Original version appeared in:

Report of the XVIIIth O.S.U. Denison Maths Conference (Granville, Ohio, 1984), pp. 2–4. Dept. of Math., Ohio State Univ., Columbus, Ohio, 1984. Revision with modernized notation, terminology, presentation, and references:

Dept. of Math. Sci., Binghamton Univ. (SUNY), 2006.

Line Graphs of Switching Classes (Modernized)

Thomas Zaslavsky

Binghamton University (SUNY)

A signed graph Σ is a graph with signed edges [3]. A switching class (of signed graphs) is an equivalence class of signed graphs under the switching relation: $\Sigma_1 \sim \Sigma_2 \iff V(\Sigma_1) =$ $V(\Sigma_1) = V, E(\Sigma_1) = E(\Sigma_2)$, and $(\exists X \subseteq V)$ an edge has the same sign in Σ_1 and Σ_2 iff both ends are in X or both in $V \setminus X$ [7]. A switching class [Σ] is characterized by the underlying graph $\Gamma = (V, E)$ and the class of positive circuits, $\mathcal{B} = \{C : C \text{ is a circuit of } \Sigma \text{ whose}$ edge signs have positive product}. The triple $\langle \Sigma \rangle = (V, E, \mathcal{B})$ is a sign-biased graph; it is equivalent to [Σ]. Our graphs will be finite and loopless.

Let $\langle \Sigma \rangle$ be a sign-biased graph with underlying graph $\Gamma = (V, E)$ and let

$$V_L = E,$$

$$E'_L = \{\{v, e, f\}: e, f \in E \text{ and } v \text{ is a vertex of } e \text{ and } f\}.$$

Then (V_L, E'_L) is the ordinary line graph $L(\Gamma)$. A circuit in it is called "derived" (from C_0) if its vertices are the edges of a circuit C_0 of Γ , a "vertex triangle" if it is a triangle whose vertices are edges at a common vertex in Γ . Let

 $\mathcal{B}'_{L} = \{C: C \text{ is a circuit of } (V_{L}, E'_{L}) \text{ and its edge set is a sum of} \\ \text{derived circuits and vertex triangles, all but an even number} \\ \text{being derived from circuits in } \mathcal{B}(\Sigma) \}.$

The unreduced line graph $L'(\langle \Sigma \rangle)$ is $(V_L, E'_L, \mathcal{B}'_L)$. It is a sign-biased graph.

We call a digon of $L(\Gamma)$ "negative" if it is not in \mathcal{B}'_L . From $L'(\langle \Sigma \rangle)$ remove pairs of edges forming negative digons until this is no longer possible. The result of this "reduction" is the (reduced) line graph $L(\langle \Sigma \rangle)$. This is also a sign-biased graph.

Example 1. Given a graph $\Gamma = (V, E)$, let $-\Gamma$ be the graph with every edge signed negative. Then $\mathcal{B} = \{\text{circuits of even length}\}$. This defines a sign-biased graph $\langle -\Gamma \rangle$. Then $L(\langle -\Gamma \rangle) = \langle -L(\Gamma) \rangle$. That is, if we identify ordinary graphs as all-negative signed graphs, then ordinary line graphs are an example of our definition. **Example 2.** Given also an integral weight $m(v) \ge 0$ for each vertex, let $\langle -\Gamma; m \rangle$ consist of $\langle -\Gamma \rangle$ with m(v) new vertices doubly adjacent to each original vertex v, each edge pair forming a negative digon. Then $L(\langle -\Gamma; m \rangle) = \langle -L(\Gamma; m) \rangle$, where $L(\Gamma; m)$ is Hoffman's generalized line graph [5]. Thus the latter are, in our system, simply line graphs. Conversely, if $L(\langle \Sigma \rangle)$ has the form $\langle -\Gamma_0 \rangle$, then Γ_0 is a generalized line graph $L(\Gamma; m)$.

Example 3. Let D be a digraph with underlying graph Γ . A circuit is "semicoherent" if an even number of its vertices are at the head of both incident arcs or at the tail of both incident arcs. Let $\langle D \rangle = (V, E, \mathcal{B})$ where $\mathcal{B} = \{$ semicoherent circuits $\}$. Then $L(\langle D \rangle)$ is a kind of line graph of the digraph D. The Harary–Norman line digraph of D [4] is (if one ignores the edge directions) the subgraph whose edges are the triples $\{v, e, f\}$ such that exactly one of e and f has head incident with v.

The adjacency matrix of Σ is the matrix $A(\Sigma)$ whose (i, j) entry is the number of positive edges less the number of negative edges between v_i and v_j , if $i \neq j$. An incidence matrix of Σ is a $V \times E$ matrix $M(\Sigma)$ whose (v, e) entry is

- 0 if v is not incident with e,
- ± 1 if v is incident with e, with the rule that the endpoints of e have opposite signs if e is positive and identical signs if e is negative.

An adjacency matrix $A(\langle \Sigma \rangle)$ is an adjacency matrix of any Σ' in the switching class of Σ . Thus, the eigenvalues of $A(\langle \Sigma \rangle)$ are well-defined, although $A(\langle \Sigma \rangle)$ is not. An incidence matrix $M(\langle \Sigma \rangle)$ is any incidence matrix of Σ . Since $A(L(\langle \Sigma \rangle)) = 2I - M(\langle \Sigma \rangle)^T M(\langle \Sigma \rangle)$, we have

Theorem 1. The eigenvalues of $A(L(\langle \Sigma \rangle))$ are all ≤ 2 .

Since a graph Γ corresponds to the signed graph $-\Gamma$, this theorem is the signed-graph generalization of the fact that the eigenvalues of an ordinary line graph, or of Hoffman's generalized line graph, are ≥ -2 . Call a sign-biased graph $\langle \Sigma \rangle = (V, E, \mathcal{B})$ reduced if every digon of Γ is in \mathcal{B} . The usual root system arguments, from [1], yield

Theorem 2. With finitely many exceptions, any reduced sign-biased graph with all eigenvalues ≤ 2 is a reduced line graph.

For sign-biased graphs there is an extension (and explanation) of Whitney's theorem on line isomorphisms. A line isomorphism is an isomorphism of line graphs. By $\pm K_4$ we mean the signed graph of order 4 with all twelve positive and negative edges.

Theorem 3. A line isomorphism between sign-biased graphs is induced by an isomorphism, unless the graphs are subgraphs of $\langle \pm K_4 \rangle$.

The line automorphisms of $\langle \pm K_4 \rangle$ form a degree 2 extension of the automorphism group; the extra automorphisms are due to the "triality" of the root system D_4 .

Theorem 4. A reduced sign-biased graph is a reduced line graph if, and only if, all its induced subgraphs of orders up to 6 are.

This characterization implies the existence of a similar one for ordinary graphs that are generalized line graphs; but it does not provide the list of forbidden induced subgraphs. That list for line graphs of switching classes is in [2] (where it is expressed in terms of signed graphs); the list for generalized line graphs is in [6].

References

- P.J. Cameron, J.M. Goethals, J.J. Seidel, and E.E. Shult, Line graphs, root systems, and elliptic geometry. J. Algebra 43 (1976), 305–327. MR 56 #182. Zbl. 337.05142.
- [2] P.D. Chawathe and G.R. Vijayakumar, A characterization of signed graphs represented by root system D_{∞} . European J. Combin. 11 (1990), 523–533. MR 91k:05071. Zbl. 764.05090.
- [3] F. Harary, On the notion of balance of a signed graph. Michigan Math. J. 2 (1953–54), 143–146. Addendum. Ibid., preceding p. 1. MR 16, 733h. Zbl. 56, 421c (e: 056.42103).
- [4] Frank Harary and Robert Z. Norman, Some properties of line digraphs. *Rend. Circ. Mat. Palermo* (2) 9 (1960), 161–168. MR 24 #A693. Zbl. 99, 182e (e: 099.18205).
- [5] Alan J. Hoffman, On graphs whose least eigenvalue exceeds $-1 \sqrt{2}$. Linear Algebra Appl. 16 (1977), 153–165. MR 57 #9607. Zbl. 354.05048.
- S.B. Rao, N.M. Singhi, and K.S. Vijayan, The minimal forbidden subgraphs for generalized line graphs. In: S.B. Rao, ed., *Combinatorics and Graph Theory* (Proc. Sympos., Calcutta, 1980), pp. 459–472. Lecture Notes in Math., 885. Springer-Verlag, Berlin, 1981. MR 83i:05062. Zbl. 494.05053.
- [7] Thomas Zaslavsky, Signed graphs. Discrete Appl. Math. 4 (1982), 47–74. Erratum. Ibid. 5 (1983), 248.
 MR 84e:05095. Zbl. 503.05060.