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A signed graph ¥ is a graph with signed edges [3]. A switching class (of signed graphs) is
an equivalence class of signed graphs under the switching relation: 3 ~ ¥y <= V(¥;) =
V(X)) =V, E(3) = E(Xs), and (3X C V) an edge has the same sign in 3, and ¥, iff both
ends are in X or both in V\X [7]. A switching class [¥] is characterized by the underlying
graph I' = (V, E) and the class of positive circuits, B = {C' : C' is a circuit of X whose
edge signs have positive product}. The triple (X) = (V, E,B) is a sign-biased graph; it is
equivalent to [3]. Our graphs will be finite and loopless.

Let (X) be a sign-biased graph with underlying graph I' = (V, E) and let

Vi =F,
E; ={{v,e,f}: e,f € E and v is a vertex of e and f}.

Then (Vi, E}) is the ordinary line graph L(I'). A circuit in it is called “derived” (from Cj)
if its vertices are the edges of a circuit Cy of I', a “vertex triangle” if it is a triangle whose
vertices are edges at a common vertex in I". Let

B, ={C: C isacircuit of (V1,E}) and its edge set is a sum of
derived circuits and vertex triangles, all but an even number

being derived from circuits in B(X) }.

The unreduced line graph L'((X)) is (V, E}, B%). It is a sign-biased graph.

We call a digon of L(I") “negative” if it is not in B’;. From L'((X)) remove pairs of edges
forming negative digons until this is no longer possible. The result of this “reduction” is the
(reduced) line graph L((3)). This is also a sign-biased graph.

Example 1. Given a graph I' = (V] E), let —I" be the graph with every edge signed negative.
Then B = {circuits of even length}. This defines a sign-biased graph (—I"). Then L({—I")) =
(—L(T')). That is, if we identify ordinary graphs as all-negative signed graphs, then ordinary
line graphs are an example of our definition.
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Example 2. Given also an integral weight m(v) > 0 for each vertex, let (—I';m) consist of
(—T") with m(v) new vertices doubly adjacent to each original vertex v, each edge pair forming
a negative digon. Then L({(—I';m)) = (—L(I';m)), where L(I';m) is Hoffman’s generalized
line graph [5]. Thus the latter are, in our system, simply line graphs. Conversely, if L((3))
has the form (—I'p), then Iy is a generalized line graph L(I';m).

Example 3. Let D be a digraph with underlying graph I". A circuit is “semicoherent” if an
even number of its vertices are at the head of both incident arcs or at the tail of both incident
arcs. Let (D) = (V, E, B) where B = {semicoherent circuits}. Then L((D)) is a kind of line
graph of the digraph D. The Harary—Norman line digraph of D [4] is (if one ignores the
edge directions) the subgraph whose edges are the triples {v, e, f} such that exactly one of
e and f has head incident with v.

The adjacency matriz of 3 is the matrix A(X) whose (i, j) entry is the number of positive
edges less the number of negative edges between v; and v;, if i # j. An incidence matriz of
Y is a V x E matrix M (X) whose (v, e) entry is

e () if v is not incident with e,
e +1 if v is incident with e, with the rule that the endpoints of e have opposite signs
if e is positive and identical signs if e is negative.

An adjacency matrix A((X)) is an adjacency matrix of any ¥’ in the switching class of X.
Thus, the eigenvalues of A((X)) are well-defined, although A((X)) is not. An incidence

hmatrix M({X)) is any incidence matrix of . Since A(L((X))) = 2I — M((X))TM (X)), we

Theorem 1. The eigenvalues of A(L({¥X))) are all < 2.

Since a graph I' corresponds to the signed graph —I', this theorem is the signed-graph
generalization of the fact that the eigenvalues of an ordinary line graph, or of Hoffman’s
generalized line graph, are > —2. Call a sign-biased graph (X) = (V, E, B) reduced if every
digon of T" is in B. The usual root system arguments, from [1], yield

Theorem 2. With finitely many exceptions, any reduced sign-biased graph with all eigenval-
ues < 2 18 a reduced line graph.

For sign-biased graphs there is an extension (and explanation) of Whitney’s theorem on
line isomorphisms. A line isomorphism is an isomorphism of line graphs. By + K4 we mean
the signed graph of order 4 with all twelve positive and negative edges.

Theorem 3. A line isomorphism between sign-biased graphs is induced by an isomorphism,
unless the graphs are subgraphs of (£Ky).

The line automorphisms of (+K4) form a degree 2 extension of the automorphism group;
the extra automorphisms are due to the “triality” of the root system Djy.

Theorem 4. A reduced sign-biased graph is a reduced line graph if, and only if, all its induced
subgraphs of orders up to 6 are.

This characterization implies the existence of a similar one for ordinary graphs that are
generalized line graphs; but it does not provide the list of forbidden induced subgraphs.
That list for line graphs of switching classes is in [2] (where it is expressed in terms of signed
graphs); the list for generalized line graphs is in [6].
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