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The zero-free chromatic number x* of a signéd graph 3 is the smallest positive number k for
which the vertices can be colored using +1, +£2, . . .-, =k so the endpoints of a positive edge are
not colored the same and those of a negative edge are not colored oppositely. We establish the
value of x* for some special signed graphs and prove in general that x* equals the minimum
size of a vertex partition inducing an antibalanced subgraph of 3, and also ‘the minimum
chromatic number of the positive subgraph of any signed graph switching equivalent to 3. We
characterize those signed graphs with the largest and smallest possible x*, that is n, n—1, and
1, and the simple ones with the maximum and minimum x*, that is [n/2] and 1, where n is the
number of vertices. We give tighter bounds on x* in terms of the underlying graphs, but they
are not sharp. We conclude by observing that determining x* is an NP-complete problem.

We introduce the (zero-free) chromatic number of a signed graph, a graph with
edges labelled by signs. We look for structural formulas and upper and lower
bounds in terms of vertex partitions, the positive and negative edge sets, and the
doubly signed adjacencies. We also study the signed graphs with the largest or the
smallest chromatic number having given order, underlying graph, or doubly
signed adjacencies, and we characterize the extremal examples among all signed
graphs and among signed simple graphs.

Signed graphs and balance were first defined by Harary [4]; coloring® was
introduced in [7]. A signed graph 3 = (I, &) consists of a graph I'=(V, E), which
may have loops and multiple edges,” and a sign function o : E —{+, —}. We also
denote the underlying graph I" by |3|. The order of I', or 3, is n=n()=n(3)=
|V|; we assume n=>1. The complement of a vertex set X<V is denoted by
X°=V\X; and I'° denotes the complementary graph of a simple graph I'. The
positive edge set of 3 is E, = '(+); the positive part of 3 is the all-positive
subgraph 3, =(V, E,, +). Similarly we define E_ and 3_. The negative of % is
=3 =(I, —0).

A subgraph 3, is balanced if every circuit has positive sign product, anti-
balanced if —3, is balanced. If X and Y are disjoint subsets of V, the balanced-
induced subgraph 3, - (X, Y) is the signed graph whose vertex set is X U Y, whose

1 Yn our sense. A different ‘coloring’, really a kind of cluster analysis, was defined by Cartwright and

Harary [1].
2We will not need the half edges and loose edges (or ‘free loops’) of [7, 8, 9].
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which the vertices can be colored using +1, 2, ..., £k so the endpoints of a positive edge are
not colored the same and those of a negative edge are not colored oppositely. We establish the
value of x* for some special signed graphs and prove in general that x* equals the minimum
size of a vertex partition inducing an antibalanced subgraph of X, and also the minimum
chromatic number of the positive subgraph of any signed graph switching equivalent to 3. We
characterize those signed graphs with the largest and smallest possible x*, that is n, n—1, and
1, and the simple ones with the maximum and minimum x*, that is [n/2] and 1, where n is the
number of vertices. We give tighter bounds on x* in terms of the underlying graphs, but they
are not sharp. We conclude by observing that determining x™ is an NP-complete problem.

We introduce the (zero-free) chromatic number of a signed graph, a graph with
edges labelled by signs. We look for structural formulas and upper and lower
bounds in terms of vertex partitions, the positive and negative edge sets, and the
doubly signed adjacencies. We also study the signed graphs with the largest or the
smallest chromatic number having given order, underlying graph, or doubly
signed adjacencies, and we characterize the extremal examples among all signed
graphs and among signed simple graphs.

Signed graphs and balance were first defined by Harary [4]; coloring® was
introduced in [7]. A signed graph 3 = (I, o) consists of a graph I'= (V, E), which
may have loops and multiple edges,” and a sign function ¢ : E — {+, —}. We also
denote the underlying graph I' by |3|. The order of I, or 3, is n=n(l)=n(3)=
|V]; we assume n=1. The complement of a vertex set X<V is denoted by
X°=V\X; and I'"° denotes the complementary graph of a simple graph I The
positive edge set of 3 is E, =0 '(+); the positive part of 3 is the all-positive
subgraph 3, =(V, E,, +). Similarly we define E_ and 3_. The negative of % is
-3 =T, —o). '

A subgraph 3, is balanced if every circuit has positive sign product, anti-
balanced if —3, is balanced. If X and Y are disjoint subsets of V, the balanced-
induced subgraph 3 - (X, Y) is the signed graph whose vertex set is X U Y, whose

1 In our sense. A different ‘coloring’, really a kind of cluster analysis, was defined by Cartwright and

Harary [1].
2'We will not need the half edges and loose edges (or ‘free loops’) of [7, 8, 9].
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edge set is {ec E: o(¢)= + and e has both endpoints in X or both in Y, or else
o(e) = ~ and e has one endpoint in X and the other in Y}, and whose signs are as

in 3. An easy but fundamental criterion for balance is

Lemma 1 ([4]; also see [6, Theorem X.11]). 3 is balanced if and only if there is a
partition of V into X U X° so that every positive edge has both ends in X or both in
X° and every negative edge has one end in X and one in X°.

Switching 3 by X < V means reversing the signs of all edges with one endpoint
in X and the other in X°. A signed graph 3’ obtained by switching 3 is said to be
switching equivalent to it, written 3’ ~ 3. A basic and easy theorem is that 3; ~ 3,
if and only if 3, and 3, have the same underlying graph and the same balanced
circuits. It follows that 3 can be switched to be all positive (all negative) if and
only if it is balanced (antibalanced).

A zero-free coloring of 3 in k (unsigned) colors, where k is a non-negative
integer, is a mapping ¢: V—{x1,+2,..., xk}. (A coloring allows 0 as another
color. Here we treat only zero-free colorings, but there is a close relationship: see
[8, Section 1].) Tt is proper if the endpoints of each positive edge have different
signed colors and those of each negative edge have colors that are not negatives of
each other. Thus unbalanced loops do not affect the properness of a zero-free
coloring, but a signed graph with a positive loop has no proper colorings. The
zero-free chromatic number of 3, denoted x*(2), is the smallest number of
(unsigned) colors for which 3 has a proper zero-free coloring. Since we treat only
zero-free colorings in this article, we will omit the modifier, speaking only of
‘colorings’.

The chromatic number of an unsigned graph is denoted x ().

Some particular signed graphs are: The all-positive signed graph +I', denoting
(I', +) or the graph I" with all edges positive. The all-negative signed graph —I.
The signed expansion +I'=+I'U—I" (meaning the edge-disjoint union of two
graphs on the same vertices). The signed complete graphs, (K,, o), also written Kr
to signify the signed K, on vertex set V(I') with negative edge set E(I'). These
should not be confused with complete signed graphs, where every vertex pair is
adjacent at least once. Important examples of the latter that are not signed K,.’s
are +I'U—-K, and —I"'U+K,,, which have respectively all possible negative (or
positive) adjacencies and the positive (or negative) adjacencies of I'; here again I
and K, are assumed to have the same vertex sets.

For some of these examples the chromatic number is quite easy to determine.
Let [x] denote the least integer =x. We have '

XD =13 xDN, oy

since coloring +1I” is like coloring I" but we save in the count by using both signs of




How colorful the signed graph 281

each unsigned color value;

x*I=1, @
since we can color every vertex the same; and
X*ED) = x(T), 3

for since every edge appears doubled with both signs, the color signs play no role.
Because adding edges only makes a graph harder to color properly, we have the
useful fact that

x*C)=x*(, if 3 is a subgraph of 3,. )]

- To define switching of a colored graph, if we switch 3 by X, we must also negate
all the colors of the vertices in X. Then it is clear that switching 3 does not affect
its chromatic number.

The basic formulas for the chromatic number are given in Theorem 1. A vertex
set is called an (anti)balanced set in 3 if it induces an (anti)balanced subgraph.

Theorem 1. The zero-free chromatic number x*(3) is equal to

(a) the mininum number of antibalanced sets into which V can be partitioned,
and

(b) the minimum of x({24|) over all 3'~ 3.

Proof. (2) Let p denote the minimum partition size. Let ¢ be a minimal proper
coloring. By definition of properness ¢ *(+i) is an antibalanced set for each i.
Thus p=x*.

Convérsely let V be partitioned into p antibalanced sets Vi, V,,..., V,. By
Lemma 1, each -V, splits into two subsets (possibly void) such that each edge in a
subset is negative and each edge between subsets is positive. If we color the
subsets respectively +i and —i, we have a proper coloring. Thus x*=<p.

(b) Suppose we color |3.| by the positive colors +1, +2, ..., +x{(Z.]). Then all
positive edges of 5 are properly colored, and so are all negative edges, so
x*=<x(2.).

Conversely let V be partitioned into x* antibalanced sets V.. We can switch 3
to 3’ in which the edges lying in each antibalanced set V; are all negative. Then
clearly x(|3°))<x™. Part (b) follows. [

It would be desirable to have a ‘bottom’ analog of Theorem 1(b), say of the
form x*(¥)=maxs._s f(|X%]) for some function f. '

Theorem 1 implies (1)-(3) and also (5)—~(7) now stated. Let m(I") denote the
size of a largest matching in I. We have

X*(+TU=K,) = x(I), ©)
+I'e ¥ c+I'U—K, implies x*(2)=x{T). 6)
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These results follow from (3) and (21) since +I"U—K,, clearly has a proper coloring
using x(I") positive colors. And

x¥(-T'U+K,)=n—m(I). V)

The reason: the +K,, prevents any antibalanced set from having more than two
vertices. The —I" prevents an antibalanced pair that is adjacent in I'; thus the
antibalanced pairs of a proper coloring form a matching in I"°. We conclude that
x*=n—m(I). Conversely a maximum matching in I'® yields a proper coloring in
n—m(I™) colors, whence x*=n—m(I"). Formula (7) follows.

Formulas (5) and (7) show that the chromatic number problem for signed
graphs includes both that for ordinary graphs and the maximum matching
problem. This can also be seen from [8, Section 6]; in fact, (5) and (7) foliow from
the results there.

Corollary 1. Let 3 have no loops. Then x*(3)=nif Z=+K,; x*()=n-1if 3
consists of £K, with either a nonvoid set of edges at one vertex, or an unbalanced
triangle, removed; and otherwise x*(3)<n—2. And x*(3)=1 if and only if 3 is
antibalanced. '

Proof. The values given are obvious, as are the characterizations for chromatic
number 1 and n. Suppose now that x*(Z)=n—1, and let E,= E(xK )\E(2).
There can be no two nonadjacent edges in E,. Thus either E, consists of some
edges at one vertex, or it is a triangle, with perhaps doubled edges, on vertices
u,v, we V. If E, is anything but an unbalanced triangle, then {u, v, w} is an
antibalanced set and x*(3)=sn-2. O

Now we come to deduce bounds on the chromatic number. An obvious lower
bound is

X*(@)= [x(2.1. (®)

That the bound is not sharp even up to switching is shown by 3 = £I". So it will
not give a ‘bottom’ formula for x*.

ILet As be the graph of doubly signed adjacencies in 3: that is, v and w are
As-adjacent if they are both positively and negatively adjacent in 3. Then we have

x(4s) =< x*(E)=n-m(43). )

The first inequality follows from (3) and (4). For the second, choose a maximum
matching in A% and use it to color X as in the proof of (7).

Although these are quite weak bounds, it is regrettably difficult to find all the
graphs satisfying them exactly. But for signed complete graphs we can do so. The
next result gives sharp absolute bounds (in terms of the order) for all signed
simple graphs.
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Theorem 2. Let 3 be a signed simple graph. Then x*(3)=<[n/2], with equality
precisely when X is complete and balanced, or n is even and 3 contains a balanced
K, ,, or n=4 and 3 is an unbalanced 4-circuit, or n=6 and 3 switches to Kp
where I is a 5-circuit plus an isolated vertex. Also x*(3) =1, with equality precisely
when 3, is antibalanced.

Proof. The upper bound follows directly from Corollary 1. The lower bound is
trivial; the case of equality follows from Theorem 1(a). _

As for equality in the upper bound, it holds by (1) when ¥ is complete and
balanced. Suppose n is odd, n =2m +1, and ¥ is incomplete or unbalanced. Then
it has three vertices not all adjacent, or it is complete and hence has an
unbalanced triangle [2, Theorem 3.2]. Since the remaining 2m — 2 vertices can be
divided into m — 1 antibalanced pairs, we have xy*<=m <[n/2].

Now let n be even. If 3 contains a balanced K,_;, then (1) and (4) imply
x* = n/2. This takes care of the case n =2. When n =4, it leaves only antibalanced
>’s, for which x*=1, and the unbalanced 4-circuit, for which clearly x*=2. So
let n=6.

Suppose 3 has maximum degree less than n—1. If |3|° has two non-adjacent
edges, then (since n=6) ¥ contains two disjoint antibalanced vertex triples; then
x* < n/2. Otherwise, 3 is a signed K,,_, plus one isolated vertex, and by the odd
case x*=mn/2 if and only if the K,,_; is balanced.

We now assume that x*=n/2 and 3 has a vertex v, of degree n—1. Let us
switch so v, has only positive edges, and set ¥ =3\v,. If (¥,)° contained a
triangle uvw, then wuvwoy, would be an antibalanced vertex quadruple and
x*<n/2 by Theorem 1(a). So (¥,)° is triangle-free. If it contains no two
nonadjacent edges, then it is a claw: a graph whose edges all meet at a common
vertex, say u. In that case 3\u is a balanced K, _;.

Assume (V,)° contains two nonadjacent edges, say uv and wx. If u and v were
not adjacent in 3, then uvz and wxv, (where z is any sixth vertex) would be
disjoint antibalanced triples in 3, hence x*<n/2. So % must be complete and
(¥,)°= W_. If there were a vertex z nonadjacent in ¥_ to u and v, then uvz and
wxv, would be disjoint antibalanced triples in 3. Therefore every vertex other
than u, v, w, x is a neighbor in ¥_ of u or v (but not both) and w or x (but not
both). So if ¥.. contains a 5-circuit, it must be an induced one. Suppose ¥_ does
contain a 5-circuit. When n = 6, this results in a 3 with x* =3, since ¥ cannot be
colored properly in two unsigned colors without using all four signed colors.
When n>6, there is a seventh vertex z, which must be adjacent to exactly one
end of each edge of the circuit; but that is impossible. So there is no induced
5-circuit in ¥_ when n>6. A longer induced circuit is impossible because it
would contain edges uv and wx and a vertex z not adjacent to either u or v.
Hence W_ is bipartite. Moreover, it is connected. Finally, it is complete. For
suppose its diameter were at least 3. Then there would be an induced path uvwx
and another vertex z. Suppose z is adjacent to v: then u is adjacent to x or w,
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hence to x by biparticity. Suppose z is adjacent to u: then x is adjacent to u or z,
hence to u by biparticity. But one of those cases must apply. So ¥_ has diameter
2, which makes it a complete bipartite graph on V\v,. Now switch 3 so 7 is all
positive. In the new signed graph, the negative edges form a claw. This proves the
theorem. [0

A stronger lower bound on x*(Ky) is that of formula (8), which becomes
x*(Kr)=[3x(I"°)]. There are many graphs I' yielding equality; it would be
interesting to see them classified, but I suspect this is difficult.

Finally, we observe that x*(3) is computationally about as difficult as x(I').
(For general background see for instance [3].)

Proposition 1. The problem (SQ,) “Is x*(Z)=<k?” is NP-complete if k=2, and
polynomially bounded if k=1.

Proof. Obviously all (SQ,) are in the class NP. The first case, (SQ;), is equivalent
to determining balance of —3, which is solvable in time quadratic in n [S]. For
k=3, (SQy) contains as a subproblem (the case X ==I, by Eq. (3)) the
NP-complete problem (Q,) “Is x(I) <k?”" And (SQ,) contains (Q,) as the special
case 3 =+I". O
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