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1. What is a Line Graph?

Graph Γ = (V,E): Simple (no loops or multiple edges).

V = {v1, v2, . . . , vn}, E = {e1, e2, . . . , em}.
Line graph L(Γ):

VL := E(Γ), and ekel ∈ EL ⇐⇒ ek, el are adjacent in Γ.

Adjacency matrix :

A(Γ) := (aij)i,j≤n with aij =


1 if vi, vj are adjacent,

0 if not,

0 if i = j.

Unoriented incidence matrix :

H(−Γ) = (ηik(−Γ))i≤n,k≤m where ηik(−Γ) =

{
1 if vi, ek are incident,

0 if not.

Oriented incidence matrix :

H(+Γ) = (ηik(+Γ))i≤n,k≤m where ηik(+Γ) =

{
±1 if vi, ek are incident,

0 if not,

in such a way that there are one +1 and one −1 in each column.

Kirchhoff (‘Laplacian’) matrix of Γ:

K(+Γ) := H(+Γ)H(+Γ)T = D(Γ)− A(Γ),

K(−Γ) := H(−Γ)H(−Γ)T = D(Γ) + A(Γ),

where D(Γ) := diag(d(vi))i is the degree matrix of Γ.

Theorem 1.1. H(−Γ)TH(−Γ) = 2I + A(L(Γ)).
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2. What is an Eigenvalue?

Eigenvalue of Γ: An eigenvalue of the adjacency matrix, A(Γ).

Stage 1 of the History of Eigenvalues ≥ −2.

Corollary 2.1. All eigenvalues of L(Σ) are ≥ −2.

Thus began the hunt for graphs whose eigenvalues are ≥ −2.
Hope: They are line graphs and no others.
Hope is disappointed.

Stage 2 of the History of Eigenvalues ≥ −2.

Generalized line graph L(Γ; r1, . . . , rn):

• The vertex star E(vi) := {ek : ek is incident with vi} → vertex clique
in L.
• A cocktail party graph CPr := K2r \Mr (a perfect matching).

Alan Hoffman:

L(Γ; r1, . . . , rn) := L(Γ) with CPri
joined to the vertex clique of vi.

(Joined means use every possible edge.)

Theorem 2.2. All eigenvalues of L(Γ; r1, . . . , rn) are ≥ −2.

A mystery!

Stage 3 of the History of Eigenvalues ≥ −2.

Solution by Cameron, Goethals, Seidel, & Shult:
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3. What is a Root System?

Root system:
A finite set R ⊆ Rd such that

RS1. x ∈ R =⇒ −x ∈ R (central symmetry),

RS2. x, y ∈ R =⇒ 2
x · y
x · x

∈ Z (integrality),

RS3. x, y ∈ R =⇒ y − 2
x · y
x · x

x ∈ R (reflection in y⊥),

RS4. 0 /∈ R.

Observation:
(
R1× {0}

)
∪
(
{0} ×R2

)
⊆ Rd1 ×Rd2 is a root system, called

‘reducible’.

Origin: Classification of simple, finite-dimensional Lie groups and algebras
by classifying irreducible root systems. The classification:

An−1
∼= {x ∈ Rn : x = ±(bj − bi) for i < j},

Dn
∼= An−1 ∪ {x ∈ Rn : x = ±(bj + bi) for i < j},

Bn
∼= Dn ∪ {bi : i ≤ n},

Cn
∼= Dn ∪ {2bi : i ≤ n},

and E6, E7, E8, where

E6 ⊂ E7 ⊂ E8
∼= Dn ∪ {1

2(±b1 ± · · · ± b8) : evenly many signs are −}.

Theorem 3.1 (Cameron, Goethals, Seidel, and Shult). Any graph with eigen-
values ≥ −2 is negatively represented by the angles of a subset of a root system
Dr for some r ∈ Z, or E8.

Negative angle representation of Γ:

ψ : V → Rd such that ψ(vi) · ψ(vj) =

{
−2aij if i 6= j,

2 if i = j.

(The factor 2 is merely a normalization.)
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4. What is a Signed Graph?

Signed graph:
Σ = (Γ, σ) where σ : E → {+,−}.

Examples:

+Γ = Γ with all edges positive.
−Γ = Γ with all edges negative.
±∆ = ∆ with all edges both positive and negative (2 edges for each orig-

inal edge).

Underlying graph: |Σ| := Γ.

Positive and negative circles : Product of the edge signs.

Adjacency matrix :

A(Σ) := (aij)i,j≤n with aij =


1 if vi, vj are positively adjacent,

−1 if vi, vj are negatively adjacent,

0 if not adjacent,

0 if i = j.

Reduced signed graph Σ̄:
Delete every pair of parallel edges with opposite sign.
No effect on A(Σ).

Incidence matrix :

H(Σ) = (ηik)i≤n,k≤m where ηik =

{
±1 if vi, ek are incident,

0 if not,

in such a way that the the two nonzero elements of the column of ek satisfy

ηikηjk = −σ(ek).

Kirchhoff (‘Laplacian’) matrix of Σ:

K(Σ) := H(Σ)H(Σ)T = D(Σ)− A(Σ)

where D(Σ) := diag(d(vi))i is the degree matrix of the underlying graph of
Σ.
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5. What is the Line Graph of a Signed Graph?

Oriented signed graph: (Σ, η) where η : V × E → {+,−} ∪ {0} satisfies

η(vi, ek)η(vj, ek) = −σ(ek) if ek:vivj,

η(vi, ek) = 0 if vi and ek are not incident.

Meaning:

+ denotes an arrow pointing into the vertex.
− denotes an arrow pointing out of the vertex.

Bidirected graph B: Every end of every edge has an independent arrow, or,
B = (Γ, η).
(Due to Edmonds.)

An oriented signed graph is a bidirected graph.
A bidirected graph is an oriented signed graph.

(Due to Zaslavsky.)

Line graph of Σ: Λ(Σ) = (L(|Σ|), ηΛ) where

ηΛ(ek, ekel) = η(vi, ek)

and vi is the vertex common to ek and el.
That is:

(1) Orient Σ (arbitrarily).
(2) Construct L(|Σ|).
(3) Treat each edge end in L as the end in Σ with the arrow turned around

so it remains into, or out of, the vertex.

Proposition 5.1. The circle signs in Λ(Σ) are independent of the arbitrary
orientation.

Reduced line graph: Λ̄(Σ).

Theorem 5.2. H(Σ)TH(Σ) = 2I − A(Λ(Σ)) = 2I − A(Λ̄(Σ)).

Corollary 5.3. All eigenvalues of Λ(Γ), or Λ̄(Γ), are ≤ 2.
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6. What Does It All Mean?

First Answer::

Theorem 6.1 (Cameron, Goethals, Seidel, and Shult, reinterpreted).
Any signed graph with eigenvalues ≤ 2 is represented by the angles of
a subset of a root system Dr for some r ∈ Z, or E8.

Angle representation of Σ:

ψ : V → Rd such that ψ(vi) · ψ(vj) =

{
2aij if i 6= j,

2 if i = j.

(The factor 2 is merely a normalization.)

Second Answer::

Theorem 6.2. A signed graph with eigenvalues ≤ 2 is either the line
graph of a signed graph, or one of the finitely many signed graphs with
an angle representation in E8.

Those generalized line graphs are line graphs.
Σ(r1, . . . , rn) := Σ with ri negative digons attached to vi.

Proposition 6.3. −L(Γ; r1, . . . , rn) = Λ̄(−Γ(r1, . . . , rn)).

Mantra:

The proper context for line graphs is signed graphs.
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7. What Are Those Line Graphs of Signed Graphs?

Theorem 7.1 (Chawathe & G.R. Vijayakumar). The signed graphs repre-
sented by angles in Dn for some n are those in which no induced subgraph is
one of a certain finite list of signed graphs of order up to 6.

Theorem 7.2 (G.R. Vijayakumar). The signed graphs represented by angles
in E8 are those in which no induced subgraph is one of a certain finite list of
signed graphs of order up to 10.

What graphs are (reduced) line graphs of signed graphs?

(1) The reduced line graphs that are all negative are −∆ for ∆ = general-
ized line graph.

Eigenvalues of −∆ are ≤ 2; of ∆ are ≥ −2.
Forbidden induced subgraphs (S.B. Rao, Singhi, and Vijayan, with-

out signed graphs).
(2) The reduced line graphs that are all positive, +∆, are much fewer and

less interesting.
Eigenvalues of +∆ are ≤ 2.
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