
The Geometry of Root Systems and Signed Graphs

Thomas Zaslavsky

The American Mathematical Monthly, Vol. 88, No. 2. (Feb., 1981), pp. 88-105.

Stable URL:

http://links.jstor.org/sici?sici=0002-9890%28198102%2988%3A2%3C88%3ATGORSA%3E2.0.CO%3B2-4

The American Mathematical Monthly is currently published by Mathematical Association of America.

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at
http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained
prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in
the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www.jstor.org/journals/maa.html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

The JSTOR Archive is a trusted digital repository providing for long-term preservation and access to leading academic
journals and scholarly literature from around the world. The Archive is supported by libraries, scholarly societies, publishers,
and foundations. It is an initiative of JSTOR, a not-for-profit organization with a mission to help the scholarly community take
advantage of advances in technology. For more information regarding JSTOR, please contact support@jstor.org.

http://www.jstor.org
Mon Mar 31 16:47:35 2008

http://links.jstor.org/sici?sici=0002-9890%28198102%2988%3A2%3C88%3ATGORSA%3E2.0.CO%3B2-4
http://www.jstor.org/about/terms.html
http://www.jstor.org/journals/maa.html


88 THOMAS ZASLAVSKY [February 

the transmission of information, characteristic of our profession, to higher forms of education 
and human enrichment. In my friend and colleague Ernst Snapper, to whom this Chauvenet 
paper was dedicated, the aspiring young mathematician could see the rich and varied academic 
career available for those who apply high standards of excellence in all their professional 
activities. He is a fountain of eternal mathematical youth. Finally, while in graduate school I 
had the privilege of a close personal relationship with a professor, Guido Weiss, well known as 
an outstanding mathematical expositor. It is a pleasure to follow him, years later, in receiving 
the Chauvenet Prize. To these people, and many others unnamed, my debt is great." 

David P. Roselle, Secretary 

THE GEOMETRY OF ROOT SYSTEMS AND SIGNED GRAPHS 

THOMAS ZASLAVSKY 

Department of Mathematics, The Ohio State Uniwrsiw, Columbus, OH 43210 

Dedicated to Professor Fred Supnick 

of The City College and the City University of New York: 


A small return for much given. 


This essay tells of a newly discovered connection among root systems, graphs, and matroids. 
Root systems are sets of vectors which satisfy certain requirements of symmetry and metric 

regularity. They arose in Lie theory, where they are important because they correspond 
one-to-one to Lie algebras and hence to Lie groups and because many properties of the algebra 
and group involve the root system. They have since found other applications, such as to line 
graphs and the search for finite simple groups.' 

Graphs, or networks, which consist of nodes joined by arcs, arise in all kinds of combinatorial 
analysis. Yet signed graphs, in which each arc is labeled by + or -, are rarely discussed or 
applied. (So much so that some people at first think they are another form of directed graph. 
They are not.) They will find good use in this article, for with five exceptions every root system 
can be concisely and faithfully represented by a signed graph. 

One of the problems encountered in Lie theory is that of counting the pieces into which space 
is cut by all the hyperplanes dual to elements of a root system. The usual method of solution, 
which is classical and well known, depends on translating the problem into one concerning an 
automorphism group of the root system. But it is not necessary to take that approach. Instead, 
by tackling the problem directly with combinatorial techniques, one can count the pieces derived 
not only from full root systems but from many subsystems; roughly speaking, the root systems 
correspond to complete graphs, while the additional systems solvable by combinatorics corre- 
spond to arbitrary subgraphs. The principal tool is the characteristic polynomial of an arrange- 
ment of hyperplanes (see Section 4), a polynomial borrowed from matroid theory. This theory, 
which I shall not need to mention again by name, is nonetheless the quiet ground of my 
discourse. 

1. Root Systems. A root system is a finite set R of vectors in Rn, called roots, with the 
properties: 

The author received his Ph.D. from MIT under the direction of Curtis Greene. He has taught at MIT and is 
now at Ohio State University. His principal research interest is in combinatorial geometry of many kinds.-Editors 
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(1) if a ER,the only integral multiples k a  which are in R are a and -a (thus 0 is not a root); 
(2) if a ,  /? are linearly independent roots and if p ,  q > 0 are the largest integers such that 

a +  k/3 is a root for all integers k in the range -p <k < q, then (a, /?)/(a, a )=  -(p +q). 
It turns out that there are very few root systems which cannot be built out of others in a 

simple way. Let us suppose ScR' and T c R m  are root systems. Then their union SUT is in a 
natural way a subset of Rt+", with S and T lying in orthogonal subspaces. This set SUT, the 
direct sum of S and T, is obviously also a root system. A root system which cannot be 
decomposed as a direct sum is irreducible. Now let's look at irreducible root systems. Two of 
them are called similar, and considered to be essentially identical, if there is a change of scale (a 
similarity transformation) which makes them isometrically isomorphic. The remarkable fact is 
that, aside from five "exceptional" root systems (known as G2, F', E6, E,, and E,), there are 
only four families of irreducible root systems. They are the classical root systems An-,, Bn, Cn, 
and D,, which are traditionally represented in Rn as the vector sets 

An-1 = {bi -bjIiej, 

D, =An-,U{+(bi+bj))i+j, 

Bn=D,u{+bi) ,  

Cn =D, u {+2bi ) ,  

where b,, b2,. ..,bn are an orthonormal basis of Rn. The proof of this classification theorem, 
which is long and complicated, appears in most books on Lie algebras. (The dimension of the 
system is indicated by its subscript; so all span Rn except An- ,. In dimensions (3 there are 
some similarity relations and reducibilities among the classical systems, which will not concern 
us.) 

(a). The three root systems A, ,  4 ,B2 in WZ. @). The three root systems A,, D3, B3 in W3. 

F I ~ . 
1 

2. Arrangements, Regions, and Chambers. Let R be a root system in Rn. If we take the 
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hyperplane perpendicular to each root we get a finite set of hyperplanes, R*, which dissects Rn 
into n-dimensional pieces called Weyl chambers. They are the components of Rn \ u {hER*). 

We could easily be more general. Let H be any finite set of hyperplanes. We call H an 
arrangement of hyperplanes and the components of Fin\ u { hEH )  the regions of the arrangement. 
(If H=R*  the "regions" are also "chambers"; here we see the meeting of two independent 
traditions.) 

(a) A,, A f ,  and Z =  +Kz. (b) Dz, Dj', and Z = + K z .  ( 4  B2(*), CZ( 0 ), Bj' =Cj' , and 
There are 1 hyperplane (a line) There are 2 lines and 4 cham- Z = * K; . There are 4 lines 
and 2 chambers. bers. and 8 chambers. 

FIG.2. The classical root systems in RZ, their dual arrangements of hyperplanes, and their corresponding 
signed graphs. 

Let c(H) denote the number of regions. In Lie theory the number of chambers, c(R*), is 
important enough to be the subject of a chapter. It is calculated by means of a certain symmetry 
group of R, the Weyl group, whose order equals the number of chambers. But it seemed to me 
that it should not be necessary to rely on the symmetry of R to count its chambers. Such a 
combinatorial problem should have a combinatorial solution. As it happened, I knew a purely 
combinatorial technique for counting the regions of an arrangement of hyperplanes without any 
assumption of symmetry. In the rest of this paper (after a brief classical interlude) I will show 
how to use it, by way of the medium of signed graphs, to find the numbers of chambers of all 
the classical root system arrangements as well as the numbers of regions of many of their 
subarrangements (not all, because the calculations become too complicated). 

3. The Classical Approach to Weyl Chambers. In Lie theory the number of chambers of R, 
c(R*), is calculated by showing that a certain group %(R), the Weyl group, permutes the 
chambers and that for each two chambers, C, and C2, exactly one WE%(R)  cames C, to C2. 
Thus c(R*)=the order of %(R). The Weyl group is generated by the reflections S, for ~ E R ,  
where S, means orthogonal reflection of Rn in the hyperplane h, perpendicular to a. It is easy to 
compute that 

%(An- 1) =Gn9 

%(Bn)--%(Cn)=$3,, 

n(Dn)--a,+, 

where Gn =the symmetric group on n letters, or the group of n Xn permutation matrices; anis 
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the hyperoctahedral group, or the group of n x n  signed permutation matrices; and D: denotes 
the subgroup of Dn consisting of the matrices with evenly many minus signs. From the 
one-to-one correspondence between elements of the Weyl group and the Weyl chambers, we 
deduce: 

THEOREM1. c (A ,* -~ )=~! ,  and c(B,*)=c(C,*)=2"n!. c(D,*)=2"-In!, 

Now let me show you how to calculate these same numbers without reference to the Weyl 
group. 

4. The Combinatorial Approach to Regions. Here is the formula for the number of regions of 
an arrangement of hyperplanes in Rn. Let H be the arrangement. Let us write d(S) =dim(n S )  
for any SCH. The characteristic polynomial of H is the polynomial defined by 

The proof of Theorem 2 is a good illustration of the powerful inductive method of deletion 
and contraction, which I will use again in the course of the paper.3 

Pick a hyperplane h EH. The other hyperplanes in H dissect h into (n - 1)-dimensional 
pieces, which are the regions of the induced arrangement of hyperplanes in h, 

H/h={h,nh:  h ,€H ,  h,#h) .  

H/h is the "contraction" of H to h.  The "deletion" is H\h. The method of deletion and 
contraction begins by proving two parallel equations: 

c (H)  =c(H\h)  +c(H/h) (I) 

FIG. 3 (a). Removing a line h from an arrangement of lines H= { h ,  h, ,  h2,  h,} ,  yielding 
HI = {h , ,  h2 ,  h 3 } .  The induced arrangement H / h  consists of two points on h. (In this example, 
because all hyperplanes do not pass through a common point, the definition of pH@) must be 
modified: see [14, pp. 3 and 131. But the method of deletion and contraction remains valid.) 
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FIG.3 (b). Removing a (hyper)plane h from an arrangement H = { h ,  h , ,  h , ,  h 3 }  of planes, leaving 
H, = ( h , ,  h,, h , ) .  The induced arrangement H / h  consists of 3 lines in h ,  all passing through a 
common point. 

for any h E H, and 

PH(A)=PH\~(A) -PH/~(A) 

for any h E H  such that nH= n (H\h), or h> n(H\h). Since the deletion and the contraction 
have fewer hyperplanes than H, we can carry out induction on the size of H, deducing Theorem 
2 for H from its validity for H\h and H/h. The only hitch will be when (2) does not apply, 
which is the case when no hE  H contains n(H\h). But if that is so, H must consist of n -d(H) 
hyperplanes in general position; it is easy to see that c(H) =2#(H) and it is an easy calculation 
that pH( A) =(A - l)#(H) (since d(S) =n -#(S)). Now clearly Theorem 2 is valid. 

The heart of the proof is thus the verification of Equations (1) and (2). You will have no 
trouble carrying out the rather long calculations necessary for (2) once I point out that there is a 
one-to-one correspondence between subarrangements S L H  which contain h and subarrange- 
ments S'CH/h, namely, S-S/h, and that #(S) =#(Sf)+ 1 and nS= nS'. (It is only fair to 
admit there are some complications. There may be several hyperplanes which coincide; nev- 
ertheless they have to be treated as distinct objects. And one must allow the degenerate 
"hyperplane," which is the whole space-an arrangement containing it has no regions.) 

By contrast Equation (1) is purely pictorial. Each region of H arises from a region C of m h .  
If h hits C, it cuts it into two parts, C, and C2, which are regions of H, and one (n -1)-dimensional 
piece, h nC, which is a region of H/h. All the regions of H/h come about this way. If h misses 
C, however, then C is a region of H. Adding everything up, we get (1). That proves everything 
we needed for Theorem 2. 

5. Equations and Signed Graphs. How does all this apply to the root system arrangements? 
We have to have some way of calculating their characteristic polynomials. With the help of 
signed graphs we'll be able to compute p,:-,, p,:, p,: =p,:, and more beside^.^ 

Let's look at the hyperplanes of 	 B,*. Each of them has one of the two forms 

h;,:xi=&xj w h e r e ~ = + l a n d i # j ,  


(I think of a hyperplane as being the same as its equation for all practical purposes.) There is a 
nice, compact way of describing this. Let us construct a signed graph I: on the n nodes 
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{ 1,2,.. . ,n). Each node i corresponds to the coordinate xi. A hyperplane (or equation) h;] of the 
first type corresponds to an arc of Z which links i to j .  To distinguish h; from h,i we label the 
arc by the sign of h;. Call this arc eFj. As for a hyperplane hi of the second type, it is the same 
as h; :xi = -xi so it corresponds to an arc e; (a negative loop at i). We have the following 
table: 

hfj: xi =exj t,efj: linking i and j ,  

hi:  xi =O e; : loop at i. t, 


Note that according to our scheme a positive loop e: corresponds to the equation xi =xi,  which 
is the whole space (the "degenerate hyperplane"). A negative loop, however, is a real hyperplane. 

So if we take any subarrangement H c  B,* we can describe it by a signed graph. Conversely 
any signed graph Z on the n nodes {1,2,. ..,n) describes a unique arrangement, 

H [ Z ] =  {h;j:there is an arc ebin 2 ) .  

What we wanted from all this was a way to calculatepH(A). It can be written down directly 
from the signed graph Z corresponding to H, but as doing so for arbitrary H requires some 
relatively esoteric concepts, I will skip the general s~ lu t i on .~  Instead I will discuss two kinds of 
subarrangement for which the valuep,(A) is particularly intriguing and easy to formulate. 

6. "Special" Subarrangements. Let's call a subarrangement H B,* "special" if it contains all 
the coordinate hyperplanes and it has sign symmetry: whenever hf, EH (for i f j ) ,  also h,Te EH. 

The "special" arrangements correspond to the signed graphs I call "full signed expansions of 
ordinary graphs." Let r be an ordinary graph (for the sake of simplicity, without loops or 
multiple arcs). By f I mean the signed graph which has the same nodes as l?and, for each arc 
e,j of r ,  both the signed arcs eif and e;. This graph is sign-symmetric because it contains e;" 
whenever it contains e,'J (for i#j). By (+I?)', loosely written just fr O ,  I mean the signed graph 
+ r  with a negative loop added to every node. Having all these loops makes +rOa full 
sign-symmetric signed graph. The "special" arrangements are just those which equal H [ + r O ]  
for some ordinary graph r. For example, B,* = H [ +  K,"]. The point of singling them out is the 
simplicity of their characteristic polynomials. To state the theorem we need the chromatic 
polynomial xr(A) of the graph r. If A is a positive integer, xr(A) is the number of proper 
colorings of r by A colors: which means assigning an integer from the set {1,2,.. .,A) to each 
node so that the two endpoints of an arc have different colors. The function xr turns out to be a 
polynomial; this lets us define it for other values of h besides positive integers. 

THEOREM3. Let be a graph on the nodes {1,2, ...,n) and H = H [ + r O ] .  Then 

In particular 

where (A), denotes the falling factorial h(A - 1). . (A -n + I). 

The proof of the particular case depends on the observation that xKn(A)=(A),. 
I will prove the theorem by again applying deletion and contraction. The necessary recursion 

for the right-hand side is both well known and easy to prove. It is 

for e=  eij =any arc of l?(except a loop, which we've ruled out anyway), where r \ e  is r with e 
removed and r / e  means r "contracted" by e: the endpoints of e are merged and e itself is 
thrown away. We can prove (4) for every positive integer A by counting colorings of r by A 
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colors. If we ignore e = e i j ,  letting i and j be colored the same, we have xr\,(A) colorings. Some 
of them are proper for r ( i  and j are colored differently); there are x , (A)  of these. The rest are 
the ways to color T\e so that i and j have the same color; their number equals x,,,(A). Thus (4)  
holds for all positive integers A. Since x, (A)  is a polynomial, it follows that (4) is a polynomial 
identity, valid for all A.6 

A(A - 1)(X-2) -- A(A - 1)' - A(A - 1) 
1 and 3 are colored differently. 1 and 3 are colored the same 1 and 3 are 

or differently. colored the same. 

FIG. 4. Graph coloring, showing deletion and contraction. Under each graph is its chromatic 
polynomial. 

Now we can prove Theorem 3 by induction on the number of arcs in T. We begin, of course, 
with the arcless graph on the node set {1 ,2 , ...,n); call it 5. Its chromatic polynomial is 
xv,(A)=An. The corresponding "special" arrangement H [ f  V,"] consists of the coordinate 
hyperplanes. Its characteristic polynomial is easily seen from the definition to be (A- 1)". This 
equals 2nXvn( i (A-I)), as we wanted. 

H [2 V;)1, with 2 regions 

FIG.5. The graph V3,the signed graph +V;, and the "special" arrangement H [ +  V;)]. 

Next we carry out the induction. It is a relatively complicated application of deletion and 
contraction: it uses it twice. First we pick one arc e i j of r and apply deletion and contraction by 
h$ to H =  H [ + r O ] ,using Equation (2) . The result is 

pH(A)=p(H\h$ ;A ) - p ( H / h $  ;A).  ( 5 )  
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FIG.6. An example of the inductive procedure used to prove Theorem 3. 


h , :  x,-

(a) The initial graph r, full signed expansion graph ?rO,and "special" arrangement 
H [ + . r O ] .  

@) The arrangements resulting from deletion of and contraction by h z ,  together with the 
signed graphs which describe them. 
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(c) The arrangements resulting from deletion and contraction of H\h& by h b ,  together with 
the signed graphs which describe them. 

Then we do the same to H\h$, deleting and contracting with respect to h,?. We obtain 

P ( H \ ~ $;h)=p(H\{h;, h;); A)-p( (H\h$) /h~  ;A). (6 )  

Obviously H\{h$, h 6 )  =H[+-(T\eij)"], which is a smaller "special" arrangement than H. But 
what about the contractions H/h$ and (H\h$)/hG? 

They are also "special"; they both equal H[?(r/eij)"]. Let us see *why. The arrangement 
H/hG is the one induced by H on h$ : xi =xj. That means we take every equation in H and set 
x, identically equal to xi. An equation xk =EX, becomes the same as x, =&xi; hi : X, = O  and 
h; : xi = -xj both become repetitions of hi: xi =O. The effect is as if we had merged i andj in 
r. (Notice that h; becomes the same as hi, so that (H\h,i )/h$ =H/hG. By the sign symmetry 
of the situation, (H\hG)/h; =H/hG .) Thus we have proved 

In the light of this fact, combining (5) and (6) we have 

Equation (7) is what we need to do induction, since r \ e  and T/e have fewer arcs than T. We 
can complete the proof by substituting from (3) in the right-hand side of (7)-remembering that 
r / e  has n -1 nodes. 
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COROLLARY regions. Inparticular c(B,*)=2"n!. 4. H [ + r O ]has 2"1xr(-1)1 

The proof is by Theorems 2 and 3. 

Notice how we have gotten c(B,*) without any group theory. As a bonus we see that the 2" 
and the n! enter into c(B,*) for different reasons: the 2" because B,* is "special," the n! because 
it derives from the complete graph. 

7. Graphic Subarrangements. A subarrangement of B,* is called graphic if it contains only 
hyperplanes with plus signs, h; :xi =x,. If r is a graph with node set {1,2,. ..,n), let 

H [ I ' ] ={h; : there is an arc e,jin I'). 

Obviously H[I '] is graphic; conversely, if H is a graphic arrangement, it is derived from the 
graph whose arcs are {e,, : h; EH ) .  This is the reason for the name "graphic." 

THEOREM5. Let I' be a graph on the nodes {1,2,. ..,n), having c components, and let xr(A) be 
its chromatic polynomial. Then 

pH[rl(A) =xr(A)/AC. 

In particular 
p,:-,(A)=(A-1)"-,=(A- l)(A-2)...(X-n+1) . 

COROLLARY6. H [ r ]has I x r(-  1)1 regions. In particular c(Az- ,)=n !. 

The theorem is a consequence of the fact that H [ r ]represents the graphic geometry (or 
polygon matroid) of r.' 

Corollary 6 was first noticed by Curtis Greene. He also saw that the corollary can be 
strengthened: there is a one-to-one correspondence between the regions of H [ r ] and the 
"acyclic orientations" of r. (It was these discoveries of Greene's, dating from 1975, that 
interested me in graphic arrangements.) An acyclic orientation of I' is a way of directing the arcs 
so there is no closed path which follows their directions. There is an analogous, although more 
complex, interpretation of the regions of H [ +rO]in terms of I'. There is also a close connection 
between the graphic and "special" arrangements associated with I'. The fact that 

suggests that the regions of H [ r ]may be individually sliced into 2" parts each by the extra 
hyperplanes in H [ +rO]. not, as one might think, through successive And so they are-although 
halving of each old region by n of the new hyperplanes. 

8. Subarrangements with Sign Symmetry. So far we've counted the chambers of B,* and A;-, 
as special cases of the "special" and graphic arrangements, H [ + r O ]and H [ I ' ] .Although D,* 
belongs to neither of these types, it too is highly symmetrical: it has sign symmetry, for 
D,* =H [ +  K,]. I will now show how to calculate the number of regions of a general sign- 
symmetric arrangement; in particular, that will take care of D,*and all H [ +  I']. 

A sign-symmetric arrangement H C  B,* has associated to it an ordinary graph I', defined as 
having an arc eij linking distinct nodes i andj whenever H has hyperplanes h; and h,; . Suppose 
H corresponds to the signed graph Z. Then Z contains *I' and, since H consists of H [ +  I'] plus 
perhaps some coordinate hyperplanes, the remaining arcs of Z must all be negative loops. We 
will need a way to describe Z. So if U is a subset of the node set, let If:rUbe the signed graph 
which has all the arcs of +I' and in addition a negative loop at each node in U. Now we can 
say: Every sign-symmetric subarrangement of B,* is H [ + r U ]for some I' and U.Conversely, 
every H [ +rU]is obviously sign-symmetric. 

What we want is a computational scheme for all arrangements of this form. That means we 
need to find the characteristic polynomials of all H[*  rU].The problem can be reduced to the 
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FIG.7. An illustration of Theorem 7 in the case q = O  (all isolated nodes of r are in U). 

H = H [ + T U ]  

(a) The original arrangement H= H[+ TU], where U= {1,3). 

(b) The enlarged arrangement H'= H U  (h,}, which equals H[+ r u t ]  where U'= {1,2,3). 
Here i=2 and the added hyperplane is h,. 

(c) The contracted arrangement H1/hz, which equals H[(+r")"'] where T" =r:(2)' and 
U"=(l ,  3). 
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"special" case. If W is a set of nodes of T, the subgraph induced by W, written I' :W, is the graph 
whose node set is Wand whose arcs are all those of T both of whose endpoints are in W. In case 
there are no such arcs, we call W a stable set of nodes. 

A node is isolated in I' if it lies on no arcs. 

THEOREM7. Let T be a graph on the nodes {1,2,. . . ,n), U be any subset of the node set, q=  the 
number of isolated nodes of r which lie outside U, and H =  H[+. ru] .  Then 

where the sum is taken over every node set W> U whose complement is stable in T. In particular 

Let me write, informally, H :  W for the arrangement H[+.(I': W)"], which lies in RW. If you 
refer to Theorem 3 you will see that Theorem 7 is equivalent to the formula 

I will prove (8) in two stages: via (9) for the case q =0 by deletion and contraction (again!) along 
with induction on the number of nodes not in U (which is the number of coordinate hyperplanes 
not in H); then (8) directly for q>O by an ad hoc reduction to the first case: 

To begin with, if all nodes are in U, the range of W in the summation is merely W= 
{1,2,...,n). So (9) is trivially true. 

If q =0 but U is not everything, pick a fixed i 4 U,write U'=UU {i) and H' =H[+. Tu]. By 
deletion and contraction, 

(Our appeal to deletion and contraction depends on the fact that nH'= nH. This is true 
because, since i@ U,  i is not isolated; so there is an arc e,,. Therefore h$ and h 5  are in H, so 
h.>h;- nh,  2 nH.)I 

Now we have to know what H'/hi is. But it is merely the arrangement in hi which results 
from setting xi =0 in all the hyperplanes of H'. An equation h, :x, =0 or hi', :x, =EX, in which 
j ,  k+i  will remain the same, but h t :  xi =EX, becomes transformed to hi: xj  -0. That is, for 
every node j which is adjacent to i in r ,  H1/hi will contain the corresponding coordinate 
hyperplane. In the language of signed graphs: Set r"=I?: {i)' (where {i)" means the comple- 
ment of {i)) and U" =UU { j :  j # i  is adjacent to i in T). Then H'/hi =H[(tT")""]. 

Notice that H' and Hf/hi  have fewer missing coordinate hyperplanes than H. Also their 
signed graphs have no isolated nodes outside U' or U". Hence we can use induction to assume 
the validity of (9) for H' and Hf/hi .  Substituting in (10) leads to Equation (9) for H. Thus we 
have proved Theorem 7 for the case q =0. 

What if q>O? Let Q be the set of isolated nodes of I' which are not in U; and let J be its 
complement in the full node set, QC. I will reduce both sides of (8) to T :J instead of r. 

That means H will be replaced by H j  =H[+.(T: J)U], the faithful cross section of H 
obtained by forgetting the Q coordinates. Everything in Hj is the same as in H except that all 
dimensions are lowered by q. Since that doesn't affect the characteristic polynomial, we have 
PH(A)=PH,(A)-

On the other side of (8), let's split W into Y= W nQ and Z =  W n  J. Since I' : W is the disjoint 
union of T: Z and #(Y) isolated nodes, x,: w(X)=A#(Y)Xr: Z(A). Moreover WZ U and Wc is 
stable in I', if and only if Z Z  U and J \ Z  is stable in T: J. From this it is easy to check that 



THOMAS ZASLAVSKY [February 

(a) The original arrangement H =  H [ ?  T"], where U= ( 1 ) .The set of isolated nodes not in U 
is Q = ( 3 ) ;  q = l ;  and J = Q C = { I ,  2). 

(b) The arrangement HJ, the cross section of H by W J .  It is combinatorially equivalent to H. 

FIG.8. An illustration of Theorem 7 in the case q>O (there are isolated nodes of r which are not in U). 

That is the reduction we wanted to r :J.  Thus the general part of Theorem 7 is proved. 
Evaluating (8) for D,* =H[-+Kn] ,  the stable node sets are % and the singletons. So W =  

{1,2,...,n ) ,  giving T:W = K n ,  and W={i) '  for i=1,2 ,...,n ,  giving r :W=Kn-, .  Since q=O,  
that gives us the particular formula. 

COROLLARY8. Let T be a graph on the nodes { 1,2,. . . ,n ) ,  U be a subset of the node set, and 
H = H [ + r U ] .  Then H has 

c ( H ) =  2 ( - 1 )  
n - # ( W )  

2
#I 

( 
w

) l ~ r : w ( - l ) l  
W 

regions, where W ranges over every node set W >  U whose complement is stable in T.I f  U = 0 ,  W 
ranges over all complements of stable node sets. In particular c(D,*) =2"(n- I)!. 

The proof, of course, is by combining Theorems 2 and 7. As for D,*, we have 


c(D,*)=2"1(- l ) , l+n(-  1)2"-'I(- 1),-,1 


=2"n ! -n2"- ' (n- l ) !  

=2"-ln !. 

This calculation is combinatorially interesting. It suggests that, rather than each chamber of 
B,* being the union of two from D,* as one might have thought from the formula c(B,*) =2c(D,*), 
it is more likely that some chambers of D,* are not subdivided when one adds the coordinate 
hyperplanes while others are divided into three or more pieces. Analyzing the characteristic 
inequalities defining each chamber shows this to be true. One can also see that each successive 
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coordinate hyperplane added to D,* halves 2"-'(n- I)! regions. (Proof. Let D,*ck) be D,*with k 
coordinate hyperplanes added. Then 

by Corollary 8. So in D,*(k+l), 2"-'(n- I)! regions of D,*(,) are halved.) Is there any significance 
attached to which chambers of D,* are cut by any given number of coordinate hyperplanes or 
are separated into a given number of chambers of B,*? 

9. Paces and Flats. With all this lengthy discussion of regions and chambers, I have not yet 
mentioned the lower-dimensional faces of an arrangement of hyperplanes. Take a region of an 
arrangement H in Rn. It is an n-dimensional convex polyhedron, with flat sides, not bounded 
since it is a cone radiating from the origin-rather like an infinite wedge or pyramid. Each flat 
side (of whatever dimension) is called a face of the region and of the arrangement. 

I can define faces more precisely by applying the notion of a flat of H: a subspace which is 
the intersection of hyperplanes in H. I include as flats the whole space and each hyperplane. 
One way to define a face is as the relative interior of an intersection c n t ,  where C is the 
topological closure of a region C and t is any flat. Another way (completely equivalent) is as any 
region of any arrangement H/t  induced by H on a flat. The largest faces are the regions. The 
smallest face is the intersection of all the hyperplanes; in most cases this is the origin (but not for 
graphic arrangements, where it always contains the line x,  = - - - =x,). 

For instance D,* (see Fig. 2(b)) has 4 regions, 4 one-dimensional faces (they are rays from the 
origin), and 1 zero-dimensional face (the origin). 

Remarkably enough, with little extra effort we can calculate the number of k-dimensional 
faces for any k, which is denoted f,, and the number of k-dimensional flats, denoted a,, for all 
sign-symmetric root system subarrangements. The secret weapon is a certain polynomial, the 
Whitney polynomial of H,' 

where d(S), you may recall,=dim(nS). Now f, is equal to the coefficient of xnPk in 
(- l )n -d(H)~H(- - in wH(x, A) is a,. To see why, use X, 1); while the coefficient of 
a second version of w,, 

summed over all flats of H; the second definition of a face, from which it follows that 

and Theorem 2 applied to H/t. (Proof of Equation (11): Fix T; let t =  n T and Tl = 
{h€H\T:  h>t) .  If TI #@ then the sum over all S>T will equal 0. On the other hand, the T 
such that Tl =0are in one-to-one correspondence with the flats of H.) 

Our problem, then, is to compute the Whitney polynomial. So long as we stick to the 
arrangements we've investigated-the graphic and sign-symmetric subarrangements of the root 
systems-and remember Theorems 3, 5, and 7, the calculations are quite straightforward. I will 
skip' them and just give their result^.^ The contraction T/T of a graph r by an arc set T is the 
graph resulting from coalescing each group of nodes which are connected by T and then 
discarding T;the arcs of r / T  are thus E(T)\T. The Whitney po(vnomia1 of the graph T is 

c(T) being the number of components into which T connects the nodes of r (it is the number of 
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FIG.9. A sample calculation of a,(r) and +,(T) for usein Corollaries 10 and 11. You can see by inspect- 
ing r that 

a l ( r )=O since r is not connected, 


a 2 ( r )= 1 since N has one partition into 2 connected blocks, 


a3(r)=1 since N has one partition into 3 connected blocks. 


The $I, can (says Corollary 11) be seen in the picture of H [ T ] :  

$I,( r )= 0 since H[ T I  has no vertices, 


+,(r )= 0 since it has no 1-faces (rays or edges), 

+2(r)=1 since it has one 2-face (the plane h;), 

+,(r)= 2 since h;  divides the space into two regions. 


nodes of T / T ) .  I should explain that x,,,(A)=O if there is an arc e @  T whose endpoints are 
c o ~ e c t e dby T ;  because I?/ T then has a loop, so no colorings. If there is no such arc, T is called 
closed. Then x,,,(h) is monk of degree c ( T ) .  

THEOREM9. Let r be a graph on the node set N =  {1,2,.. ., n )  and c ( T )  =the number of 
components of I?. The Whitney polynomial of the graphic arrangement H [ T ]  is 

w H r r l ( x ,A ) = A - C ( r ) ~ r ( ~ ,A). 

That of the "special " arrangement H = H [ +_ T "1 is 

Let U be a subset of the node set. The Whitney polynomial of the sign-symmetric arrangement 
H = H [ + _ T U ]is 

where W c= N\ W and i ( Y )  =the number of isolated nodes of T : Y which lie outside U .  

COROLLARY10. Let ak(I?) = the number of partitions of the nodes of T into k connected blocks. 
Then 

a k ( H [ r l ) = a k ( r ) ,  
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summed over those node sets W such that all the isolated nodes of T : Wc are in U. 

To prove the case H=H[?TU]  we only have to look at the terms of highest degree in 
X i ( N ) ~ H ( ~ ,A), for a, is the coefficient of x " - ~ X ~ .I should point out that d(H)=i(N).  You can 
satisfy yourself that there is a one-to-one correspondence between closed arc sets and the 
partitions of T enumerated by a ,  so the terms of highest degree in w,,,(x,f(X- 1)) are 
a k ( r: W ) X # ( ~ ) - ~ A ~ ~-k. The rest is easy. 

The analog for fk requires the numbers cp,(r), defined by 

summed over all the sets of arcs T, which connect the nodes of T into I blocks.'O Because a 
summand is 0 if T, is not closed and is the number of regions in the arrangement H[r /T l ]  if TI is 
closed, cp, is positive. Given the definitions of q5, and wH and the fact that fk(H) is the coefficient 
of x " - ~in (- l ) " - i ( N ) ~ H ( - ~ ,- I), the deduction of Corollary 11 from Theorem 9 is merely a 
series of formal manipulations. 

The numbers of flats and faces of some signed-graphic arrangements of planes, calculated by 
Corollaries 10 and 11 and the data in Fig. 9. The arrangements are H[?  TU], where r is the 
graph in Fig. 9 and U is various. 

(a) The arrangement H[?  To] (i.e., U= N=  {1,2,3)). This arrangement is depicted in Fig. 6 (a). 

k 1 0 1 2 3 
Number of k-flats, a, 5 5 1 
Number of k-faces, fk 10 24 16 

(b) The arrangement H[?T(1*3)], depicted in Fig. 7 (a). 

k 1 0  1 2 3 

(c) The arrangement H[ fI?{')], depicted in Fig. 8 (a). 

(d) The arrangement H[?  TI (i.e., U=%), which consists of the two planes x,  = ?x2, meeting in 
the line x ,=x2=0 .  
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COROLLARY11. The face numbers of graphic and sign-symmetric arrangements are given by 

fk(H[rl)=+k(r)9 

When we are dealing with the root system arrangements A,*-,, B,*, and D,*, or with 
D,*(P)=D,* plus p coordinate hyperplanes, is the complete graph K,. Every partition of the 
nodes is into connected blocks, so aj(K,)=S(n, j) ,  the number of partitions of n objects into j 
blocks: the well-known Stirling number of the second kind. The contraction Kn /T,, where T, is 
closed, is a loop-free complete graph; its chromatic polynomial is therefore (A),. Since there are 
S(n, I) such sets T,, +,(Kn)=S(n, 1)1!. Corollary 12 collects all the formulas we can now derive 
from Corollaries 10 and 11. The calculations are straightforward enough except that one needs 
the identity S(n ,k)/k =S(n - 1, k )  +S(n - 1, k - l)/k in the evaluation of fk(D,*(p)). 

COROLLARY12. The Jlat and face numbers of A,*- ,,B,* ,and D,*(P) are: 

10. The End . . . That wraps up my discussion of subarrangements of the classical root 
system arrangements of hyperplanes. I believe I have made a case for the claim that just about 
anything about graphic and sign-symmetric arrangements can be reduced to ordinary graph 
theory. Arrangements which are neither graphic nor sign-symmetric can also be handled, but it 
takes a theory of signed graphs." 

A kind of question I have only touched on concerns the connection between the geometry of 
the arrangements based on an ordinary graph I? and the combinatorics of I?. Curtis Greene's 
discovery that regions of H [ r ]  correspond to acyclic orientations of r (see Section 7) suggests 
what one might find. As a matter of fact, regions of H[Z] correspond to acyclic orientations of 
the signed graph 2.From that one can derive a combinatorial description of the way a region of 
H [ r ]  is subdivided when one passes to H [ f  I?"]. I believe there are more good problems along 
this line; certainly looking at geometry will lead to new ideas about graphs, and vice versa, as 
the connection between them is made increasingly strong. 
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Notes 

1. For root systems and their connection to Lie algebras, see any book on Lie algebras, such as those of Wan, 
Adams, and Serre, or the excellent brief account of Veldkamp in [6, Section 31. There are several definitions, all 
equivalent either to ours or to the slightly broader one adopted by Sene and Veldkamp (who call our root systems 
"reduced"). 

2. The characteristic polynomial is usually defined in terms of the lattice of flats; for this see [14]. The proof of 
Theorem 2 was found first by Winder, later (independently and in more generality) by me. 

3. The fist  analysis of deletion and contraction invariants (called by Brylawski "Tutte-Grothendieck 
invariants") was Tutte's study of graphs. Later Brylawski extended the analysis to matroids (of which arrange- 
ments of hyperplanes are typical examples). 

4. Signed graphs and some basic notions were invented by Harary. The connection between signed graphs 
and characteristic polynomials is implicit in Dowling's article, although only the case corresponding to B: was 
discussed there. 

5. For the characteristic (or rather, chromatic) polynomial of an arbitrary signed graph, see [ lq .  
6. This is a classical proof. For various properties of chromatic polynomials, including a proof that they are 

polynomials, see Read's survey or a book on graph theory. 
7. For a proof of this vector representation of a graph, see Theorem 2 in Section 9.5 of Welsh's book. 
8. The Whitney polynomial was introduced in [14], there called the "Mobius" polynomial. Specialists will 

realize that "Whitney" is a better name, because the coefficients of ~ ~ h " - ~ - ~ ( ~ )  are the and 
Whitney numbers Wkand w, of the lattice of flats. 

9. A proof from a different viewpoint appears in [ lq .  
10. The GI have a combinatorial meaning for T. A theorem of Stanley's implies that the number of acyclic 

orientations of all contraction graphs T/T, is +,(r). 
11. See [IS] and [ lq .  
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