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Lecture 0: Overview

1 November 2019
Notetaker: Andrew Lamoureux

Let K be a field, let a ∈ K×, and let haij be the hyperplane in Kn with equation xi = axj.

Also, define hi to be the coordinate hyperplane hi = 0. Note that haij = ha
−1

ji . This property
leads to the definition of a “gain graph”.

Let Γ be a graph and G a group. Orient the edges of Γ, and let ~E be the set of oriented
edges. Denote by e−1 the edge e with its opposite orientation. A G-gain graph is Φ = (Γ, ϕ),

where ϕ : ~E → G satisfies ϕ(e−1) = ϕ(e)−1 for all oriented edges e.
The function ϕ is called a gain function, and ϕ(e) is the gain of e.
Gain graphs are also allowed to have half edges, incident to a single endpoint. These

are not the same as loops: a loop is an ordinary edge with two endpoints that happen to
coincide. Half-edges are not assigned a gain.

An especially important and most studied example is signed graphs, for which the gain
group has order 2; usually it is written multiplicatively ({±} or {±1}) but sometimes addi-
tively (Z2 := Z/2Z), depending on the interest.

Note that we distinguish between “directed” edges and “oriented” edges. A directed edge
has a single fixed direction, while an oriented edge has a preferred direction for notational
purposes, that may be changed as is convenient. This is similar to orientation of, for example,
a simplex in topology: one direction is preferred for notation, but the other may still be used.
Definition. Let Φ = (Γ, ϕ) be a G-gain graph, and let W be the walk v0e1v1 · · · vl−1elvl in
Γ. We define the gain of W to be ϕ(W ) := ϕ(e1)ϕ(e2) · · ·ϕ(el).

In particular, this defines the gain of a circle C. The value of ϕ(C) depends, in general,
on both the direction and (if G is non-abelian) the initial vertex. However, the property
that C has identity gain is independent of both these choices. A circle C whose gain is the
identity of G is called balanced or neutral ; otherwise, C is unbalanced or non-neutral. We
denote by B(Φ) the set of balanced circles of Φ. Finally, Φ is balanced or neutral when Φ
has no unbalanced circles or half edges (half edges are considered unbalanced).

(Though it may make linguistic sense to call an unbalanced gain graph “biased”, we reserve
that term for a separate notion of a biased graph, of which an example is (Γ,B(Φ)). Here,
we are singling out a certain collection of circles.)

Two-term hyperplane arrangements. Suppose Φ = (Γ, ϕ) is a K×-gain graph with
vertex set V = {v1, . . . , vn}. From Φ we obtain a hyperplane arrangement H [Φ] in Kn, called

a “two-term arrangement”, whose hyperplanes are h
ϕ(eij)
ij for each eij ∈ ~E, an (oriented) edge

between vi and vj, and hi for each half edge ei, incident to vertex vi. I will discuss these
hyperplane arrangements at length in Lectures 2–10.

Figure is an example of a gain graph Φ, with the gains beside the edges and the edges
oriented for reading the gains:

Let K = R, for example. As ϕ(v1v2) = 2, the hyperplane h2
12 with equation x2 = 2x1 is in

H [Φ]. Similarly, h
1/5
23 = h5

32 and h2 ∈ H [Φ], where h
1/5
23 has equation x3 = 1

5
x2 and h2 has

equation x2 = 0. The intersection lattice is in Figure 2.
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Figure 1. A gain graph.
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Figure 2. The intersection lattice of the arrangement associated to Figure .

Here

h2
12 ∩ h5

32 = {(x1, 2x1,
2
5
x1) | x1 ∈ R},

h2
12 ∩ h2 = {(0, 0, x3) | x3 ∈ R},
h5

32 ∩ h2 = {(x1, 0, 0) | x1 ∈ R}.

One may form a “completion” of Φ by adding implied hyperplanes. For example, given
the equations x1 = 3x2, x2 = 2x3, and x3 = −x1, we can see that x1 = 6x3 = −6x1, which
implies x1 = 0 as well as x2 = 0 and x3 = 0, so one may consider the arrangement to be
completed by adding in these hyperplanes (as well as others implied by those equations, a
large number if K is a large field). This would correspond to adding half edges incident
to each vertex in the gain graph (and edges eij with all possible gains). I will discuss this
notion of completion later in terms of closure within a given gain graph.

Affinographic hyperplane arrangements. Suppose now that the gain group is K+. We

associate to an edge e between vi and vj the hyperplane a
ϕ(eij)
ij : xj − xi = ϕij; these

hyperplanes forms an arrangement A [Φ] that we call “affinographic” in the affine space
An(K). Its combinatorics is closely related to that of a two-term arrangement. I will discuss
affinographic arrangements in Lectures 11 and 12.

Matroids. The usual matroid on a graph Γ = (V,E) has ground set E, independent sets
the edge sets of forests, and circuits the edge sets of circles in Γ. This is generally known
nowadays as the graphic matroid of Γ, though it has other names; e.g., Stanley calls it
the “bond matroid” (and—just to add to the confusion—it also has been called the “cycle
matroid”).

Notation. We consistently employ the following notations: K is a field, Γ = (V,E) is a
graph, Φ = (Γ, ϕ) is a gain graph and Ω = (Γ,B) is a biased graph with underlying graph
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Γ, n is the dimension of a hyperplane arrangement and the order of the graph Γ, whence
also of Φ and Ω.
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Lecture 1: Gains

4 November 2019
Notetaker: Nicholas Lacasse

We begin with some preliminary notation and definitions. We use G to denote a group
and ε to denote its identity element. We will typically use Γ for a graph. The reader may
be familiar with graphs that have loops and multiple edges (each of which have two ends,
each incident with one vertex), which we call ordinary edges ; but it is less likely that the
reader has encountered half edges or loose edges. A half-edge is an edge with one end, which
is incident to one vertex. A loose edge is an edge with no ends and no incident vertices.

For a graph Γ we denote its edge set by E and its vertex set by V .

Definition 1. A gain graph, Φ, is a pair (Γ, ϕ) where Γ is a graph and ϕ : ~E → G is a
function from the oriented ordinary edges of Γ to a group G that satisfies ϕ(e−1) = ϕ(e)−1,
where e−1 denotes e in the opposite orientation. We call ϕ a gain function.

This should be explained more fully. In a gain graph, each edge (with the exception of
loose edges) has two possible orientations. Below we show the two possible orientations on
links, loops, and half edges and we show the unoriented loose edge.

These orientations matter in order to define the value of the gain of an edge, which is
inverted by reversing orientation. We need an arbitrary orientation so that we may define
ϕ. In light of this, we define the set ~E to be the set of (arbitrarily) oriented edges of Γ.
Thus when we write e−1 we mean the opposite direction of the arbitrarily chosen orientation.
The gain function can be regarded as defined on ~E and therefore on E with the orientations
left implicit, since knowing the gain on either orientation of an edge determines it on the
opposite orientation.

Note that the edge orientations are not fixed, so we do not have a directed graph, in which
edges have fixed directions.

Consider a gain graph Φ = (Γ, ϕ) and let W = v0e1v1e2 · · · elvl be a walk in Γ. We define
the gain of W to be ϕ(W ) := ϕ(e1)ϕ(e2) · · ·ϕ(el). A circle is a 2-regular connected graph (or
its edge set). A circle C has a gain ϕ(C) which may depend on the initial point and direction;
e.g., if C = e1e2 · · · ek then we could also write C as e−1

3 e−1
2 e−1

1 e−1
k e−1

k−1 · · · e
−1
4 , and there is

no guarantee that ϕ(e1e2 · · · ek) = ϕ(e−1
3 e−1

2 e−1
1 e−1

k e−1
k−1 · · · e

−1
4 ). However, if ϕ(C) = ε, then

ϕ(C) = ε for any initial point and direction.

Proposition 2. Let C be a circle in a gain graph Φ. If ϕ(C) = ε, then ϕ(C) is independent
of which vertex we start at and in which direction we traverse the circle.

We are most interested in which circles have ϕ(C) = ε and which do not. Thus, by
proposition 2, we are justified in writing ϕ(C).

Definition 3. Let B(Φ) := {circles with gain ε}. For C ∈ B(Φ), we say C is balanced or
neutral.

Definition 4. We call Φ balanced (or neutral) if every circle of Φ is balanced and Φ has no
half edges.
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We also call a subgraph of Φ, or an edge set, balanced if every circle in it has gain ε and
it has no half edges.

Definition 5. A theta graph is the union of three internally disjoint paths with the same
two end points.

Definition 6. We denote the free group on a set E by F(E).

A gain function ϕ defines a homomorphism ϕ : F( ~E)→ G in the “obvious” way. That is,
ϕ(e±1

1 e±1
2 · · · e±1

l ) = ϕ(e1)±1ϕ(e2)±1 · · ·ϕ(el)
±1. In view of the remarks after Definition 1, we

can simply write F(E) for this free group.

Proposition 7. B(Φ) has the property that no theta subgraph contains exactly two balanced
circles.

Proof. Let P1, P2, P3 be three internally disjoint paths from v to w. This subgraph has three
circles, P1P

−1
2 , P2P

−1
3 , and P1P

−1
3 . Since ϕ defines a homomorphism on F(E) to G and

P1P
−1
3 = (P1P

−1
2 )(P2P

−1
3 ), then ϕ(P1P

−1
3 ) = ϕ(P1P

−1
2 )ϕ(P2P

−1
3 ). Suppose without loss of

generality that circles P1P
−1
2 and P2P

−1
3 are balanced, i.e., ϕ(P1P

−1
2 ) = ϕ(P2P

−1
3 ) = ε. Then

ϕ(P1P
−1
3 ) = ϕ(P1P

−1
2 )ϕ(P2P

−1
3 ) = εε = ε. �

Definition 8. Let C (Γ) be the class of all circles in Φ. Let B ⊆ C (Γ). We call B a linear
class if no theta subgraph of Γ contains exactly two circles in B. (The notion of a linear
class originated in Tutte’s theory of matroids.)

Definition 9. Let Γ be a graph and let B be a linear class of circles. We call (Γ,B) a
biased graph. We call a circle balanced if it belongs to B.

All the matroid theory of gain graphs will generalize to biased graphs. However, some
proofs are more complicated for biased graphs, because gains provide helpful extra structure
beyond the balanced circle class. A good example of this is switching.

Definition 10. Switching Φ = (Γ, ϕ) means taking a function ζ : V → G and replacing
ϕ by ϕζ , which is defined by ϕζ(euv) = ζ(u)−1ϕ(euv)ζ(v). By Φζ we mean the gain graph
(Γ, ϕζ) obtained by switching Φ by ζ.

We say Φ and Φζ are switching equivalent, written Φ ∼ Φζ . This is clearly an equivalence
relation (Exercise!). The equivalence class of Φ is called its switching equivalence class or,
more simply, switching class, and is denoted by [Φ].

Proposition 11. For a walk W from u to v, ϕζ(W ) = ζ(u)−1ϕ(W )ζ(v). For a closed walk
W , ϕζ(W ) is the conjugate of ϕ(W ) by ζ(u).

Proposition 12. A circle is balanced in Φζ if and only if it is balanced in Φ. In other words,

B(Φζ) = B(Φ).

Here is one use for switching:

Proposition 13. Let Φ = (Γ, ϕ). Let F be a forest in Γ. Let τ : F → G be any function.
Then we can switch ϕ so that ϕζ |F = τ .

Proof. Exercise! �

In particular, we often want to pick a maximal forest F of Φ and switch ϕ so that it is
the identity on F .
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Lecture 2: Independence via the Two-Term Hyperplane Arrangement

6 November 2019
Notetaker: Shuchen Mu

Definition 14. Take a gain graph Φ = (Γ, ϕ) for which ϕ takes values in K×, the multi-
plicative group of the field K. The hyperplane arrangement associated to the graph, H [Φ],
is in Kn, where n = number of vertices in the graph. It is H [Φ] = {h(e) : e ∈ E}, where

h(eij) : xj = xiϕ(eij) if eij is the edge from vi to vj,

h(ei) : xi = 0 if ei is a half edge with vertex vi,

h(e) : 0 = 0 if e is a loose edge.

Because the hyperplane equations all have the form xj = xia, with two terms, I call this a
“two-term arrangement”.

For any edge set S, we define h(S) := {h(e) : e ∈ S}. Thus,
⋂
h(S) :=

⋂
e∈S h(e).

This definition extends to division rings. I will focus on fields so as to keep things simple.
In the noncommutative extension the gains must be written on the right; I will follow that
convention throughout so the extension will not require rewriting.

The arrangement H [Φ] of a gain graph is homogeneous. Later—in Lecture 11—we will
meet another kind of arrangement, associated to a gain graph in a different way, which is
affine (and for which I reserve the letter A ).

Let’s consider the gain of a circle. We defined the gain of a walk, say W = e01e12 · · · e(l−1)l,
as

ϕ(W ) := ϕ(e01)ϕ(e12) · · ·ϕ(e(l−1)l).

In a circle C, we choose one of the vertices as v0 and start labelling all its vertices in
one direction as v0, v1, . . . , vl = v0. This defines the gain of C, since we can write C =
e01e12 · · · e(l−1)l, where v0 is just another name for vl. (Recall that the coordinate xi of
x ∈ Kn is associated with the vertex vi; we have assumed this labelling of C just to keep
the notation simple. Since v0 is the same as vl, x0 is merely another notation for xl.) The
hyperplanes associated to the edges on the circle are:

h(e01) : x1 = x0ϕ(e01),

h(e12) : x2 = x1ϕ(e12),

. . .

h(e(l−1)l) : xl = xl−1ϕ(e(l−1)0).

(For technical reasons we admit the whole space Kn as the “degenerate hyperplane”.) The
sequence of equations implies x0 = x0ϕ(C).

Case 1. C is balanced, i.e., ϕ(C) = 1. If a point

x = (x1, x2, . . . , xn) ∈
⋂

h(C \ {el−1,l}),

(recall that x0 is another name for xl), then xl−1 = x0ϕ(e01)ϕ(e12) · · ·ϕ(e(l−2)(l−1)), so x0 =

xl−1ϕ(e(l−1)l), so x ∈ h(e(l−1)l). Therefore,
⋂l−1
i=1 h(ei−1,i) ⊆ h(el−1,l), so h(C) is dependent.
7



Case 2. If C is unbalanced, then x0 = x0ϕ(C) where ϕ(C) 6= 1, so x0 = 0. It follows that
x1 = 0, x2 = 0, . . . , so ⋂

h(C) = {x ∈ Kn | xi = 0 ∀ vi ∈ V (C)}.

Between Cases 1 and 2 we have proved

Lemma 15 (Dependence of a Circle). If C is a balanced circle, then h(C) is a dependent
set of hyperplanes, but h(C \ {e}) is an independent set for every edge e ∈ C.

If C is an unbalanced circle, then h(C) is an independent set of hyperplanes.

Now we turn our attention to forests.

Lemma 16. Let F be a forest in Φ. Then h(F ) is an independent set of hyperplanes.

Proof. Here we think of a forest as an edge set.
Case 1. If there is only one edge in the forest, then it forms an independent singleton

because its hyperplane is independent.
Case 2. Suppose all forests with a number of edges ≤ k have independent image under h.

Let F be a forest that consists of k + 1 edges.
Take a pendant edge ekl, so there is no other edge than ekl in the forest incident to vl.

Therefore the only defining equation of edges in the forest that involves xl is xl = xkϕ(ekl).
Let F ′ = F \ {ekl}. Denote the defining vector of h(e) by ue. By the preceding discussion,

uekl /∈ span{ue | e ∈ F ′},
so

rk span{ue | e ∈ F ′} < rk span{ue | e ∈ F}.
By assumption, h(F ′) is independent, so rk span{ue | e ∈ F ′} = #F ′. Hence

rk span{ue | e ∈ E(F )} ≥ #F = #F ′ + 1.

Thus, h(F ) is independent. �

Next, we need a little matroid theory.

Definition 17. The direct sum of two matroids, M1 ⊕M2, is defined by

E(M1 ⊕M2) = E(M1) ∪· E(M2),

rkM1⊕M2(X) = rkM1(X ∩ E(M1)) + rkM2(X ∩ E(M2)).

Let’s look at independence. Recalling that rk(X) ≤ #X, we cna see that

rkM1(X ∩ E(M1)) + rkM2(X ∩ E(M2)) = #X

if and only if
rkM1(X ∩ E(M1)) = #[X ∩ E(M1)],

and also
rkM1(X ∩ E(M1)) = #[X ∩ E(M1)].

That is, X is independent in M1 ⊕ M2 if and only if its M1 part and its M2 part are
independent in their respective matroids. This is a characteristic of the direct sum; if it is
true for every X, then we have the direct sum of M1 and M2.

Consider how this applies to a hyperplane arrangement.
8



Lemma 18. Let B,C be arrangements in Kn, such that the coordinates of the hyperplanes in
B are all different from those of the hyperplanes in C . Then M (B∪C ) = M (B)⊕M (C ).

Proof. Since the coordinates of hyperplanes in B are different from those in C , B ∪ C =
B ∪· C .

Let X be an independent set in the matroid M (B ∪ C ). There are no linear relations
between defining vectors in the set B and those in the set C . Thus, if X ∩B is independent
in M (B) and X ∩ C is independent in M (C ), then X is independent in M (B)⊕M (C ),
and conversely. Thus, M (B ∪ C ) = M (B)⊕M (C ). �

Lemma 19. Suppose D ⊆ E(Φ) is such that each component of D is a tree or contains only
one circle, which is unbalanced, or a half edge. Then h(D) is independent in M (H [Φ]).

Proof. let K be a component that contains one unbalanced circle C. Then by Lemma 15,⋂
e∈E(C) h(e) = {x : xi = 0 ∀ vi ∈ V (C)}. Since K is connected, each vertex vj ∈ V (K) is

linked to C by a path, say P from vi ∈ V (C) to vj. So if x ∈
⋂
h(E(K)), then xj = xiϕ(P ) =

0. Therefore, xj = 0 for every vj ∈ V (K). On the other hand, if xj = 0 for all vj ∈ V (K),
then certainly xi ∈

⋂
h(E(K)). This shows that

⋂
h(E(K)) = {x : xj = 0 ∀ vj ∈ V (K)},

which is of codimension #V (K), which = #E(K), so E(K) is independent.
Let K be a component with a half edge attached to a vertex vi, so xi = 0. Since K is

connected, by similar reasoning we conclude that E(K) is independent.
By Lemma 16, if K is a tree, then h(E(K)) is independent.
As we saw in Lemma 18, this implies that h(D) is independent. �

Lemma 19 begins to tell us how to define independent sets in the frame matroid of a
K×-gain graph. In particular, if an edge set contains a balanced circle, then it is dependent.

Direct sums of arrangements. In connection with direct sums of matroids we should
mention direct sums of hyperplane arrangements. If we have an arrangement B′ in Km and
another one, C ′, in Kn, then there is a direct sum B′ ⊕ C ′ in Km+n whose hyperplanes are
g⊕Kn for each g ∈ B′ and Km⊕h for each h ∈ C ′. It is easy to see that the flats of B⊕C
are the combinations of flats of B′ and C ′; in precise form, the sets

s⊕ t = {(x, y) ∈ Km ×Kn | x ∈ s, y ∈ t}
for each pair (s, t) ∈ L (B′)×L (C ′).

We connect this to the situation of Lemma 18 by defining B := {g ⊕Kn | g ∈ B′} and
C := {Km ⊕ h | h ∈ C ′}. Then B and C are the B and C of Lemma 18. Conversely, if in
the lemma, where we are in Kn, the coordinates of hyperplanes in B are among the first m
coordinates of Kn and those of the hyperplanes in C are among the last n−m coordinates
of Kn, then let B′ consist of the hyperplanes in Km with the same equations as those in
B and let C ′ consist of the hyperplanes in Kn−m with the same equations as those in C .
Then the arrangement B ∪C = B′⊕C ′. Thus, by Lemma 18 (but also obviously), we have
M (B′ ⊕ C ′) = M (B)⊕M (C ).

.
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Lecture 3: Independence, concluded

8 November 2019
Notetaker: Michael Gottstein

We finish the proof of Theorem 3. First, a few new definitions.

Definition 20. A unicyclic graph is a connected graph with exactly one circle. A 1-tree is
a tree with one extra edge, either a half edge or forming a unicyclic graph. A pseudotree is a
tree or a 1-tree. A pseudoforest is a graph whose components are pseudotrees. (A 1-forest,
similarly, is a graph whose components are 1-trees, but we have not much use for this.)

Definition 21. A gain graph is contrabalanced if it has no loose edges and every circle is
unbalanced; i.e., it has no loose edges or balanced circles.

A forest, and only a forest, is both balanced and contrabalanced.

Theorem 22. Let Φ be a K×-gain graph, Let M be the matroid on E(Φ) that corresponds to
M (H [Φ]). The independent sets in M are (the edge sets of) the contrabalanced pseudoforests
in Φ.

For the proof, recall that Lemma 3 says an edge set each of whose components is a tree,
an unbalanced unicycle, or a tree with a single half edge is independent in the matroid M
of the gain graph Φ that corresponds to the hyperplane arrangement H [Φ] over a field K.
I.e., any contrabalanced pseudoforest is independent in M .

So we must prove every independent edge set is a contrabalanced pseudoforest. We’ll
prove the contrapositive:

Lemma 23. The dependent sets are the edge sets that have a single component with at least
2 circles, at least 2 half edges, or at least one circle and one half edge.

Proof. Since a set containing a dependent set is dependent we only need to prove that a
connected edge set that contains, two circles, two half edges, or a circle and half edge is
dependent in M .

Suppose S is such an edge set. If S contains a balanced circle then we know it is dependent
by Case 1 of the previous treatment of a circle. So we may assume every circle in S is
unbalanced.

Case 1. S contains an unbalanced circle or half edge, C1, and another one, C2, that share
at most one vertex. There must be a minimal path P connecting C1 and C2 (see Figure 3):

INSERT PHOTO

Figure 3. An edge set that contains two unbalanced circles or half edges.

By Case 2 of circles (Lecture 2) or by definition of a half-edge hyperplane h(e), C1 forces
xi = 0 and C2 forces xj = 0.

Indeed, write P = w0e1w1....wl−1elwl so that in H [Φ],

xwl
= xwl−1

ϕl−1,l(el) = .... = xw0ϕ(P ).

But xw0 = 0 from C1, therefore xwl
= 0.
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We will show that some e ∈ S has the property that

h(e) ⊇
⋂
f∈S\e

h(f).

(Every e ∈ S has that property, but we don’t need that.)
Pick e to be an edge in C2 incident with vj so e = ejk or the half edge ej. With the

equations xk = xjϕjk(e) for a circle and xj = 0 a half edge.
Then we consider the equations separately.
In the half edge case xj = 0 (consider C1 and P ) in

⋂
h(C1 ∪ P ) =

⋂
h(S \ ej), therefore

h(S) is a dependent set of hyper planes.
In the circle case xj = 0 and xk = 0 (consider C1 and the path P ∪ (C2 \ e)), then

xk = xjϕjk(e) is satisfied (with xk = xj = 0) by
⋂
h(S \ e); therefore h(S) is a dependent

set of hyperplanes.
This solves the problem when S contains two unbalanced circles/half edges with at most

one vertex in common.
Case 2: Now we will consider the case where S contains two circles with at least two

common vertices.
We treat first the case where S is a theta graph. We have 3 unbalanced circles, say

C12 = P1P
−1
2 , C23 = P1P

−1
3 , C13 = P1P

−1
3 given by the internally disjoint paths of the

theta graph, P1, P2, P3, which all start and end at vi and vj, respectively. Then C12, being
unbalanced, implies xi = xj = 0. Let e = ejk be the edge in p3 at vj Then C12 ∪ (P3 \ e)
implies xk = 0 thus xk = 0 in

⋂
h(C12 ∪ (P3 \ e)) =

⋂
h(S \ e). Similarly, xj = 0. Therefore

h(e) ⊇ h(S \ e), so the theta graph is dependent in M . So if S contains a theta graph, it is
dependent.

Note that we have been assuming S is connected. Let ξ(S) be the cyclomatic number of
S, defined as the smallest number of edges that when deleted leave a tree spanning V (S),
i.e., the minimum number of edges whose deletion leave a forest (therefore a tree). We have
ξ(S) > 1 because C1 and C2 exist. If ξ(S) = 2 then S contains the theta graph C1 ∪ C2

(because those two circles have at least two common vertices), so we are done. If ξ(S) > 2
then we can delete ξ(S) − 2 edges to get a connected subgraph S ′ with ξ(S ′) = 2, which
contains a theta graph or handcuff (by easy graph theory) and is therefore dependent.

So we have finished the proof modulo some graph-theoretic detail. �
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Lecture 4: The Frame Matroid

11 November 2019
Notetaker: Jimmy West

In the last lecture, we analyzed the matroid M (H [Φ]) in terms of the independent sets
of Φ. Theorem 22 showed that the independent sets are the same as the contrabalanced
pseudoforests.

Definition 24. Let F(Φ) be the matroid on a K×-gain graph Φ, with independent sets given
by Theorem 22. This is called the frame matroid of Φ.

The reader will easily see that the ordinary graphic matroid of a graph Γ is the frame
matroid of εΓ, by which I mean the gain graph whose gains are all the group identity.
Thus, the frame matroid generalizes the graphic matroid. In fact, the frame matroid of any
balanced gain graph (or biased graph) is the graphic matroid of the underlying graph.

At present, we know this is a matroid only because it is the matroid of a hyperplane
arrangement. We will not prove that the same definition gives a matroid on any gain graph
and, most generally, any biased graph; that is true but too lengthy for here.

Theorem 25. For the K×-gain graph Φ, let S ⊆ E(Φ). Then,

(1) rk(S) = n− b(S).
(2) The circuits of F (Φ) are all the edge subsets that belong to any of the following three

categories:
(a) Balanced circles and loose edges.
(b) Contrabalanced handcuffs.
(c) Contrabalanced theta graphs.

(3) The closure of S is given by

cl(S) = (E:V0(S)) ∪ bcl(S:V0(S)c).

(4) S is closed if S is equal to its closure; i.e., the union of unbalanced components is an
induced subgraph of Φ and each balanced component is balance-closed.

To explain the notation we give some new definitions.

Definition 26. For S ⊆ E, we define b(S) to be the number of balanced components
of the spanning subgraph (V, S). Isolated vertices are included as balanced components
because they are balanced. However, loose edges are not included as they are not considered
components because they have no vertices; we might say they are not “vertex components”,
although they are “edge components”.

We define V0(S) to be the set of vertices that are contained in unbalanced components of
S.

Definition 27. For X ⊆ V and S ⊆ E, the induced subset of S on X, denoted by S:X, is
defined as the set {e ∈ S : all endpoints of e are in X, and e has an endpoint in X}. Since
we want every edge in S:X to have an endpoint in X, loose edges are not included in an
induced subset.

12



Definition 28. The balance-closure of S, denoted by bcl(S), is given by

S ∪ {e ∈ E : ∃ balanced circle C such that e ∈ C ⊆ S ∪ {e}}
∪ {loose edges},

which is equal to

S ∪ {e ∈ E : ∃ path P in S joining the endpoints of e

such that P ∪ {e} is a balanced circle}
∪ {balanced loops} ∪ {loose edges}.

In both sets the loose edges could be omitted if we consider loose edges to be balanced circles.
An edge set S is balance-closed if S = bcl(S).

Before we begin the proof of the theorem, there are two notes about the balance-closure of
S. First, we have not said that balance-closure satisfies all three conditions to be an abstract
closure. Clearly, S ⊆ bcl(S) and balance-closure is weakly increasing (i.e., adding edges to
S cannot remove an edge from bcl(S)). However, we do not know that bcl(bcl(S)) = bcl(S).
In fact, it may not be; there is a biased-graph example in [13, Part I, Proposition 3.5]. We
show that this example is the bias of a gain graph with any nontrivial gain group.

Example 29. The underlying graph has V = {v, w, u1, u2} and E = {e1, e2, f1, f2, g1, g2, h};
the endpoints of the edges are ei:vui, fi:vw, gi:uiw, h:u1u2. Assign gain ε to all edges except
that ϕvu2(e2) = ϕvw(f2) = α where α 6= ε. Then the balanced circles are eifigi, eifigjh,
g1g2h where j 6= i. (The verification is left to the reader.)

Now let S = {e1, e2, f1, f2}. Then bclS = S ∪ {g1, g2} = E \ {h} and bcl(bclS) = E.

Secondly, the balance-closure of a balanced set must also be balanced, because it contains
no unbalanced circles or half edges. This requires proof. This is a case where the proof for
gain graphs is very simple while that for biased graphs uses advanced graph theory (according
to [13, Part I, Proposition 3.1]).

Lemma 30. If S is balanced, then bcl(S) is balanced.

Proof. Switch so S has all identity gains. Then an edge added to S by balance-closure must
also have identity gain. It follows that bcl(S) is balanced. �

We begin the proof of Theorem 25 with part (2).

Proof of Part (2). Let D belong to one of the categories described in this part and let e ∈ D.
From Theorem 1, we know that D is dependent and that D\e is independent. Independence
comes from the fact that if we were to remove any edge from D, this would result in a
contrabalanced pseudoforest. Therefore D is a circuit.

Conversely, let D be a circuit. Then D is dependent. By Theorem 1, D must contain a
balanced circle or two unbalanced circles/half edges that are in the same component of D
(since if they were in different components, they would not make D dependent). In Theorem
1 we already showed that this subset D′ of D is dependent and is either a balanced circle or
a contrabalanced handcuff or theta graph. By minimality, D = D′. �

Proof of Part (1). From the definition of F(Φ) (as corresponding to M (H [ϕ])) we have
rk(S) = rk(

⋂
h(S)), as the right-hand side is the rank function in the hyperplane arrange-

ment. This is then equal to codim
⋂
h(S). We know that rk(S) = rk(I) for any maximal
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contrabalanced pseudoforest I because it is a maximal independent set. Thus we also have
rk(S) = rk(I) = codim

⋂
h(I).

The following is a diagram of the structure of I.

Figure 4. Structure of I. Each box represents an unbalanced component Ri

of I and each circle represents a balanced component Ii of I. The dashed circle
represents V0(S).

We can break up I into its unbalanced components and its balanced ones. Collectively, the
unbalanced components are I:V0(S). For the balanced components, each component must
be a tree because I is independent. (We are able to ignore loose edges as they correspond
to the degenerate hyperplane.)

For an unbalanced component Ri, we found in the study of circles and the proof of Theo-
rem 1 that h(Ri) =⇒ xj = 0 for all vj ∈ V (Ri). Hence, we have a contrabalanced 1-tree.
Therefore codim

⋂
h(Ri) will be equal to the number of coordinates of the hyperplane equa-

tions in h(Ri). However, this is just the number of vertices of Ri.Therefore rk(Ri) = |V (Ri)|.
Next, we consider a balanced component Ii. It is a tree, by Theorem 1. All coordinates

of
⋂
h(Ii) are determined through the equations of the tree by fixing any one coordinate

arbitrarily (see Figure 5). Therefore codim
⋂
h(Ii) ≥ |V (Ii)| − 1 = |E(Ii).

vj vk

Figure 5. A possible structure for Ii. By fixing xj, we can find xk in terms of xj.

Since codim
⋂
h(Ii) ≤ |E(Ii)| because the codimension cannot be greater than the number

of hyperplanes of h(Ii), therefore codimh(Ii) = |V (Ii)| − 1.
Now, since each h(Ri) and each h(Ii) uses a different set of coordinates, we can write rk(I)

as
∑

i rk(Ri) +
∑

i rk(Ii) (see the previous lemma about direct sums). Using the formulas
we have just constructed, this becomes

∑
i |V (Ri)|+

∑
i(|V (Ii)| − 1) = |V (I)| − b(I). Each

vertex is included in either some Ri or some Ii, so this is n− b(I).
For the proof of Part (1) to be complete, it remains to be shown that the vertex sets of

the balanced components of I are those of the balanced components of S; in other words,
that I restricted to a balanced component of S is connected. �

Lemma 31. Suppose I is a maximal independent set in S ⊆ E. Let S have unbalanced
components U1, U2, . . . and balanced components B1, B2, . . . . Then I ∩Bi is a tree spanning
V (Bi) and I ∩ Ui is a disjoint union of contrabalanced 1-trees.
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Proof. To appear next time. �
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Lecture 5: The Frame Matroid, continued

13 November 2019
Notetaker: Nicholas Lacasse

We ended the last lecture with the statement of Lemma 31, of which the following is the
essence,. We begin with proving this essence.

Lemma 32. Let Φ be a K×-gain graph, S ⊆ E(Φ), and I a maximal independent set
contained in S. Then b(I) = b(S).

Proof. Suppose S has balanced componentsB1, B2, . . . and unbalanced components U1, U2, . . ..
To prove that I and S have the same number of balanced components we will show two things:

(1) I ∩ E(Bj) is a spanning tree of Bj (and therefore balanced),
(2) I ∩ E(Uj) is a contrabalanced spanning 1-forest (and therefore has no balanced compo-

nents).

For (1), notice that I ∩ Bj is a forest. This is because Bj is balanced, I ⊆ B, and I is
independent. (If I∩Bj were not a forest there would be a balanced circle contained in I, but
we know balanced circles are dependent. So I ∩ Bj is a forest.) Suppose it is disconnected.
Then we can use an edge of Bj to join two trees of I∩Bj into one tree, since Bj is connected.
Therefore, I ∩ Bj was not maximal, and thus I was not maximal. But we chose I to be
maximal, so this is a contradiction. Thus I∩Bj is a tree, which spans Bj because an isolated
vertex is a (very small) tree, so it falls under the previous argument.

For (2), notice that the only possible balanced components of I ∩Uj are trees. By way of
contradiction, suppose I ∩ Uj has a tree component, T . If T is not the only component of
I ∩Uj then we can add an edge of Uj to I in order to connect T to another component U of
I ∩ Uj (this other component of I ∩ Uj will necessarily be either a tree, a tree with a single
half-edge, or an unbalanced unicycle because I is a contrabalanced pseudoforest), giving a
larger independent set (because connecting T to a component which is either a tree, a tree
with a single half-edge, or an unbalanced unicycleU will just yield a larger component of
the same type as U , preserving the contrabalanced pseudoforest). Since we chose I to be
maximally independent, this is a contradiction. So T must be the only component of I ∩Uj.
Then either Uj has a half-edge e, in which case T ∪ e is a larger independent set, or Uj has
an unbalanced circle C, which can be extended to a unicycle U that spans Uj (since Uj is
connected). We can replace T by U to create an independent set larger than I. This is a
contradiction because maximal independent sets all have the same size (by matroid theory).
So I∩Uj has no tree components. Therefore I∩Uj has no balanced components. So in I, we
get exactly one balanced component for each Bj and no others. Therefore, b(I) = b(S). �

N.B. Once we have established the independent sets of the frame matroid F(Φ) using
M (H [Φ]), we can define rk(S) = max{#I | I ⊆ S, I independent} for S ⊆ E(Φ) entirely
in terms of the gain graph. We never need to refer back to H [Φ]. This permits a vast
generalization. Take any biased graph (Γ,B), possibly from a gain graph and possibly not,
and define S ⊆ E to be independent if it is a contrabalanced pseudoforest.

Theorem 33. Define F(Γ,B) := ((Γ,B),I ) where I is the set of all S ⊆ E(Γ) which
induce contrabalanced pseudoforests. Then F(Γ,B) is a matroid on E.
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Proof. The proof will appear later. We have not even proved this theorem for a G-gain graph
when G is not the multiplicative group of a field! But it is true. �

Given Theorem 33, our proof that rk(S) = n−b(S) for S ⊆ E and our proof of the circuits
of F(Φ) both apply to F(Γ,B).

The next step in the proof of Theorem 25 is to establish the closure operator.

Lemma 34. clF(S) = (E:V0(S)) ∪ bcl(S:V0(S)c).

For this we will prove a helpful lemma.

Lemma 35. Let Φ be a gain graph and let R ⊆ E be balanced and connected. Then bcl(R)
(aside from the balanced loops and loose edges) is the maximal balanced subset of E that
contains R and has vertex set contained in V (R).

Proof. Since R is balanced we can switch Φ so it has all identity gain. Then bcl(R) = {e ∈
E:V (R) | ϕ(e) = ε} together with all balanced loops and loose edges. �

For an arbitrary edge set R we have a reduction to components, which is of most use when
R is balanced.

Lemma 36. Let Φ be a gain graph and R ⊆ E. Let Comp(R) be the set of components of
R. Then bcl(R) =

⋃
C∈Comp(R) bcl(C).

Proof. An exercise. �

Here we see that balance-closure differs from closure in that bcl never joins unbalanced
components of R, but cl can join them.
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Lecture 6: Closure and Closed Sets

15 November 2019
Notetaker: Andrew Lamoureux

Let’s recall some definitions from graph theory. Let Γ = (V,E) be a graph and S ⊆
E. (We always use V and E for the edge sets of the graph Γ.) The vertex set of S is
V (S) := {v ∈ V | ∃ e ∈ S such that v is an endpoint of e}. Then for any X ⊆ V satisfying
X ⊇ V (S), (X,S) is also a graph. (This is how every subgraph of Γ is formed.) For example,
in the graph Γ below, V consists of all four vertices. If S is the singleton whose element is
the edge, then the elements of V (S) are the two vertices within the ellipse.

Moving over to a gain graph (or biased graph), V and E always denote its vertex and edge
set.

As for “spanning”, we are using it for two incompatible notions. (Not our fault; it’s
“Tradition!”.) In graph theory, a spanning subgraph of a graph Γ is a subgraph whose vertex
set is all of V . In matroid theory, a spanning set of a matroid is a subset of the ground
set whose closure is the entire ground set. When an edge set S is said to be spanning, it is
spanning in the matroid sense, because we are working with matroids on the edge set (and
because an edge set is not a subgraph).

Finally, let’s recall a definition from matroid theory. Let M be a matroid with ground set
E. The closure of S ⊆ E is cl(S) := S ∪ {e ∈ E | rk(S ∪ {e}) = rk(S)}. We will be proving
a more graphic formula in the next theorem. N.B. By matroid theory, since loose edges and
balanced loops have rank 0, they are in every closed edge set.

Additional notation: We denote the number of balanced components of any subgraph
(X,S) of a gain or biased graph, where X ⊆ V and S ⊆ E (necessarily with V (S) ⊆ X), by
b(X,S). Thus, for instance, our usual notation b(S) is shorthand for b(V, S).

Theorem 37 (Theorem 25(3)). Let Φ = (Γ, ϕ) be a gain graph with edge set E and S ⊆ E.
Then

cl(S) = (E:V0(S)) ∪ bcl(S:V0(S)c).

(All the loose edges and balanced loops are included in bcl(S:V0(S)c).) This follows from
a lemma:

Lemma 38. The balance-closure1 of a balanced edge set B is

bcl(B) = B ∪ {e ∈ E:V (B) | B ∪ {e} is balanced} ∪ {loose edges and balanced loops}
Proof. Recall that bcl(B) = B∪{e ∈ E(Γ) | ∃ a path P in B joining endpoints of e such that
P ∪ {e} is balanced} ∪ {loose edges}. Let A be the set in the statement of the lemma. As
bcl(B) is balanced by Lemma 30, bcl(B) ⊆ A.

1Reminder: Not “balanced closure”.
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Conversely, let e ∈ (E:V (B)) \ B. Then the endpoints of e are joined by a path P in B.
But B ∪ {e} is balanced, as e ∈ A, so P ∪ {e} is a balanced circle, and e ∈ bcl(B). �

Proof of Theorem 37. Recall that rk(S) = n − b(S), so cl(S) = S ∪ {e ∈ E | b(S ∪ {e}) =
b(S)}. Clearly, no edge of E : V0(S) increases b(S) when added to S: the balanced com-
ponents remain the same. It’s also clear that cl(S) can’t contain any edge that connects a
balanced component of S to any other component, as that would reduce b(S).

The only remaining case is an edge whose endpoints are in a balanced component B.
Again by Lemma 30, bcl(B) is balanced, so replacing B by bcl(B) preserves b(S) and makes
S larger (or leaves it unchanged).

Suppose we add an edge e ∈ (E : V (B)) \ bcl(B). By the above lemma, B ∪ {e} is not
balanced. This reduces b(S) by 1, so e /∈ cl(S). �

Theorem 39 (Theorem 25(4)). A set S ⊆ E is closed if and only if

S = (E:V0(S)) ∪ bcl(S:V0(S)c) ∪ {loose edges and balanced loops}.

Proof. By definition, S is closed iff S = cl(S). �

The preceding description is equivalent to the following: S is closed iff its unbalanced part
is an induced edge set, each balanced component is balance-closed, and all loose edges and
balanced loops of Φ are in S. We get all closed sets by taking all sets of the form

(E:X) ∪B ∪ {loose edges and balanced loops}
where X ⊆ V , E:X has no balanced components, and B ⊆ E:Xc is balanced and balance-
closed.

Graphs vs. gain graphs vs. biased graphs. The notion of biased graph is not exactly a
generalization of that of a gain graph. Rather, it is an abstraction of a gain graph, because
a biased graph does not have any gains; it retains only the combinatorial structure of a gain
graph.

Similarly, a gain graph is not a generalization of a graph but a graph with additional
structure. While it is true that any graph Γ can be made a G-gain graph for any group G
by declaring ϕ(e) = ε (the identity) for all e ∈ E(Γ), this is not always the “right” choice. It
is “right” in the following sense: the hyperplane arrangement of Γ without a gain is exactly
the same as the arrangement of Γ with all-identity gains. However, for a signed graph, which
is a Z2-gain graph, in some generalizations of ordinary graph theory (e.g., in regard to line
graphs) it is preferable to assign every edge a negative sign, i.e., gain −1 rather than 1.

Gains vs. weights; orientation vs. direction. Let’s clarify two subtle distinctions.
A gain is not the same as a weight. A gain is inverted when using the opposite orientation,

while a weight is not (there need not even be orientation). (This is my personal distinction.
It seems to be consistent with general usage, although it is not rigorously followed.)

The difference between an orientation, for the purpose of defining the gain, and no orien-
tation shows up clearly in directed graphs. In a directed graph with gains, or gain digraph,
each edge has only one direction. For example, a path or any walk must follow the directions
of the edges; therefore, not every circle can be said to have a gain, but only the ones that
are consistently directed.
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Lecture 7: The Chromatic Polynomial and the Balanced Chromatic
Polynomial

20 November 2019
Notetaker: Michael Gottstein

Recall that for a graph Γ = (V,E), the chromatic polynomial of Γ is

χΓ(λ) =
∑
S⊆E

(−1)#Sλc(S) =
∑

A∈Lat Γ

µ(∅, A)λc(A),

where c(S) = c(V, S) is the number of components of (V, S) and Lat Γ is the lattice of flats
of the graphic matroid of Γ. The definition in a biased graph, including a gain graph, is very
similar; there is only one big little difference.

Definition 40. The chromatic polynomial of a biased graph Ω = (Γ,B), where E is the
edge set of Γ, is

χΩ(λ) :=
∑
S⊆E

(−1)#Sλb(S) =
∑

A∈Lat Ω

µ(∅, A)λb(A).

The second equality follows from the Möbius function formula for matroids mentioned in
Stanley’s notes.

If S is balanced then b(S) = c(S), so if Ω is balanced the chromatic polynomial of the
gain graph agrees with the chromatic polynomial of the underlying graph.

Recall our definition that, if the empty set is not closed, then µ(∅, A) = 0 for every flat A.
Consequently, if Ω contains a loose edge or a balanced loop, then its chromatic polynomial
is identically 0.

Definition 41. A biased graph has a second chromatic polynomial. First we have to define
the meet semilattice of balanced flats,

Latb(Ω) := {A ∈ Lat Ω : A is balanced}.
The balanced chromatic polynomial of Ω is

χb
Ω(λ) :=

∑
S⊆E:balanced

(−1)#Sλb(S) =
∑

A∈Latb Ω

µ(∅, A)λb(A).

If Ω is balanced, the balanced chromatic polynomial, like the chromatic polynomial, is the
same as the chromatic polynomial of Γ. In other words, all three coincide. However, if Ω is
not balanced, all three are different. (I will not prove that, but you can see that the range
of summation for χb

Ω is smaller than that for χΩ and χΓ, and the exponents in the two latter
sums are unequal for unbalanced sets S.

We now come to a nice generalization of the theorem about the characteristic polynomial
of a graphic hyperplane arrangement (in Stanley’s notes).

Theorem 42. For a K×-gain graph Φ, pH [Φ[(λ) = χΦ(λ).

Proof. This follows from the rank formula rk(S) = n − b(S) and the known s for the char-
acteristic polynomial of a hyperplane arrangement. In pH [Φ[(λ), the exponent dimh(S) =
n − rkh(S) = b(S) because rkh(S) = rkΩ(S) = n − b(S). (Recall that for S ⊆ E, h(S) is
the set of corresponding hyperplanes and that the frame matroid F(Φ) is isomorphic by h
to M (H [Φ]).) �
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Now that we have a polynomial defined on a gain graph. let’s see what it can do.

Definition 43. Given a gain graph Φ we define a k-coloration as a function

γ : V (Φ)→ G× [k] ∪ {0}.
A zero-free k-coloration is a coloration that does not use 0; in other words, it is a function

γ : V (Φ)→ G× [k].

We call the codomain the color set and denote it by C0
k(G), or Ck(G) when we do not

include 0.
Define a right action of G on C0

k and thus on Ck by 0g := 0 and (h, i)g := (hg, i) for g, h ∈
G and i ∈ [k]. A coloration is proper if, for every ordinary edge evw, γ(w) 6= γ(v)ϕ(ev,w),
and also γ(v) 6= 0 for each vertex v that supports a half edge or an unbalanced loop.

We come at last to the main result of today’s lecture.

Theorem 44 (Proper Coloration). If G is finite, say of order m, then χΦ(km + 1) is
the number of proper k-colorations of Φ and χb

Φ(km) is the number of zero-free proper k-
colorations.

Observe the interesting fact that the number of proper colorations is independent of the
particular group. It depends only on how big the group is.

Example 45 (Gain Graphs vs. Hyperplane Arrangements). Let G = K× and k = 1. Then
C1 = K (as a multiplicative monoid) and C0

1 = K×.
We can generalize our choice of color set so as to be able to count proper colorations of

the gain graph of a gain-graphic hyperplane arrangement over an infinite field. Let G be
any finite subgroup of K×. Examples are a finite cyclic group of any order as a subgroup of
C× and the multiplicative group of a finite field Fq, which is a cyclic group of order q− 1 (q
being a prime power).

Problem 46 (Other Evaluations). We only gave interpretations for nonnegative λ ≡ 0, 1
(mod m), where m = #G. As far as I know, there are no combinatorial interpretations of
other nonnegative values of λ. There is a potential research problem.

Interpretations of negative values other than −1 are also a mystery.
The sole exception to the mystery is when m = 2, i.e., signed graphs. There might be

hints there of generalizations . . .

Example 47 (Signed Graphs). The special case of a group of order 2 is exceptionally
interesting and more studied. Let G = {±1} ⊆ K×, where charK 6= 2 (that is, 1 6= −1).
We call such a gain graph Φ a signed graph [3]. We can treat the color set as a sign-symmetric
set of integers if we color with {0,±1,±2, . . . ,±k}—as long as charK is large enough (the
colors must be distinct), and in particular whenever charK = 0.

In signed graphs, χΦ(2k + 1) gives us the number of proper k-colorations when λ is odd,
provided we set k = 1

2
(λ−1); and χb

Φ(2k) gives us the number of zero-free proper k-colorations

when λ even, if we take k = 1
2
λ. And more: negative evaluations count “compatible pairs”

of orientations and colorations (generalizing a deep theorem of Stanley’s), but this is outside
our scope.

Even more: the existence of two polynomials is explained by the Ehrhart theory of lattice-
point counting in convex polytopes with fractional vertices [1, §5]—but that, too, is outside
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our scope. No such explanation exists for larger gain groups. I wonder if finite cyclic groups
might be understood better by way of complex hyperplane arrangements, since such a group
is a subgroup of C×.

There is extensive literature on signed graphs, though not much on their coloring (mainly
[11, 12, 4]). Much of it is not in mathematics, but is directed towards social science, in-
spired by a foundational article of Cartwright and Harary from 1956 [2]. On the other
hand, the hyperplane arrangements of signed graphs are implicitly connected with the ma-
jor mathematical topic of Lie theory via root systems (q.v.), which are becoming important
in combinatorial geometry.

Definition 48. Sometimes we only want a 0-free 1-coloration; we call that a group coloration
as it simply maps V → G (notationally simplified from G× [1]).

Sometimes we like to regard the set [k] as the group Zk and view a k-coloration as a group
coloration in the cyclic group (independently of what the gain group is), much as k = 1 gives
a group coloration in the gain group.
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Lecture 8: Deletion, Contraction, and Coloration

10 November 2019
Notetaker: Jimmy West

The main topic of this lecture is coloring gain graphs, but for the principal theorems we
have to define not only deletion of edges, which is obvious, but also contraction of edges,
which is far from obvious for gain graphs, in contrast to how it is for ordinary graphs.

Deletion and Contraction.
We begin with gain graphs, then apply our ideas to biased graphs.

Definition 49 (Deletion of an Edge). Deletion of an edge in a gain graph or a biased graph
is trivial. It should be noted that all gains remain the same upon deletion and the balanced
circles remain the same, except for those that are no longer circles upon the deletion.

Definition 50 (Contraction of an Edge in a Gain Graph). The notation for a gain graph Φ
with e contracted is Φ/e.

To contract a link e in Φ, first switch Φ so e has gain ε, then coalesce the endpoints, and
finally delete the contracted edge e.

To contract a loose edge or a balanced loop, simply delete the edge. Do not change the
gains of other edges.

To contract a half edge or an unbalanced loop e incident with vertex v, remove both v and
e but not any other edges. This may remove some endpoints of some edges; in particular, it
reduces a link e that joins v to w to a half edge incident with w, and a loop or half edge at v
(other than e itself) to a loose edge. Do not change the gains of edges that remain ordinary
edges—but an ordinary edge that becomes a half or loose edge no longer has a gain.

Many different switching functions can give e the switched gain ε, so the contraction Φ/e
is not uniquely defined. All different contractions are switching equivalent.

Proposition 51. Suppose switchings Φζ and Φζ′ both give gain ε to the link e. The resulting
contractions Φζ/e and Φζ′/e are switching equivalent.

Proof. A good exercise about switching. �

In other words, contraction is well defined on switching classes (cf. Definition 10). More
precisely, the contraction [Φ]/e of a switching class is a uniquely determined switching class
of contracted graphs, which may naturally also be notated as [Φ/e]. This suggests that
contraction really acts on switching classes and that switching classes are more fundamental
than signed graphs, but I will not pursue that line of thought here.

Since a biased graph has no gains, the definition of contraction has to be adapted, and in
such a way that it is compatible with contraction in a gain graph.

Definition 52 (Contraction of an Edge in a Biased Graph). For a biased graph Ω = (Γ,B),
again there are different rules for different kinds of edge. The notation for Ω with e contracted
is Ω/e.

To contract a link e, we contract it in the underlying graph Γ. Then we have to define
the bias. A circle D in Ω/e is balanced if it is the contraction of a balanced circle C in Ω
that contains e, or if it is a circle in Ω that is balanced. Otherwise, it is unbalanced; that is,
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if it is the contraction of anun balanced circle in Ω that contains e, or if it is an unbalanced
circle in Ω.

To contract a loose edge or a balanced loop, simply delete the edge.
To contract a half edge or an unbalanced loop e incident with vertex v, remove both v and

e but not any other edges. This may remove some endpoints of some edges; in particular, it
reduces a link e that joins v to w to a half edge incident with w, and a loop or half edge at
v (other than e itself) to a loose edge.

It is worthwhile to point out why this is a complete definition of the balanced circle class
in Ω/e. Suppose we contract a link e. A circle C in Ω that contains e will contract to a
circle with edge set C \ e in Γ/e, and whether or not it is balanced will not be affected by
contraction. If C does not contain e, there are two cases. If both endpoints of e, say v and
w, are in C, then C contracts to a pair of circles, each consisting of one of the two vw-paths
in C. Otherwise, C simply remains a circle in the contracted graph.

There is one little difficulty. Unlike with gain graphs, where it is obvious, how do we know
the contracted biased graph is a biased graph?

Proposition 53. If Ω is a biased graph and e is an edge of Ω, then Ω/e is a biased graph.

Proof. This is an excellent exercise for the reader. �

Given a gain graph Φ, we denote the corresponding biased graph by 〈Φ〉 := (Γ,B(Φ)). It
should be clear that, if we have a gain graph Φ and contract an edge e, then take the biased
graph of Φ/e, we get the same result as if we contract e after taking the biased graph of Φ.
Symbolically,

〈Φ/e〉 = 〈Φ〉/e.

Example 54. We do an example of deletion and contraction using the R×-gain graph Φ in
Figure 6.

v1

v2 v3

e1: 3

e2: 5

e3: 2

e4: 15

Figure 6. A gain graph Φ, with the gains listed on each edge.

In the example we contract the link e4, giving the graph Φ/e4. First, we switch the gains
so that e4’s gain is the identity. In our example we will use the switching function defined
by:

ζ(v1) = 1, ζ(v2) = 1, ζ(v3) =
1

15
.
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The resulting gains are then

ϕζ(e1) = ζ(v1)−1ϕ(e1)ζ(v2) = 1× 3× 1 = 3,

ϕζ(e2) = ζ(v2)−1ϕ(e3)ζ(v3) = 1× 5× 1

15
=

1

3
,

ϕζ(e3) = ζ(v3)−1ϕ(e3)ζ(v1) = 15× 2× 1 = 30,

ϕζ(e4) = ζ(v1)−1ϕ(e4)ζ(v3) = 1× 15× 1

15
= 1.

v1

v2 v3

e1: 3

e2: 1
3

e3: 30

e4: 1

Figure 7. The gain graph Φζ , with the switched gains.

For the second step, contract e4, keeping all gains. The resulting gain graph, Φ/e4, is shown
in Figure 8. Notice that the digon in Φ/e4 is balanced and that these edges came from the

v2

v13

e2: 1
3

e1: 3

e3: 30

Figure 8. Φ/e4; The vertex v13 is the coalescence of vertices v1 and v3.

balanced circle e1e2e
−1
4 in Φ. In fact, when contracting edge e, every circle C through e

becomes a new circle C/e that is balanced if, and only if, C was originally balanced. This
is because the gains of circles do not change under switching and the gains of edges do not
change when e is contracted.

Example 55. Next, we look at contraction of an unbalanced loop (or a half edge). Let
Ψ = Φ/e4 from Example 54 and consider Ψ/e3. The two endpoints of this loop coincide and
the loop is unbalanced. We delete the edge and remove its incident vertex v13. All edges
incident with v13 lose that vertex; thus, e1 and e2 become half edges. The contraction Ψ/e3

is shown in Figure 9.
There are no edges not incident with v13, but if there were, they would retain their gains.

If there were any half edges or loops incident to the deleted vertex, they would become loose
edges; see Figure 10.
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v2

e2

e1

Figure 9. Ψ/e3; Since the only remaining edges are half edges, there are no
longer any gains.

v2 v13

e2

e1

e3

e6

e5

v2

e2

e1

e5

e6

Figure 10. The left graph Ψ′ is Ψ with two added edges. The gains of the
added edges are irrelevant to the example. On the right is the contraction
Ψ′/e3, with two half edges and two loose edges. Those edges no longer have
gains.

Chromatic polynomials.
Now we can return to chromatic polynomials.
An edge is said to be balanced if the edge, as an edge set, is balanced. That is, a link, a

balanced loop, and a loose edge are balanced, while a half edge and an unbalanced loop are
unbalanced.

Observe that, by their algebraic definitions (and writing Ω = 〈Φ〉 for brevity), χΦ = χΩ

and χb
Φ = χb

Ω.

Theorem 56 (Deletion-Contraction Formula for Chromatic Polynomials). For a gain graph
Φ and an edge e,

χΦ(λ) = χΦ\e(λ)− χΦ/e(λ)

and

χb
Φ(λ) =

{
χb

Φ\e(λ)− χb
Φ/e(λ) if e is a balanced edge,

χb
Φ\e(λ) if e is an unbalanced edge.

The same is true for a biased graph Ω.

We will prove the theorem for biased graphs. The result for gain graphs follows directly
because the polynomials are the same.

Proof for the chromatic polynomial. The definition says

χΩ(λ) =
∑
S⊆E

(−1)#Sλb(S).
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We break the sum up into two parts, one for the edge sets that contain e and one for those
that do not. Thus,

χΩ(λ) =
∑
S⊆E\e

(−1)#Sγb(S) +
∑

e∈S⊆E

(−1)#Sγb(S).

The first sum is χΩ\e(λ). For the second sum, we write each edge set S containing e as T ∪ e
for some edge set T ⊆ E \ e. The sum then becomes

∑
T⊆E\e(−1)#T+1λbΩ(T∪e). Note that

the exponent is the number of balanced components in Ω, not in Ω/e. We now have

χΩ(λ) = χΩ\e(λ)−
∑
T⊆E/e

(−1)#TλbΩ(T∪e)

The sum over T equals χΩ/e(λ) by the two following lemmas, which complete the proof of
Theorem 56. �

Lemma 57. If Ω is balanced and e ∈ E, then Ω/e is also balanced.
Conversely, if e is balanced in Ω and Ω/e is balanced, then Ω is balanced.

Proof. If C is a circle in Ω/e, then either (1) C ∪ e is a circle in Ω, which is balanced since
Ω is balanced, so C is balanced in Ω/e, or (2) C is itself a circle in Ω, and it is balanced in
Ω/e. Further, a balanced graph does not contain any half edge or unbalanced loop, so after
contraction of an edge, it will have no half edge. That proves the first half of the lemma.

Conversely, if e is a link in Ω (the other cases being trivial), there can be no half edges
in Ω, so if Ω is unbalanced, there is an unbalanced circle C that contains e. But then C/e
would be an unbalanced circle in Ω/e, contrary to hypothesis. That establishes the second
half of the lemma. �

Lemma 58. bΩ(T ∪ e) = bΩ/e(T ) for any edge e and any set T ⊆ E \ e.

Proof. If e is in a balanced component, we use Lemma 57.
If e is in an unbalanced component, say U , we have three cases.
Case 1. e is a link. If e is in an unbalanced circle C, then C/e is an unbalanced circle

in U/e. Hence U/e is unbalanced. Suppose the component has an unbalanced circle C such
that C is a circle in U/e. Then C is unbalanced in U/e, so U/e is unbalanced. Suppose U
has an unbalanced circle C of which e is a chord. Then C ∪ e contains two other circles, say
C1 and C2. At least one of these must be unbalanced, say C1. Then C1/e is unbalanced in
U/e. Therefore U/e is unbalanced in this case as well. Hence b(Ω/e) = b(Ω).

Case 2. if e is a balanced loop or a loose edge, then Ω/e = Ω \ e, so b(S ∪ e) = b(S).
Case 3. If e is a half edge or unbalanced loop at a vertex v, then e is in an unbalanced

component T ∪ e. Every component of T \ v has at least one edge joining it to v. Thus,
by the definition of contraction every component of (T ∪ e)/e will have a half edge so it is
unbalanced. Thus, the balanced components are the same as before contraction.

That completes the proof of Lemma 58. �
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Lecture 9: Chromatic Polynomials Count Colorations

22 November 2019
Notetaker: Shuchen Mu

Proof of Theorem 56 for the balanced chromatic polynomial. The definition is

χb
Φ(λ) =

∑
S⊆E

Sbalanced

(−1)#Sλb(S)

=
∑
S⊆E\e

S balanced

(−1)#Sλb(S) −
∑
T⊆E\e

T∪e balanced

(−1)#TλbΩ(T∪e).

By Lemma 58, the last summation equals∑
T⊆E\e

T∪e balanced

(−1)#TλbΩ/e(T )

Since e is a balanced edge, by Lemma 57 the edge set T of Ω/e is balanced if and only if
T ∪ e is balanced in Ω. Hence, the last summation

=
∑

T⊆E(Ω/e)
T balanced

(−1)#TλbΩ/e(T ).

That concludes the proof for a link.
For a balanced loop or a loose edge, boht left side and right side equal 0.
For an unbalanced edge, deleting the edge does not affect the count of zero-free proper

colorations. �

Switching of colorations. We define the switching γζ of a coloration γ with respect to a
switching function ζ to be

γζ(v) = γ(v)ζ(v).

We see that

(1)
γ(v)ζ(v)(ζ(v)−1ϕ(evw)ζ(w)) = γ(v)ϕ(evw)ζ(w) = γ(w)ζ(w)

⇐⇒ γ(w) = γ(v)ϕ(evw).

Therefore a coloration is proper at a link if and only it is proper at the link after switching.
Define

K(Φ) := the set of proper k-colorations of Φ,

and similarly K(Φ \ e) = the set of proper k-colorations of Φ \ e and K(Φ/e) = the set
of proper k-colorations of Φ/e. We are now obliged to mention something that we swept
under the rug in defining contraction: the gains of Φ/e depend on the choice of the switching
function ζ by which we switched e to have gain ε. Nevertheless, all possible contractions Φ/e
are switching equivalent (that is an exercise for the reader), so it follows from Equation (1)
that, although Φ/e depends on the choice of switching function, the resulting K(Φ/e)’s are
all bijective to each other by bijections that preserve the 0-colored set, and therefore their
cardinalities are all the same.
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Counting proper colorations. At last we can prove the main theorem about the chromatic
polynomials.

Theorem 59. Assume G is finite and Φ is a G-gain graph of finite order. Let m = |G|.
Then

χΦ(km+ 1) = the number of proper k-colorations of Φ, and

χb
Φ(km) = the number of zero-free proper k-colorations.

We formulate the main parts of the proof as two lemmas. The theorem will follow by some
special cases and induction on the number of edges.

For the first part of the theorem we define χ̂Φ(km+1) := the number of proper k-colorations
of Φ. So χ̂Φ is a function evaluated at positive integers of residue 1 (mod m).

Lemma 60. If e is a link in Φ, then χ̂Φ = χ̂Φ\e − χ̂Φ/e.

Proof. Let evw be a link in Φ, also denoted more briefly by e. We simplify the proof by
assuming Φ has been switched so e has gain ε. Then contraction of e does not require any
switching.

A coloration is proper if and only if it is proper at each edge, i.e., γ(b) 6= γ(a)ϕ(eab) for
every edge eab. Since Φ \ e has all the vertices and edges of Φ except e,

K(Φ) = {γ ∈ K(Φ \ e) | γ(w) 6= γ(v)ϕ(evw) = γ(v)}.
Consider a coloration that is proper except at evw. It gives a proper coloration of Φ/e

because the color at v is the same as at w. In Φ/e, the color of the contraction vertex ve is
γ(v); all other vertices retain the same color as in Φ.

Contrariwise, given a proper coloration γ̂ of Φ/e, we construct a coloration γ of Φ by

γ(u) =

{
γ̂(u) if u 6= v, w,

γ̂(ve) if u = v or w,

where ve is the contraction vertex. It is easy to see that these two constructions are inverse
to each other, so they give a bijection between {γ ∈ K(Φ \ e) | γ(w) = γ(v)ϕ(evw)} and
K(Φ/e).

Hence we have proved for the case when e is a link that there is a bijection

K(Φ) ∪· K(Φ/e)←→ K(Φ \ e).
It follows that χ̂Φ = χ̂Φ\e − χ̂Φ/e. �

For the second part of the proof we define χ̂b
Φ(km) := the number of zero free proper

k-colorations of Φ. So χ̂b
Φ is a function evaluated at nonnegative integer multiples of m.

Lemma 61. If e is a link in Φ, then χ̂b
Φ = χ̂b

Φ\e − χ̂b
Φ/e.

We will prove this lemma in the next lecture.
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Lecture 10: Examples!

25 November 2019
Notetaker: Nicholas Lacasse

In this lecture, we use the results we have developed to explore various examples.

Definition 62. Let G be a group and Γ a simple graph. Then GΓ = (V (Γ),G×E(Γ)) with
ϕ(g, eij) = g is a gain graph called a group expansion of Γ, specifically the G-expansion.

The full G-expansion GΓ• is GΓ with a half edge added at every vertex.
See Figure 11 for the G-expansion of a link e.

Theorem 63. Let G be a finite group of order m and Γ a simple graph on n vertices. Then

χb
GΓ(λ) = mnχΓ

( λ
m

)
and

χGΓ•(λ) = mnχΓ

(λ− 1

m

)
.

vi

vj

vi

vj

...

(gm, e)

(g1, e)e

Figure 11. On the left is the edge e in Γ. On the right is the set of edges
which places e in GΓ, one edge for each element of G.

Proof. For the first part of the theorem, we start with a 0-free k-coloration γ of GΓ. This
coloration is proper when, for all f ∈ G, γ(vj) 6= γ(vi)ϕ(f, eij). Suppose γ(vj) = (h, b) and

γ(vi) = (g, a). Then γ(vi)ϕ(f, eij) = (g, a)ḟ = (gf, a). So the propriety condition on γ is
that (h, b) 6= (gf, a) for all f ∈ G. This can only be satisfied if a 6= b. We can therefore
express the 0-free proper k-coloration γ : V → G× E as γ = (γG, γE) where γE is a proper
k-coloration of Γ and γG : V → G is arbitrary. The number of proper k-colorations ΓE is
χΓ(k), so the number of 0-free proper k-colorations of GΓ is mnχΓ(k). Since λ = mk, we
deduce that χb

GΓ(λ) = mnχΓ(λ/m). This proves the first part of the theorem.
For the second part we put in the half edges to make the graph full. Then the color 0 is

excluded, so χGΓ•(λ) = χb
GΓ(λ− 1). But λ = km+ 1. So k = λ−1

m
, giving the result. �

Definition 64. The Whitney numbers of the first kind of a hyperplane arrangement, gain or
biased graph, or matroid are the coefficients of the characteristic or chromatic polynomial,
indexed in descending order. For instance,

χΦ(λ) = w0(Φ)λn + w1(Φ)λn−1 + · · ·+ wn−1(Φ)λ+ wn(Φ).
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The balanced Whitney numbers of the first kind of a gain or biased graph are the coefficients
of the balanced chromatic polynomial, i.e.,

χb
Φ(λ) = wb

0(Φ)λn + wb
1(Φ)λn−1 + · · ·+ wb

n−1(Φ)λ+ wb
n(Φ).

From matroid theory we know these numbers alternate in sign: (−1)kwk, (−1)kwb
k ≥ 0.

(Proof: Exercise.) They have combinatorial interpretations in terms of complex hyperplane
arrangements, which we don’t have time for now.

Example 65. Consider GK•n. Since χKn(k) = (k)n = k(k − 1) · · · (k − [n − 1]), we get the
chromatic polynomial formula

χGK•n(λ) = mn
(λ− 1

m

)
n

= mn
(λ− 1

m

)(λ− 1

m
− 1
)
· · ·
(λ− 1

m
− [n− 1]

)
= (λ− 1)(λ− 1−m)(λ− 1− 2m) · · · (λ− 1− [n− 1]m).

We can expand this chromatic polynomial in terms of Stirling numbers of the first kind,
s(n, k), since (x)n =

∑
i s(n, i)x

i:

χGK•n(λ) =
∑
i

s(n, i)(λ− 1)imn−i =
∑
i

s(n, i)mn−i
∑
j

(
i

j

)
λj(−1)i−j

=
∑
j

λj
∑
i

s(n, i)mn−i
(
i

j

)
(−1)i−j

=
∑
k

λn−k
[∑

i

s(n, i)mn−i
(

i

n− k

)
(−1)i+k−n

]
.

Thus, the Whitney numbers of GK•n of the first kind are

wk(GK
•
n) = (−1)k

∑
i

s(n, i)mn−i
(

i

n− k

)
(−1)n−i.

The signs of the Stirling numbers are well known: sgn s(n, i) = (−1)n−i. In final form, then,

(2) wk(GK
•
n) = (−1)k

n∑
i=n−k

|s(n, i)|mn−i
(

i

n− k

)
.

We’ll do a similar calculation for an arbitrary group expansion in Example 72.

Example 66. Now suppose G ≤ K×—as, for example, the finite cyclic group of order m is
the group of m-th roots of unity in C, or the cyclic group of order q− 1 is the multiplicative
group of the finite field Fq. Then

H [GK•n] = {hi : xi = 0} ∪ {hgij : xj = xig | g ∈ G}.

By Theorem 42, the characteristic polynomial of the arrangement is the chromatic polyno-
mial of GK•n, so

pH [GK•n](λ) = (λ− 1)(λ− 1−m)(λ− 1− 2m) · · · (λ− 1− [n− 1]m).
31



From this we get a formula for the number of regions of the arrangement:

(−1)npH [GK•n](−1) = (−1)nmn(
−1− 1m)n

=
(−1)nmn(

−2

m
)n

= (2)(2 +m) · · · (2 + [n− 1]m).

Example 67. Let’s apply the preceding examples to the smallest nontrivial group: G =
{±1}. Then we are considering the signed graph ±K•n (short for {±1}K•n). We infer that

pH [±K•n](λ) = 2n
(λ− 1

2

)
n

and the number of regions is

(−1)npH [±K•n](−1) = (−1)n2n
(−2

2

)
n

= 2nn!.

This has been long known to Lie theorists (who call regions “chambers”), but we have used
a different and more general method to get this number.

The connection with Lie theory is historically important, as it was the impetus (stimulated
by two questions from Richard Stanley) for the entire theory of gain-graphic matroids and
hyperplane arrangements. A root system is a finite set of vectors in Rn that have certain nice
integrality properties that I will not state here; they are stated in most books on Lie theory.
The indecomposable root systems have been classified; they come in four infinite families,
one for each dimension, called the classical root systems, and a small number of exceptional
root systems. Our interest is in the classical root systems.

Example 68. Let’s take our gain group to be {±1} ≤ R× and let’s express the standard
basis of Rn as b1, . . . , bn. We associate vectors to the edges of our graph and we associate
those vectors to their dual hyperplanes, i.e., the hyperplanes for which they are defining
vectors. For an edge eij we write e+

ij if it is positive and e−ij if it is negative. For a half

edge we write ei (as it has no sign). We associate e+
ij to a vector ±(bj − bi), e−ij to a vector

±(bj + bi), and ei to a vector ±bi. These vectors and their negatives constitute the root
system Bn. The vectors ±(bj − bi) determine the hyperplane xi = xj, the vectors ±(bj + bi)
determine the hyperplane xi = −xj, and the vectors ±bi determine the hyperplane xi = 0.
These hyperplanes form the root system hyperplane arrangement Bn. If we replace the half
edges ei by negative loops e−ii , we get vectors ±2bi; this results in the root system Cn with
hyperplane arrangement Cn = Bn. If we take only the positive edges, we get the root system
called An−1 (because it is not full-dimensional in Rn) and its hyperplane arrangement An−1.
If we take only positive and negative links (i.e., no half edges or loops) we get the root system
Dn and the arrangement Dn. These correspond to the four infinite families of root systems.

The root system arrangements are signed-graphic. We list them with their graphs and the
number of regions, r, computed from the chromatic polynomials. The circle in ±K◦n means
we add a negative loop instead of a half edge to every vertex (which makes a difference in
computing vertex degrees—which we don’t do in these notes).

An−1 = H [Kn] : r = (−1)nχKn(−1) = (−1)n(−1)n = n!,

Bn = H [±K•n], Cn = H [±K◦n] : r = (−1)nχ±K•n(−1) = 2nn!,

Dn = H [±Kn] : r = (−1)nχ±Kn(−1) = 2n−1n!.
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The last of these needs proof! The tool is the next theorem, which although simple is very
convenient for computing chromatic polynomials.

Theorem 69 (Balanced Expansion). Let Φ be a gain graph without loose edges. Then

χΦ(λ) =
∑

W⊆V : W stable

χb
Φ:W c(λ− 1).

The same holds for a biased graph Ω without loose edges.
In particular, χΦ•(λ) = χb

Φ(λ− 1).

Proof. We leave the proof for a gain graph with finite gain group, and the general proof, as
an exercise for the reader. �

Example 70 (Example 68 concluded.). With Theorem 69 we can observe that

χ±Kn(λ) =
∑

W⊆V : W stable

χb
±Kn:W c(λ− 1).

But W ⊆ V (±Kn) is stable only when (and when) W = ∅ or |W | = 1, since the gain graph
is compete and there are no half-edges or loops. So

χ±Kn(λ) =
∑
W⊆V

W stable

χb
±Kn:W c(λ− 1)

= χb
±Kn

(λ− 1) + nχb
±Kn

(λ− 1)

= 2nχKn(λ− 1) + n2n−1χKn−1(λ− 1)

= (λ− 1)(λ− 3) · · · (λ− 2n+ 1) + n(λ− 1)(λ− 3) · · · (λ− 2n+ 3)

= (λ− 1)(λ− 3) · · · (λ− 2n+ 3) · (λ+ 1− n).

Thus,

(−1)nχ±Kn(−1) = (2)(4) · · · (2(n− 1))(n) = 2n−1n!.

That gives the chromatic polynomial and the region count we wanted.

Example 71. By a similar computation (Exercise!), for any group G of finite order m,

χb
GKn

(λ) = mn
( λ
m

)
n

and

χGKn(λ) = mn−1
(λ− 1

m

)
n−1

[λ− (m− 1)(n− 1)].

The Whitney numbers wk(GKn) and wb
k(GKn) are an exercise for the reader.

Example 72. For later use we generalize Examples 65 and 71 to an arbitrary simple graph
Γ, whose chromatic polynomial we write in the form χΓ(λ) =

∑n
i=0wi(Γ)λn−i. All we need

do is to replace the Stirling numbers by the Whitney numbers of Γ. Thus,

wk(GΓ•) = (−1)k
∑
i

|wi(Γ)|mn−i
(

i

n− k

)
,

wb
k(GΓ) = mn−kwk(Γ);

and wk(GΓ) we leave as an exercise.
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Exercise 73 (Supersolvable Group Expansions). Let Γ be a simple graph and G any group.

(a) Suppose Γ is chordal, i.e., Lat Γ is supersolvable. Is LatGΓ• supersolvable? Is LatGΓ
supersolvable?

(b) Suppose Γ is not chordal. Is it possible for LatGΓ• to be supersolvable? LatGΓ?

You may have to first decide what a modular coatom is in the gain graph.
As a bonus bit you could use supersolvability to get a nice formula for the chromatic

polynomial.
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Lecture 11: Affinographic Hyperplane Arrangements

4 December 2019
Notetaker: Michael Gottstein

For the gain-graphic arrangements we encountered previously, the gain group was mul-
tiplicative: G ≤ K× and the hyperplanes were homogeneous, i.e., subspaces of the vector
space Kn. Now we switch to an additive group, G ≤ K+ to examine a new kind of gain-
graphic arrangement, which I call “affinographic” because its hyperplanes are affine translates
of graphic hyperplanes. This gives an affine—usually inhomogeneous—arrangement in the
affine space An(K). For this type of arrangement we do not use half edges or loose edges.

Definition 74. A hyperplane of the form xj = xi+c is called affinographic. An affinographic
hyperplane arrangement is an arrangement whose hyperplanes are affinographic.

Definition 75. Given a gain graph Φ with gain group G ≤ K+, without half or loose edges,
the corresponding affinographic hyperplane arrangement is

A [Φ] = {a(e) : e ∈ E},

where a is a function that gives a hyperplane

a(eij) : xj − xi = ϕ(eij),

or equivalently xj = xi + ϕ(eij), for each edge of Φ.

Recall from Lecture 7 (Definition 41) that Latb Φ = {A ∈ Lat Φ : A is balanced}.

Theorem 76. Let S ⊆ E. Then
⋂
a(S) 6= ∅ if and only if S is balanced.

The function a gives a semilattice isomorphism Latb Φ ∼= L (A [Φ]).

Proof. We start the proof with three useful lemmas.

Lemma 77. If C is an unbalanced circle, then
⋂
a(C) = ∅.

Proof. Let C = v0e01v1e12v2 . . . el−1,lvl, where v0 = vl. Then x ∈
⋂
a(C) ⇐⇒ x satisfies all

the equations

(3)

x1 = x0 + ϕ(e01),

x2 = x1 + ϕ(e12),

. . .

xl = xl−1 + ϕ(el−1l),

hence

xl =x0 + ϕ(e01) + ϕ(e12) + · · ·+ ϕ(el−1,l) = x0 + ϕ(C).

But xl := x0, so this is impossible if ϕ(C) 6= 0, i.e., when C is unbalanced. Thus
⋂
a(C) =

∅. �

Lemma 78. If S ⊆ E and F ⊆ S is a maximal forest in S, then
⋂
a(S) =

⋂
a(F ).
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Proof. For a balanced circle, the equation xl = xl−1 + ϕ(el−1,l) is implied by the others in
Equation (3). Indeed, from the first l − 1 of those equations we infer that xl−1 = x0 +
ϕ(e01e12....el−2,l−1) = x0 + ϕ(C) − ϕ(el−1,l). Since C is balanced and since xl = x0, this
quantity = x0 +0−ϕ(el−1,l) = xl−ϕ(el−1,l). Thus, xl−1 = xl−ϕ(el−1,l), which is the desired
equation.

This implies that if x ∈
⋂
a(C\el−1,l), then x ∈ a(el−1.l). That is,

⋂
a(C\el−1,l) ⊆ a(el−1,l).

Now, for edge sets F and S as in the hypothesis, for each e ∈ S \ F there is a circle
C ⊆ F ∪ {e} that contains e. By the preceding calculation, a(e) ⊇

⋂
a(C \ e) ⊇

⋂
a(F ).

It follows that
⋂
e∈S\F a(e) ⊇

⋂
a(F ). So,

⋂
a(S) ⊇

⋂
a(F ). As the reverse inclusion is

obvious, we have equality. �

Lemma 79. For a forest F ⊆ E,
⋂
a(F ) is an affine flat whose codimension is #F .

Proof. We induct on the number of edges in F .
If there are no edges then the codimension is obviously 0.
A forest with at least one edge has a vertex of degree 1, say vk with edge emk. The

hyperplane a(emk) is given by the equation xk = xm + ϕ(emk), and no other hyperplane in
a(F ) has xk in its equation. Consequently, xk is unrestricted for x ∈

⋂
a(F \ emk), from

which we conclude that
a(emk) 6⊇

⋂
a(F \ emk)

and in
⋂
a(F ) we are imposing only the new restriction xk = xm + ϕ(emk), from which it

follows that
a(emk) ∩

⋂
a(F \ emk) 6= ∅.

Since a(emk)∩
⋂
a(F \ emk) 6= ∅, the modular law of dimension in An(K) applies; therefore

codim
⋂
a(F ) = codim

⋂
a(F \ emk) + 1, so by induction we have the result. �

Now we prove the theorem.
Case 1: S is unbalanced. Then S ⊇ C, an unbalanced circle, and

⋂
a(S) ⊆

⋂
a(C) = ∅

by Lemma 77.
Case 2: S is balanced. Let F be a maximal forest in S. Then

⋂
a(S) =

⋂
a(F ) by Lemma

78, which is not empty by Lemma 79. And codim
⋂
a(S) = codim

⋂
a(F ) = #F by Lemma

79.
By elementary graph theory #F = n − c(F ), which = n − c(S) since F is maximal in

S. Therefore rk
⋂
a(S), in L (A [Φ]), is equal to n− c(S) = rkΦ(S) (in the frame matroid).

Since the ranks match, the closure deduced from A [Φ] for balanced edge sets is the same
as that in F(Φ) for balanced edge sets. This implies that the closed sets in F(Φ) that are
balanced are in one-to-one correspondence (via the mapping a) with the flats of A [Φ]. �
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Lecture 12: The Lift Matroid, with Examples and Modular Coloring

6 December 2019
Notetaker: Andrew Lamoureux

Characteristic polynomial. Let’s begin with one of the main theorems about affino-
graphic arrangements—which (at last) gives a solid justificiation for the balanced chromatic
polynomial.

Theorem 80. For a field K, a group G ≤ K+, and a G-gain graph Φ, the characteristic
polynomial of the affinographic arrangement of Φ is pA [Φ](λ) = χb

Φ(λ).

Proof. For simplicity we write A := A [Φ]. Recall that for a balanced subset S ⊆ E := E(G)
and for S the corresponding set of hyperplanes in A ,

dim
⋂

S = n− rk
⋂

S = n− rk(S) = b(S) = c(S).

Then from the polynomial definitions and the balance property in Theorem 76,

pA (λ) =
∑

S⊆A :
⋂

S 6=∅

(−1)|S |λdim(
⋂

S ) =
∑

S⊆E:S balanced

(−1)|S|λb(S) = χb
Φ(λ). �

The lift matroid. Now we put the projectivization of an affine arrangement to serious use.
We will examine the projectivization of A [Φ], written A [Φ]P or AP[Φ], and infer from it a
new matroid of a gain graph.

Recall from Stanley’s lectures that for an affine hyperplane (or subspace) h in An(K), hP
is its extension into the projective space Pn(K). For an affine hyperplane arrangment A in
An(K), AP := {hP | h ∈ A } ∪ {h∞}, a hyperplane arrangement in Pn(K).

Note that h∞, the ideal hyperplane, is isomorphic to Pn−1(K). The arrangement induced
in h∞ by AP is A h∞

P := {hP ∩ h∞ | h ∈ A }; its matroid is denoted, as usual, by M (A h∞
P ).

It follows that M (A h∞
P ) ∼= M (AP)/h∞, the contraction matroid, by the natural correspon-

dence hP 7→ hP ∩ h∞. Recall also that hP ∩ h∞ = h′P ∩ h∞ if and only if h and h′ are
parallel.

We are going to give an intrinsic characterization of the matroid L0(Φ) implied by the
projectivization AP[Φ]. The first step is to state that characterization; then we prove it is
naturally isomorphic to M (AP[Φ]).

Let E0 := E ∪ {e0}, where e0 is a new object that is not in either E or V . We extend the
notion of balance to E0: we call S ⊂ E0 balanced if S ⊆ E and S is balanced as a subset of
E; any other subset of E0 is unbalanced.

Theorem 81. For any gain graph Φ, there is a matroid L0(Φ) with ground set E0 defined by
any of the following five equivalent axioms. This definition also applies to any biased graph
Ω.

I. A set S ⊆ E0 is a circuit of L0 if and only if it is of one of the following types:
i. a balanced circle,

ii. a contrabalanced tight handcuff (or tight bracelet),
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iii. a contrabalanced loose bracelet,

iv. a contrabalanced theta graph;
v. C ∪ {e0} for an unbalanced circle C.

II. A set S ⊆ E0 is an independent set of L0 if and only if it is of one of the following
types:

i. a forest,
ii. an unbalanced unicyclic graph,

iii. F ∪ {e0} for any forest F .
III. The rank function of L0 is

rkL(S) =

{
n− c(S), if S is balanced,

n− c(S) + 1, otherwise.

IV. The lattice of flats is Lat L0(Φ) = Latb(Φ) ∪ Lat0(Γ), where Γ = ‖Φ‖, the underlying
graph of Φ, and L0(Γ) := {A ∪ {e0}|A ∈ Lat(Γ)}.

V. The closure of S ⊆ E0 is

cl(S) =


bcl(S), if S is balanced,

clΓ(S) ∪ {e0}, if S ⊆ E is unbalanced,

clΓ(S \ {e0}) ∪ {e0}, if e0 ∈ S.

Not a Proof. Sadly, we will not prove this theorem; the proof is too long. We will, however,
prove in Theorem 83 that L0 is the right matroid for AP[Φ], which incidentally proves it is
a matroid when Φ has gain group K+. �

Definition 82 (Lift matroid). The extended lift matroid of Φ is the matroid L0(Φ) defined
in Theorem 81. The lift matroid L(Φ) is the restriction of L0(Φ) to the ground set E.

It should be clear that if Φ (or Ω) is balanced, the lift matroid L is the same as the
ordinary graphic matroid and as the frame matroid. It is more difficult to say when the lift
matroid coincides with the frame matroid. The obvious necessary and sufficient condition
is that there be no two vertex-disjoint unbalanced circles in any component of the graph;
but characterizing the gain graphs or biased graphs that meet that condition is hard and
presently unsolved (except for signed graphs–gain group {±1}–for which see [7].

Now, define aP to be the projective extension to E0 of the function a : E → A [Φ] defined
in Lecture 11. This function satisfies

aP(e) =

{
hP, when h = a(e) for some e ∈ E,
h∞, when e = e0.

That is, aP(e) = a(e)P for an edge e of Φ.

Theorem 83. The mapping aP is an isomorphism L0(Φ)→M (AP[Φ]).

We give two proofs that share steps but rely on different characterizations of the matroids.

First Proof. For simpler notation we write A for A [Φ], L0 = L0(Φ), and F = F(Φ) (the
frame matroid). We show M (AP) ∼=aP L0(Φ) by showing the ranks in the two matroids are
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Pn(K)

h∞ ∼= Pn−1

0

An(K) as Kn

∩h∞

Figure 12. The mapping ∩h∞ inverts to give a unique vector subspace of Kn.

the same. Let S ⊆ E0 be balanced; then

rkM
⋂
aP(S) = codim

⋂
aP(S) = codim

⋂
a(S) = rk

⋂
a(S)

= rkF(Φ) S = n− b(S) = n− c(S) = rkL(S),

where the second equality follows from
⋂
a(S) 6= ∅ and the fourth from the second part of

Theorem 76.
Suppose S is unbalanced, but e0 /∈ S. The graphic hyperplane h(eij) : xi = xj in An(K) has

projective extension hP(eij) in Pn(K) that satisfies {xj = xi}P∩h∞ = {xj = xi+c}P∩h∞ for
all c ∈ K because the hyperplanes are parallel. Hence, aP(e)∩h∞ = hP(e)∩h∞ for any edge
e ∈ E. This, in particular, implies that A h∞

P = H [Γ]h∞P . Because H [Γ] is homogeneous,

the mapping H [Γ]
∩h∞−−→ HP[Γ]h∞ is a rank-preserving bijection. That bijection implies a

matroid isomorphism M (H [Γ])h∞P
∼= M (H [Γ]) (see Figure 12).

Now consider S = T ∪ {e0} for some T ⊆ E. Then
⋂
aP(S) ⊆ aP(e0) = h∞, so⋂

aP(S) =
⋂
e∈T

(
aP(e) ∩ h∞

)
=
⋂
e∈T

(
hP(e) ∩ h∞

)
= h∞ ∩

⋂
e∈T

hP(eij).

Thus the rank of
⋂
aP(S) is

rk
⋂

aP(S) = codim
⋂

aP(S) = codim
⋂

hP(S)︸ ︷︷ ︸
n−c(T )

+ 1︸︷︷︸
h∞

. �

Second Proof. Again we write A for A [Φ]. This proof depends on showing that the closed
sets of L0(Φ) are the right ones for M (AP). For balanced closed sets, this is Theorem 76.

For unbalanced ones, since they all contain e0, which corresponds to h∞, they must cor-
respond to ideal flats of M (AP); in other words, subspaces in L (A h∞

P ). Such a flat is the
intersection with h∞ of a set of hyperplanes hP for h ∈ S where S is some subset of A . The
affine hyperplane h has equation xj − xi = c for a constant c, but its ideal part, hP ∩ h∞, is
independent of c; so we may replace A [Φ] by the arrangement H [Γ] of graphic hyperplanes
h(e) : xj = xi that are parallel to the hyperplanes a(e) of A . Since H [Γ] is homogeneous,
the flats s ∈ L (HP[Γ]) are determined by their ideal parts s∞ := sP ∩ h∞. Therefore,
L (A h∞

P ) ∼= L (HP[Γ]h∞) ∼= L (H [Γ]) ∼= Lat Γ ∼= Lat0 Γ with the third isomorphism given
by aP. That proves the ideal flats of AP correspond to the unbalanced flats of L0(Φ) via aP.
That completes the proof. �
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Popular Affinographics. Several affinographic arrangements that have received a lot of
attention in recent years are the real affine arrangements of certain integral gain graphs—
where the gain group is the additive group of integers, Z+, regarded as a subgroup of R+. I
will describe some of them. In each example I state the gain graph Φ; the arrangement is
A [Φ].

These graphs are a kind of partial group expansion: expansions of a base graph ∆ by
subsets of the gain group. To state the gains we assume a special orientation of the base
graph: the vertex set is V = {v1, . . . , vn} and edges are oriented upwards, i.e., from vi to vj
where i < j; we denote this oriented graph by ~∆. (Actually, we always use ~Kn.) Then, for

instance, the notation {1, 2,−3}~∆ means that each edge e is replaced by three edges with
gains 1, 2, and −3 in the upward direction; equivalently, the gains are −1, −2, +3 in the
downward direction.

Example 84. The Catalan arrangement is associated with the Catalan gain graph {0,±1} ~Kn,
or {0,±1}Kn. (The arrow over K is superfluous because the gain set is symmetric.) The
picture of an expanded edge eij (with i < j) is

vi vj

1

0

-1

This arrangement gets its name from the curious fact that the number of regions is a Catalan
number.

A variation is the hollow Catalan arrangement, with gain graph {±1} ~Kn. The picture is
the same except that the edge with gain 0 is missing.

A more elaborate variant is the extended Catalan arrangement, whose gain graph is Φ =
{0,±1, . . . ,±l} ~Kn. It has a hollow version as well, without the 0-edges.

Example 85. The Shi arrangment has the gain graph {0,+1} ~Kn. A picture is

vi vj

1

0

The absence of sign symmetry in the gains (i.e., the fact that there is a +1 edge eij but no
−1 edge eij) makes it more difficult to compute the Shi characteristic polynomial than the
Catalan arrangement’s.

Example 86. The Linial arrangement2 accompanies {+1} ~Kn.

The Shi and Linial arrangements also have extended variants, though their definitions are
not obvious.

Modular coloring. We wish to compute the characteristic polynomial pA (λ) of each ar-
rangement in our list, but there is a difficulty: we cannot count proper colorations in an
infinite group like Z+. The solution is to compute χb

Φ(λ) using colors in Z+
m, which is the

2Named for Nathan Linial.
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additive group of integers modulo m, using the next proposition. For a Z+-gain graph Φ, de-
fine Φ/m to have the same underlying graph and gains modulo m; that is, ϕΦ/m(e) := ϕΦ(e)
mod m. These are modular gains.

Theorem 87. For a Z+-gain graph Φ, χb
Φ(λ) = χb

Φ/m(λ) if, and only if, m does not divide
the gain of any unbalanced circle in Φ.

Proof. Let 〈Φ〉 be the biased graph of Φ. Then χb
Φ(λ) = χb

〈Φ〉(λ) and χb
Φ/m(λ) = χb

〈Φ/m〉(λ)

by the definition of χb. Also, 〈Φ〉 = 〈Φ/m〉 if and only if m is not a divisor of the gain of
any unbalanced circle, as then unbalanced circles are unchanged by passing from Φ to Φ/m.
This implies sufficiency.

For necessity, consider the class S of unbalanced edge sets that become balanced modulo
m. Then

(4) χb
Φ/m(λ)− χb

Φ(λ) =
∑
S∈S

(−1)|S|[λbΦ/m(S) − λbΦ(S)] =
∑
S∈S

(−1)|S|λbΦ(S)[λbΦ/m(S)−bΦ(S) − 1]

Let b0 := min{b(S) : S ∈ S } and S0 := {S ∈ S : b(S) = b0}. Then the term of degree
b0 in Equation (4) has coefficient −|S0|; that is, the coefficient of λb0 is reduced by |S0| in
passing from Φ to Φ/m. This proves that equality fails if any circle becomes balanced upon
going to modular gains. �

The modular strategy for computing the balanced chromatic polynomial is to find infinitely
many “good” values m, not dividing any circle gain, at which to calculate χb

Φ(m) by group
coloring using the finite cyclic group Z+

m. We obtain χb
Φ/m(m) by counting proper Z+

m-

colorations, and when m is a good modulus this number equals χb
Φ(m). Doing this for n

good moduli m determines the balanced chromatic polynomial, as we know the degree (n)
and the leading coefficient (1). (In practice the same counting procedure succeeds for all
m > maxC∈C (Φ) ϕ(C) so there is no advantage to restricting to only n moduli. For the same
reason there is no advantage to k-coloring; 1-coloring is simpler and sufficient.)

Exercise 88 (The Catalan Polynomial). Compute the characteristic polynomial of the Cata-
lan arrangement by using modular group coloring of the associated gain graph.

Exercise 89 (The Shi Polynomial). Compute the characteristic polynomial of the Shi ar-
rangement by using modular group coloring of the associated gain graph. The Catalan
computation might be helpful, depending on what approach you take.

This was a significant research question for a time.

Exercise 90 (The Hollow Catalan Polynomial). Compute the characteristic polynomial of
the hollow Catalan arrangement.

41



Lecture 13: Modular Coloring for the Catalan Arrangement

22 January 2020
Notetaker: Nicholas Lacasse

Review. We consider affine hyperplane arrangements in An(R), in particular those that
arise from an integral gain graph, that is, Φ with the additive gain group Z+. An edge
e = vivj with gain g in Φ gives the hyperplane xj − xi = g. (Note that this makes the
[arbitrary] orientation of the edge significant. If the edge were oriented in the opposite
direction with gain g, it would give the hyperplane xi−xj = g.) The hyperplane arrangement
determined by Φ is written A [Φ].

The Catalan arrangement Cn is {xj − xi = 0, 1,−1 for i < j} in An(R) where An denotes
n dimensional affine space. The gain graph corresponding to the Catalan arrangement is
{0,±1} ~Kn, that is, Kn with three edges, bearing gains 0, 1, and −1, between each pair of ver-

tices. We call it the Catalan gain graph. (Here ~Kn denotes Kn with vertex set {v1, v2, . . . , vn}
and all edges oriented upward for the assignment of gains. The same convention can be ap-
plied to any graph.) To show why this notation is useful, I mention the Shi arrangement,

Sn := A [{0, 1} ~Kn], whose hyperplanes are xj − xi = 0, 1 for i < j.
Our goal is to compute the characteristic polynomial of the Catalan and related arrange-

ments. We achieve this by using three previous theorems. The first two theorems are:

Theorem 91 (Theorem 80).

pA [Φ](λ) = χb
Φ(λ) :=

∑
S⊆E: S balanced

(−1)#Sλb(S).

Theorem 92 (Theorem 44 with k = 1). If G is a finite group, then χb
Φ(#G) is the number

of proper G-colorations of Φ.

A proper G-coloration of Φ is a mapping γ : V (Φ)→ G such that, for each edge e = vivj,
say with gain g, then γ(vj) 6= γ(vi)g. It is a proper 1-coloration with simpler notation.

These results let us use coloring methods to determine the characteristic polynomial of
an arrangement. However, if our group is, like Z+, infinite, then so is the number of proper
colorations. That creates an obvious difficulty. Fortunately, we have a third theorem to deal
with the difficulty. Let B(Φ) denote the set of balanced circles of Φ.

Theorem 93 (Definition 41). Suppose the underlying graphs of Φ and Φ′ are the same and
moreover B(Φ) = B(Φ′). Then χb

Φ(λ) = χb
Φ′(λ).

So if we can change the gains on the Catalan gain graph so they are in a finite group,
without changing the list of balanced circles, then we may get a meaningful count of proper
colorations. This can be done. The idea is to take the integral gains modulo m for m > n,
changing the gain group from Z+ to Z+

m. This will not destroy balance of any circle because
if a circle has gain 0 in Z, it has gain 0 modulo m. It will not create new balanced circles
because, since the largest magnitude of a gain is 1, no circle has gain larger than n. We
formulate this method as a lemma.

Theorem 94. Suppose Φ is an integral gain graph and m ∈ Z>0 is not the gain of any circle
in Φ. Let Φ/m be the same gain graph with gains interpreted modulo m, so the gain group
is Zm. Then χb

Φ(λ) = χb
Φ/m(λ) and χΦ(λ) = χΦ/m(λ).
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Catalan calculations. We are now tasked with counting the number of proper Z+
m-colorations

of {0,±1}Kn. This means we need to count functions γ : V = {v1, . . . , vn} → Z+
m such that

γ(vj)−γ(vi) 6= 0,±1 for all i 6= j. We encourage the reader to close the “book” and attempt
to work out a solution before continuing.

Here is our class’s solution to the coloring problem. We view the vertices vi as objects
that we will be placing into bins. The bins are labeled with integers from 0 to m − 1. No
two vertices may be placed in the same bin, so there will be m− n empty bins. Let us label
the empty bins with the integers from 0 to m − n − 1. Now fix vertex v1 in the space to
the left of bin 0 and we place the remaining vertices in the spaces between empty bins, at
most one to each space. There are m− n− 1 such spaces and we choose n− 1 of them for
vertices, in

(
m−n
n−1

)
possible ways. Those vertices may be permuted in any order, giving us a

factor of (n− 1)!. Now we have a sequence of length m that consists of n vertices and m−n
empty bins, with v1 in position 0. Assign each vertex the number that is its position in this
sequence; thus each vi gets a label in Zm. To allow for the m ways v1 could be labelled, we
can shift the whole pattern cyclically by any amount from 0 to m − 1. This gives a total
number of labellings equal to m

(
m−n−1
n−1

)
(n− 1)!. Each labelling is a proper Z+

m-coloration of
{0,±1}Kn/m and we obtain every such proper coloration.

Let Cn denote the n-th Catalan number: Cn = 1
n+1

(
2n
n

)
.

Proposition 95. For the Catalan arrangement Cn:
(1) pCn(λ) = λ(λ− n− 1)n−1.
(2) Cn has n!Cn regions.

Proof. By Theorem 92 we have found the balanced chromatic polynomial of {0,±1}Kn/m.
The first conclusion follows by Theorems 87, 93, and 91.

The second part follows, according to [9, Theorem 2.5], by calculating (−1)npCn(−1). �

Exercise 96. How many bounded regions does the Catalan arrangement have?

The factor n! in r(Cn) = n!Cn is the number of regions of the complete-graph arrangement
A [0Kn]). Since the latter is a subarrangement of the Catalan arrangement, each region of
the Catalan arrangement is a piece of a region of the complete-graph arrangement. The
numerical relationship r(Cn) = Cnr(A [0Kn])) makes us wonder if there is a combinatorial
relationship. Lo and behold!

Corollary 97. Each region of the complete-graph arrangement A [{0}Kn] contains the same
number of regions of the Catalan arrangement and also the same number of bounded regions.

Thus, the Catalan arrangement divides a region of the complete-graph arrangement into
Cn subregions. This is the source of its name.

Proof. One can see from the defining equations of the hyperplanes and the defining inequal-
ities of the regions that the symmetric group Sn acts freely and transitively on the regions
of the complete-graph arrangement and also on those of the Catalan arrangement.

In more detail: The symmetric group Sn acts on An(R) by permutation of the coordinates
and this action preserves both the complete-graph arrangement and the Catalan arrange-
ment. Furthermore, since each region of A [0Kn]| consists of the points with a certain linear
ordering of coordinates, xσ(1) < xσ(2) < · · · < xσ(n) for some σ ∈ Sn, the action preserves
whole regions and is transitive on the regions (indeed, sharply transitive). The consequence
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is that every region of A [0Kn] is dissected by Cn in the same way, so into the same number
of Catalan regions, and the same number of bounded Catalan regions. �

Graphic arrangements. The complete-graph arrangement has two formulas: A [{0}Kn]
and H [{1}Kn]; these are the same arrangement. It is, respectively, both an affinographic
arrangement (from a lift matroid) and a homogeneous arrangement (from a frame matroid).
We call this the complete-graph arrangement or Kn-arrangement for short.3 In each case
we have Kn with all gains equal to the neutral element, so the frame and lift matroids are
identical. The same equation holds for any graph, not only Kn. We call these arrangements
graphic. They have been much studied; in particular they are well defined over every field
of every characteristic.

Related to Catalan. Here is a closely related arrangement, with a nice exercise.

Example 98. The hollow Catalan arrangement is C ◦n = A [{±1}Kn]. That is, it is the
Catalan arrangement without the graphic hyperplanes xi = xj.

Exercise 99. Calculate the characteristic polynomial pC ◦n (λ) and the number of regions of
C ◦n . How many bounded regions does the hollow Catalan arrangement have?

And here is another related arrangement with (naturally) another exercise.

Example 100. The extended Catalan arrangement for a positive integer k is

Cn,k = A [{0,±1,±2, . . . ,±k}Kn].

There is also the hollow extended Catalan arrangement, C ◦n,k, whose definition is obvious.

Exercise 101. Calculate the characteristic polynomial and the number of regions of Cn,k.
How many bounded regions are there?

3It is widely known as the “braid arrangement” but that name really belongs only to the complex Kn-
arrangement.
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Lecture 14: Finite Field Method vs. Modular Coloring

24 January 2020
Notetaker: Mike Gottstein

Example: The hollow Catalan arrangement. The hollow Catalan arrangement is
A [{±1}Kn], with gain group Z+. We calculate the characteristic polynomial by count-
ing the number of proper colorations of the hollow Catalan gain graph {±1}Kn modulo m,
i.e., proper group colorings of the gain graph in the group Z+

m. We have to choose m care-
fully: no circle can have gain that is a multiple of m. That preserves the balanced chromatic
polynomial, by Theorem 87. Since n is the largest possible gain of a circle in {±1}Kn, the
obvious thing to do is to choose m > n.

The calculation is similar to that for the Catalan gain graph, but we have to allow for the
fact that vertices may have the same color. Thus, we consider a partition of V into k parts,
of which there are S(n, k) (the Stirling number of the second kind). The partition consists
of the sets of vertices having the same color; each part has one color, and every part has a
different color from every other. The number of ways to color the k parts is the same as for
the Catalan gain graph {0,±1}Kk with k vertices, as in Lecture 13; it is m(m− k − 1)k−1.
We have to multiply this by S(n, k) for the number of k-partitions of V and sum over all
possible numbers of parts. We get this:

Proposition 102. For the hollow Catalan arrangement C ◦n with n ≥ 1 :
(1) The characteristic polynomial is

pCn(λ) = λ
n∑
k=1

S(n, k)(λ− k − 1)k−1.

(2) The number of regions is
n∑
k=1

S(n, k)(2k)k−1 =
n∑
k=1

S(n, k)k!Ck.

(3) The number of bounded regions is
n∑
k=1

S(n, k)(2k − 2)k−1 =
n∑
k=1

S(n, k)k!C2k−2.

The “finite field” method. The foundation of the finite field method is a theorem of
Crapo and Rota. Let’s consider an arrangement A in An(Fq).

Theorem 103 (Critical Theorem). The number of points of An(Fq) not in
⋃

A is pA (q).

Proof. For x ∈ L (A ), define f(x) := #x = qdim(x) and g(x) := #(x \
⋃
y>x y). Then f(x) =∑

y≥x g(y), so by Möbius inversion g(x) =
∑

y≥x f(y)µ(x, y). This equals
∑

y≥x q
dim(y)µ(x, y).

Setting x = 0̂, we have
∑

x∈L (A ) q
dim(y)µ(0̂, y) = pA (q). �

Now suppose we have an integral arrangement A in An(R), What is its characteristic
polynomial?

Let Ap = A mod p for a prime p, so Ap is an arrangement in An(Fp). If L (Ap) ∼= L (A ),
then pAp(λ) = pA (λ). Now take a prime power, q = pe; we can think of Ap as generating
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an arrangement Aq (with the same defining equations) in An(Fq) and we are assured that
L (Ap) ∼= L (Aq). There are infinitely many q’s for each p, so we could try to calculate
#(An(Fpe) \

⋃
Ape) for all e ≥ 1, therefore getting a formula for pA (λ). (Tip: This is not

what people do. But they could.)
The crucial requirement is that L (Ap) ∼= L (A ). So, when is it true? Let’s be more

precise about the arrangement. Say A = {hαi,ci : i = 1, . . . , l}, with l hyperplanes of the
form hα,c = {x ∈ An(R) : α · x = c}.

Since dependence of the hyperplanes corresponds to dependence of the defining equa-
tions, look at the matrix U =

(
α1 α2 . . . αl

)
∈ Mn×l(Z) and the 1 × l matrix c =(

c1 c2 . . . cl
)
. All the hyperplane equations are represented by the matrix equation

UTx = cT . The solution set of this system of equations is
⋂

A . Now projectivize to AP and

let U ′ :=

(
U
c

)
. For any subarrangement S ⊆ AP, the rank is equal to the largest order of

a nonsingular square submatrix of U ′S , where the subscript means only taking the columns
corresponding to hyperplanes in S . If every such submatrix remains nonsingular modulo
p, then every subset of columns in U ′ has the same rank in U ′ mod p, and that implies
L (Ap) ∼= L (A ). A sufficient condition for preserving nonsingularity is that p does not
divide the determinant of any nonsingular square submatrix of U ′. It follows that almost all
primes, and all sufficiently large primes, give the desired lattice isomorphism. That proves:

Theorem 104 (Finite Field Method). Given an integral arrangement A in An(R), for every
sufficiently large prime p the modular arrangement Ap has the same characteristic polynomial
as does A .

Thus, the Critical Theorem enables us to obtain pA (λ) by computing the number of points
of An(Fp) \

⋃
Ap for all large primes p. This is how the finite field method works. Note that

we do not need finite fields, only prime fields. In other words, we may work modulo prime
numbers. In fact (but this is not part of the finite field method), we could work modulo any
positive integer m that is relatively prime to all the nonzero subdeterminants of U ′ (no one
does this).

Affinographic arrangements. For affinographic arrangements, where every equation has
the form xj − xi = c, the finite-field method is simpler because the matrix U , the top part
of U ′, is totally unimodular (every subdeterminant is 0 or ±1) so all primes are good as far
as concerns determinants in U . The other subdeterminants of U ′ are those that use c. The
only nonzero ones we need to worry about are those associated with a circle C. The circle
has l vertices and edges. The l × l submatrix UC of U corresponding to those vertices and
edges has determinant 0, so it is not of concern, but what is of concern is the l× l submatrix
of U ′ obtained by substituting for one row (any one row) of UC the row cC of c. (In other
words take the columns of C with all the vertex rows of C and the gain row c; then delete
any one vertex row to get a square matrix.) Call this matrix U ′C ; then detU ′C = ±ϕ(C).
Therefore, in the finite field method we can use any prime that does not divide the gain of
an unbalanced circle.

Exercise 105. Prove the preceding paragraph. In particular, prove the determinant formula.

This works. In fact, the determinant formula proves:
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Proposition 106. Given an integral gain graph Φ, the finite field method works on A [Φ]
for a prime power pe if and only if p does not divide the gain of any unbalanced circle in Φ.

But it is simpler to use modular coloring directly. For one thing, we are not restricted
to primes. For a second, we immediately see exactly which moduli are valid: every positive
integer m that is not a divisor of any nonzero circle gain.

Modular coloring does not appear to count points an affine space, unlike the critical
Theorem, but in fact it is not so different. Suppose we have an integral gain graph Φ
and consider a coloration γ : V → Zm. We can view γ as the vector (γ(v1), . . . , γ(vn)) in
ZVm = Znm. The rule for γ to be a proper coloration is that it avoids all the hyperplanes of
Am[Φ]. In other words, the difference is not that great. On the other hand, it is not that
little, since the Critical Theorem is false in Znm if m is composite. It is only the special form
of affinographic hyperplanes that lets us use vectors in Znm (which we call colorations) to get
the characteristic polynomial.

Example: The Shi arrangement. This is the arrangement Sn = A [{0, 1} ~Kn] associated

with the Shi gain graph, {0, 1} ~Kn. The computation via modular coloring is simple. The
0-edges ensure that no two vertices have the same color, so as with the Catalan arrangement
we can put the n vertices into spaces between m−n markers to make a sequence of m places
labelled by the colors 0, 1, . . . ,m − 1 ∈ Zm. The rule for the Shi arrangement is that two
vertices may have adjacent colors but if they do, say γ(vi) = γ(vj) ± 1 where i < j, then
γ(vj) 6= γ(vi) + 1 due to the 1-edges. That means that if we have a (cyclically) consecutive
sequence of colors applied to a bunch of vertices, those vertices must be in decreasing order
by subscript. And that means that the order of vertices in a bunch that have consecutive
colors is determined. So, all we need to do is place v1 in the last place of our sequence
(position m − 1) and distribute the other n − 1 vertices into the m − n spaces arbitrarily
(there are (m− n)n−1 ways to do that. Then we rotate the sequence so v1 is in any position
(m ways). That gives each proper Zm coloration exactly once, so we have the characteristic
polynomial.

Proposition 107. For the Shi arrangement Sn with n ≥ 1 :
(1) The characteristic polynomial is

pSn(λ) = λ(λ− n)n−1.

(2) The number of regions is
(n+ 1)n−1.

(3) The number of bounded regions is

(n− 1)n−1.

The number of regions equals the number of labelled trees of order n + 1; this suggests
finding an explicit bijection, which has been done (cf. Stanley).

Exercise 108. Does the equivalent of Corollary 97 apply to the Shi arrangement? Think
about why there should be a certain answer (yes or no). Then see if you can prove it.

The fundamental region of the complete-graph arrangement A [0Kn] is the region defined
by x1 < x2 < · · · < xn. The Catalan arrangement divides this fundamental region into Cn
Catalan regions.
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Problem 109. Into how many regions does the Shi arrangement divide the fundamental
region of the complete-graph arrangement?

Answer using gain graphs. That would be a good research result, especially if you develop
a method.

If your method allows, give a complete description of the subregions obtained from the
fundamental region of A [0Kn].
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Lecture 15: More of the Same

29 January 2020
Notetaker: Shuchen Mu

The proof of Corollary 97 cannot work for the Shi arrangement Sn because for each pair of
coordinates (i, j) with i < j there is a hyperplane xj−xi = 1 but no hyperplane xi−xj = 1.
Thus, a transposition does not preserve the Shi arrangement and the image of a Shi region
is not a region any more. Nonetheless, the Shi regions have other interesting combinatorics.
Since as we have seen

pSn(λ) = λ(λ− n)n−1,

thus r(Sn]) = (n + 1)n−1, which is well known (since Cayley) to be the number of span-
ning trees of Kn+1. This coincidence naturally invites a combinatorist to seek a proof by
bijection—and it has been done.

Example: Root system and threshold arrangements and their perturbations. A
main example of two-term hyperplane arrangements H [Φ] is arrangements obtained from
the classical root systems (already introduced in Lecture 10). Root systems originated in
Lie algebra but they have turned out to be widely interesting, including in combinatorics.
Stanley [9, Section 5.1] defines the main ones in terms of vectors and dual hyperplanes, but
I will define them in terms of vectors and gain graphs over the 2-element gain group {±},
i.e., signed graphs.

There are four infinite sequences of classical root systems, written An−1, Bn, Cn, and Dn,
each one naturally described in Rn, and there are also finitely many exceptional root systems,
which do not fit well with gain graphs so I will ignore them. To describe the classical ones,
I write bi for the ith standard unit vector in Rn. The linear-algebra dual to a vector v is the
hyperplane {x ∈ Rn : v · x = 0}.
(1) An−1 = {bi − bj : i 6= j}. The dual arrangement is An−1 = H [+Kn], as you can easily

verify.
(2) Dn = An−1 ∪ {±(bi + bj) : i 6= j}. The dual arrangement is Dn = H [±Kn].
(3) Bn = Dn ∪ {bi : i ≤ n}. The dual arrangement is Bn = H [±K ′n], where the prime

denotes a half edge at every vertex. (A half edge has degree 1 and has no gain.)
(4) Cn = Cn ∪{2bi : i ≤ n}. The dual arrangement is Cn = H [±K◦n], where the superscript

denotes a negative loop at every vertex. While Cn 6= Bn, the duals are the same:
Bn = Cn. (Do not confuse this with the Catalan arrangement.)

We met these arrangements in Lecture 10, Example 68 et seq., but at that time I didn’t
mention the root systems themselves. I add to this list the threshold arrangement :

(5) Tn = {±(bi + bj) : i 6= j} and the dual arrangement, which is the threshold arrangement
Tn = H [−Kn].

There are many questions related to root systems of the following kind:

Problem 110. Generalize a construction or property from affinographic arrangements (like
the Catalan and Shi arrangements) to similar affine perturbations of Bn, or possibly Dn.
(The main interest for combinatorics at present is in Bn.) For instance, there are Type B
Catalan and Shi arrangements. One question, of course, is the characteristic polynomials.
Another is to describe the dissection of the fundamental region of the corresponding root
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system arrangement, as with the Catalan and Shi arrangements in relation to An−1. The
same questions can be asked for Catalan and Shi threshold arrangements, on which there
has been some work: see [5, 6].
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Lecture 16: Exponential Sequences

Feb. 3, 2020
Notetaker: Andrew Lamoureux

We consider a remarkable property of certain sequences of arrangements of increasing
dimensionality and its interpretation in terms of gain graphs. We start by copying Stanley:

Definition 111 (Stanley’s definition). Let K be a field. A sequence (An | n ≥ 1) of
hyperplane arrangements is an exponential sequence of arrangements if it satisfies:

(S1) each An is an affine hyperplane arrangement in An(K);
(S2) each An is affinographic (i.e., each hyperplane is an affine translate of a graphic hyper-

plane); and
(S3) for each n and B ⊆ [n], the hyperplanes with coordinates in B yield an arrangement

An:B such that L (An:B) ∼= L (A|B|).

I want to impose a stronger axiom than (S3). (A1, A2) are the same but (A3) is more
restrictive and implies (S3).

Definition 112 (Our definition). A sequence (An | n ≥ 1) of hyperplane arrangements is
an exponential sequence of arrangements if it satisfies:

(A1) each An is an affinographic hyperplane arrangement A [Φn] in An(K);
(A2) each Φn is an K+-gain graph of order n with V (Φn) = {vi | i ∈ [n]}; and
(A3) for each n and B ⊆ [n], the induced subgraph Φn:B ∼= Φ|B|.

The difference between (S3) and (A3) should not bother us. I expect that in every case
of interest, it is the underlying gain graphs, not only the semilattices, that are isomorphic.

Viewing this in terms of K+-gain graphs leads to a simple generalization.

Definition 113. Let G be a group. A sequence (Φn | n ≥ 1) of gain graphs is an exponential
sequence of gain graphs if it satisfies:

(G1) each Φn is a finite G-gain graph of order n with V (Φn) = {vi | i ∈ [n]}; and
(G2) for each n and B ⊆ V (Φn)], the induced subgraph Φn:B ∼= Φ|B|.

Let’s examine (A3) (equivalantly, (G2)) carefully. For |B| = 1, it says nothing. For

|B| = 2, by definition Φ2 = L ~K2 for some finite L ⊆ K. Hence for all vi, vj ∈ V (Φn),

Φn:{vi, vj} ∼= L ~K2, and this isomorphism is natural in the sense that it preserves structure
(not necessarily in the sense of category theory). Recall that an isomorphism of gain graphs
α : Φ→ Φ′ is an isomorphism ‖Φ‖ → ‖Φ′‖ of underlying graphs such that ϕ(e) = ϕ(eα) for
every edge e.

Now consider |B| = 3. The gain graph Φ3 must be one of the following (up to permuting
vertices), with the arrows showing the sense in which to read the gains in L:

1

2

3

L L

L

transitive

1

2

3

L L

L

cyclic

If L is sign-symmetric, i.e., L = −L, there is no difference between these two possibilities.
Otherwise, there is, for n ≥ 3: every edge vivj of Kn has a preferred orientation (the one
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in which the gain set is L, not −L) and every induced subgraph of order 3 of every Φn for
n > 3 is of the same kind: all are transitive, or all cyclic. But if all are cyclic, we have a
failure at Φ4. Suppose the outer triangle 123 in Φ4 is cyclic, as in the following picture:

1

2

3

4

To make 4124 cyclic, edge 14 must be oriented 1 → 4, but to make 4143 cyclic, edge 14
must be oriented 4→ 1. Hence, Φ4 cannot be oriented cyclically. The conclusion is:

Proposition 114. An exponential sequence of gain graphs satisfies Φn
∼= L ~Kn for some

finite subset L ⊆ G.
An exponential sequence of arrangements (per Definition 112) satisfies An

∼= A [L ~Kn] for
some finite subset L ⊆ K+.

Proof. Suppose L is not sign-symmetric (otherwise, this is clear). We show that V (Kn) =
{vi | i ∈ [n]} can be totally ordered so as to prove the theorem. Define vi < vj when the
function vi 7→ v1, vj 7→ v2 is an isomorphism Φn:{vi, vj} ∼= Φ2. This is a strict total order:

(1) (Irreflexivity) There is no bijection {vi} → {v1, v2}.
(2) (Anti-symmetry) Since −L 6= L, it can’t be the case that both bijections {vi, vj} →
{v1, v2} induce gain-graph isomorphisms; one must give reversed direction of gains.

(3) (Totality) If vi 6< vj, then the opposite function, vi 7→ v2 and vj 7→ v1, must be an
isomorphism.

(4) (Transitivity) From the analysis of Φ4 we know that vi < vj < vk < vi is impossible,
so by totality, vi < vj < vk implies vk < vi.

We have proved that Φn
∼= L ~Kn by a permutation of the vertex set, namely, the permutation

that carries the ordering vi1 < vi2 < · · · < vin of V ( ~Kn) to the natural ordering v1 < v2 <
· · · < vn. �

Example 115 (A counterexample). To see that (A3) truly gives a different definition from
(S3), consider the following example. Let A be an infinite group with an element g of infinite

order. Define Φn := g ~Kn for n ≤ 100 and Φn := (2g) ~Kn for n > 100. Then the biased graphs
satisfy 〈Φn〉 = (Kn, ∅) for all n, hence Latb(Φn:B) ∼= Latb(Φ|B| for every B ⊆ V (Φn), whence
L (An:B) ∼= L (A|B| for every B; yet Φn:{vi, vj} 6= Φ2 for n > 100.

Exercise 116. Prove the statement about the biased graph.

Now we have the surprising main theorem. To simplify the notation I will write pn(t) for
pAn(t) and so forth. Recall that pn(−1) = (−1)nr(An), the number of regions with a sign;
that is how Stanley writes the theorem.

Theorem 117 (Stanley [9, Theorem 5.17]). Let (A1,A2, . . .) be an exponential sequence of
arrangements. Then

∞∑
n=0

pn(t)
xn

n!
=
( ∞∑
n=0

pn(−1)
xn

n!

)−t
.
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The expression
∑∞

n=0 pn(t)x
n

n!
is the exponential generating function for the sequence pn(t).

Stanley writes (−1)nrn instead of pn(−1) because rn := r(An) is the number of regions of
the arrangement, obviously a number of particular interest. I will adopt that notation in
examples in the next lecture. But for now, I wish to rewrite his proof in terms of gain graphs.
Thus, I assume we have an exponential sequence of gain graphs Φn with balanced chromatic
polynomials χb

n(t) := χb
Φn

(t). We assume that p0(t) = χb
0(t) = 1.

Proof. The theorem can be rewritten as

(5) LHS =
∑
n≥0

χb
n(t)

xn

n!
=
(∑
n≥0

χb
n(−1)

xn

n!

)−t
= RHS.

Our proof takes advantage of the classic exponential formula:∑
n≥0

xn

n!

∑
order-n objectsO

f(O) = exp
(∑
n≥1

xn

n!

∑
order-n connected objectsO

f(O)
)
,

provided that f is a function such that f(O) = the product of f(O′) over all connected
components O′ of O. For example, the left side may count the number of n-vertex forests
while the right side exponent counts the number of n-vertex trees; the left side may count
the number of 2-regular graphs of order n and the right side would count the number of
n-vertex circles. (For counting, f(O) = 1.) In our case, we are interested in the balanced

closed sets in L ~Kn on the left and the connected balanced closed sets in L ~Kn on the right,
and instead of counting we are using the balanced chromatic polynomial. Did I mention that
for a disjoint union of gain graphs,

χΦ1∪Φ2(λ) = χΦ1(λ)χΦ2(λ) and χb
Φ1∪Φ2

(λ) = χb
Φ1

(λ)χb
Φ2

(λ)?

These formulas follow easily from the definitions and the facts that the size and number of
balanced components of an edge set of the disjoint union are additive:

|S| = |S ∩ E1|+ |S ∩ E2| and b(S) = b(S ∩ E1) + b(S ∩ E2).

We know that in (5),

LHS =
∑
n≥0

∑
S∈Latb Φn

µ(∅, S)tn−rk(S)x
n

n!
=
∑
n≥0

∑
S∈Latb Φn

µ(∅, S)tb(S)x
n

n!
.

Let S have the balanced components S1, . . . , Sk. They yield a partition π(S) of Vn := V (Φn)

into the subsets V (S1), . . . , V (Sn). Then µ(∅, S) =
∏k

i=1 µ(∅, Si) because the interval from

∅ to S is a product: [∅, S] ∼=
∏k

i=1[∅, Si] (Exercise!). We can rewrite the Möbius product in

terms of π(S): µ(∅, S)tb(S) = µ(∅, S)tk =
∏k

i=1 µ(∅, Si)t. Since Si = S:V (Si) and π(S) =
{V (S1), . . . , V (Sk)},∑

S∈Latb Φn

µ(∅, S)tb(S) =
∑

S∈Latb Φn

k∏
i=1

µ(∅, Si)t =
∑
S

∏
B∈π(S)

µ(∅, S:B)t

=
∑
π∈Πn

∏
B∈π

( ∑
S:π(S)=π

µ(∅, S:B)t
)

=
∑
π

∏
B∈π

χ̃|B|(t),
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where we define the convenient notation

χ̃n(t) :=
∑

S∈Latb Φn:π(S)={[n]}

µ(∅, S)tb(S) =
∑

S∈Latb Φn:π(S)={[n]}

µ(∅, S)t

because b(S) = 1 if π(S) = {[n]}.
Now we rewrite the left side in (5) using magic:

LHS =
∑
n≥0

χb
n(t)

xn

n!
=
∑
n≥0

∑
π

∏
B∈π

χ̃|B|(t)t
b(S)x

n

n!
= exp

(∑
n≥1

χ̃n(t)
xn

n!

)
= exp

(
t
∑
n≥1

∑
S∈Latb Φn:π(S)={[n]}

µ(∅, S)
xn

n!

)
=
[

exp
(∑
n≥1

∑
S∈Latb Φn:π(S)={[n]}

µ(∅, S)
xn

n!

)]t
.

We substitute t = −1 to get another formula:∑
n≥0

χb
n(−1)

xn

n!
= exp

(∑
n≥1

χ̃n(−1)
xn

n!

)
=
[

exp
(∑
n≥1

∑
S∈Latb Φn:π(S)={[n]}

µ(∅, S)
xn

n!

)]−1

.

Compare the last expressions of these two formulas: They are the same except for the
exponent. Therefore, (∑

n≥0

χb
n(−1)

xn

n!

)−t
= LHS,

which proves (5) and the theorem. �

The proof never uses arrangements; it is valid for any exponential sequence of gain graphs.
That is, we have a generalization independent of fields.

Theorem 118. If (Φn | n ≥ 0) is an exponential sequence of gain graphs, then
∞∑
n=0

χb
n(t)

xn

n!
=
( ∞∑
n=0

χb
n(−1)

xn

n!

)−t
.

(Stanley’s Exercise 5.10 is a much more interesting and less expected generalization.)

Example 119. Suppose G is a finite group and Φn = GKn. Then Theorem 118 applies. In
this case we know the balanced chromatic polynomial: it is |G|n(t/|G|)n and the evaluation
at −1 is (|G| − n+ 1)(|G| − 2n+ 1) · · · (1).
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Lecture 17: More Exponential Sequences; More Gain Expansions

5 February 2020
Notetaker: Mike Gottstein

Let’s explore some applications of Theorem 117 (Stanley’s Theorem 5.17).

Example 120 (Catalan as exponential sequence). We begin with the Catalan arrangement
Cn = A [{0,±1}Kn] and what we can do for it with Theorem 117. The Catalan generating
function has the following well known formula (e.g., see Wikipedia!):

(6) C(x) :=
∑
n≥0

Cnx
n =

1−
√

1− 4x

2x
=

2

1 +
√

1 + 4x
.

Using gain graphs we formulated the following balanced chromatic polynomial for the
affinographic arrangement A [{±1, 0}Kn], which is the Catalan arrangement Cn. χb

{±1,0}Kn
(λ)

which we have shown is equal to the characteristic polynomial pCn(λ). The Catalan sequence
(C1,C2, . . .) is an ESA, so by Theorem 117, r(Cn) = n!Cn, and Equation (6),∑

n≥0

pCn(t)
xn

n!
=
(∑
n≥0

(−1)nn!Cn
xn

n!

)−t
=

(∑
n≥0

Cn(−x)n
)−t

=
(1−

√
1 + 4x

2x

)−t
=
(1 +

√
1− 4x

2

)t
.

Substituting t = +1, the left-hand side is
∑

n≥0(−1)nb(Cn)x
n

n!
, where b(Cn) is the number

of bounded regions of Cn, so ∑
n≥0

b(Cn)
(−x)n

n!
=

1 +
√

1− 4x

2
.

Example 121 (The complete graph as exponential sequence). Let’s see Theorem 117 at work
in an obvious case. Consider the complete graph arrangements A [Kn], where pn(t) = (t)n
and rn = n!. In Theorem 117 the left side is

∑
n≥0

(
t
n

)
xn = (1 + x)t by the binomial

series, while the right hand side is
(∑

n≥0 n! (−x)n

n!

)−t
, which equals ( 1

1+x
)−t = (1 +x)t by the

geometric series. So the theorem holds here, unsurprisingly.

Example 122 (Shi as exponential sequence). Now a not-so-obvious case, the Shi arrange-
ments Sn. Here pn(t) = t(t− n)n−1 and rn = (n+ 1)n−1, so by Theorem 117,∑

n≥0

t(t− n)n−1x
n

n!
=
(∑
n≥0

(n+ 1)n−1−xn

n!

)−t
,

which is (to put it mildly) a less trivial identity to check.
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Arrangements connected to interval orders. An interval order is a partially ordered
set that can be represented by intervals Ii = [ai, bi] for i = 1, 2, . . . , t in the real line, with
Ii < Ij ⇐⇒ bi < aj. See Stanley [9, Section 5.5] for more about interval orders. Here my
interest is in the arrangements he finds in that connection.

The arrangements are of the following kind: Take a finite subset L = {l1, l2, . . . , lt} ⊂ R>0.
Stanley’s arrangement IL in An(R) has the hyperplanes xj−xi = lk for all i 6= j and all k =
1, . . . , t. This is precisely the affinographic arrangement A [±LKn].

Holding L fixed, these arrangements, or gain graphs, form an exponential sequence; but
we would have trouble applying Theorem 117 because we have no way to compute the
characteristic polynomial (that is, the balanced chromatic polynomial χb

±LKn
(λ)) or the

number of regions.
The gain graph ±LKn is a kind of gain expansion of Kn, similar to group expansions

(Theorem 63) but not so easy to compute with since we expand by a small subset of the gain
group R+. We have no general formula for χb

±LKn
(λ). However, if we can convert the gains

li to integers, we would have gain group Z+ and we could apply modular coloring. But is
that possible? Yes!

Proposition 123 (Special Integralization). Suppose L = {l1, l2, . . . , ln} ⊂ R>0. Then there
exists L′ = {l1, l2, . . . , ln} ⊂ Z>0 with the same biased graph: 〈±LKn〉 = 〈±L′Kn〉, hence the
gain graphs have the same balanced chromatic polynomial.

The proof will appear in the next lecture.
The original numbers li are real numbers because they are the lengths of intervals in the

real line. By converting them to integers we make it possible, in principle at least, to compute
the balanced chromatic polynomial by modular coloring. In practice each example would
have to be handled separately. That suggests a completely open problem.

Problem 124. Find a modular coloring solution for a whole class of sets L. Any class—
except the class with t = 1, for which ±LKn is essentially the hollow Catalan gain graph
(their biased graphs and polynomials are the same).
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Lecture 18: Additive Real Gain Graphs: Integralization

14 February 2020
Notetaker: Nicholas Lacasse

Proof of Proposition 123. Let L = {l1, . . . , lt} ⊂ R+
>0 where R+

>0 denotes the additive semi-
group of positive real numbers, and consider ±LKn, the gain graph with gain group R+,
and its affinographic arrangement A [±LKn]. The objective is to find a set of integral gains,
L′ = {l′1, . . . , l′t} ⊂ Z+

>0, such that 〈L′Kn〉 = 〈LKn〉, because to guarantee that we obtain the
same balanced chromatic polynomial, we must keep the same set of balanced circles. How
do we achieve this?

Consider a circle C as in the figure below, where each ϕ(ej) = some ±lij .

e1

e2

ek

Here ϕ(C) = ε1li1 + ε2li2 + · · · + εklik where εj ∈ {−1, 1} and depends on ϕ(ej). If C is
balanced, then ϕ(C) = 0, and if C is not balanced, then ϕ(C) 6= 0. We need to choose L′ so
that it preserves balance and imbalance, i.e., ϕ′(C) = 0 if and only if ϕ(C) = 0. So we have
an equation or inequation of the form

ε1li1 + ε2li2 + · · ·+ εklik

{
= 0,

6= 0.

That is almost enough to get the set L, but we also need to have t distinct values, none equal
to 0. Thus, we also need to state that li 6= 0 and li 6= ±lj for i 6= j. There is a simplification:
since we use gains ±li, it does not matter whether li is positive or negative.

Now we replace the t specific values li with t variables x1, . . . , xt to obtain, for each circle,
an equation ε1x1+ε2x2+· · ·+εklik = 0 or an inequation ε1x1+ε2x2+· · ·+εklik 6= 0. We have
one equation per balanced circle, one inequation per unblaanced circle, and t2 inequations
xi 6= 0, xi 6= xj, and xi 6= −xj for i 6= j.

This gives us a system of equalities and inequalities. We look for an integer solution using
linear algebra. That solution is guaranteed by Theorem 125. �

Theorem 125 (Integralization). Given α1, . . . , αp, β1, . . . , βq ∈ Qt, the requirements that all
αi · x = 0 and all βj · x 6= 0, and the existence of a real solution y ∈ Rt, then there exists a
rational solution in Qt.

After obtaining a rational solution, since t is finite, we can scale by an appropriate integer
to obtain an integral solution.

Proof. Let the matrix A have rows a⊥i . Consider the equation Ax = 0 ∈ Rp, where x ∈ Rt.
A dot product equation α · x = 0 for α ∈ Rt is forced to be true if and only if α ∈ Row(A).
Therefore, because y exists, none of the βj’s are in Row(A). We assume henceforth, by
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discarding unnecessary rows, that A has full row rank r; that simplifies notation in the next
step and it is permissible because we retain the same row space.

The solution space of Ax = 0 is NulA, which can be given in terms of parameters, say
xr+1, . . . , xt. Since A is an r × t matrix, its reduced row echelon form is

(
Ir | A′

)
and

the condition for its null space becomes
(
Ir | A′

)(x̂
x̄

)
= 0, where x̂ = (x1, . . . , xr) and

x̄ = (xr+1, . . . , xt), the parameter vector. So Irx̂+A′x̄ = 0 and consequently x̂ = −A′x̄. Let
B = −A′. Then

NulA =
{(

I
B

)
x̄ : x̄ ∈ Rt−r

}
⊆ Rt.

So our solution is {
(
x̄
Bx̄

)
: x̄ ∈ Rt−r}. Because A was a rational matrix and B was obtained

from A by row operations, B is also a rational matrix. Therefore x̄ ∈ Qt−r implies x ∈ Qt.
Therefore we have found a rational solution. We can choose x̄ arbitrarily near ȳ so that x is
arbitrarily near y. Then each βj · x is changed too little to become 0, therefore we preserve
all inequations βj · x 6= 0. �

Now we know we can replace real gains by rational gains and therefore by integral gains.
This raises a natural question: How much (or little) do we need to perturb the real gains
to obtain the rational gains? For instance, what is the smallest integer d > 0 such that
perturbing y by < 1/d gives a rational solution? Put differently, what is the smallest D such
that rounding Dy to the nearest integer vector gives a solution? More simply, we might try
multiplying the real gains by 10m (for some positive integer m) and then rounding to the
nearest integer. But what m is sufficiently large?

Virtually the same proof as that of Proposition 123 works for any additive real gain graph.
Thus:

Theorem 126 (Gain Graph Integralization). Let Φ be any R+-gain graph. Then there exists
a Z+-gain graph Φ′ with the same biased graph and therefore the same chromatic polynomials.

We can infer even more extensive conclusions from Theorem 126. Every complex additive
gain graph Φ can be replaced by a gain graph Φ′ whose gains are Gaussian integers. Indeed,
gains in any real vector space Rd can be replaced by vectors in Zd. The original gains could
even be polynomials over R or C, since we never multiply them. There is no problem with
infinite dimensionality because our edge set is finite so the gains span a finite-dimensional
vector space.

Notice that ±LKn is similar to a hollow extended Catalan arrangement, which by defini-
tion is A [±[1, t]ZKn] where ±[1, t]Z is the interval of integers from 1 to t. I will develop this
thought in the final lecture.
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Lecture 19: Additive Real Gain Graphs: Genericity and Biased Union

17 February 2020
Notetaker: Shuchen Mu

In [9, Section 5.5] Stanley introduces “generic” exponential sequences A [±LKn], n ≥ 0,
where L = {l1, . . . , lt} ⊂ R+

>0. He gives two proposed definitions of genericity.

(S1) L(A [±LKn]) [that is, Latb(±LKn)] is as big as possible.

(S2) The li’s are linearly independent over Q.

Does (S1) means ±LKn has the fewest possible balanced circles? That suggesets another
definition based on thinking about gain graphs:

(T1) L is generic if, for all n, B(±LKn) is as small as possible. Restated,

B(±LKn) =
⋃
i

B(±liKn),

since we necessarily have the balanced circles of ±Kn.

(T1) is slightly different from (S2), since we only ask that no circle with different li’s in it
can give gain 0 for any n, which is implied by rational independence of the li. However, it is
easy to prove that because we have an exponential sequence they are equivalent.

Proposition 127. (T1) ⇐⇒ (S2).

Proof. Exercise. �

Now we examine the concept of a “bigger” semilattice or lattice of a biased graph.

Proposal 128. Given a graph Γ and two linear classes of circles, B1 ⊂ B2, then Latb(Γ,B1)
is bigger than Latb(Γ,B2).

“Bigger” is intentionally not defined, but it should mean something like existence of an
order-preserving, or order- and rank-preserving, injective function Latb(Γ,B2)→ Latb(Γ,B1)
that is not surjective. Or, it may mean the existence of an order-preserving surjective func-
tion Latb(Γ,B1) → Latb(Γ,B2) that is not injective. The latter definition leads to a proof
of Proposal 128, in Corollary 131.

Exercise 129. Decide whether both definitions of “bigger” are equivalent. Hint: It may
easier if you generalize to finite posets.

We get a better understanding of “bigger” from the following property of the balanced-flat
semilattice.

Theorem 130. Given a loopless graph Γ and two linear classes of circles, B1 ⊂ B2, then
there is an order-preserving surjective mapping Latb(Γ,B1) → Latb(Γ,B2) that is not in-
jective.

Proof. Write Ω1 = (Γ,B1) and Ω2 = (Γ,B2). A mapping β : Lat Ω1 → Lat Ω2 is defined
by β(S) = cl2(S), where cli is the closure in Ωi. (Notice that we defined β on all edge
sets.) We have to prove that β is order-preserving and surjective. It is obvious that it maps
Lat Ω1 → Lat Ω2. It maps balanced flats to balanced flats because, by the hypothesis, a
balanced set of Ω1 is also balanced in Ω2.
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Thus, the closure of S in both biases is its balance-closure, defined by

bcl1(S) = S ∪ {e /∈ S : ∃ C ∈ B1, C ∪ e ∈ B1}
⊆ S ∪ {e /∈ S : ∃ C ∈ B2, C ∪ e ∈ B1} = bcl2(S).

It follows that cl2(S) ⊇ cl1(S) for any balanced edge set.
Clearly, β preserves set containment, that is, lattice order. We must prove β is surjective.

For A ∈ Latb Ω2, choose an Ω2-basis B of A. It is balanced and independent in Ω2, hence it
is a forest, so it is balanced in Ω1. Thus, β(B) = cl1(B) is balanced. Now,

B ⊆ cl1(B) ⊆ cl2(B) = A

so
A = cl2(B) ⊆ cl2(cl1(B) ⊆ cl2(A) = A.

Therefore, β(cl1(B)) = A. This proves β is surjective from Latb Ω1 to Latb Ω2.
To prove β : Latb Ω1 → Latb Ω2 is not injective, choose a circle C ∈ B2 \B1. For e ∈ C,

e /∈ cl1(C \ e) but e ∈ cl2(C \ e) so cl2(C \ e) = cl2(C). The same applies to another edge
f ∈ C, which exists because there are no loops (one-edge circles). Now, cl1(C \ e) and
cl1(C \ f) are two balanced flats in Ω1 with the same image, cl2(C), under β. �

Corollary 131. (S1) ⇐⇒ (T1).

Proof. Apply Theorem 130, since L (A [±LKn]) ∼= Latb(±LKn). �

In other words, we have proved that Stanley’s two definitions are equivalent (especially if
the answer in Exercise 129 is positive—hint: it is).

I purposely omitted proposing that Lat(Γ,B1) is bigger than Lat(Γ,B2).

Problem 132. Does there necessarily exist an order-preserving surjection Lat(Γ,B1) →
Lat(Γ,B2)?

Although Exercise 129 would imply an injection Latb Ω2 → Latb Ω1 exists, it would be
more valuable to present one explicitly,

Problem 133. Find an explicit formula for such an order-preserving injection, preferably
one that is reasonably simple, if that is possible.

Biased union. It is time to introduce a new way of combining biased graphs. The biased
union of Ω1 = (Γ1,B1) and Ω2 = (Γ2,B2), whose edge sets are disjoint, is

Ω1 t Ω2 = (Γ1 ∪ Γ2,B1 ∪B2).

Theorem 134. The biased union is a biased graph.

Proof. Exercise. �

Example 135. To illustrate balance and closure in a biased union, see Figures 13–17.

The nth gain graph of our exponential sequence, ±LKn, contains ±liKn for each i (which
is isomorphic to the hollow Catalan gain graph). Definition (T1) states that L is generic if
±LKn is the biased union

〈±LKn〉 =
t⊔
i=1

〈±liKn〉.

Now, here is the crucial question and the purpose of introducing the biased union. Let
Γ = Γ1 ∪ Γ2 and Ω = Ω1 t Ω2.
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1

bal 2

bal 1

2
1

bal 1

2

Figure 13. A balanced set S in the biased union Ω. The edges belonging to
Ω1 are solid and those belonging to Ω2 are dashed; and they are labelled. Here
there are five blocks, each one balanced in one of Ω1 and Ω2. Two blocks are
isthmi of S; two are circles; the bottom one is more than a circle.

1

2
1

2

bal 1

closed

bal 2

closed

closed

bal 1

Figure 14. A balanced flat in Ω. Each block is balanced and closed in one
of Ω1 and Ω2.

1

bal 2

bal 1

2
1

2

unbal 1

bal 1

Figure 15. An unbalanced set S in Ω. The upper block is contained in Ω1

but it is unbalanced.
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unbal

2

1

Figure 16. An unbalanced set. The polygon is unbalanced because it mixes
edges from Ω1 and Ω2.

1
unbal

bal 1

2

2

Figure 17. An unbalanced set S. The polygon from Ω1 is balanced but S is
a block and it also contains edges from Ω2 forming unbalanced circles.

Problem 136. Can we express χb
Ω(λ) in terms of χb

Ω1
(λ) and χb

Ω2
(λ) and possibly other

information that we already know from Ω1 and Ω2?
Can we similarly infer Latb Ω?

Recall the formulas:

χb
Ω(λ) =

∑
S⊆E

balanced

(−1)|S|λc(S) =
∑

A∈Latb Ω

µ(∅, A)λc(A).

I would like to somehow use these formulas to extrapolate χb
Ω from the sets that are balanced

and closed in the two Ωi. For instance, (assuming no loops or balanced digons) some closed
sets are ∅ and {e} for every edge of the union. But it gets complicated. For instance, every
forest of the union Γ is balanced, even if it combines edges of both Ωi, but not necessarily
closed. Now, consider a subset S ⊆ E(Γ) (e.g., as in Figure 14): it is balanced and closed
if and only if every block is balanced and closed. Suppose, then, that S is a block: it is
balanced and closed if and only if it is a closed, balanced, inseparable subset in Ω1 or Ω2. So,
a balanced flat S of Ω is assembled from inseparable balanced flats of the Ωi that are disjoint
or attached at single vertices so that each is a block of S. Does that give us enough insight to
compute the balanced chromatic polynomial of Ω, or even the semilattice of balanced flats?

In the special case of an exponential sequence 〈±LKn〉 for generic L, perhaps some version
of the exponential formula might be able to give a solution. That is the motivation for this
discussion.

Here is a thought about generalization. It is surely too hard to solve in general, as even
the special case of biased union is unclear.

Problem 137. Suppose we define

Ω1 ∪ Ω2 = (V1 ∪ V2, E1 ∪ E2,B)
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where B is the smallest linear class such that B ⊇ B1 ∪B2. What is B? What are the
properties? Can we describe Lat Ω1 ∪ Ω2 or Latb Ω1 ∪ Ω2 in terms of Ω1 and Ω2?

The principal question here is whether B has an explicit description. Only then can any
more be thought about.
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