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Abstract. We completely describe the structure of irreducible integral flows on a signed
graph by lifting them to the signed double covering graph.

A (real-valued) flow (sometimes also called a circulation) on a graph or a signed graph (a

graph with signed edges) is a real-valued function on oriented edges, f : ~E → R, such that the
net inflow to any vertex is zero. An integral flow is a flow whose values are integers. There
are many reasons to be interested in flows on graphs; an important one is their relationship
to graph structure through the analysis of irreducible flows, that is, integral flows that cannot
be decomposed as the sum of other flows of lesser value. It is well known, and an important
observation in the thoery of integral network flows, that the irreducible flows are identical to
the circuit flows, which have value 1 on the edges of a graph circuit (that is, a cycle) and 0
on all other edges. Extending the theory of irreducible integral flows to signed graphs, which
was one of the topics of the doctoral dissertation of Wang [4], led to the remarkable discovery
that there are, besides the anticipated circuit flows (which in signed graphs are already more
complicated than in unsigned graphs), also many ‘strange’ irreducible flows with elaborate
structure not describable by circuits. In this article we characterize that structure by lifting
it to a simple cycle in the signed covering graph. (Indeed, this was how we discovered the
correct characterization, though we were also guided by the partial result in Wang’s thesis.)

We like to think of lifting as a combinatorial analog of resolution of singularities in contin-
uous mathematics. The strange irreducible flows are singular phenomena, which we resolve
by lifting them to ordinary cycle flows in a covering graph. This is not a precise statement
but a philosophy that we believe will be fruitful.

1. Graphs and signed graphs

Graphs. A graph is (V,E), with vertex set V and edge set E. There may be loops and
multiple edges. An edge e with endpoints v and w has two ends, which we symbolize by
(v, e) and (w, e). A tricky technical point is that this notation does not distinguish the two
ends of a loop; we take an easy way out by treating (v, e) and (w, e) as different ends even
when v = w. (There are more technically correct means of distinguishing the ends but they
make the notation very complicated.)

A walk is a sequence W = v0e1v1e2 · · · elvl of vertices and edges such that the endpoints of
ei are vi−1 and vi. A walk is closed if l > 0 and v0 = vl and open otherwise. A segment of W
is a consecutive subwalk, i.e., viei+1 · · · ejvj. When W is closed we allow j > l, interpreting
indices modulo l; thus, a segment may pass through v0. A circle is the edge set of a simple
closed walk, i.e., there is no repeated edge or vertex other than that v0 = vl. A graph circuit
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is a circle; the name comes from the fact that the circles of a graph form the circuits of the
well known graphic matroid whose elements are the edges of the graph.

A isthmus is an edge whose deletion increases the number of connected components.
A cutpoint is a vertex whose deletion, with all incident edges, increases the number of
components, or that supports a loop and is incident with at least one other edge. A block

is a maximal subgraph without cutpoints. Thus, a loop or isthmus or isolated vertex is a
(trivial) block. We call blocks adjacent if they have a common vertex (which is necessarily
a cutpoint). An end block is a block adjacent to exactly one other block.

Signed graphs. A signed graph Σ = (V,E, σ) consists of a graph (V,E) and a signature

σ : E → {+1,−1}. (Signs multiply; they do not add.) A walk in Σ has a sign σ(W ) :=
σ(e1)σ(e2) · · · σ(el). In particular, a circle has a sign (which is the sign of any walk that
goes once around the circle), so it is either positive or negative. A subgraph or edge set is
balanced if every circle in it is positive.

A signed circuit in a signed graph is a subgraph (or its edge set) of one of the following
three types:

(I) a positive circle (that is, a balanced circle);
(II) a pair of negative circles whose intersection is one vertex (sometimes called a contra-

balanced tight handcuff ); and
(III) a pair of vertex-disjoint negative circles together with a connecting simple path (called

the circuit path) that is internally disjoint from the circles (this type is sometimes
called a contrabalanced loose handcuff ).

The signed circuits are the circuits of a matroid on the edge set of the signed graph [5].
An ordinary, unsigned graph can be treated as an all-positive signed graph. When all

edges are positive, every circle is positive and the only signed circuits are those of Type I,
i.e., the graph circuits.

Orientation. A bidirection of a graph (a concept introduced by Edmonds [3]) is a function
from the edge ends to the sign group. On thinks of an end with sign +1 as having an arrow
directed away from the vertex and an end with sign −1 as having an arrow directed toward
the vertex (or vice versa; see [6]); thus a bidirected graph has two arrows, one at each end.
Formally, we write a bidirection as a function ε : V ×E → {+1,−1} such that ε(v, e) = 0 if
and only if v is not an endpoint of e. (For loops this formalism is technically incorrect, but
we trust the reader will be willing to understand ε(v, e) and ε(w, e) as independent values
even when e is a loop so v = w. Otherwise we are forced into technical complications.)

An orientation of a signed graph Σ is a bidirection of its edges such that σ(e) = −ν(v, e)ν(w, e)
[6]. Thus, a positive edge has two arrows that are consistent and give e a direction, just as
in an ordinary directed graph. A negative edge has arrows that both point towards, or both
away from, the endpoints.

A source in an oriented signed graph is a vertex v at which all edges are directed outwards;
that is, ε(v, e) = +1 for all edges at e. Conversely, if all edges point into v, v is a sink.

A walk W = v0e1v1e2 · · · elvl of an oriented signed graph is called coherent at vi if ε(vi, ei) =
−ε(ei+1); that is, if the walk has a consistent direction at vi. We apply this definition to v0,
if W is closed, by taking subscripts modulo l. A directed walk is coherent at every vertex
except v0 and vl. A directed closed walk is a closed walk that is coherent at every vertex with
the possible exception of v0. Although each vertex has a direction, W itself need not have
an overall direction, since at every negative edge the arrows reverse. A positive (or negative)
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directed closed walk must be coherent (or incoherent, respectively) at v0, by the following
lemma.

Lemma 1. The sign of a closed walk equals (−1)k, where k is the number of incoherent

vertices in the walk, including the final vertex if it is incoherent.

Proof. We perform a short calculation that applies to open as well as closed walks. Note
that if W is open, the final vertex cannot be incoherent.

(1)

σ(W ) =
l

∏

i=1

σ(ei) =
l

∏

i=1

[−ε(vi−1, ei)ε(vi, ei)]

=
l−1
∏

j=1

[−ε(vj , ej)ε(vj, ej+1)] · [−ε(v0, e1)ε(vl, el)]

=

{

(−1)k if W is closed,

−(−1)kε(v0, e1)ε(vl, el) if W is open. �

Reorienting S ⊆ E means reversing the orientations of the edges in S but not those outside
S. Thus, ε changes to εS defined by

εS(v, e) =

{

−ε(v, e) if e ∈ S,

ε(v, e) if e /∈ S.

The signed covering graph. Let Ṽ := V × {+1,−1} and let Ẽ := E × Z2, the union of
two disjoint copies of E. For brevity we write (v, α) as vα. If an edge e of Σ has endpoints
v and w, then one copy of e in Σ̃ has endpoints v+1 and wσ(e) while the other copy has
endpoints v−1 and w−σ(e). This defines Σ̃, the signed covering graph of Σ, which is a graph
with unsigned edges and signed vertices. Σ̃ has a canonical involutory automorphism ∗

defined by (vα)∗ := v−α and (ẽ, k)∗ := (ẽ, k +1) and projects to Σ by the mapping p(vα) = v
and p(e, k) = k, which is a 2-to-1 graph homomorphism. We write ẽ for an edge in the
covering graph that projects to e and, following the notation of the canonical involution,
p−1(e) = {ẽ, ẽ∗}. When e is a negative loop at v, ẽ and ẽ∗ are two parallel edges in Σ̃ with
the endpoints v+1 and v−1.

We can think of Ṽ as having a positive level, V × {+1}, and a negative level, V × {−1}.
However, it is not possible to assign all edges to levels. A positive edge lifts to an edge that
stays within a level, but a negative edge crosses between levels.

Suppose W = v0e1v1e2 · · · elvl is a walk in Σ. We can lift W to a walk W̃ in Σ̃. First, we
choose a vertex vα0

0 that projects to v0. Then we follow edges that cover the edges of W ,
getting a walk W̃ = vα0

0 ẽ1v
α1

1 ẽ2 · · · v
αl−1

l−1 ẽlv
αl

l such that αi = αi−1σ(ei). We call such a walk a
lift of W . There are at least two such lifts since the choice of α0 is arbitrary, and there are
only two lifts if W contains no loops.

Lemma 2. Let W be a closed walk in Σ and W̃ a lift of it in Σ̃. The sign of W is σ(W ) = +1
if W̃ is closed and −1 if W̃ is open.

Proof. Let W = v0e1v1e2 · · · vl−1elvl where vl = v0, lifted to W̃ = vα0

0 ẽ1 · · · ẽlv
αl

l . Then

σ(W ) =
l

∏

i=1

σ(ei) =
l

∏

i=1

αi−1αi = α0αl.

3



This equals +1 if and only if W̃ is closed. �

An orientation ε of Σ lifts to Σ̃ by the rule

ε̃(vα, ẽ) = αε(v, e),

where ẽ denotes the lift of e that is incident with vα. By this definition, the other lift edge,
ẽ∗, is incident with v−α and has the opposite orientation, ε̃(v−α, ẽ∗) = −αε(v, e). It is easy
to see that ε̃ orients Σ̃ as an all-positive signed graph; that is, (Σ̃, ε̃) is an ordinary directed
graph. For a positive edge, one lift lies in the positive level and has the same direction as e
while the other lies in the negative level and has the direction opposite to that of e. For a
negative edge, both lifts are directed from the positive to the negative level or the reverse.

2. Flows

Flows on a signed graph. An integral flow on an oriented signed graph (Σ, ε) (or one
could say, following [1], on a bidirected graph) is a function f : E → Z which is conservative

at every vertex v, meaning that

∂f(v) :=
∑

e∈E

ε(v, e)f(e) = 0.

(We assume that a loop appears twice in this sum, once for each end.) The set of all integral
flows on (Σ, ε) forms a Z-module, called the flow lattice by Chen and Wang, who developed
its basic theory in [2]. One can define flows with values in any abelian group, such as the
additive reals; many of the following remarks are applicable in general (so we omit the word
‘integral’).

The theory of flows depends essentially on the graph and signature but it is not really
oriented, since when one reorients an edge set S one gets a natural isomorphism of flow
lattices by taking a flow f on (Σ, ε) to the flow f ′ on (Σ, εS) that is defined by f ′(e) = −f(e)
for e ∈ S while f ′(e) = f(e) for e /∈ S.

The support of a function f : E → Z is the set supp f := E \ f ( − 1)(0). The flow that
is zero on all edges is the trivial flow. A circuit flow has support that is signed circuit; on a
directed circuit it takes value 1 on edges in a circle of the circuit and, in Type III, 2 on edges
in the circuit path, and one gets a circuit flow on an arbitrary oriented circuit by reorienting
it to be a directed circuit, applying the definition for directed circuits, and reorienting back
to the original orientation while applying the natural flow-lattice isomorphism; i.e., negating
the flow values on the reoriented edges.

The usual theory of flows on graphs is simply the all-positive case. There a circuit flow is
±1 on the edges of a circle and zero elsewhere; we omit further details.

We say an integral flow f ′ conforms to the sign pattern of f if supp f ′ ⊆ supp f and,
whenever f ′(e) is nonzero, it has the same sign as f(e).

An integral flow f on (Σ, ε) lifts to a flow on the oriented signed covering graph, possibly
in more than one way. The best way to see this is through the correspondence between flows
and walks, which exists if (and only if) the support is connected.

A positive, directed closed walk W on (Σ, ε) implies a unique corresponding flow, which is
the integral flow defined by taking fW (e) (with e in an arbitrary fixed orientation) to be the
number of times W traverses e in the fixed orientation less the number of times e appears
in the opposite orientation. To prove fW is a flow, consider the contribution to f of a pair
of consecutive edges, eiviei+1, at the intervening vertex. Because W is coherent at vi, the
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contribution of these edges to ∂f(vi) is 0. This same argument applies to the initial vertex
if we take subscripts modulo the length of W . We can apply the same construction of a
function fW : E → Z to any walk, but the result may not be a flow.

Lemma 3. For a directed walk W = v0e1v1e2 · · · vl−1elvl, the function fW satisfies ∂f(u) = 0
if u 6= v0, vl, and

∂f(v0) =

{

0 if W is closed and positive,

±2 if W is closed and negative;

and if W is open, then ∂f(v0) = −σ(W )∂f(vl) = ±1.

Proof. If W is closed and negative, it is incoherent at v0 and therefore e1 and el contribute
the same value ±1 to ∂f(v0).

If W is open, then e1 contributes ε(v0, e1) = ±1 to ∂f(v0) and ε(vl, el) = ±1 to ∂f(vl).
These values are related by ε(vl, el) = −σ(W )ε(v0, e1), by Equation (1), because W is co-
herent. �

In the other direction, the construction of a corresponding walk (which is not usually
unique) from a flow f is just like the usual one of an Eulerian tour of a connected digraph
with equal in- and out-degrees, but more complicated because of negative edges.

Proposition 4. Let f be a nonnegative, nontrivial integral flow on (Σ, ε). Then there is a

positive, directed closed walk W such that fW = f .

Proof. We apply induction on ‖f‖ :=
∑

e f(e). Choose a vertex of supp f , call it v0, and
an edge e1 ∈ supp f that is incident with v0; call its other endpoint v1. This gives a walk
W1 = v0e1v1 of length 1.

Now, suppose we have selected a partial walk, Wk = v0e1v1 · · · ekvk.
If Wk is open or negative, then the lemma applied to Wk, together with f ≥ fWk

≥ 0,
shows that there must be an edge ek+1 ∈ supp f − fWk

such that ε(vk, ek+1) = −ε(vk, ek).
Extend Wk to Wk+1 := Wkek+1vk+1, where vk+1 is the other endpoint of ek+1.

If Wk is closed and positive, we have a positive, directed closed walk, by Lemma 1, such
that fWk

≥ 0. If f − fWk
6= 0, consider the restrictions of f − fWk

to the components of its
support. Each restriction f ′ is a nonnegative flow that has a corresponding positive, directed
closed walk and has ‖f ′‖ < ‖f‖. Each of these walks has a vertex in common with Wk, so
we can assemble them into a single positive, directed closed walk W such that fW = f . �

Lifted flows. Consider a function f : Ẽ → Z defined on the edge set of the signed covering
graph Σ̃. The projection is the function p(f̃) : E → Z defined by p(f̃)(e) = f̃(ẽ) + f̃(ẽ∗). A

lift of an integral flow on (Σ, ε) to the signed covering graph is a flow f̃ on (Σ̃, ε̃) such that

p(f̃) = f .

Lemma 5. A nonnegative integral flow on (Σ, ε) lifts to a nonnegative integral flow on (Σ̃, ε̃).

Proof. Construct a corresponding walk W to the flow. Lift W to W̃ . By construction, W̃ is
a directed closed walk on the signed covering graph. Thus, fW̃ is nonnegative. �

If we have an integral flow that is nonnegative, we apply the lemma after reorienting (Σ, ε)
so f is nonnegative.
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Irreducible flows. An integral flow f on Σ is called reducible if it is nontrivial and it can
be represented as the sum of two other integral flows, f = f1 +f2, each of which is nontrivial
and conforms to the sign pattern of f . It is easy to see that irreducibility is equivalent to
minimality : the only nontrivial flow that conforms to the sign pattern of f and satisfies
0 ≤ f ′ ≤ f is f itself.

It is well known that the irreducible flows on an unsigned graph are the circle flows.
Given a signed graph Σ, construct an integral flow by the following process.

1. Choose a connected subgraph Σ′ such that
(a) each block is a circle or an edge,
(b) each end block is a circle,
(c) each cutpoint is incident with exactly two blocks, and
(d) the sign of a circle block equals (−1)p, where p is the number of cutpoints on

the circle.
2. Orient Σ′ so that

(a) within each circle block, each non-cutpoint is coherent and each cutpoint is
incoherent, and

(b) there are no sources or sinks.
3. Assign flow values 1 to each circle edge and 2 to each isthmus.

Let us call the results of Step 1 essential signed graphs, the results of Step 2 essential

orientations, the flows of Step 3 essential flows, and the corresponding closed walks essential

walks. There are other ways to describe the essential orientations.

Proposition 6. Let ε be an orientation of an essential signed graph Σ. The following

properties of ε are equivalent:

(i) It is essential.

(ii) (Σ, ε) has a coherently oriented essential walk.

(iii) Every essential walk in (Σ, ε) is coherently oriented.

Proof. Clearly, (iii) implies (ii) and (ii) implies (i). We show that (i) implies (iii).
Let W be an essential walk; we show it is coherent at every vertex v. This is obvious

if v is not a cutpoint, since it has degree 2 and is neither a sink nor a source. If it is a
cutpoint, v divides W into segments W1 and W2. Each segment, by (i), has its ends at v
directed similarly: both towards v, or both away from v. Also by (i), W1 and W2 are directed
differently at v: one is towards v and the other away from it. The expression W = vW1vW2v
shows that W is coherent at v. �

Theorem 7. A flow is irreducible if and only if it is essential.

Proof. We have two things to prove: that an essential flow is irreducible, and that every
irreducible flow is essential. We begin with the latter.

The idea of the proof is to turn an irreducible flow into a positive, directed closed walk
W , which we lift into the signed covering graph, where it becomes a circle W̃ . Then we have
to find out which circles project to irreducible flows. Self-intersections in the base graph
correspond to vertex pairs +v,−v—that is, vertex fibers—in W̃ ; hence there are no triple
self-intersections in W , and each half of W separated by a self-intersection is a negative
closed walk. The self-intersection is a cutpoint because, if the two halves intersected at any
other vertex, W̃ could be adjusted to become non-simple while still projecting to W ; then

6



W̃ , hence W , would be reducible. It follows that every block is a circle or an isthmus, and the
sign of a circle block follows from the negativity of each half of W when split by a cutpoint.

The proof itself is a series of lemmas. The irreducible flow is f and a corresponding
positive, directed closed walk (which exists, by Proposition 4, because irreducibility implies
that supp f is connected) is W = v0e1v1e2 · · · elvl. W lifts to a walk W̃ = vα0

0 ẽ1v
α1

1 ẽ2 · · · ẽlv
αl

l

in the signed covering graph Σ̃. A vertex in W is a double point if W passes through it
exactly twice. A double point divides W into two closed subwalks. We can think of W
as a subgraph, namely, as the subgraph induced by the edges of W ; as a subgraph it has
cutpoints and blocks.

Lemma 8. A flow in Σ that lifts to a reducible flow in Σ̃ is reducible.

Proof. Let f be the flow in Σ, assumed nonnegative by choosing the right orientation of Σ.
Suppose f lifts to f̃ , which is the sum of nontrivial flows f̃1 and f̃2. Then the projections
f1 = pf̃1 and f2 = pf̃2 are nontrivial, nonnegative flows in Σ (in the chosen orientation)
whose sum is f . �

Lemma 9. W̃ is a circle.

Proof. Lemma 8 implies that the lift of an irreducible flow is irreducible. Σ̃ is an unsigned
graph. An irreducible flow in an unsigned graph is a circle flow. �

Lemma 10. W is a positive walk.

Proof. Since the lift W̃ is closed, W must be positive. �

Lemma 11. Any self-intersection vertex of W is a double point and a cutpoint of W . The

two closed subwalks into which it divides W are negative walks.

Proof. Suppose vi = vj = v with i < j. Let W1 be the segment of W from vi to vj and let

W2 be the segment from vj through v0 to vi. Neither W̃1 nor W̃2 can be closed, so vαi

i 6= v
αj

j .
Consequently, αj = −αi, so the segments are negative walks. Since v is covered by only two

vertices of Σ̃, it cannot be repeated again in W .
Now suppose there is a vertex w, other than v, that appears in both W1 and W2. Then W̃1

has wβ as a vertex, and W̃2 has a vertex w−β. If we replace W̃2 in W̃ by (W̃ ∗

2 )−1 (reversing
the direction so it goes from vαi to v−αi , just like W̃2), we get a new walk W̃ ′ that still is a
lift of W but has a self-intersection at wβ . Thus, by Lemma 8, f is reducible, contrary to
the assumption. This shows that v is a cutpoint of W . �

Lemma 12. Each block of W is a circle or an isthmus. An end block is a circle.

Proof. No block can have a vertex of degree greater than 2. An end block which is an isthmus
makes an edge with flow 0; this edge would not have been in W in the first place. �

Lemma 13. The sign of a circle block of W equals (−1)p where p is the number of cutpoints

of W on that circle.

Proof. Let C be a circle block with cutpoints v1, . . . , vk. Each vi separates W into a half
walk that contains the edges of C and another half walk, which we call Wi. We know Wi is
negative, W is positive, and σ(W ) = σ(C)

∏

i σ(Wi). The lemma follows at once. �

Lemma 14. The edges of W are oriented so that no vertex is a source or a sink in its

underlying oriented signed graph. The orientation of a circle block of W is incoherent at

each cutpoint and coherent at each other vertex.
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The last statement is equivalent to saying that at a cutpoint v, which is necessarily incident
with two blocks, the edges of one block are directed into v and the edges of the other block
are directed away from v. This is true for both circle and isthmus blocks.

Proof. Since W is coherently oriented, no vertex can be a source or a sink. A cutpoint v
divides W into segments W1 and W2; the edges of each segment at v belong to different
blocks, B1 and B2 respectively. Each segment is negative, by Lemma 16, and coherent, so
its ends at v are directed similarly: both towards v, or both away from v; this shows v is
incoherent in each Bi. By coherence of W , W1 and W2 are directed differently at v: one is
towards v and the other away from it. �

Lemma 15. The flow values on edges of W are 1 for an edge in a circle block and 2 for an

isthmus.

Proof. These are the values obtained by projecting the circle flow from Σ̃. A doubly covered
edge e has to have flow value 1 + 1 or 1 + (−1) = 0, but the latter case is impossible since
then e would not have been in W in the first place. �

This completes the proof that every irreducible flow is essential. We still have to prove
that any essential flow is irreducible. We require a lemma.

Lemma 16. In an essential walk, a segment separated by a cutpoint is negative.

Proof. A cutpoint separates the walk W into two segments. Let W ′ be the one in question.
The sign of W ′ is the product of the signs of its circle blocks. Thus, the sign is the number
of times a cutpoint appears on a circle block of W ′.

Note that isthmi appear in paths that connect two circle blocks, since each end block is
a circle. Every cutpoint appears twice in a circle block, with the following exceptions: A
cutpoint between two isthmi appears no times and consequently does not contribute to the
sign of W ′. A cutpoint that connects a circle block to an isthmus contributes −1 to the
sign but pairs with the cutpoint at the other end of the path to which that isthmus belongs;
the two cutpoints contribute a total of +1 to the sign. Finally, v appears only once, so it
contributes −1. The sign σ(W ′) is the product of these signs, hence is −1. �

Suppose f is an essential flow which is reducible, say f = f1+f2+· · · where fi corresponds
to a walk Wi. Then each supp fi forms a connected subgraph of supp f which is joined to
the rest of supp f only at cutpoints of supp f . There must be a supp fi that is joined at only
one cutpoint v. Then Wi is a closed segment of W . By Lemma 16, Wi has negative sign,
but the corresponding walk of a flow is positive. Therefore, f cannot be reducible. �
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