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Abstract. In a bidirected graph, each end of each edge is independently oriented.
We show how to express any column of the incidence matrix as a half-integral
linear combination of any column basis, through a simplification, based on an idea
of Bolker, of a combinatorial algorithm of Appa and Kotnyek. Corollaries are that
the inverse of each nonsingular square submatrix has entries 0, ±1

2 , and ±1, and
that a bidirected integral linear program has half-integral solutions.
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A bidirected graph B is a graph in which every edge has an independent direction at each
endpoint. The node-edge incidence matrix H(B) generalizes the incidence matrix of an ordinary
directed graph G. Every nonsingular square minor of a graphical incidence matrix has determinant
equal to +1 or −1; this property is the basis of the theory of network matrices. A network matrix
is obtained from a graphic incidence matrix by deleting dependent rows (call the result H̄(G)),
choosing a maximal forest T (that is, a basis of the column space of H(G)), premultiplying by the
inverse of the square submatrix H̄(G, T ) indexed by the columns corresponding to T , and deleting
those columns. Since det H̄(G, T ) = ±1, H̄(G, T )−1 is integral and therefore so is any network
matrix. Appa and Kotnyek [1] generalized this idea to bidirected graphs. An essential lemma for
their work is that the submatrix H̄(B, T ) indexed by a basis of the column space of H̄(B) has an
inverse that is half-integral; thus they improve on [8, Lemma 8A.2], which showed the weaker fact
that det H̄(B, T ) is a signed power of 2. Appa and Kotnyek provide an algorithm [1, Algorithm 1]
that proves the half-integrality in a constructive way. Here we give a similar but simpler algorithm,
which is implicit in an insight of Bolker [3, 4], and was first published (in a more complicated form)
by Bouchet [5, proof of Corollary 2.3]. The algorithm permits simplification of other parts of [1],
but we do not discuss that in depth.

First we state precise definitions. A graph G with n nodes v1, . . . , vn and m edges e1, . . . , em may
have four kinds of edges. A link is an edge with two distinct endpoints; a loop has two coinciding
endpoints; a halfedge has one endpoint, and a loose edge has no endpoints. A circle is a connected,
2-regular edge set; a loop is a circle of length 1. A signed graph is a graph together with a signature,
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σ, that assigns to each link or loop e a sign σ(e) ∈ {+1,−1}. The sign of a circle is the product of
the signs of its edges.

We indicate the bidirection in a bidirected graph B by a function η : I → {+1,−1}, where I is
the set of endpoint-edge pairs (vi, ej); one can think of the value +1 as indicating that the edge is
directed into the node, −1 as indicating direction away from the node. The incidence matrix is the
n×m matrix H(B) whose (i, j) entry is η(vi, ej), except that it is 0 if ej is a positive loop or not
incident with vi and it is 2η(vi, ej) = ±2 if ej is a negative loop incident with vi. (These rules are
explained more fully in [8]. Our notation, to avoid overcomplication, is a bit sloppy since it fails to
distinguish the two ends of a loop; we trust the reader will understand the meaning.) The column
indexed by edge e is denoted by ce.

A bidirected graph implies the signature σ(e) := −η(v, e)η(w, e) where v and w are the nodes
incident with e. Thus, a positive link or loop has ends which are oriented in the same direction
along the edge, one end leaving its node and the other end entering its node; as this is just like an
ordinary directed edge, a directed graph is the same as a bidirected all-positive signed graph. The
signature is unchanged by reorienting an edge, which means negating the values of η (i.e., reversing
the arrows) on that edge; the incidence matrix is changed in that the column of e is negated.
Switching a node means negating all the values of η at that node; it corresponds to negating a row
of the incidence matrix. Reducing a node v means deleting v but not any of the incident edges;
instead, an incident edge loses its endpoint(s) at v, becoming a halfedge or loose edge. Reducing
a node corresponds to deleting a row of the incidence matrix, just as deleting an edge corresponds
to deleting a column. A reduction of B is a result of applying any combination of edge deletions
and node reductions.

Thus, the matrix that results from negating and deleting rows and columns in H(B) is the
incidence matrix of a bidirected graph obtained from B. Note that H(B) has full row rank if and
only if each component of B contains a halfedge or a negative circle [8, Theorems 5.1 and 8B.1]. If
H(B) does not have full row rank, B can be converted, by reducing one or more nodes, to B′ such
that the rows of H(B′) are rows of H(B) and are a basis of its row space.

In a walk n0, f1, n1, . . . , fl, nl, a node ni is consistent if η(ni, ei) = −η(ni, ei+1). (This definition
applies to n0, with subscripts modulo l, if n0 = nl and l > 0.) A consistent orientation of the edges
of the walk is an orientation in which every node is consistent.

Lemma. Let T be the edge set corresponding to a basis of the column space of H(B). Let e be
another edge in B. Then ce is a half-integral combination of the columns cf for f ∈ T , the possible
nonzero coefficients being ±1

2 ,±1,±2.

Proof. Our constructive proof begins as does Appa and Kotnyek’s. We may assume (by reduction)
that H(B) has full row rank. Since a basis matrix has full row rank, each component of T consists
of a tree and one more edge that either is a halfedge or forms a negative circle with the tree. Thus,
S = T ∪ {e} contains a unique circuit (minimal dependent subset) of the set of columns of H(B).
Let c1, . . . , cn be the columns of H(B) that correspond to the edges of T .

According to [8, Theorems 5.1(e) and 8B.1], a circuit has one of three forms. It may be a positive
circle (or a loose edge, but we may safely ignore this trivial case), or a pair of negative circles with
exactly one common node, or a pair of disjoint negative circles along with a minimal connecting
path. The latter two types are called handcuffs. In a handcuff, either negative circle, or both, may
be replaced by a halfedge.

A minimal covering walk of a circuit C is a walk of minimum length that covers each edge and
has no endpoints. Thus, it is a closed walk if C contains no halfedge, but otherwise the walk begins
and ends with a halfedge. A minimal covering walk covers each edge of a connecting path twice and
each other edge exactly once, except that if one circle is replaced by a halfedge, the halfedge is also
covered twice, and if both circles are replaced by halfedges, then every edge of C is covered once
(indeed, C is its own minimal covering walk). A consistent orientation of a circuit is an orientation
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such that in a minimal covering walk every node is consistent. It is easy to verify that every circuit
has a consistent orientation. (One may consult [9] for a detailed discussion of how to orient a signed
graph. We note that in papers by Zaslavsky the word used for “consistent” is “coherent”, while in
[1] the corresponding term is “incoherent”.)

Here is the procedure for producing ce as a linear combination of the ci. Let C be the unique
circuit contained in T ∪ {e}. First, reorient edges of C so that a minimal covering walk becomes
consistently oriented. (This is independent of which minimal covering walk one chooses.) Then
assign weights −1 to each singly covered edge, −2 to each doubly covered edge, and 0 to the other
edges in T . Then, negate the values assigned to edges that were reoriented. Divide by 2 if necessary,
and negate all signs if necessary, to ensure that e has weight −1. The edge weights on T are now
the coefficients in the linear combination of the ci that equals ce. �

The procedure can be made more precise. We follow a suggestion of the referee. Find a minimal
covering walk W . Initialize all edge weights in T ∪{e} at 0. Trace the edges of W , reorienting each
newly encountered edge so as to make W consistent. Start with e (and do not reorient it) if W is a
closed walk, but otherwise start from a halfedge of W . Each time an edge is encountered, assign it
weight +1 or −1, respectively, if its weight was zero and it was, or was not, reoriented; but double
its weight if the weight was nonzero (as happens on the second encounter with an edge). When
done tracing W , divide all weights by the negative of the weight of e (whose weight is −1 or −2 if
W is closed, ±1 or ±2 otherwise). It is clear that all edges of C have been visited and assigned the
right nonzero weights.

We derived our procedure from Bolker’s realization that one can simply write out the linear-
dependence coefficients of a signed-graph circuit (see [3, p. 160, second paragraph] and [4, proof of
Theorem 7]). Zaslavsky remembered that result when he encountered this problem and turned it
into our simple method. Although Bouchet stated a similar procedure, he did not apply it to the
question addressed in the lemma; rather, he was interested in the dual question of nowhere-zero
integral flows.

Since the rows of a submatrix M of H(B) are indexed by nodes and the columns by edges, the
rows of M−1 (if it exists) are indexed by edges and the columns by nodes.

Proposition. The inverse of any nonsingular square submatrix M of H(B) is half integral. Let B′

be the reduction of B that corresponds to M . Then the half integers in M−1 are ±1
2 ’s in positions

(e, v) such that e lies in a circle in the component of B′ that contains v. The other entries are
integers 0 and ±1.

Proof. By reducing B we may assume that M has all the rows of H(B); thus it is the n×n matrix
H(B, T ) indexed by a basis {c1, . . . , cn} of the column space of H(B), each ci corresponding to an
edge in B′. Now we replace the edge set of B by T together with a new halfedge hi at each node vi

of B. The matrix of the new halfedges is the identity matrix, the ith column being indexed by hi

so it is the ith unit basis vector ui. The ith column w of M−1 satisfies Mw = ui. By the lemma,
ui is a half-integral linear combination of the columns of M . Therefore, M−1 is half integral. The
half integers appear as stated because of the exact form of our algorithm. �

This proposition is contained in [1, Example 4 and proof of Theorem 9]. The idea of using
appended halfedges is the same. The proofs are similar; ours seems simpler due to the simpler
algorithm. [1, Theorem 9] points out that each row of M−1 is either integral (all entries belong
to {0,±1}) or strictly half-integral (all entries in {0,±1

2}); their proof shows, just as does our
statement of the proposition, that the 1

2 ’s appear in the rows indexed by the edges in circles of B′.
We suggest that the proofs of some other interesting results in [1], though much the same in

essentials, also become more transparent by using our procedure instead of their Algorithm 1. We
discuss, in particular, a main result of [1]. A binet matrix [1] is a matrix obtained from a bidirected-
graph incidence matrix H(B) of full row rank by choosing a set T of edges whose columns form
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a basis of the column space, premultiplying H(B) by H(B, T )−1, and deleting the columns that
correspond to T . It is the bidirected generalization of a network matrix.

Corollary ([1, Theorem 20]). A consistent integral linear system Ax = b, in which A is a binet
matrix and b is integral, has a half-integral solution. An integral linear program Ax = b, x ≥ 0 with
finite optimum whose coefficient matrix A is a binet matrix has a half-integral optimum.

Proof. First, we may assume that A is the incidence matrix of a bidirected graph. If not, A =
H(B, T )−1H(B, T c), where T is a basis of the column space of H(B) and T c is its complement.
Then Ax = b can be rewritten as H(B, T c)x = H(B, T )b. Since the product on the right is integral,
we can replace Ax = b by this equation; that is, we assume A is the incidence matrix of a bidirected
graph.

We may also assume A is invertible. For the proof of this, let Ai denote a row of A and bi

the corresponding entry of b. We have constraint equations Aix = bi and, in the LP case, the
nonnegativity bounds x ≥ 0. In the case of a linear system, we discard redundant equations. In the
LP case, we focus on a particular x that is an optimal vertex of the feasible region, determined by
some constraint equations and some equations xj = 0; it may not satisfy all constraint equations,
so we discard the ones it does not satisfy as well as any redundant equations. In both cases, A
remains a bidirected incidence matrix because, graph theoretically, we are only reducing vertices.

Our situation is now that x is a solution of Ax = b where A has full row rank; however, x may
be underdetermined by Ax = b. In a linear system, we specify x by setting the free variables equal
to zero. In the LP case, x is already determined by having some coordinates equal to zero. If we
discard the columns of A that correspond to zero coordinates of x, we have a square binet matrix
A′ of full row rank and remaining equations A′

ix = b′i whose constant terms are some of the entries
of H(B, T )b, hence integers.

We conclude that the original constraints can be rewritten as A′x = b′ where A′ is an invertible
incidence matrix of a bidirected graph. The corollary then follows from the proposition. �

It is easy to see (by adding a halfedge at every node) that the incidence matrix of a bidirected
graph is itself a binet matrix [1]. The corollary in this special case is known (in different termi-
nology), e.g., by [6]; see the introduction to [1, Section 6] for a discussion. The first part is also
derived independently in [2, Lemma 4.7] from difficult work of Lee [7].
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