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MATROIDS DETERMINE THE 

EMBEDDABILITY OF GRAPHS IN SURFACES 


THOMAS ZASLAVSKY 

(Communicated by Thomas Brylawski) 

ABSTRACT.The embeddability of a graph in a given surface is determined en- 
tirely by the polygon matroid of the graph. That is also true for cellular embed- 
dability in nonorientable surfaces but not in orientable surfaces. 

An embedding of a finite graph r in a surface S is a homeomorphism of T , 
regarded as a topological space, with a closed subset of S .  In order to know in 
which surfaces r embeds it suffices to consider only the compact surfaces: the 
orientable ones Tg of genus g (Euler characteristic 2- 2g) for g 2 0 ,  and the 
nonorientable ones Uh of Euler characteristic 2 -h for h 2 1 . For uniformity 
of terminology we define the demigenus d of a compact surface by d(Tg) = 2g ,  
d(Uh)= h . One knows exactly which compact surfaces can embed r if one 
knows two parameters: the genus of the graph, g ( r )  = min{g: r embeds in 
Tg) ,and its crosscap number (also called nonorientablegenus) h(T) = min{h : T 
embeds in Uh). A natural companion to these is the demigenus of T (also 
known as generalized genus, Euler genus, etc.), 

the smallest demigenus of a compact surface in which r embeds. It is the 
purpose of this note to point out the apparently unrecognized fact that these 
three parameters are matroidal, that is, determined by the polygon matroid ' 
of the graph. This fact, which generalizes Whitney's theorem that planarity 
is matroidally determined [20], follows readily from published work on graph 
embedding. 2 
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Three operations on a graph T are (a) identifying two vertices in different 
components, (b) the reverse, and (c) twisting. The last named consists in split- 
ting T into subgraphs T, and T2 whose intersection is precisely a 2-separating 
vertex set {v ,w) such that v and w are connected by a path in T, and T2,  
and reconnecting all the edges of T2 at v and w to the opposite vertex, respec- 
tively w or v . Plainly, none of these operations changes the polygon matroid 
G(T) . Whitney's 2-isomorphism theorem [21; 17, $6.1; 18, $6.31 states that, if 
G(T) = ~ ( p ),then p can be obtained from T by iterating operations (a, b, c). 
Thus we need to show that these operations do not alter the genus, demigenus, 
or crosscap number. 

The BHKY theorem [2], that g(T) = Cy g(Ti) where Tl , . . . ,Tn are the 
blocks of T ,  shows that genus is unaffected by (a) and (b). The observation 
of [15, Corollary 21 that the analogous formula holds for the demigenus of a 
connected graph implies a similar conclusion for d(T) if r is connected. A 
simple argument from [15] gives the crosscap number as well: For any graph let 
S(T) = h(T) - d(T) . As noted in [15, Eq. (I)], 6(T) = 0 or 1. Now let T have 
blocks T I ,  . . . ,T, . If T is connected, 

n 

(1) h ( r )  = d(T) +d(T) = C d ( T , )  +S(T). 
i= 1 

[15, Theorem 11 states that 

(2) S(T) = 1 e all &(Ti) = 1.  

Thus h(T) is determined by the blocks of T .  
If T has k > 1 components we use a trick of [2, p. 5671. Let T/ be T with 

k - 1 edges added to make a connected graph. In r' the blocks are Tl , .. . ,Tn 
and single edges Tn+, , . . . ,Tn+k-l. The latter have genus and demigenus 0 
and h(T,) = 6(r i )  = 1. Since the genus, demigenus, and crosscap number 
of r' are independent of the location of the extra edges, it is easy to see that 
g ( p )  = g(T) and h ( p )  = h(T) ,whence d ( p )  = d(T) and 6(r') = 6(T) . It 
follows that d(T) = Cy d (Ti) and that (1) and (2) hold for T . Therefore h(T) 
is determined by the blocks of T .  

Now suppose r = Tl u T2 where Tl and T2 are connected3 and Tl n T2 
consists of just the two vertices v and w . The main theorem of Decker et 
al. [3; 4, Theorem 0.11 is that there is a function p(T, {v ,w)) of connected 
graphs with a distinguished vertex pair such that 

= g(T1)+ g(T,) + l$(3- P(T, 3 {v 3 w))PC~(~,9 {v 7 w>))l. 
If A is a graph and v ,  w E V(A), let A"" be A with an extra edge vw 
adjoined. Richter [lo] proves that 

The requirement of connectedness is not stated in [4] but it is necessary for the proof. The 
formula may be false if rl or r2 does not contain a vw path. 
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In [9] he shows by a more complicated argument that there is a function p of 
pairs of connected graphs with a distinguished vertex pair (this p is unrelated 
to that of Decker et al.) such that 

These three formulas, together with additivity on blocks, imply that g(T) , 
d(T) , and h(T) are invariant under twisting. Hence our main result: 

Theorem. The genus, demigenus, and crosscap number of a graph are determined 
by its polygon matroid. 

By a minor of a graph or matroid B we mean any isomorph of a contraction 
of a subgraph or submatroid of B .  The relation defined by A 5 B if A 
is a minor of B is a partial ordering of isomorphism types of graphs and 
also of matroids; we call it the minor ordering. It is easy to see that for each 
surface S the property of embeddability in S is hereditary, that is, if T embeds 
so does every minor. Consequently there is a set FG(S)of graphs (actually, 
isomorphism types of graphs) such that T is embeddable in S if and only if 
no minor of T belongs to Sr,(S). The members of FG(S)are known as the 
forbidden graph minors for embedding in S . Our theorem implies: 

Corollary 1. A graph T embeds in S ifand only if G(T) has no minor in the 
set FM(S)= {G(F): F E FG(S)}. 

Corollary 2. A matroid M is the matroid of a graph embeddable in S if and 
only if it is graphic and has no minor belonging to FM(S). 

In other words, the class of matroids whose graphs are embeddable in a 
given surface is determined by forbidden matroid minors (since the property of 
graphicity is so determined, according to the famous theorem of Tutte [16]; the 
five forbidden minors are described in [17, 5 10.51 and [19, 52.61). By [12] (see 
also [ l  I]), and when S = Uh also by [I], &(S) is finite. Consequently the 
forbidden minors for a matroid to be the polygon matroid of an S-embeddable 
graph are finite in number. 

One might hope that FM(S)would be much smaller than FG(S) ,  which is 
very large if d(S) 2 2 .  But this is not the case for S = To or U, , as one can 
see by inspection of the two forbidden graph minors for To (i.e., K, and K3 3) 

and the 35 for U, (they are the first 35 irreducible graphs listed in [7]). 
Corollaries 1 and 2 remain true if S is replaced by a pair of surfaces Tg and 

Uh and embeddability is interpreted as being embeddable in both, or in either, 
of the surfaces. In either case the forbidden graph minors are finitely many, by 
[13] and in the second case by [I], hence so are the forbidden matroid minors. 

A natural follow-up queston is whether cellular embeddability of a graph 
in a given surface, where every component of the graph's complement in S 
is an open 2-cell, is a matroidal property. To avoid triviality assume T is a 
connected graph. The genus range is g(T) = {g: T has a cellular embedding in 
Tg) and the crosscap range'is b(T) = {h: T embeds cellularly in Uh) . Each 
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of these sets is finite and, if nonempty, is contiguous: if i < k < j and i ,  j 
are in the set, so is k . (See [5, Theorem 3.21 and [14, Theorem 81, or consult 
[8, $3.41.) Obviously g ( r )  = ming(r) ; we define gmax(T)= maxg(r) . It 
is clear that b(r) = 0 if r is a tree and otherwise h( r )  = minb(r) ; we 
set hmaX(T)= max t)(r). From work of Edmonds [6] it follows directly (see 
[8, Theorem 3.4.31) that hmaX(T) = /?,(T), the cyclomatic number of T .  This 
is precisely the nullity of G(T) . Thus the crosscap range is matroidal. 

A theorem of Xuong ([22]; see [8, Corollary to Theorem 3.4.131) says that 
gm,(r) = $(/Il(r)-((r)),where ((r)is the minimum over all spanning trees 
T of the number of components of T\E(T) which have an odd number of 
edges. This quantity is unfortunately not determined by G(r)  . For example let 
rl and r2be formed from the three blocks K3 , K3, K2 . To construct Tl we 
join each K3 to a different vertex of the K2 . Obviously ((TI) = 2 .  To form 
T2 we join the two K3's at a vertex and attach the K, anywhere. Evidently 
((T,) = 0 .  Yet the two graphs have the same matroid because they have the 
same blocks. 

To summarize: 

Proposition. The crosscap range of a connected graph is determined by its ma- 
troid, but the genus range is not. 

One wonders how much information about the genus range is lost by passing 
to the matroid. Let gm,(M) ,for a graphic matroid M ,be 

Is gm,(M) -gm,(r) for graphs with G(T) = M bounded by a constant, or by 
a small multiple of gm,(M) ? 
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