(G) = (φn(G))∞n=1 by φn(G) = |{H ∈ Forb(G) : |V (H)| = n}|.

Theorem 7.1 (Sivaraman [11]) There exist positive real numbers a, b such
that every sequence {fn} with fn ≤ aebn is the sequence Φ(G) for some induc-
tion-hereditary class G.
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