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1. Introduction

The purpose of this paper is to compare two very different measures, one old and one new,
of strain in a signed graph.

1.1. A tale of two clubs.
Not all members of the venerable Acquaintances Club are amicably acquainted. Occasional

unfriendly relations put a strain on the social atmosphere by breaking the Grand Rule “The
Friend of My Friend”, whose “Five Legs” read: “The friend of my friend is my friend, the
enemy of my friend is my enemy, the friend of my enemy is my enemy, and the enemy
of my enemy is my friend, and so forth unto the nth degree”. The amount of strain is
measured by the number of relations that break the Five Legs, which is quantified by the
smallest number of friendships or enmities that, if ended, would eliminate all violations of
the Grand Rule. Cartwright and Harary’s theory of structural balance [5] predicts that
the relations will evolve towards a state of “balance”, in which the members fall into two
mutually antagonistic camps, within each of which no unfriendly relations remain.1 The
camps, instead of joining together at the monthly members’ meeting, would gather only in
separate rooms with separate agendas, motions, and decisions. Irremediable enmity would
lead to fission; the Club would split in two.

That is not what happened. In the rain-soaked summer of 2009 the Club, more crowded
even than usual, began to splinter into a multitude of factions, each demanding its own
meeting room, etc., etc. The Club threatened to disintegrate altogether. Best friends fell
out under the pressure of this social collapse. This was in accordance with th prediction of
Davis [6], who denied the the fourth Leg—the force of friendship due to mutual enmity. The
Club’s survival was only ensured by the efforts of a few members of extraordinary wisdom
and inspiration.

The Collectors’ Club could hardly be more different. Our members, living almost like
monks,2 barely notice each other; their attention is all for the Club’s innumerable curiosi-
ties, antiquities, natural specimens, objets d’art, and every kind of thing, assembled by the
membership over centuries.3 The Collectors feel strongly about the Club’s collections, which
may be enjoyed (members only) in comfortably furnished Treasure Rooms. Trouble arises
in deciding which objects to display in which of the rooms. No Collector wants objects he
or she dislikes out of the Treasure Rooms he or she frequents. When two members both love
one item and yet disagree about another, the two objects ought to be kept in separate rooms.
However, as there are only so many rooms, incompatibilities must arise. Though some of
Burton’s favorite objects are in Rooms 12, 16, and 24, the last named are two anatomical
specimens that he finds repulsive. In Treasure Room 7, on the other hand, there is one fine
piece amongst several ugly or dull ones that leave him reluctant to go there. Smythe, on the
other hand, is fond of all the pieces in Room 24 as well as most of those in Room 7. Needless
to say that this sort of inconsistency is distressing.

We Collectors have tried many times to eliminate this irritation to our feelings but without
general success. Lately, however, Mrvar and Doreian [14] suggested a quantifiable goal. The
Club should seek to reduce the sum, over all Collectors, of the number of repulsive objects the
Collector encounters in favorite rooms and the number of attractive items in rooms in which

1Or, all dislikes would disappear; but that could not be expected.
2Not those in Sampson’s classic study [16] of factions in a community modelled by a signed graph.
3The Collectors’ Club is one of the last remaining of the antiquarian societies of the early modern era.
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he or she feels uncomfortable. By doing so, they say, we can minimize the disequilibrium
amongst the members. This idea has at last given us direction and, we hope, soon will bear
fruit, although thus far we have found the necessary calculations difficult.

1.2. Two-mode networks, or bipartite signed graphs.
These different ways of measuring strain in a club, by the deviation from balance, clus-

terability, or the new Mrvar–Doreian measure, aroused my curiosity. I decided to compare
them scientifically. The mathematical model of a club is a signed graph; that is, a graph
whose edges are marked positive and negative. Let Q(k) denote the k-clusterability, the
measure suggested by Davis’s analysis: this is the minimum number of inconsistent edges
possible for a partition of the vertices of the graph into exactly k clusters—an edge being
inconsistent when it is a positive edge between clusters or a negative edge within a cluster.
(This measure suits the situation of a set of acquaintances whose relations may be friendly or
unfriendly, and in particular the Acquaintances Club.) The comparison of frustration with
k-clusterability is simple. The frustration index, the measure suggested by Cartwright and
Harary’s theory of structural balance, equals Q(≤2), i.e., where the number of clusters is at
most 2. The relationship between frustration index and k-clusterability is then essentially
the behavior of Q as k varies, which was previously studied by Doreian and Mrvar in [9].
(They found that Q decreases weakly as k increases [9, Theorem 4].)

Mrvar and Doreian wanted to capture a distinction that was abandoned in the Cartwright–
Harary theory: the difference between “subjects” (or, “actors”) and “objects”, which play
different roles in Heider’s original formulation of balance theory [12]. In their new structure,
which they call “two-mode signed networks”, the relations are only between actors and
objects; thus, the graph is bipartite. (That is why this measure is appropriate for the
Collectors’ Club.) Their idea was to explore clusterability in the context of a signed bipartite
graph whose two vertex sets, say U and W , are independently partitioned into clusters,
with the aim of making the number of inconsistent edges as small as possible. This model
suggested an important change: inconsistency is decided not directly by friendship or enmity
but, in a sense to be explained later, by majority decision logic. The properties of this new
idea plainly differ from those of Harary and Cartwright’s balance and Davis’s clustering.
I explore here the mathematical relationship between frustration and Mrvar and Doreian’s
bipartite majority clusterability.

I expected the measure of bipartite majority clusterability to be less than the frustration
index almost always, for almost any number of clusters in each of the two classes of vertices,
since the majority rule for consistency surely would reduce the number of inconsistent edges
in almost any signature. To my considerable surprise, when I examined the question for
K2,n that was not the case. The actual proportion of all signatures of K2,n in which the
index of majority clusterability with just two clusters in each vertex class is no less than
the frustration index is asymptotically a fraction greater than 0. Increasing the number of
clusters in the second vertex class to three, the proportion of signatures for which frustration
equals biclusterability does become vanishingly small, a mere c/n2.

2. Background

Here are basic definitions and technical background.

2.1. Basic concepts.
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All our graphs are simple; that is, they have at most one edge joining any two vertices; and
they are bipartite; that is, V is partitioned into two color classes, U = V1 = {u1, . . . , un1}
and W = V2 = {w1, . . . , wn2}, and every edge has the form ukwl. The complete bipartite
graph Kn1,n2 has every possible edge ukwl. If X is a subset of vertices of a graph, Xc denotes
the complementary subset V \X.

A signed graph Σ = (V,E, σ) is a graph (V,E), with vertex set V and edge set E, together
with a sign function σ : E → {+,−}. E+ and E− are the sets of positive and negative edges,
respectively. The signed degrees of a vertex, d+(v) and d−(v), are its degrees in E+ and E−,
respectively. The net degree is d±(v) := d+(v)− d−(v).

The signed graph Σ is balanced if in every circle (“cycle”, “circuit”) the product of the
edge signs is positive. Harary’s Balance Theorem [10] states that Σ is balanced if and only
if V has a bipartition {X, Y } (that is, X ∪ Y = V and X ∩ Y = ∅; X or Y may be void)
such that the negative edges are exactly those with one endpoint in X and one in Y .

The frustration index l(Σ) is the smallest number of edges whose deletion (or sign reversal
[11]) makes Σ balanced. Abelson and Rosenberg introduced this measure, calling it the
“complexity” [1]; Harary called it the “line index of balance” [11].4 Obviously, l(Σ) ≤
|E−(Σ)|. Finding the exact frustration index is a hard problem; Roth and Viswanathan
[15] proved NP-hardness just for the special case where the underlying graph is a complete
bipartite graph with the same number of vertices in each color class.

Clusterability is an extension of balance introduced by Davis [6], based on Harary’s char-
acterization of balance via bipartitions. We say Σ is clusterable if there is a partition of V
into subsets, called clusters (or plus-sets), such that every positive edge is within a cluster
and each negative edge goes between clusters. The partition is called a clustering of Σ. We
say Σ is k-clusterable if it has a clustering with k clusters, and (≤k)-clusterable if it has a
clustering into at most k clusters. Harary’s theorem says a signed graph is balanced if and
only if it is (≤2)-clusterable.

The clusterability index Q(Σ) is the smallest number of edges whose deletion (or negation
[8]) makes Σ clusterable. Similarly, the k-clusterability index Q(Σ; k) is the least number of
edges whose deletion makes Σ k-clusterable.

2.2. Bimodality.
From now on, we assume we have a bipartite signed graph Σ without multiple edges.
A biclustering is a pair (π1, π2) where π1 = {U1, . . . , Uk1} partitions U and π2 = {W1, . . . ,Wk2}

partitions W . A bicut is an edge set

Eij := E(Ui,Wj) := {ukwl ∈ E : uk ∈ Ui, wl ∈ Wj};

one may think of it as a cut induced by the biclustering in an induced subgraph.5 Eij is a
null bicut if it has no edges. It is homogeneous if it has edges of only one sign.

Each bicut of (π1, π2) gets a sign by majority vote of its edges. If the number of positive
edges is at least half the total number of edges, it is called positive. Otherwise, it is negative.
It is neutral if it is not null but it has equally many edges of each sign. Neutral and null

4The term “frustration” (which Harary enjoyed) comes from Toulouse [17], writing on physics, but is well
suited to social psychology.

5Mrvar and Doreian called a bicut a “block”, but that conflicts with the normal use of the term “block”
in graph theory. Their term refers to the fact that in the U ×W bipartite adjacency matrix B(Σ) of Σ, in
which the (uk, wl) entry is the sign of ukwl, or 0 if there is no edge ukwl, the biclustering (π1, π2) induces a
block structure in which each block is a Ui ×Wj submatrix of B(Σ).
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bicuts may be given either sign. (Mrvar and Doreian define neutral bicuts to be positive
[14].) An edge is consistent with (π1, π2) if its sign agrees with that of the bicut that contains
it; the choice of sign of a neutral or null bicut does not affect the number of inconsistent
edges in it.

The biclusterability, in full the bipartite majority clusterability, of (π1, π2) in Σ is

M(π1, π2) := M(Σ;π1, π2) := the number of inconsistent edges.

(This is twice Mrvar and Doreian’s “criterion function” P with their usual value α = .5.)
The (k1, k2)-biclusterability index of Σ is Mrvar and Doreian’s adaptation of Davis’s idea of
clusterability to the bipartite situation of persons and objects. It is defined as

M(k1, k2) := M(Σ; k1, k2) := min{M(π1, π2) : |π1| = k1 and |π2| = k2}.
A (k1, k2)-biclustering with minimal biclusterability is called a minimal (k1, k2)-biclustering.
When considering M(k1, k2) I assume |U | ≥ k1 and |W | ≥ k2. (We can also define an
overall biclusterability index M(Σ) := mink1,k2 M(k1, k2), but the work of Mrvar and Doreian
suggests it is less interesting.)

A partition π′ is finer than π, π′ ≤ π, if they partition the same set and the clusters of π′

are subsets of the clusters of π. (A partition is considered finer than itself.) The refinement
ordering of biclusterings is componentwise: we say (π′1, π

′
2) ≤ (π1, π2) if π′1 ≤ π1 and π′2 ≤ π2.

A useful lemma is drawn from Mrvar and Doreian’s proof of [14, Theorem 4].

Lemma 1. Suppose (π1, π2) and (π′1, π
′
2) are biclusterings of Σ such that π′1 is finer than π1

and π′2 is finer than π2. Then M(π′1, π
′
2) ≤M(π1, π2).

The full theorem is an immediate consequence.

Theorem 1 (Mrvar and Doreian [14, Theorem 4]). M(k1, k2) is a weakly decreasing function
of k1 and k2. That is, if n1 ≥ k′1 ≥ k1 and n2 ≥ k′2 ≥ k2, then M(k′1, k

′
2) ≤M(k1, k2).

Corollary 2. If k1 ≤ n1 and k2 ≤ n2, then M(k1, k2) = M(≤k1, k2) = M(k1,≤k2) =
M(≤k1,≤k2).

Proof. Refine a minimal (≤k1,≤k2)-biclustering to a (k1, k2)-biclustering. �

Corollary 2 is useful when we try to calculate exact clusterability indices, as in Section
5. If we have a general construction for a minimal (k1, k2)-biclustering, sometimes one of
the clusters may happen to be empty; then the empty cluster is not counted as one of the
clusters in the partition. Corollary 2 tells us that this possibility does not invalidate the use
of that biclustering to determine M(k1, k2).

2.3. Switching.
Switching a vertex set means reversing the signs of all edges that have one endpoint in

that set. If X is the set switched, the switched signed graph is written ΣX . Switching X
and its complement have the same effect. Switching one of the color classes, say U , in a
bipartite graph negates every edge: ΣU = −Σ. The essential property of switching is that it
preserves the signs of all circles; consequently, it preserves the frustration index. In fact, it
has the stronger property that

(1) l(Σ) = min
X
|E−(ΣX)|.

(This formula was stated first by Abelson and Rosenberg [1] .)
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Arbitrary switching does not preserve biclusterability indices, but controlled switching
does.

Lemma 3. Given a biclustering (π1, π2), switching one or more clusters of one or both
partitions does not change M(π1, π2).

The proof is easy. Call a set X that is a union of clusters compatible with the biclustering.
Thus, compatible switching preserves the biclusterability index.

2.4. The indicator signed graph.
From a biclustering of type (k1, k2) we construct a bipartite graph of order (k1, k2) whose

vertices are the clusters of π1∪π2, with an edge for each bicut that is neither null nor neutral,
whose sign is the sign of that bicut. This is the indicator signed graph, I(π1, π2).

Switching in the indicator corresponds to switching clusters in Σ. Vertices that are
switched in I(π1, π2) correspond to clusters to be switched in Σ. By Lemma 3, this switch-
ing in Σ does not change the value of M(π1, π2). That is what makes the indicator graph
important.

Lemma 4. If the indicator signed graph is all positive, then M(π1, π2) = |E−(Σ)|.
If the indicator is balanced, then

M(π1, π2) = min{|E−(ΣX)| : X is compatible with (π1, π2)} ≥ l(Σ).

Proof. If each bicut is positive, obviously M(π1, π2) = |E−|.
By switching vertices in the indicator and the corresponding clusters of (π1, π2) we may

assume the indicator is all positive. Now every bicut is positive (or null or neutral), so
M(π1, π2) = |E−| ≥ l(Σ) by Equation (1). �

Lemma 5. Suppose Z ⊆ V (I(π1, π2)) corresponds to X ⊆ V (Σ). If switching Z in I(π1, π2)
makes a negative edge positive but does not make a positive edge negative, then |E−(ΣX)| <
|E−(Σ)|.

The proof is obvious. �

3. The Critical Type

Our basic result shows that M(2, 2) is, in an intuitive sense, a critical value for the biclus-
terability function.

Theorem 2. For 1 ≤ k1 ≤ n1 and 1 ≤ k2 ≤ n2, the biclusterability indices M(k1, k2) satisfy:

(1) M(1, 1) =
∣∣|E+| − |E−|

∣∣ ≥ l(Σ).
(2) Concerning ki ≥ 2,

l(Σ) ≤M(1, 2) = M(1, 3) = · · · = M(1, n2) =
∑
w∈W

min(d+(w), d−(w))

and

l(Σ) ≤M(2, 1) = M(3, 1) = · · · = M(n1, 1) =
∑
u∈U

min(d+(u), d−(u)).

(3) M(2, 2) ≤ l(Σ). Equality and strict inequality are both possible.
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Proof of (1) and (2), for type-(1, k2) biclusterings. Consider a (1, k2)-biclustering for gen-
eral k2 ≥ 1. The bicuts are E(U,Wj). Since the indicator is a forest, hence balanced,
we can switch every Wj of a negative bicut; then all bicuts are positive and the number of
negative edges equals the number of inconsistent edges. This shows that M(π1, π2) ≥ l(Σ),
hence M(1, k2) ≥ l(Σ) for every k2 ≥ 1.

For fixed k2 ≥ 2, take any partition π2 = {W1, . . . ,Wk2} of W . The number of inconsistent
edges in E(U,Wj) is

min
( ∑
w∈Wj

d+(w),
∑
w∈Wj

d−(w)
)
.

The total over all clusters is

M({U}, π2) =

k2∑
j=1

min
( ∑
w∈Wj

d+(w),
∑
w∈Wj

d−(w)
)
.

This total is minimized if the sets Wj are chosen so that in each one all d±(w) have the same
sign. We can get this result by choosing π2 to be the total partition (the partition with n2

singleton clusters), or at the other extreme by collecting all vertices with d±(w) ≥ 0 into W1

and the remainder into W2. Thus, M(1, 2) = M(1, n2). Furthermore,

M({U}, {W1,W2}) =
∑
w∈W1

d−(w) +
∑
w∈W2

d+(w) =
∑
w∈W

min(d+(w), d−(w)),

which, incidentally, equals |E−(ΣW2)|. That proves M(1,≤2) =
∑

w min(d+(w), d−(w)). By
Corollary 2, this is M(1, 2). Now it is easy to see that M(1, k2) = M(1, 2) = M(1, n2). �

Proof of (3). Switch by X ⊆ V so |E−(ΣX)| = l(Σ). Then (π1, π2) := ({U∩X,U \X}, {W ∩
X,W \ X}) is a (≤2,≤2) biclustering with which X is compatible; thus M(Σ;π1, π2) =
M(ΣX ; π1, π2). In ΣX , M(π1, π2) = l(Σ) if the indicator signed graph I := I(Σ;π1, π2) is
balanced, by Lemma 4 and the fact that |E−(ΣX)| = l(Σ). Contrariwise, if the indicator
graph is unbalanced ΣX will have M(π1, π2) < l(Σ), because then M(π1, π2) < |E−(ΣX)|.

We have a (≤2,≤2) biclustering, not necessarily a (2, 2) biclustering. If, say, X ∩ U = ∅
or X ⊇ U , we can use as π1 any partition of U into two clusters, thereby forming a (2,≤2)
biclustering.

Later examples, especially signatures of K2,n (see Corollary 11), show concretely that
M(2, 2) and l(Σ) may be equal or unequal. �

In the componentwise partial ordering of ordered pairs of integers, M(k1, k2) ≤ l(Σ) if
(k1, k2) ≥ (2, 2) and otherwise M(k1, k2) ≥ l(Σ). For that reason I call M(2, 2) the critical
value of M and (2, 2) the critical type.

4. A Raft of Questions

Theorem 2 raises three main questions.

4.1. Is frustration index a biclusterability index?
This is two questions.

Question 1. For which signed bipartite graphs does M(1, 2) = l(Σ)?
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I believe this is an essentially difficult problem. Let us start with a bipartite signed graph
Σ that has l(Σ) negative edges (we say it is reduced ; cf. Bowlin [4] where frustration in
signed bipartite graphs gets a thorough treatment), and switch any subset of W . Then we
get M(1,≤2) = l(Σ). This suggests that detecting when M(1,≤2) = l(Σ) is similar in
difficulty to detecting when Σ is reduced. As it is a nontrivial matter to decide the latter
(due to the difficulty of finding the frustration index), one would expect the same of the
former. I shall not attempt to answer Question 1, except in the simple case of a signed K2,n

(see Proposition 12).

Question 2. For which signed bipartite graphs does M(2, 2) equal the frustration index l(Σ)?

The answer to this question for K2,n (in Proposition 9) led to the surprising conclusion
that equality is frequent. This has a geometrical explanation that I discuss briefly in Section
5.2.

4.2. Realizing the frustration index through clustering.
Since M(2, 2) can easily be less than l(Σ), I wonder whether at least it is possible to find

a biclustering that gives l(Σ) exactly. Thus, the last questions are “realizability” versions of
the preceding ones: I ask whether the frustration index is realizable by any (2, 2)-biclustering,
not necessarily a minimal one.

Question 3. When does there exist a biclustering of given type (k1, k2) withM(k1, k2) = l(Σ)?
Especially, (a) for (k1, k2) = (1, k2), (b) for (k1, k2) = (2, 2), and (c) (k1, k2) = (2,≤2). (A
positive answer in(c) would be weaker than one to (b) because it would have little significance
for the critical type (2, 2).)

Call a biclustering with M = l(Σ) red if of type (2, 2) and pink if of type (2,≤2) (so “pink”
includes “red”). We verify in the next example that a red biclustering does not always exist.

Example 1. Consider Σ consisting of K2,2 with various signatures. Define K2,2(1) to be K2,2

with one negative edge, and K2,2(3) to have three negative edges. (The numbers 1 and 3
determine the signed graph up to symmetry.)

If Σ = K2,2(1), its frustration index is 1. The unique type-(2, 2) biclustering, where every
cluster is a singleton, has M = 0 < l(Σ). There is (up to symmetry) one (2, 1)-biclustering;
it has M = 1 = l(Σ).

The switching-equivalent signature K2,2(3) behaves the same way.
With an even number of negative edges K2,2 is balanced and the unique (2, 2) biclustering

gives M = 0 = l(Σ) (as it must, by Theorem 2).

Example 2. For K3,3 I found that just one choice of signs (and its negative) fails to have a
red biclustering; and worse, it has no pink biclustering. Table 1 shows all signatures with up
to four negative edges. This makes a complete list because a signed K3,3 with more negative
edges, switched by U (which negates all edges), has 9− |E−| ≤ 4 negative edges, while l(Σ)
and all M(π1, π2) remain the same. Define K3,3(G) to be K3,3 with negative subgraph G.

Each partition of U or W has one singleton cluster and one doubleton cluster. Consider
how this works for K3,3(C4), where the negative edge set is a circle of length 4. Say the
C4 is u2w2u3w3u2. Up to symmetries of K3,3 there are three ways to choose U1 = {u} and
W1 = {w}: (u,w) may be (u1, w1), (u1, w2), or (u2, w2). The biclusterabilities are 0, 2, and
3, respectively; none equals the frustration index, l = 1. That proves K3,3(C4) has no red
biclustering.
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The signature K3,3(C4) has no pink biclustering, either. With U1 = U and W1 = {w} we
get M = 2, 3 when w = w1, w2.

Negative subgraph G |E−| l(Σ) X U ′1 W ′
1 M(2, 2) U1 W1

∅ 0 0 ∅ u1 w1 0 u1 w1

P2 ∪ P2 = w2u1w3 ∪ u2w1u3 4 0 u1w1 u1 w1 0 u1 w1

K1,3 3 0 u1 u1 w1 0 u1 w1

P1 = u1w1 1 1 ∅ u1 w3 0 u1 w1

P2 = w2u1w3 2 1 u1 u1 w2 0 u1 w1

P2 ∪ P1 = u2w2u3 ∪ u1w3 3 1 u1w2 u1 w2 1 u1 w2

K1,3 ∪w1 P1 4 1 u2 u2 w2 1 u2 w1

C4 = u2w2u3w3u2 4 1 u1w2w3 none 0 u1 w1

P3 ∪ P1 = u1w3u2w1 ∪ u3w2 4 1 u1u2w2 u3 w2 1 u3 w3

P1 ∪ P1 = u1w1 ∪ u2w2 2 2 ∅ u3 w3 1 u1 w1

P1 ∪ P1 ∪ P1 = u1w1 ∪ u2w2 ∪ u3w3 3 2 u1u2w3 u3 w3 2 u3 w3

P3 = u1w3u2w1 3 2 u2 u2 w3 1 u3 w2

P4 = w1u1w2u2w3 4 2 u1u2 u3 w3 2 u3 w3

Table 1. The signed K3,3’s with their properties. K3,3(G) switches by the
switching set X to K3,3(G

′) with l(K3,3(G
′)) = |E−(G′)|. Pk is a path with k

edges. K1,3 has center u2. K1,3 ∪w2 P1 has an extra edge w2u1. The singleton
clusters U ′1 andW ′

1 give a biclustering of type (2, 2) withM(π1, π2) = l(Σ). The
singleton clusters U1 and W1 give the minimum number M(2, 2) of inconsistent
edges.

The examples suggest that K2,2 and K3,3 may simply be too small to give a positive answer
to Question 3(b). This is certainly true in the family K2,n2 ; see Theorem 4.

Conjecture 1. Fix n1 ≥ 2. Every signed bipartite graph with |U | = n1 and |W | sufficiently
large (how large depends on n1) has a red biclustering. The same holds true for biclusterings
of type (2,≤2), but with many fewer exceptions.

The conjecture may gain plausibility from Bowlin’s calculation of the maximum frustration
index [4]. He found that maxσ l(Kn1,n2 , σ), as a function of n2 with n1 fixed, settles down to
a regular formula for sufficiently large n2. This suggests there may be enough regularity in
signatures of Kn1,n2 as n2 →∞ to enable a proof.

5. The case of K2,n

Further evidence comes from a complete solution of the general example of signed K2,n2 ’s.
Here, where n1 = 2, Conjecture 1 is true, and moreover, both M(2, 2) = l(Σ) and M(2, 2) <
l(Σ) are common amongst all signatures.

Every signed K2,n2 has a certain simple structure. Of the n2 vertices in W , some number
a are negatively adjacent to both u1 and u2, d1 = b1 + a are negative neighbors of u1, and
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d2 = b2 + a are negative neighbors of u2. Let c := n2 − (a + b1 + b2); this is the number
of vertices that are positively adjacent to both u1 and u2. Obviously, a, b1, b2, c ≥ 0 and
a + b1 + b2 + c = n2. Call this signed graph K2,n2(a, b1, b2, c). It has 2c + b1 + b2 positive
edges and 2a+ b1 + b2 negative edges. Let

A := {w : σ(u1w) = σ(u2w) = −}, so |A| = a,

B1 := {w : σ(u1w) = −, σ(u2w) = +}, so |B1| = b1,

B2 := {w : σ(u1w) = +, σ(u2w) = −}, so |B2| = b2,

C := {w : σ(u1w) = σ(u2w) = +} = W \ [A ∪B1 ∪B2], so |C| = c.

Remember that switching U (equivalently, W ) has no effect on l(Σ) or any M(π1, π2). For
our purposes, then, ΣU is totally equivalent to Σ.

Proposition 6. The signed graph K2,n2(a, b1, b2, c) has frustration index equal to min(b1 +
b2, a+ c). It is balanced if and only if b1 = b2 = 0 or a = c = 0.

Proof. Switching u1 yields K2,n2(b2, c, a, b1). Switching u2 gives K2,n2(b1, a, c, b2). Switching
both we get K2,n2(c, b2, b1, a). The effect of switching a vertex wj ∈ W is to reduce |E−| by
2 if wj is a negative neighbor of u1 and u2, and to reduce it not at all otherwise. Therefore,
by switching all vertices in W whose negative degree is 2 we reduce the number of negative
edges in K2,n2(a, b1, b2, c) to b1 + b2. By combining switching operations we can reduce it to
min(b1 + b2, a+ c) and no less. By Equation (1) this is l(K2,n2(a, b1, b2, c)). �

Call two vertices x and y similar if they have the same positive neighbors and the same
negative neighbors. Thus, the similarity classes in W are A,B1, B2, C.

A crucial observation is that, if (π1, π2) is a biclustering and if Σj denotes the subgraph
induced by U ∪Wj, and, then

(2) M(π1, π2) =
∑
Wj∈π2

M(Σj; π1, {Wj}).

5.1. The biclusterability indices.
The first question is the relationship between frustration and biclusterability. To answer

that we find exact formulas for all the biclusterability indices M(k1, k2).

Theorem 3. A signed graph Σ = K2,n2(a, b1, b2, c), where n2 ≥ 2, has

M(1, 1) = min(2a+ b1 + b2, 2c+ b1 + b2),

M(1, k2) = b1 + b2 for 2 ≤ k2 ≤ n2,

M(2, 1) = min(a+ b1, c+ b2) + min(a+ b2, c+ b1),

M(2, 2) = min(a+ c, b1 + b2, a+ b1, a+ b2, c+ b1, c+ b2),

M(2, 3) = min(a, b1, b2, c) if 3 ≤ n2,

M(2, k2) = 0 for 4 ≤ k2 ≤ n2.

Proof. The proof is mostly via a series of propositions which provide more detailed informa-
tion.

Clearly, M(1, 1) is simply min(|E+|, |E−|). The only other M(1, k2) that needs examina-
tion is M(1, 2).
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Proposition 7. M(1, 2) = b1 + b2. The difference M(1, 2)− l(Σ) = min(b1 + b2 − a− c, 0);
so M(1, 2) = l(Σ) if and only if a+ c ≤ b1 + b2.

Proof. Taking W1 = A and W2 = W \ A gives M(π1, π2) = b1 + b2. No other two-part
partition π2 can do better, because every vertex in B1 ∪ B2 must contribute one edge to
M(π1, π2). �

Proposition 8. M(2, 1) = min(a+ b1, c+ b2) + min(a+ b2, c+ b1). The difference

M(2, 1)− l(Σ)

= max
[

min(a− b2, c− b1) + min(a− b1, c− b2), min(b2 − a, b1 − c) + min(b1 − a, b2 − c)
]

= max
[

minS,−maxS
]
,

where S := {2a−b1−b2, 2c−b1−b2, a+c−2b1, a+c−2b2}. This difference is positive if and
only if either a, c > 1

2
(b1+b2) and 1

2
(a+c) > b1, b2 (which can occur only when a+c > b1+b2)

or a, c < 1
2
(b1 + b2) and 1

2
(a+ c) < b1, b2 (which can occur only when a+ c < b1 + b2).

Proof. The bicuts are E({ui},W ) for i = 1, 2. The first has a+ b1 negative edges and c+ b2
positive ones. The second is similar. The minima of these pairs of numbers, added together,
give M(π1, π2).

To find the condition under which M(2, 1) > l(Σ) we reformulate α and β. First,

α = min
(
2a− b1 − b2, 2c− b1 − b2, a+ c− 2b1, a+ c− 2b2

)
.

When α > 0, necessarily a+ c > b1 + b2, so M(2, 1)− l(Σ) = α > 0. That gives one case of
inequality. The other follows similarly from taking β > 0. �

The most important question is how the frustration index compares to the critical value
M(2, 2). Both equality and inequality occur often.

Proposition 9. K2,n2(a, b1, b2, c) with n2 ≥ 2 has

(3) M(2, 2) = min(a+ c, b1 + b2, a+ b1, a+ b2, c+ b1, c+ b2).

A minimal (2,≤2)-biclustering has

π2 =

{
{A ∪B1, C ∪B2} if M(2, 2) = min(a+ c, b1 + b2, a+ b2, c+ b1),

{A ∪B2, C ∪B1} if M(2, 2) = min(a+ c, b1 + b2, a+ b1, c+ b2).

Furthermore, M(2, 2) < l(Σ) if and only if, for i = 1 or 2, we have

(ii) a < b3−i, bi < c, a ≤ c, and bi ≤ b3−i; then M(2, 2) = a+ bi and

l(Σ)−M(2, 2) = min(c− bi, b3−i − a);

or
(iii) c < b3−i, bi < a, c ≤ a, and bi ≤ b3−i; then M(2, 2) = c+ bi and

l(Σ)−M(2, 2) = min(a− bi, b3−i − c).
(These four cases are not mutually exclusive.)

Equation (3), in conjunction with Proposition 6, explains, differently than does the proof
of Theorem 2(3), why M(2, 2) ≤ l(Σ) for a signed K2,n2 : the former is a minimum over more
numbers than is the latter.
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When a+ bi = 0 or c+ b3−i = 0 for i = 1 or 2, the minimal biclustering mentioned in the
proposition has type (2, 1). Then one gets a minimal (2, 2)-biclustering by partitioning W
into any two proper subsets.

Proof. In all the biclusterings we consider here, π1 = {{u1}, {u2}} and π2 = {W1,W2}.
Define Aj, Bij, Cj to be the intersections with Wj of A,Bi, C, respectively, and aj := |Aj,
etc.

Write µ for the asserted value of M(2, 2). The latter is no more than µ because of two
biclusterings:

M(π1, {A ∪B1, C ∪B2}) = min(a, b1) + min(c, b2)

= min(a+ c, a+ b2, b1 + c, b1 + b2),

M(π1, {A ∪B2, C ∪B1}) = min(a, b2) + min(c, b1)

= min(a+ c, a+ b1, b2 + c, b2 + b1).

The minimum of these two expressions is µ; thus, M(2, 2) ≤ µ.
We now prove µ is a lower bound for M(π1, π2) over all (2, 2)-biclusterings. The first step

is to analyze the various possible indicator graphs I(π1, π2) of biclusterings. If the indicator
is balanced, M(π1, π2) ≥ l(Σ) due to Lemma 4; that is, Σ cannot generate a case with
M(2, 2) < l(Σ).

Thus, we may assume the indicator graph is a signed K2,2 with an odd number of negative
edges. By switching only vertices in U we may ensure that in I(π1, π2) each U vertex {ui}
has negative degree at most 1 and that the negative edge is Ei2. As these switchings involve
only u1 and u2, they are compatible with any (2, 2)-biclustering and therefore cannot affect
the value of either M(π1, π2) or l(Σ), by Equation (1) and Lemma 3.

Since only Ei2 is negative, M(π1, π2) = |E−|−|E−i2|+ |E+
i2| = |E−|+(b3−i,2 +c2)−(a2 +bi2).

Clearly, this number is decreased by moving all of B3−i,2∪C2 from W2 to W1 and all of A1∪Bi2

from W1 to W2, giving a new partition π′2 with W ′
1 = A∪B3−i and W ′

2 = Bi∪C. We already
know that M(π1, π

′
2) ≥ µ; thus, we have established the exact value of M(2, 2).

Now we examine how M(2, 2) can be less than l(Σ). One way is to have µ = a + b1 <
l(Σ) = min(a+ c, b1 + b2). That immediately implies b1 < c and a < b2. It also implies that
a+ b1 ≤ a+ b2, c+ b1, c+ b2, which are true if and only if b1 ≤ b2, a ≤ c, and a+ b1 ≤ c+ b2.
The last inequality is redundant; thus the conditions for µ = a + b1 < l(Σ) are as stated in
Case (i1). The other four cases are exactly similar.

The value of l(Σ)−M(2, 2) is a routine computation. �

Proposition 10. We have M(2, 3) = min(a, b1, b2, c). One way to form a minimal (2,≤3)-
biclustering is by taking the clusters of π2 to be unions of similarity classes: clusters A, Bi,
and C ∪B3−i if M(2, 3) = a or bi, or A∪B3−i, Bi, and C if M(2, 3) = c or bi (but omitting
empty clusters in each case).

Proof. For M(2,≤3), partition W into A ∪ B1, B2, and C. (By Corollary 2 it does not
matter if any of these sets is empty.) Then M(π1, π2) = min(a, b1) since the only possibly
inhomogeneous bicut is E({u2}, A ∪ B1), which has b1 positive and a negative edges. Re-
versing the roles of u1 and u2 gives π2 = {A ∪ B2, B1, C} with M(π1, π2) = min(a, b2).
Thus, M(2, 3) ≤ min(a, b1, b2). Switching U interchanges the roles of a and c; hence,
M(2, 3) ≤ min(a, b1, b2, c). Two other partitions whose clusters are unions of similarity
classes are {A,B1 ∪ B2, C} and {A ∪ C,B1, B2}. The biclusterabilities in these cases are
min(a, c) and min(b1, b2).
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We now show that no (2, 3)-biclustering can have lesser biclusterability. The proof is by
the method of descent applied to ν(π2) := the number of (nonempty) clusters in the common
refinement of π2 and κ, where κ partitions W into its nonempty similarity classes. Evidently,
ν(π2) ≥ ν(κ), with equality if and only if every cluster in π2 is a union of similarity classes
in W .

Choose a minimal π2 = {W1,W2,W3}. If ν(π2) > ν(κ), some cluster, say W1, is not a
union of similarity classes. Then some vertex in W1 is similar to a vertex of another cluster,
say W2. In other words, there is a similarity class in which both W1 and W2 have vertices.

Set Σ′ := Σ \W3. Then Σ′ has the (2, 2)-biclustering (π1, {W1,W2}). Define A′, B′i, C
′ for

Σ′ like A,Bi, C for Σ, and notice that A′ = A \W3, B
′
i = Bi \W3, and C ′ = C \W3. Take

π′2 as the (2,≤2)-biclustering {W ′
1,W

′
2} where W ′

1 = A′ ∪ B′i and W ′
2 = C ′ ∪ B′3−i for i = 1

or 2. By Proposition 9, M ′(π1, π
′
2) attains the (2,≤2)-biclusterability index M ′(2, 2).

Now similar vertices in W \W3 are in the same cluster of π′2. By Equation (2),

M(π1, π2) = M ′(π1, {W1,W2}) +M(Σ3; π1, {W3})
≥M ′(π1, {W ′

1,W
′
2}) +M(Σ3; π1, {W3}) = M(π1, {W ′

1,W
′
2,W3}).

Since M(π1, π2) = M(2, 3), equality holds throughout; consequently, (π1, {W ′
1,W

′
2,W3}) is

another minimal biclustering. If we replace π2 by {W ′
1,W

′
2,W3}, any two similar vertices in

W \W3 will belong to the same cluster. That is, we have decreased the value of ν(π2).
It follows that there exists a minimal (2,≤3)-biclustering in which each cluster is a union of

similarity classes. Two clusters Wj are similarity classes and one is the union of two similarity
classes. We checked every such partition π2 at the beginning of the proof and found that
their biclusterability indices are not less than the expression in the proposition. �

To conclude the proof of Theorem 3 it remains to evaluateM(2, k2) for k2 ≥ 4. ForM(2, 4),
partition W into the sets A, B1, B2, and C. Each bicut is homogeneous, so M(π1, π2) = 0.
When k2 > 4, M(2, k2) = 0 by Theorem 1. �

5.2. The frequency of equality.
The data in the propositions lets us estimate the proportion of all isomorphism types of

signed K2,n2 ’s for which any M(k1, k2) equals the frustration index.
From the viewpoint of our analysis, it seems reasonable to distinguish only signatures of

K2,n2 that differ in their parameters a, b1, b2, c. Signatures that have the same parameters are
isomorphic under isomorphisms that fix u1 and u2. I refer to the different isomorphism types
of signature under these isomorphisms as signature types. We shall estimate the proportion
of all signature types that have M(2, 2) < l(Σ) or satisfy a similar inequality or equation.
That equality holds in many cases may be due to some still hidden relationship between the
critical value and the frustration index.

The total number of signature types is the number of solutions of a+ b1 + b2 + c = n2 in
nonnegative integers, which is

(
n2+3

3

)
≈ n3

2/3!.

Corollary 11. Approximately 2/3 of all signature types of K2,n2 have M(2, 2) < l(Σ).

Proof. For large n2, almost all signature types have a unique minimum in the formula (3) for
the value of M(2, 2). By the symmetry of the expressions in that formula, each expression
is the unique minimum in about 1/6 of the cases. The cases in which M(2, 2) < l(Σ) are
precisely those in which neither a+ c nor b1 + b2 is minimal. That happens in about 4/6 of
signature types. �
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Corollary 12. For a signed K2,n2 with n2 ≥ 2, approximately half of all signature types
K2,n2(a, b1, b2, c) have M(1, 2) = l(Σ). M(2, 1) = l(Σ) in approximately 12/n2

2 of all signature
types of K2,n2.

Proof. The estimate for when M(1, 2) = l(Σ) is obvious from Proposition 7, since out of all
non-negative solutions of (a + c) + (b1 + b2) = n2 for large n2, approximately half the time
a+ c < b1 + b2 and approximately half the time the reverse holds.

ThatM(2, 1) = l(Σ) if and only if the signed graph is balanced, is obvious from Proposition
6 and the value of M(2, 1) from Theorem 3.

Asymptotically, there are about n3
2/6 signature types of which about 2n2 are balanced;

thus, the approximate proportion with M(2, 1) = l(Σ) is 12/n2
2. �

Thus, a great many signature types have frustration index equal to M(1, 2), but van-
ishingly few have it equal to M(2, 1). Formally, M(1, 2) and M(2, 1) have symmetrical
arguments. I suggest the difference is due to the smallness of n1; for larger fixed n1, as
n2 →∞ there should be a smaller but still positive proportion of signature types for which
M(1, 2) = l(Σ).

Corollary 13. The proportion of signature types K2,n2(a, b1, b2, c) for which M(2, 3) = l(Σ)
is approximately 12/n2

2.

Proof. From Proposition 6 we see that M(2, 3) = l(Σ) if and only if the signature is balanced.
The proportion of signature types for which that is true is 12/n2

2, as shown in the proof of
Corollary 12. �

The geometry of indices. The fact that the frustration index and the (2, 2)-biclusterability
index are equal in a substantial proportion of signature types of K2,n has an explanation
in geometry. Think of a signature type as a quadruple (a, b1, b2, c) of nonnegative integers;
then it is an integer point in R4 which lies in the simplex defined by x1 + x2 + x3 + x4 = n
and all xi ≥ 0. The conditions for l(Σ) = M(2, 2) are linear inequalities in R4. By Ehrhart’s
theory of counting integer points (cf. e.g. [3]), the asymptotic proportion of integer points in
the region where l(Σ) = M(2, 2) equals the proportion of the volume of the whole simplex
that satisfies the linear inequalities.

5.3. Realizing frustration index with a biclustering.
The third main question was whether a signed K2,n2 has a biclustering whose bicluster-

ability equals the frustration index. That is almost invariably so. Thus we have in this case
a deeper explanation of the inequality M(2, 2) ≤ l(Σ).

Theorem 4. With the exception of K2,2(1) and K2,2(3), every signed K2,n2 with n2 ≥ 2 has
a biclustering (π1, π2) of type (2, 2) such that M(π1, π2) = l(Σ).

Proof. The partition π1 is necessarily
{
{u1}, {u2}

}
, with two singleton clusters. The problem

is to produce a partition π2 = {W1,W2} of W such that M(π1, π2) = l(Σ), when M(2, 2) <
l(Σ). By Lemma 4, M(π1, π2) = l(Σ) if the indicator graph I(π1, π2) is balanced.

By Proposition 9 we may assume M(2, 2) = a + bi or c + bi. By switching U if necessary
we may assume M(2, 2) = a + bi; by choice of notation we may assume i = 1. Thus,
a+ b1 < a+ c, b1 + b2; that is, a < b2 and b1 < c.

Let W1 = {w,w′} where w ∈ C and w′ ∈ B2. Then E11 is neutral so the indicator
is balanced. The only difficulty is that W2 might be void; then the signed graph is the
exceptional graph K2,2(3). �
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