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2 LECTURE NOTES ON SIGNED GRAPHS AND GEOMETRY | THOMAS ZASLAVSKY

INTRODUCTION

These notes and lectures are a personal introduction to signed graphs, concentrating on
the aspects that have been most persistently interesting to me. They are just a few corners
of the theory; I am leaving out a great deal. The emphasis is on the way signed graphs arise
naturally from geometry, especially from the geometry of the classical root systems. Most
of the properties I discuss generalize those of unsigned graphs, but the constructions and
proofs are often more complicated.

The arrangement of the notes is topical, not historical. In the lectures I will talk about
the historical development, but in the notes the purpose is to provide a printed reference,
with a few proofs.

For a fairly comprehensive list of articles on signed graphs, generalizations, and related
work see [BSGJ; for (much of the) terminology see [Glo]. The principal reference for most
of the more elementary properties of signed graphs treated here is Zaslavsky (1982a). A
simple introduction to the hyperplane geometry is Zaslavsky (1981a). Citations in the style
[BSG, Name (yeara)| refer to author Name’s item (yeara) in [BSG].Many of my articles can
be downloaded from my Web site,

http://www.math.binghamton.edu/zaslav/Tpapers/
Now, bon voyage! Suffa yathra.

1. GRAPHS

In these lectures all graphs are finite.
A graph is I' = (V, E), where V := V(I) is the vertex set and E := E(I") is the edge set.
Notation:

e n := |V, called the order of T

e V/(e) is the multiset of vertices of the edge e.

o If SC E, V(95) is the set of endpoints of edges in S.
o If X CV, its complement is X¢:=V \ X.

Edges and edge sets:

e We allow multiple edges as well as loops and oddballs called half and loose edges.

e There are four kinds of edge: A link has two distinct endpoints. A loop has two equal
endpoints. A half edge has one endpoint. A loose edge has no endpoints.

e An ordinary edge is a link or a loop. An ordinary graph is a graph in which every
edge is a link or a loop. A link graph is a graph whose edges are links.

e The set of loose edges of I' is Ey(I"). The set of ordinary edges of I' is E, := E,(T).

e Edges are parallel if they have the same endpoints. A simple graph is a link graph
with no parallel edges.

o If SCFE, S :=FE\S is its complement.

e F(X,Y), where X, Y C V| is the set of edges with one endpoint in X and the other
in Y. (Every such edge must be a link or, if X NY # &, a loop.)

e A cut or cutset is an edge set E(X, X¢) that is nonempty.

Vertices and vertex sets in I': Let X C V.

e An isolated vertex is a vertex that has no incident edges; i.e., a vertex of degree 0.
e X is stable or independent if E:X = &.
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Degrees and regularity:

e The degree of a vertex v, d(v) := dr(v), is the number of edges of which v is an
endpoint, but a loop counts twice.
e ['is reqular if every vertex has the same degree. If that degree is k, it is k-regular.

Walks, trails, paths, circles:

e A walk is a sequence vgejvy - - - equp where V(e;) = {v;_1,v;} and [ > 0. Tts length is
[. A walk may be written ejes - --¢e; or vouy - - - .

o A closed walk is a walk where [ > 1 and vy = v;.

e A trail is a walk with no repeated edges.

e A path or open path is a trail with no repeated vertex, or the graph of such a trail
(technically, the latter is a path graph), or the edge set of a path graph.

e A closed path is a closed trail with no repeated vertex other than that vy = v;. (Thus,
a closed path is not a path.)

e A circle (also called ‘cycle’, ‘polygon’; etc.) is the graph, or the edge set, of a closed
path. Equivalently, it is a connected, regular graph with degree 2, or its edge set.

e C=C(I) is the class of all circles in T

Examples:

e K, is the complete graph of order n. Ky is the complete graph with vertex set X.

e K¢ is the edgeless graph of order n.

e [“ is the complement of I', if I' is simple.

e P, is a path of length [ (as a graph or edge set).

e () is a circle of length [ (as a graph or edge set).

e K, ; is the complete bipartite graph with r left vertices and s right vertices. Kxy is
the complete bipartite graph with left vertex set X and right vertex set Y.

e The empty graph, @ := (&, @), has no vertices and no edges. It is not connected.

Types of subgraph: In I", let X CV and S C E.

e A component (or connected component) of I' is a maximal connected subgraph, ex-
cluding loose edges. An isolated vertex is a component that has one vertex and no
edges. A loose edge is not a component.

e ¢(I') is the number of components of I'. ¢(S) is short for ¢(V, S).

e A spanning subgraph is I C I" such that V' = V.

e ['|S := (V,S). This is a spanning subgraph.

e S: X ={eeS:@#V(e) CX}=(E:X)NS. We often write S:X as short for the
subgraph (X, S:X).

e The induced subgraph T':X is the subgraph I':X := (X, £:X). An induced subgraph
has no loose edges. We often write E:X as short for (X, F:X).

o '\ §:=(V,E\S)=T]|5

e I'\ X is the subgraph with

VI\X):=Xand E(I'\X):={e€ E|V(e) CV\X}.

We say X is deleted from I'. T'\ X includes all loose edges, if there are any (unlike
[:X¢, which has no loose edges).
Graph structures and types:

e A theta graph is the union of 3 internally disjoint paths that have the same endpoints.
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e A block of T' is a maximal subgraph without isolated vertices or loose edges, such that
every pair of edges is in a circle together. The simplest kind of block is ({v}, {e})
where e is a loop or half edge at vertex v. A loose edge or isolated vertex is not in
any block.

o [ is inseparable if it has only one block or it is an isolated vertex.

e A cutpoint is a vertex that belongs to more than one block.

Let T' be a maximal forest in I'. If e € E, \ T, there is a unique circle C, C T'U {e}. The
fundamental system of circles for I'; with respect to T, is the set of all circles C, for e € E,\T.
The set sum or symmetric difference of two sets A, B is denoted by A® B := (A\B)U(B\ A).

Proposition 1.1. Choose a mazimal forest T. FEvery circle in I' is the set sum of funda-
mental circles with respect to T'.

Proof. C' =@ co\r Crle). O

2. SIGNED GRAPHS

A signed graph ¥ = (I'yo) = (V,E,0) is a graph I' together with a function o that
assigns a sign, o(e) € {+,—}, to each ordinary edge (link or loop) in I'. o is called the
signature (or sign function). A half or loose edge does not get a sign. Thus, the signature is
o: E, — {+,—}. Notation:

e |X| is the underlying graph T.

o BT :=0"(+)={e€ E:o(e) =+}. The positive subgraph is X := (V, E™T).

e F- =0 !+)={e€ E:o(e) = —}. The negative subgraph is ¥~ := (V, E™).

o +I':= (I',+) is an all-positive signed graph (every ordinary edge is +). e € E,(T")
becomes +e € +E = E(+1).

o —I':= (I',—) is an all-negative signed graph (every ordinary edge is —). e € E,(T")
becomes —e € —F = E(-T).

o £I':= (+I) U (-TI"). E(£l') = £F := (+F) U (—FE). This is the signed expansion of
I

e >* := 3 with a half edge or negative loop attached to every vertex that does not
have one. X°* is called a full signed graph.

e >° =13 with a negative loop attached to every vertex that does not have one.

Equivalent notations for the sign group: {+, —}, {+1, —1}, or Zy := {0, 1} modulo 2.
Signed graphs ¥; and Y, are isomorphic, written 3; = 35, if there is an isomorphism
between their underlying graphs that preserves the signs of edges.

2.1. Balance.
Signs and balance:

e The sign of a walk, o(W), is the product of the signs of its edges, including repeated

edges.

e The sign of an edge set, o(S), is the product of the signs of its edges, without
repetition.

e The sign of a circle, o(C'), is the same whether the circle is treated as a walk or as
an edge set.

e The class of positive circles is

B=B(X):={CecC(X]):0(C)=+}.
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e X is balanced if it has no half edges and every circle in it is positive. Similarly, any
subgraph or edge set is balanced if it has no half edges and every circle in it is positive.

e A circle is balanced if and only if it is positive. However, in general, a walk cannot
be balanced because it is not a graph or edge set.

e A negative digon is a circle of length 2 (i.e., a pair of parallel edges) that has one
positive edge and one negative edge.

e h(X) is the number of components of 3 (omitting loose edges) that are balanced.
b(S) is short for b(3]S).

o m(X) := {V(¥) : ¥’ is a balanced component of ¥}. Then b(X2) = |m,(X)|. m(5) is
short for m,(3]5).

e 145(X) is the set of vertices of unbalanced components of 3. Formally, V4(X) =
VA Uwen, s W- Vo(S) is short for Vo(X[S).

Types of vertex and edge in X:

e A balancing vertex is a vertex v such that X\ v is balanced although ¥ is unbalanced.

e A partial balancing edge is an edge e such that 3\ e has more balanced components
than does ..

e A total balancing edge is an edge e such that ¥ \ e is balanced although ¥ is not
balanced. A total balancing edge is a partial balancing edge, but a partial balancing
edge may not be a total balancing edge.

Proposition 2.1. An edge e is a partial balancing edge of X if and only if it is either

(i) an isthmus between two components of ¥\ e, of which at least one is balanced, or
(ii) a negative loop or half edge in a component ¥ such that X'\ e is balanced, or
(i) a link with endpoints v,w, which is not an isthmus, such that every vw-path in X\ e
has sign opposite to that of e.

Lemma 2.2. ¥ is balanced if and only if every block is balanced.

A bipartition of a set X is an unordered pair {Xi, Xy} such that X; U Xy = X and
XiNXy,=0. X; or X, could be empty.

Theorem 2.3 (Harary’s Balance Theorem (1953a)). ¥ is balanced <= it has no half edges
and there is a bipartition V = ViU Va such that E- = E(Vy, V).

Corollary 2.4. —TI" is balanced if and only if I' is bipartite.

Thus, balance is a generalization of bipartiteness.

2.2. Switching.

A switching function for ¥ is a function ¢ : V. — {4, —}. The switched signature is
o¢(e) := ((v)a(e)(w), where e has endpoints v,w. The switched signed graph is X6 :=
(|3, 0°). We say ¥ is switched by ¢. Note that ¥¢ = ¢,

If X CV, switching ¥ by X (or simply switching X) means reversing the sign of every
edge in the cutset F(X, X¢). The switched graph is ¥*. This is the same as ¥¢ where
((v) := — if and only if v € X. Switching by ¢ or X is the same operation with different
notation. Note that X% = XX

Proposition 2.5. (i) Switching leaves the signs of all closed walks, including all circles,
unchanged. Thus, B(X¢) = B(%).
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(i) If | 21| = |X2| and B(X1) = B(3,), then there exists a switching function ¢ such that
Sy =35,

Proof of (i). Let ¢ be a switching function and let W = vgeqgvieqvs - - - v, 16,109 be a closed
walk. Then

ot (W) = [¢(vo)o(eo) ()] [C(vr)a(en)C(va)] - [C(vn-1)o(en—1)¢(v0)]

=o(eg)o(er) - o(en1) =a(W). O
Proof of (ii). We may assume Y; is connected. Pick a spanning tree 7" and list the vertices
in such a way that v; is always adjacent to a vertex in {vy,...,v;_1} (for ¢ > 1). Let ¢; be
the unique tree edge connecting v; to X:{vy,...,v;_1}.

We define a switching function (:

(o) = {+, ifi—1,

o1(ti)oo(t;)¢(v;), if i > 1, where v; is the endpoint of ¢; that is not v;.
Now it is easy to show that E§ = . O

Signed graphs 31 and ¥y are switching equivalent, written X1 ~ 3o, if they have the same
underlying graph and there exists a switching function ¢ such that Ef = 3)5. The equivalence
class of X2,

Y] :={¥: ¥ ~ X},
is called its switching class.

Similarly, ¥; and ¥y are switching isomorphic, written ¥, ~ ¥, if ¥ is isomorphic to a
switching of >5. The equivalence class of X is called its switching isomorphism class.

Proposition 2.6. Switching equivalence, ~, is an equivalence relation on signatures of a
giwen underlying graph.
Switching isomorphism, ~, is an equivalence relation on signed graphs.

Corollary 2.7. ¥ is balanced if and only if it has no half edges and it is switching equivalent
to +|X|.

Proof of Harary’s Balance Theorem. ¥ has the form stated in the theorem <= it is
(+|Z)) <= it is a switching of +|¥| <= (by Proposition 2.5) it is balanced. O

2.3. Deletion, contraction, and minors.
R, S denote subsets of E. A component of S means a component of (V,5).
The deletion of S (or, the deletion of ¥ by S) is the signed graph ¥\ S := (V, 5S¢, 0sc).
The contraction of S (or, the contraction of 3 by S) is a signed graph %/5, to be defined
next.

2.3.1. Contracting an edge e.

If e is a positive link, delete e and identify its endpoints; do not change any edge signs.
(This is the same as contracting a link in an unsigned graph.) If e is a negative link, switch
¥ by a switching function ¢, chosen so e is positive in X¢; then contract e as a positive link.
The choice of ( does not matter, up to switching.

Lemma 2.8. In a signed graph ¥ any two contractions of a link e are switching equivalent.
The contraction of a link in a switching class is a well defined switching class.
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To contract a positive loop or a loose edge e, just delete e.

If e is a negative loop or half edge and v is the vertex of e, delete v and e, but not any
other edges. Any other edges at v lose their endpoint v. A loop or half edge at v becomes a
loose edge. A link with endpoints v, w becomes a half edge at w.

2.3.2. Contracting an edge set S.
The edge set and vertex set of ¥/.S are

E(2/S):=E\S, V(2/8):=m(Z|S) = m(S).

This means we identify all the vertices of each balanced component so they become a single
vertex. For f € E(3X/S), the endpoints are given by the rule

Vg/s(f) = {W € Wb(S) Tw e Vg(f) andweW e Wb(S)}

(For instance, suppose f is a loop at w in ¥, so that Vy(f) = {w,w}. If w € W € m,(S),
then W is a repeated vertex in Vs g(f) so f is aloop in 3/S. If w € V(S), then Vi g(f) = @
so f is a loose edge in ¥/S.) To define the signature of /S, first switch ¥ to X¢ so every
balanced component of S is all positive. Then oy /g(e) := ¢(e).

Lemma 2.9. (a) Given S C E(X), all contractions £/S (by different choices of how to
switch ) are switching equivalent. Any switching of one contraction ¥/S is another
contraction and any contraction X¢/S of a switching of ¥ is a contraction of ¥.

(b) If || = |2s|, S C E is balanced in both ¥y and 3y, and £1/S and ¥5/S are switching
equivalent, then Xy and X9 are switching equivalent.

(c) Foree€ E, [¥/e] and [X/{e}] are essentially the same switching class.

Part (a) means that the switching class [¥/S] is uniquely defined, even though the signed
graph /S is not unique. Part (c) means that [¥/e] = [¥/{e}]| except for details of notation.

2.3.3. Minors.
A minor of ¥ is any contraction of any subgraph.

Theorem 2.10. A minor of a minor is a minor. Thus, the result of any sequence of deletions
and contractions of edge and vertex sets of ¥ is a minor of X.

Proof. See Zaslavsky (1982a), Proposition 4.2. O

2.4. Frame circuits.

A frame circuit of X is a subgraph, or edge set, that is either a positive circle or a loose
edge, or a pair of negative circles that intersect in precisely one vertex and no edges (this is
a tight handcuff circuit), or a pair of disjoint negative circles together with a minimal path
that connects them (this is a loose handcuff circuit). We regard a tight handcuff circuit as
having a connecting path of length 0 (it is the common vertex of two the circles). A half edge
and a negative loop are equivalent in everything that concerns frame circuits; a ‘negative
circle’ in the definition may be a half edge.

In +T" (if I' has no half edges), a frame circuit is simply a circle or a loose edge.

Proposition 2.11. X contains a loose handcuff circuit if and only if there is a component
of X that contains two disjoint negative circles.

Proposition 2.12. Let e € E be an edge in an unbalanced component X' of ¥. Then e is
contained in a frame circuit of and only if e s not a partial balancing edge.
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Proof. If e is in a frame circuit C, then ¥’ contains C'. If e is an isthmus of C', then '\ e
contains both negative circles of C; if ¥\ e is disconnected, each of its two components
contains one of those negative circles. Therefore, e is not a partial balancing edge. If e
belongs to a circle in C, then ¥’ \ e is connected. Suppose C' is unbalanced; then C'\ e is
unbalanced so 3’ \ e is unbalanced; thus, e is not a partial balancing edge.

Suppose to the contrary that C'is a positive circle. As there is a negative circle D in Y/, for
e to be a partial balancing edge it must belong to D; we show this leads to a contradiction.
If CU D\ e were balanced, it could be switched to be all positive and then, as D is negative,
e would be negative in the switched graph, but that would contradict the positivity of C'.
Thus, C'U D \ e is unbalanced; therefore it contains a negative circle, so 3’ \ e is unbalanced
and e is not a partial balancing edge.

Conversely, suppose e is not a partial balancing edge; we produce a frame circuit C'
containing e. Then '\ e is unbalanced, so it has a negative circle D. If e is an unbalanced
edge (a half edge or negative loop) at v, there is a path P in ¥’ from v to D; then C' = DUPUe.

If e is a balanced edge, it is a link with endpoints v, w. If it is an isthmus, then ¥’ e has
two components, both unbalanced (by Proposition 2.1), so C' is a negative circle in each of
those components together with a connecting path (which must contain e). If e is not an
isthmus, it lies in a circle C’. If C" is positive, let C' = C’. But suppose C' is negative; then
there are three subcases, depending on how many points of intersection C” has with D. If
there are no such points, take a minimal path P connecting C' to D and let C = DUPUC".
If there is just one such point, C'= D U C". If there are two or more such points, take P to
be a maximal path in C’ that contains e and is internally disjoint from D. Then P U D is
a theta graph in which D is negative; hence one of the two circles containing P is positive,
and this is the circuit C. O

This suggests vertex-disjoint negative circles are important, which is true. There is an
important theorem about when they do not exist.

Theorem 2.13 (Slilaty (2007a)). X has no two vertex-disjoint negative circles if and only
if one or more of the following is true:

(1) X is balanced,

(2) X has a balancing vertex,

(3) X embeds in the projective plane, or
(4) X is one of a few exceptional cases.

We will not discuss embedding in the projective plane, which is a large topic in itself; see
Zaslavsky (1993a) Archdeacon and Debowsky (2005a).

2.5. Closure and closed sets.
The balance-closure of an edge set R is

bel(R) := RU {e € R°: 3 a positive circle C' C RU e such that e € C'} U Ey(X).

The closure of an edge set S is

clos(S) = (E:Vi(S)) U (chl(Si)> U By(),

where Si,..., Sy are the balanced components of S.
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An edge set is closed if it equals its own closure: clos S = .S. We write
Lat¥ := {S C E: S is closed}.

When partially ordered by set inclusion, Lat X is a lattice.
A half edge and a negative loop are equivalent in everything that concerns closure.
The usual closure operator in a graph I' is the same as closure in +1".

Lemma 2.14. bcl(R) is balanced if and only if R is balanced. Furthermore, bel(bel R) =
bel(R) = clos(R).

Lemma 2.15. For an edge set S, m,(clos S) = m,(bcl S) = m,(S) and Vp(clos S) = Vy(bcl S) =
Vo(5).

Let E be any set; its power set P(E) is the class of all subsets of E. A function J : P(F) —
) is an ( abstmct) closure operator on E' if it has the three properties

(E

(C1) J(S) 2 S for every S C E (increase).
(C2) RC S = J(R) C J(9) (isotonicity).
(C3) J(J(S)) = J(S) (idempotence).

P

Theorem 2.16. The operator clos on subsets of E(X) is an abstract closure operator.

Proof. The definition makes it clear that clos is increasing and isotonic. What remains to
be proved is that clos(clos(S)) = clos(.S). For simplicity we ignore loose edges.

Let my,(S) = {Bx, ..., Bi}; thus, S:B; is balanced. By the definition of closure and Lemma
2.15,

k k
clos(clos §) = (E:Vp(clos S)) U U bel ((clos S):B;) = (E:Vo(5)) U U bel ((bel S):B;)

k
= (E:Va(9)) u | bel(S:B;) = clos S. O
i=1
The closure operator of a signed graph has an additional property, the exchange property;,
whose theory is the theory of matroids. That is, closy, is a matroid closure. Matroids are
too complicated to go into here; see [1]. One aspect of matroid closure we do need is:

Theorem 2.17. For S C F,
closS=SU{e¢ S:3 a frame circuit C such that e € C C SUe}.

Proof. We treat a half edge as if it were a negative loop, and for simplicity we neglect loose
edges.

Necessity. We want to prove that if e € clos S, a frame circuit C' exists. Let S’ be the
component of S U {e} that contains e.
If S’ is contained in one of the sets bel S;, then C' exists by the definition of balance-closure.
Assume S" C E:V(S). Then S”\ e consists of one or two components of S:V;(S). Every
such component is unbalanced, so S’ is unbalanced and e is not a partial balancing edge of
it. By Proposition 2.12, e is contained in a frame circuit C' C S U {e}.

Sufficiency. Assuming a circuit C' exists, we want to prove that e € clos S.
If C is balanced, e € bcl S C clos S.
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If C' is unbalanced, the component S’ of S U {e} that contains e is unbalanced. By
Proposition 2.12, e is not a partial balancing edge of S U {e}; therefore S’ \ e has only
unbalanced components. It follows that V' (S") C V5(5), so e € C C E:V,(S) C clos S. O

2.6. Orientation; bidirected graphs.

Bidirected graphs were introduced by Edmonds and first published in a paper on match-
ing theory, Edmonds and Johnson (1970a). Later, Zaslavsky (1991b) found that they are
oriented signed graphs.

An orientation of an ordinary graph gives a direction to each edge. An orientation of a
signed graph 3 gives a direction to each end of each edge. If e is positive, the directions at
the two ends of e must agree in pointing from one endpoint to the other. If e is negative, the
directions at the two ends of e must disagree; that is, they both point towards the middle of
e (an introverted edge) or both away from the middle (an eztraverted edge).

A bidirected graph is a graph in which each end of each edge has an independent direction.
Thus, an oriented signed graph is a bidirected graph. Formally, a bidirected graph B (read
‘Beta’) is a pair (I', 7) where I is a graph and 7 is a function from edge ends to {+, —}. If e
has endpoints v, w and we write (v, e) for the end of edge e at vertex v, then 7(v, e) = + if the
end is directed towards v and = — if the end is directed away from v. As a consequence, the
two directions on e agree when 7(v,e) = —7(w, e) (which may at first sight seem peculiar).
A bidirected graph has an edge signature:

og(e) = —7(v,e)T(w,e).

That is, if the directions at the two ends agree, the edge is positive; if they disagree, the
edge is negative. Thus, bidirected graphs and oriented signed graphs are exactly the same
thing.

We write |B| for the underlying graph of B and g for the signed graph (|B|,op). B is
switched by the rule B¢ := (|B], 7¢) where 7¢(v,e) := 7(v, e)((v).

Lemma 2.18. Y and Ygc are switching equivalent; in fact, Ygc = (Xp)°.
Proof. Let e have endpoints v, w. Then

op(e) = ((v)a(e)¢(w) = ((v)[=T(v, )7 (w, )¢ (w)
= —[7(v,e)C(V)][T(w, e)¢(w)] = opc(e). 0

In an orientation 7 of a signed graph, a vertex v is a source if 7(v,e) = + for every edge
end (v,e) at v. It is a sink if 7(v,e) = — for every edge end at v. An orientation 7 of ¥ is
called acyclic if for every frame circuit C' C ¥, the oriented subgraph (X|C, 7|¢) has a source
or a sink, where 7| denotes the restriction to the edge ends (v, e) in X|C.

3. GEOMETRY AND MATRICES

In this section we write the vertex set as V' = {vy,v9,...,0,}. F denotes any field. The
most important field is R, the real number field.

3.1. Vectors for edges.
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We have a signed graph ¥ of order n. For each edge e there is a vector x(e) € F", whose
definition is, for the four types of edge:

-0
: T 0] (0]
0 ) o
i +1 : 0
0 0 0 :
, i |ElFo(e) i £l O
: 0 0
0 . :
Tol(e :
j O( ) 0 0 0]
L 0
a link e:w;v;, a loop e at v;, a half edge e at v;, a loose edge.

These vectors are well defined only up to sign, i.e., the negative of x(e) is another possible
choice of x(e). We make an arbitrary choice x(e) for each edge e, which does not affect the
linear dependence properties. The choice amounts to choosing an orientation of ¥, because
if we orient ¥ as B = (|X|, 7), and if we define

(3.1) n(v,e) := Z T(v,e),

incidences (v, €)

then x(e), is precisely equal to n(v,e), even for a loop. Conversely, if we choose x(e) first
and then define 7 to orient X, one can show that 7 satisfies (3.1).
For a set S C F, define x(95) := {x(e) : e € S}.

Theorem 3.1. Let S be an edge set in ¥ and consider the corresponding vector set x(S) in
the vector space F" over a field F.

(1) When char F # 2, x(S) is linearly dependent if and only if S contains a frame circuit.
(2) When charF = 2, x(S) is linearly dependent if and only if S contains a circle or a
loose edge.

The theorem is implicit in Zaslavsky (1982a), Theorem 8B.1. The proof, which we omit,
is neither very short nor very long.

Corollary 3.2. The minimal linearly dependent subsets of x(E) are the sets x(C') where C
1S a frame circuit in .

The proofs of the next results are short. Define a set S C E(X) to be independent if the
vectors in x(S) are linearly independent (and distinct from each other).

Corollary 3.3. A set S C E(X) is independent if and only if it does not contain a frame
crrcuit.
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The vector subspace generated by a set X C F" is denoted by (X). We write
Lp(X) = {(X): X Cx(F)}.
When partially ordered by set inclusion, Lg(X) is a lattice.
Corollary 3.4. For S C E(Y), x(E) N (x(5)) = x(clos S). Thus, Lr(X) = Lat 3.
The rank of S C FE is defined to be
tk S :=n —b(S).
The rank of ¥ is rkY¥ := 1k F = n — b(2).
Theorem 3.5. Let S C E. Then dim(x(5)) =1k S.

Proof. The proof is simplest when expressed in terms of the frame matroid (Section 3.3), so
I omit it; see Zaslavsky (1982a), Theorem 8B.1 and following remarks. The essence of the
proof is using Corollary 3.3 to compare the minimum number of edges required to generate
S by closure in ¥ to the minimum number of vectors x(e) required to generate (x(S5)). O

3.2. The incidence matrix.

The incidence matriz H(X) (read ‘Eta of Sigma’) is a V' x E matrix (thus, it has n rows
and m columns where m := |E|) in which the column corresponding to edge e is the column
vector x(e).

Theorem 3.6. Over a field whose characteristic is not 2, the rank of H(X) isrk 3 = n—b(%)
and, for S C E, the rank of H(X|S) is 1k S.

Proof. The column rank is the dimension of the span of the columns corresponding to .S,
which is the span of x(S). Apply Theorem 3.5. O

3.3. Matroid.

The frame matroid G(X) is an abstract way of describing all the previous characteristics
of a signed graph: linearly dependent edge sets, minimal dependencies, rank, closure, and
closed sets. See Zaslavsky (1982a), Section 5, for more information. For matroid theory,
consult [1].

I mention matroids here because in G(X) we have a notion of independent edge set; it
means a set of edges whose columns in H(X) are linearly independent.

3.4. The adjacency and Kirchhoff (Laplacian) matrices.
Assume (to avoid complications) that X is a signed link graph, i.e., every edge is a link.
The adjacency matriz is A(X) = (aij)nxn defined by a;; := 0, and a;; := (the number
of positive edges v;v;) — (the number of negative edges v;v;) if ¢ # j. An important fact
about the adjacency matrix is that it does not change if a parallel pair of edges, one positive
and one negative, is deleted from ¥ (this is cancellation of a negative digon). A signed link
graph is reduced if it has no such parallel pairs. Up to isomorphism there is a unique reduced
signed graph 3 with the same adjacency matrix as X.
The Kirchhoff or Laplacian matriz of ¥ is K(X) := D(|X]) — A(X), where D(|X]), called
the degree matriz, is the diagonal matrix whose diagonal element d;; = d|5(v;).
Some examples:
o A(—X) =—-A(%).
o A(4+I') = A(T"), the adjacency matrix of I', and K (+I') = D(I') — A(T"), the Kirchhoff
or Laplacian matrix of T'.
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e A(-T") = —A('), and K(-TI') = D(I') + A(I'), the so-called ‘signless Laplacian

matrix’ of I', which has recently been studied intensively.
Proposition 3.7. For a signed link graph 3, K(X) = H(X)H(2)T.
The proof is a straightforward calculation.

Theorem 3.8. For a signed link graph %, the eigenvalues of A(X) are real and the eigen-
values of K(X) are real and non-negative.

The proof follows standard lines based on the fact that H(X)H(X)7T is positive semidefinite.
The eigenvalues of A(X) are usually called the eigenvalues of . Those of K(X) are
usually called the Laplacian eigenvalues of .

Theorem 3.9 (Matrix-Tree Theorem for Signed Graphs). Let b; := the number of sets of n
independent edges in X that contain exactly i circles. Then det K(X) =Y, 4'b;.

The proof uses the Cauchy-Binet Theorem in the same way as it is used to prove the
Matrix-Tree Theorem for ordinary graphs. Note that the ¢ circles must all be negative for
the edge set to be independent. Chaiken has proved a generalization to signed digraphs
Chaiken (1982a).

3.5. Arrangements of hyperplanes.

An arrangement of hyperplanes in R", H = {hq, ha, ..., hy}, is a finite set of hyperplanes.
A region of 3 is a connected component of the complement, R™ \ (UZLZ1 hk). We write
r(H) := the number of regions. The intersection lattice is the family L£(H) of all subspaces
that are intersections of hyperplanes in H, partially ordered by reverse inclusion, s < t <=
t C s. The characteristic polynomaial of H is

(32) prc(N) =Y (=1)Fams,
SCH
where dim 8 := dim (ﬂhkes hi).
Theorem 3.10 ([2, Theorem A]). We have r(H) = (—1)"psc(—1).

A signed graph X, with edge set {e1, e, ..., e}, gives rise to a hyperplane arrangement
H[E] :={h1,ho, ..., hp}
where hy, is the solution set of the equation x(ey) - x = 0; i.e.,
hr ={x € R": x(e;) - x = 0}.
(By - I mean the usual inner product, or ‘dot product’, y - x := 121+« - - + Yy z,.) In terms
of the graph,
z; =o(ey)z;, if e; is a link or loop with endpoints v;, v;,
hy has the equation < z; =0, if e is a half edge or a negative loop at v;,
0=0, if e is a loose edge or a positive loop.
(The last equation has the solution set R™, so it is not truly a hyperplane, but I allow it
under the name ‘degenerate hyperplane’.)

Lemma 3.11. Let 8 = {h;,,...,h;} be the subset of H[X] that corresponds to the edge set
S ={ei,...,e,}. Then dim(8 = b(S).
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Proof. Apply vector space duality to Theorem 3.5. U
Theorem 3.12. L(H[X]), Lr(X), and Lat X are all isomorphic.

Proof. The isomorphism between £(H[X]) and Lr(X) is standard vector-space duality. The
isomorphism Lg(3) = Lat X is in Corollary 3.4. O

The regions of H[X] are in bijective correspondence with the acyclic orientations of ¥. For
an orientation 7 define

R(7) := {x € R": 7(v;, €)z; + 7(v;, e)x; > 0 for every edge e, where V(e) = {v;,v;}}.
Theorem 3.13. R(7) is nonempty if and only if T is acyclic.
There are two proofs in Zaslavsky (1991b).

4. COLORING

We color a signed graph from a color set
A= {£1,£2,... £k} U {0}
or a zero-free color set
A= AN\{0} = {1, £2,... £k}
A k-coloration (or k-coloring) of ¥ is a function v : V' — Aj. A coloration is zero free if it
does not use the color 0. Coloring of signed graphs comes from Zaslavsky (1982b, 1982c).
A coloration « is proper if it satisfies all the properties
v(v;) # o(e)y(v;), for a link or loop e with endpoints v;, vj,
v(v;) # 0, for a half edge e with endpoint v;,

and there are no loose edges. (Note that these conditions for a proper coloration are opposite
to the equations of the hyperplanes hy.)

4.1. Chromatic polynomials.
There are two chromatic polynomials of a signed graph. For an integer k£ > 0, define

X=(2k 4+ 1) := the number of proper k-colorations,

and

X5 (2k) := the number of proper zero-free k-colorations.
(Beck and Zaslavsky (2006a) explains exactly why there are two chromatic polynomials of a
signed graph when one is enough for ordinary graphs.)

Theorem 4.1. The chromatic polynomials have the properties of
(i) Unitarity:
xo(2k +1) =1 = xp(2k) for all k > 0.
(i) Switching Invariance: If ¥ ~ X', then
xs(2k + 1) = xs(2k + 1) and x5 (2k) = x5 (2k).
(i) Multiplicativity: If 3 is the disjoint union of ¥y and 34, then
Y2k 4+ 1) = X, 2k D, (k1) and x&(2K) = xi, (2K)x, (26).
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(iv) Deletion-Contraction: If e is a link, a positive loop, or a loose edge, then
X2(2k’ + 1) = XZ\@(2]€ + 1) — XE/@(Qk + 1)

and
X5(2k) = X5\ (2F) — X5 /e (2F).

QOutline of Proof. The hard part is the deletion-contraction property. The proof is similar to
the usual proof for ordinary graphs: count proper colorations of X\ e. If e is a link, switch so
it is positive. Then a proper coloration of 3\ e gives unequal colors to the endpoints of e and
is a proper coloration of 3, or it gives the same color to the endpoints and it corresponds
to a proper coloration of ¥/e. If e is a half edge or a negative loop, there are two cases
depending on whether the endpoint gets a nonzero color or is colored 0. 0

Theorem 4.2. yx(A) is a polynomial function of A =2k + 1 > 0; specifically,

(4.1) Xs(A) =) (1)),
SCE
Also, x&(\) is a polynomial function of A = 2k > 0. Specifically,
(4.2) =)= D (=),
SCE:balanced

Proof. Apply Theorem 4.1 and induction on |F| and n. O

Therefore, we can extend the range of A to all of R. In particular, we can evaluate ys(—1).
This lets us draw an important connection between geometry and coloring of a signed graph.

Lemma 4.3. x5()\) = pyyy(A).

Proof. Compare the summation expressions, (4.1) and (3.2), for the two polynomials, and
note that by Lemma 3.11 b(S) = dim 8 if § C H[X] corresponds to the edge set S. O

Theorem 4.4. The number of acyclic orientations of ¥ and the number of regions of H[X]
are both equal to (—1)"xx(—1).

To compute the chromatic polynomial it is often easiest to get the zero-free polynomial
first and use

Theorem 4.5 (Zero-Free Expansion Identity). The chromatic and zero-free chromatic poly-
nomauals are related by

M=) xhw-1).

WCV: stable

Proof. Let A = 2k+1. For each proper k-coloration «y there is aset W := {v € V : v(v) = 0},
which must be stable. The restricted coloration y|y\w is a zero-free proper k-coloration of
¥\ W. This construction is reversible. U
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4.2. Chromatic numbers.
The chromatic number of X is

X(2) := min{k : 3 a proper k-coloration},
and the zero-free chromatic number is
X" (2) := min{k : 3 a zero-free proper k-coloration}.

Thus, x(X) = min{k > 0: xx(2k+ 1) # 0} and x*(2) = min{k > 0 : x%5(2k) # 0}.

Almost any question about chromatic numbers of signed graphs is open. The little I know
about the graphs with a given value of a chromatic number is in Zaslavsky (1984a), where I
studied complete signed graphs with largest or smallest zero-free chromatic number.

5. EXAMPLES

The standard basis vectors of R" are
b; = (1,0,...,0), by =(0,1,0,...,0), ..., b, =(0,...,0,1).

5.1. Full signed graphs.

In this example ¥ is a signed graph with no half or loose edges or negative loops, X* is X
with a half edge at every vertex, and %° is ¥ with a negative loop at every vertex. Whether
a half edge or negative loop is added makes little difference, because each is an unbalanced
edge. Write f; for the unbalanced edge added to wv;.

e Balance: The balanced subgraphs in 3* are the same as those of X.

o (Closed sets: An edge set in X°* is closed if and only if it consists of the induced edge
set E(X°):W together with a balanced, closed subset of E(X):W¢, for some vertex
set W C V. X° is similar.

o Vectors: x(E(X®))is x(E(X)) together with the unit basis vectors b; of R”. x(FE(X°))
is x(E(X)) together with the vectors 2b;.

e Hyperplane arrangement: H[X®] = H[X°], and they equal H[X] together with all the
coordinate hyperplanes x; = 0.

e Chromatic polynomials: X&e(A) = X5 (A) = X5 (A). xse(A) = x50 (A) = xE(A—1) by
Theorem 4.5, since the only stable set is W = &.

e Chromatic numbers: x(X*) = x(2°) = x*(X) since the unbalanced edges prevent the
use of color 0.

5.2. All-positive signed graphs.
Assume I is a graph with no half or loose edges. +1I" has almost exactly the same properties
as its underlying graph.

e Balance: Every subgraph is balanced. b(S) = ¢(S) for all S C E.

o (losed sets: S is closed <= every edge whose endpoints are connected by S is in
S. Closure in +I" is identical to the usual closure in I', and the closed sets in +1I" are
the same as in T'.

o Vectors: If e has endpoints v;, v;, then x(e) = £(b; — b;). All x(e) € the subspace
x4+ -+ x, =0.

If I' = K,, and one takes both signs, the set of vectors is the classical root system

An,1 = {b] —bl . 7/,] S n, Z#j}
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Thus, x(E) for any graph is a subset of A,,_;.
e Incidence matriz: H(+T") is the ‘oriented incidence matrix’ of T
e Hyperplane arrangement: If e, has endpoints v;,v;, then hj has equation z; = ;.
All hy, O the line z; = --- = x,,.
Take I' = K,,; then H[+K,| = A,,_1, the hyperplane arrangement dual to A,_;.
e Chromatic polynomials: x1r(X) = X .r(A) = xr(A), the chromatic polynomial of T".
e Chromatic numbers: x(+I') = |x(I')/2] and x*(4+I') = [x(")/2].

5.3. All-positive, full signed graphs.

The signed graph +1'* is closely related to I' + vy, which consists of I' and an extra vertex
vo which is adjacent to all of V' by edges vov;. There is a natural bijection o : E(+I'*) —
E(T' +wv) by a(e) :=eif e € E(T") and a(f;) := vov;.

e Balance: S is balanced if and only if it does not contain any half edge f;.
Closed sets: S is closed <= «(95) is closed in I" + vy.
Chromatic polynomials: xir(X) = xip(A —1) = xp(A = 1).
Chromatic numbers: x(+I'*) = x*(+I'*) = [x(I")/2].

5.4. All-negative signed graphs.
Assume I is a graph with no unbalanced edges. —1I" is very interesting.

e Balance: A subgraph is balanced <= it is bipartite. b_p(S) = the number of
bipartite components of S (including isolated vertices).

o (losed sets: S is closed if the union of its non-bipartite components is an induced
subgraph.

o Vectors: If e has endpoints v;, v;, then x(e) = b; + b, (or its negative).

e [ncidence matriz: H(—I") is the ‘unoriented incidence matrix’ of I

e Hyperplane arrangement: hy has equation x; +x; = 0 if e; has endpoints v;, v;. Also,
r(H-T]) = Xpevarr Ixr/e(=3)1

e Chromatic polynomials: X*(X) = Y pepacr Xr/r(3A) (Zaslavsky (1982¢), Theorem
5.2). x_r(A) has not seemed interesting.

e Chromatic numbers: x*(—I") = the largest size of a matching in the complement of a
contraction of I" (Zaslavsky (1982c), page 299). x(—TI') has not yet seemed interesting.

5.5. Signed expansion graphs.
The properties of +I" and +I'* are closely related to those of T'.

e Balance: Each balanced set S C E(T) gives 2"°% balanced subsets of E(%I") by
switching +S.
e Hyperplane arrangement: r(H[£[*]) = 2"(—1)"xr(—1) = 2"|xr(—1)| and

rHED = Y " e (1)l
WCV: stable in I
e Chromatic polynomials: x+re(A) = 2"xr(3(A — 1)), Xxir(A) = 2"xr(3)), and
Xar(A) = > 2w (G- 1)),
WCV: stable in I’

o Chromatic numbers: x(£I'*) = x*(£I') = x(I'), the chromatic number of I'; and
X(£1) = x(I) - 1.
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5.6. Complete signed expansion graphs.
The signed expansions +K,,, called the complete signed link graph, and £K, called the
complete signed graph, have very simple properties.

e Closed sets: Lat(£K?) = the lattice of signed partial partitions of V' (Dowling
(1973b)).
o Vectors: x(E(£K,)) = {£(b; —b;),£(b; + b;) : i # j} where we take either + or
— for each vector. x(E(xK)) = {£(b; —b;),£(b; +b;) : ¢ # j} U {£b;} (if f; is
a half edge; but £2b; if f; is a negative loop) where we take either + or — for each
vector.
If we take both signs for each vector we get the classical root systems

from +K,, (where we take both + and — signs), and

from £ K2 (the former if all f; are half edges, the latter if they are negative loops).
e Hyperplane arrangement: H[£K?] = B, = C, and H[+K,] = D,, the duals of B,
C,, and D,,. The numbers of regions are 2"n! and 2" 'n!, respectively.
e Chromatic polynomials:
Yers ) = (A= 1)(A = 3) -+ (A= 20+ 1),
X+r,(A)=A—=1)(A=3)---(A=2n+3)- (A —n+1), and
Vi ) = Xigs () = MA = 2) -+ (A — 20 +2).
e Chromatic numbers: x(£K?) = x*(£K?) = x*(£K,) =n and x(£K,) =n— 1.

6. LINE GRAPHS

In this section all graphs are link graphs.

The line graph of I' = (V| E) is the graph A(T") of adjacency of edges in I'. Its vertices are
the edges of I', and two edges are adjacent if they have a common endpoint. When e, f €
are parallel, in A(T") they are doubly adjacent.

6.1. Bidirected line graphs and switching classes.

The line graph of a bidirected graph B is a bidirection of the line graph of |B|. We write
A(B) := (A(|B]), 7a), where 7, is the bidirection. To define 75 (ef), where ef € E(A(|B])),
let v be the vertex at which e, f are adjacent. Then we define

7_A(ea Gf) = T(”a 6)‘
This definition implies that, given a signed graph X, to define a line graph we first must

orient ¥ as B, then take the line graph A(B). Different orientations of 3 give different
bidirected line graphs A(B), which may have different signed graphs X, g).

Lemma 6.1. Any orientations of any two switchings of ¥ have line graphs that are switching
equivalent.

Proof. We assume there are no parallel edges; the proof is not much different if there are
any.

Let X¢ be a switching of ¥ and let 7 and 7/ be orientation functions of ¥ and 3¢, re-
spectively, giving bidirected graphs B and B’ on the underlying graph I' := |X|. Then
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T(v,e)T(w,e) = —o(e) and 7' (v,e)7'(w,e) = —((v)o(e)((w) for each edge e with V(e) =
{v,w}.

Let A := A(B) and A’ := A(B’); they have the same underlying graph A(I"). Suppose e, f
are adjacent at v. In the line graph, 75(e,ef) = 7(v,e). Thus,

or(ef) = =male,ef)alf,ef) = =7(v,e)7(v, f)

and, similarly, o\ (ef) = —7'(v, )7’ (v, f).
Let W := egey---e_1€;, where ¢, = ey, be a closed walk in A. Thus, e;_1,e; have a
common vertex v; in I'. Then

oaA(W) = opleger) -+ - onle—1er)
= [ — 7(vy, €0)7 (01, 61)} [ — 7(vg, €1)T (v, 62)] e [ — 7(vg, e1-1)7 (v, el)}

= (=)'7(v1, e0) [7(v1,e1)T(va, €1)] -+ [T (vie1, €-1) T (v, €1) | T (w1, &).

(6.1)

Now there are two cases.

If all v; = vy, then o(W) = (=)'7(v1, e0)7(v1, 1) = (—)! since ey = ¢; and v; = v;.

Otherwise, not all v; are the same vertex. A consecutive pair v;_1,v; may be the same
or different. If they are the same, the factor [7(v;—1,e;-1)7(vi, €,-1)] = +, and also W’ :=
epey -+ €i_oe; €16 is a walk in A. Then op(W) = —ox(W’). In this way we can reduce
W by eliminating consecutive equal vertices while negating the sign of the walk. Similarly,
if v1 = v; we can eliminate v; and ¢; from the reduced walk. Let W” = fof1--- f,n be the
walk in A that results after all these reductions and let w; be the common vertex of f;_1, f;.
W has positive length and fy = f,,, so W” is a closed walk and it has sign (—)""™a(W).
Furthermore, V'(f;) = {w;, w;11} for 0 < i < m. Define wy so that V(fy) = {wo, w1}. Now
wo fowrf1 -+ frn_1wy, is a walk in I'. Because fo = f,, and, by the construction of W”,
Wy # Wy, it must be true that wy = w,,. Therefore, Wy := wq fow; - - - frn_1w,, is a closed
walk of length m in T.

Now we evaluate o(W"). From (6.1),

O'A(W") = oa(fofr) - oa(fm-1fm)
= (— mor

)" (w1, fo)
’ [T<w17 f1)7-<w27 fl)} T [T(U}m,l, fmfl)T(wma fm71>]7(wm; fm)
(6.2) = (=)"7(wo, fo)T (w1, fo)
’ [T<w17 f1)7_<w27 fl)} T [T<wm—17 fm—l)T(wma fm—l)]
= U(Wo).
Therefore,
(6.3) a(W) = (=)""a(Wy)

in the case that not all the vertices v; are the same vertex. When all v; are the same, we can
take Wy to be a trivial walk (length m = 0) and once again we have the same formula.

We prove the lemma by observing that o(W,) and hence also o(W) is not affected by the
choice of orientation and is not altered by switching . Therefore A and A’ have the same
positive circles. By Proposition 2.5(ii), A and A" are switching equivalent. O
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The line graph of a signed graph ¥ cannot be a signed graph, because reorienting an edge
of a bidirected graph corresponds to switching the corresponding vertex in its line graph.
Therefore, A(X) must be a switching class of signatures of A(|X]).

Theorem 6.2. The line graph of a switching class of signed graphs is a well defined switching
class of signed graphs.

Proof. The theorem means that if two signed graphs are switching equivalent, and if each
one is oriented arbitrarily, the signed graphs of the line graphs of the two oriented signed
graphs are switching equivalent. That is Lemma 6.1. O

In view of this theorem we may write A([X]) to denote the switching class of line graphs of
the signed graphs in the switching class [¥]. I sometimes refer to a line graph of 3, meaning
any signed graph in the switching class A([X]).

There is one circumstance in which there is a well defined signed line graph: an all-negative
signature. We can say that A(—I") = —A(T") because of:

Proposition 6.3. If T is a link graph, then A(]-T]) = [-A(T)].

Proof. Orient —I" so every edge is extraverted; that is, 7(v,e) = +. Then in A(=I', 7), every
edge is extraverted; thus, the signed graph underlying A(—I', 7) has all negative edges. [

On the other hand, if ¥ is all positive, its line graph cannot usually be made to be all
positive or all negative. Thus, all-negative signed graphs are special. Indeed, in connection
with line graphs the best way to think of an ordinary graph I' is as —I', not +I" as in most
other respects.

6.2. Adjacency matrix and eigenvalues.
The adjacency matrix of the line graph of an ordinary graph is computed directly from
the incidence matrix of the graph. The same is true for signed graphs.

Theorem 6.4. For a bidrected link graph 3, A(A(X)) = 2I — H(X)TH(Z).

The statement implies that the orientation of ¥ used to calculate A(X) does not affect the
values in A(A(X)).

Proof. The (j, j) entry of H(X)TH(X) is the sum over all vertices of n(v;, €;)? = 1, therefore
it equals 2.

The (j, k) entry of H(X)"H(X) for j # k is the sum over all vertices of n(v;, e;)n(vi, ex).
By Equation (3.1) this is 0 if e; and ej, are not adjacent, and if they are adjacent at v,, then

it is 7(v;, ;)7 (vs, ex) = —o(ejex).
Thus, the off-diagonal entries of H(X)"H(X) are those of —A(A(X)) and the diagonal
entries all equal 2. O

We can interpret Theorem 6.4 as saying that the inner product of representation vectors
x(e;) and x(e) equals 2 if j = k and —o(ejey) if j # k. A matrix of inner products is known
as a Gram matriz; thus, 21 — A(A(X)) is a Gram matrix of vectors with length /2.

Corollary 6.5. All the eigenvalues of a line graph of a signed graph are < 2.

Proof. A matrix of the form MTM has non-negative real eigenvalues. Apply Proposition
6.4. O
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In unsigned graph theory the eigenvalues of a line graph are > —2. Corollary 6.5 is the
generalisation to signed graphs, because in what concerns line graphs, an unsigned graph

should be taken as all negative, and the eigenvalues of —X are the negatives of those of X
(since A(—X) = —A(X)).

6.3. Reduced line graphs and induced non-subgraphs.

If 3 has a pair of parallel edges e, f, one being positive and the other negative, then in
A(XY) there is a double edge ef that forms a negative digon. Therefore, the (e, f) entry of
A(A(X)) equals 0, and correspondingly, in the reduced line graph A(X), the vertices e and
f are not adjacent.

A well known theorem of Beineke is that a simple graph is a line graph if and only if it has
no induced subgraph that is one of nine particular graphs, all of order at most 6. Chawathe
and Vijayakumar (1990a) found the analogous 49 excluded induced switching classes for
signed simple graphs that are reduced line graphs of signed graphs.

7. ANGLE REPRESENTATIONS

In this section all signed graphs have underlying graphs that are simple. For a non-zero
vector y, y denotes the unit vector in the same direction: y := ||y||'y.
An angle representation of ¥ is a mapping p : V — RY, for some dimension d, such that

0, if vw is not an edge and v # w,
A a‘U’LU

p(v) - p(w) = = +1/v, if vw is a positive edge, and

—1/v, if vw is a negative edge,

for some positive constant v. Equivalently, the representing vectors p(v), p(w) of adjacent
vertices v, w make an angle of § = arccos(1/v) € [0,7/2] if o(vw) =+, 7 — 0 if o(vw) = —,
and 7/2 if vw ¢ E. When X C R? we call p an angle representation in X if Imp C X. As
the length of p(v) has no role in the definition, one still has an angle representation after
multiplying any p(v) by any positive real number. Thus, for instance, one can simply assume
all the representing vectors have a particular desired length such as 1 or 2.

Switching v in ¥ corresponds to replacing p(v) by —p(v) in the angle representation.

A generalization of the Gram-matrix interpretation of Theorem 6.4 is a Gramian angle
representation of 3. That is an angle representation such that

p(v) - p(w) = ayw
for every pair of distinct vertices. It follows by comparing the two definitions that ||p(v)]| -
|p(w)|| = v for adjacent vertices. An anti-Gramian angle representation of ¥ is a Gramian
angle representation of —X. Vijayakumar uses anti-Gramian representations (Vijayakumar
(1987a) et al.). Example 7.3 shows why one wants them.

Proposition 7.1. In a Gramian angle representation of a connected signed simple graph >.:

(1) If X is not bipartite, all representing vectors p(v) have the same length \/v.

(2) If 3 is bipartite with color classes Vi and Va, then ||p(v)|| = oy if v € Vi and ||p(v)|| = s
if v € Vy, where ay,ay are positive real numbers whose product is v. Then p’ defined
by p'(v) = p(v)\/v is an angle representation in which all representing vectors have the
same length.

Idea of Proof. Apply the equation ||p(v)]||p(w)|| = v for an edge vw, propagated around an
odd circle if there is one, and an even circle if there is not. [l
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Call a Gramian angle representation in which all vectors have the same length normalized.
Then the Gram matrix of the representing vectors is A(3) + vI. Henceforth we assume all
Gramian representations are normalized. By Proposition 7.1 any Gramian angle represen-
tation becomes normalized if we replace p(v) by v/vp(v).

Theorem 7.2. A signed simple graph ¥ has a Gramian (or, anti-Gramian) angle represen-
tation with constant v if and only if the eigenvalues of ¥ are > —v (respectively, < v).

Proof. This proof is based on the treatment of equiangular lines by Seidel et al. (see Seidel
(1976a, 1995a), e.g., or Godsil and Royle (2001a)).

We consider a normalized Gramian angle representation. The Gram matrix A(X) + vI
has an eigenvalue A + v for each eigenvalue A of A(X). As a Gram matrix has non-negative
eigenvalues, every A > —v.

Now assume ¥ has eigenvalues > —v. The matrix A(X) + v/ is positive semidefinite and
symmetric. It follows by matrix theory that A(X)+wvI is the Gram matrix of vectors v; € R"
for v; € V, ie., a;; + v8;; = v; - v; for all 4, 5. Then p(v;) := v; is a (normalized) Gramian
angle representation of ¥ with constant v. 0

Example 7.3. The mapping x : F(X) — R" of Section 3.1, which gives a vector repre-
sentation of ¥, gives an anti-Gramian angle representation of A(X). We take p := x, since
V(A(X)) = E(X). The constant v = 2 and the angle § = 7/3. Every vector x(e) has the
same length, v/2, and the inner products are +1 if oarlef) = —, in which case the angle
between x(e) and x(f) is /3, and —1 if op(ef) = +, in which case the angle between x(e)
and x(f) is 2m/3.

The vectors x(e) are some of the vectors of the root system D, mentioned in Section
5.6, and the angle representation of A(+K,) is all of D,,. The treatment of x as an angle
representation of a reduced line signed graph is implicit in Cameron, Goethals, Seidel, and
Shult (1976a), but the proper signed-graphic treatment only came later, in Zaslavsky (1979a,
1984c, 2010b).

Cameron, Goethals, et al. used Gramian angle representations of unsigned graphs to clas-
sify the graphs I whose eigenvalues are > —2. They obtained the all-positive and all-negative
cases of the following theorem. (The all-positive case corresponds, in our terminology, to a
Gramian representation of —I', and the all-negative case to a Gramian representation of +1",
since the theorem concerns anti-Gramian representations.)

The root system FEg is defined by

FEg = DgU{%(ZEl,...,{fg) ERSZ&:Z‘ € {:l:l}, 81"-88:+1}.

Theorem 7.4. An anti-Gramian angle representation of ¥ with v = 2 is a vector repre-
sentation of a reduced line graph A(X), or else |V(X)| < 184 and the representation is in
Es.

Proof. As Vijayakumar (1987a) observed, Cameron, Goethals, et al. (1976a) implies that
an anti-Gramian angle representation of ¥ having v = 2 is, after choosing the appropriate
coordinate system, either in D,, for some n > 0 or in Eg. If the representation is in D,,, then
there is a signed graph ¥’ with vertex set £(X) whose vector representation x : £ — R" is
the same as p, and it is easy to verify that ¥’ is a reduced line graph of .

If the representation is in FEg, the order of ¥ cannot be greater than the number of pairs
of opposite vectors in Fg, which is 184 (because |D,,| = n(n — 1) and the number of choices
for (e1,...,eg) is 27). O
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Corollary 7.5. A signed simple graph has all eigenvalues < 2 if and only if it is a reduced line
graph of a signed graph or it has order < 184 and has an anti-Gramian angle representation
m Eg.

Proof of Sufficiency. Vectors in D,, or Eg have angles 7/3, 27/3, and 7/2, therefore an angle
representation in D,, or Eg has v = 2. ]

In particular, the number of signed simple graphs with all eigenvalues < 2 that are not
reduced line graphs of signed graphs is finite.

Example 7.6. Let I" be a simple graph with V' = {vy,...,v,}. A cocktail party graph CP,,
is Ko, \ M where M is a perfect matching. A generalized line graph A(T';mq, ..., m,), where
m; € Z>y, is the disjoint union A(I") U CP,,, U --- U CP,, with additional edges edges from
every vertex in CP,,, to every v;u; € V(A(I')) (Hoffman (1977a)). (It is the line graph if all
m; = 0.) Hoffman found that a generalized line graph has least eigenvalue > —2, just like a
line graph. Then Cameron, Goethals, et al. proved that there are no other graphs with least
eigenvalue > —2 except a handful that have Gramian angle representations in Fg.

This is a consequence of Corollary 7.5. We deduce it by showing how A(I';mq, ..., m,) is
a reduced line graph of a signed graph. Let I'(mq,...,m,) be —T" with m; negative digons
attached to v;. The other vertex of each negative digon is a new vertex; thus, I'(my, ..., m,)
has order n +my + --- +m, and |E| + 2(m; + --- + m,) edges. Then A(T'(my,...,m,)) =
—A(T;myq,...,my,). The eigenvalue property of A(I';my,...,m,) follows immediately from
Theorem 7.2.
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