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A switching class (of signed graphs) is an equivalence class of signed graphs under the
switching relation: Σ1 ∼ Σ2 ⇐⇒ V (Σ1) = V (Σ1) = V , E(Σ1) = E(Σ2), and (∃X ⊆ V ) an
edge has the same sign in Σ1 and Σ2 iff both ends are in X or both in V \X. A switching
class [Σ] is characterized by the underlying graph (V, E) and its “balant” B = {C : C is
a circuit of Σ whose edge signs have positive product}. The triple S(Σ) = (V, E,B) is a
“sign-biased graph”; it is equivalent to [Σ]. A circuit is “balanced” if it is in B. Our graphs
will be finite and loopless.

Let S be a sign-biased graph and let

VL = E(S),

E ′
L = {{v, e, f} : e, f ∈ E(S) and v is a vertex of e and f}.

Then (VL, E ′
L) is the ordinary line graph L(V (S), E(S)). A circuit in it is “derived” (from

C0) if its vertices are the edges of a circuit C0 of (V, E), a “vertex triangle” if it is a triangle
whose vertices are edges at a common vertex in (V, E). Let

B′
L = {C : C is a circuit of (VL, E ′

L) and its edge set is a sum of

derived circuits and vertex triangles, all but an even number

being derived circuits from C0 in B(S)}.
The unreduced line graph L′(S) is (VL, E ′

L,B′
L).

From L′(S) remove pairs of edges forming unbalanced digons until this is no longer possible.
The result of this “reduction” is the reduced line graph L(S).

Example 1. Given a graph G = (V, E), let Be = {circuits of even length}. Then Se(G) is a
sign-biased graph and L(Se(G)) = Se(L(G)). That is, ordinary line graphs are an example
of our definition.

Example 2. Given also an integral weight m(v) ≥ 0 for each vertex, let Se(G; m) consist of
Se(G) with m(v) new vertices doubly adjacent to each original vertex v, each edge pair form-
ing an unbalanced digon. Then L(Se(G; m)) = Se(L(G; m)), where L(G; m) is Hoffman’s
generalized line graph. Thus the latter are, in our system, simply line graphs. Conversely, if
L(S) has the form Se(G), then G is a generalized line graph.

Example 3. Let D be an orientation of G. A circuit is “semicoherent” if an even number of
its vertices have both arcs head or both tail. Let S(D) = (V, E,B) where B = {semicoherent
circuits}. Then L(S(D)) is a line graph of the digraph D.
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An adjacency [or incidence] matrix A(S) [or M(S)] is an adjacency [incidence] matrix
of any Σ in the switching class of S. The eigenvalues of A(S) are well-defined. Since
A(L(S)) = 2I −M(S)M(S)T , we have

Theorem 1. The eigenvalues of A(L(S)) are all ≤ 2.

The usual root system arguments yield

Theorem 2. With finitely many exceptions, any reduced sign-biased graph with all eigenval-
ues ≤ 2 is a reduced line graph.

For sign-biased graphs there is an extension (and explanation) of Whitney’s theorem on
line isomorphisms. A line isomorphism is an isomorphism of line graphs. By ±K4 we mean
the signed graph of order 4 with all twelve positive and negative edges. A subgraph of a
sign-biased graph is understood to have the inherited balant.

Theorem 3. A line isomorphism between sign-biased graphs is induced by an isomorphism,
unless the graphs are subgraphs of S(±K4).

The line automorphisms of S(±K4) form a degree 2 extension of the automorphism group;
the extra automorphisms are due to the “triality” of the root system D4.

Theorem 4. A reduced sign-biased graph is a reduced line graph if, and only if, all its induced
subgraphs of orders up to 6 are.

This characterization implies a similar one for ordinary graphs that are generalized line
graphs.
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